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Nucleonic models at finite temperature with in-medium effective fields
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We perform a calculation of dense and hot nuclear matter where the mean interaction between nucleons is
described by in-medium effective fields and where we employ analytical approximations of the Fermi integrals.
We generalize a previous work [Dutra et al., Astrophys. J. 952, 5 (2023)] where we have addressed the case of the
Fermi gas model with in-medium effective mass. In the present work we fully treat the in-medium interaction by
considering both its contribution to the in-medium effective fields, which can be subsumed by the mass in some
cases, and to the potential term. Our formalism is general and could be applied to relativistic and nonrelativistic
approaches. It is illustrated for different popular models—Skyrme, nonlinear, and density-dependent relativistic
mean-field models—but also for the metamodel, and it provides a clear understanding of the in-medium
correction to the pressure, which is present in the case of the Skyrme and metamodel but is not for the relativistic
ones. For the Fermi integrals, we compare the analytical approximation to the so-called “exact” numerical
calculations in order to quantitatively estimate the accuracy of the approximation.
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I. INTRODUCTION

The description of dense matter depends to a large extent
on the nuclear interaction, which is expressed within various
models [1–6]. In the present work we consider phenomeno-
logical approaches for the nuclear interaction, for which we
suggest a common formalism at finite temperature. In ad-
dition, at variance with zero temperature where the Fermi
integrals are analytical, nuclear matter at finite temperature
often requires the numerical calculation of Fermi integrals,
which represents a numerical cost and impacts the computing
time. In particular, the use of statistical methods such as the
Bayesian statistics coupled to Markov chain Monte Carlo,
which are more and more employed to accurately quantify
uncertainties, requires a large number of calculations. In this
case it is crucial to reduce all possible sources of extra time
consumption at finite temperature and, for instance, to employ
analytical approximations of the Fermi integrals.

In a previous work [7] we showed how in-medium cor-
rections to the nucleon effective mass could be incorporated
into the Fermi gas model (FG), which is a generalization of
the free Fermi gas one (FFG). Phenomenological models for
nucleon interaction at the mean-field approximation predict
indeed in-medium correction to the effective mass, and more
generally, in-medium modification of effective fields, which
was not treated in our previous work. These fields could
be the in-medium effective mass or the in-medium meson
fields, or any other fields which induce an implicit medium
correction to thermodynamical quantities. In the present paper
we treat the interaction term entirely at the mean-field level,

provided the in-medium corrections could be devised into an
in-medium effective mass and momentum-independent mean-
field terms. Our formalism is, however, limited to models
where the momentum dependence of the interaction can be
represented by a modification of the bare mass, such as in
Skyrme, relativistic mean field, and metamodel approaches.
Given this limitation, we present a formalism where the full
contribution of the interaction is considered at finite density
and temperature, making use of a fast analytical approxima-
tion of the Fermi integrals.

The formalism which is shown in this paper is directly
employable to perform finite-temperature calculations based
on phenomenological nucleon interaction. We compute finite-
temperature calculation for dense matter based on the time
consuming, but “exact,” calculation of the Fermi integrals,
which is compared to its analytical approximation using the
one suggested in Ref. [8], hereafter called JEL. The suggested
formalism allows one to perform fast calculations at finite
temperature, and in dense and uniform matter existing in the
dense phases of core-collapse supernovae [9,10] or in the
remnants of neutron star mergers [11].

Our work is organized as follows: In Sec. II we perform
the generalization of the FG model described in Ref. [7]
by introducing, in the canonical ensemble, the Helmholtz
free-energy density for the full interaction term, including
in-medium fields for relativistic and nonrelativistic models.
In Sec. III we apply this formalism to Skyrme, nonlinear,
density-dependent relativistic mean field, and metamodel,
and generate thermodynamical quantities, such as the pres-
sure and the chemical potential, with in-medium corrections
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induced by the fields. Finally, our conclusions are presented in
Sec. IV.

II. THERMODYNAMICAL DESCRIPTION
OF HOT AND DENSE MATTER

In the following we consider the canonical ensemble (CE),
allowing exchanges of energy in open nuclear systems con-
trolled on average by the temperature (intensive variable) but
with a fixed number of particles (extensive variables). For a
system composed of neutrons and protons, these densities are
nn and np. Equivalently, one could describe this system with
the nucleonic density n = nn + np and isospin parameter δ =
(nn − np)/n. Due to the equivalence between ensembles in
infinite and uniform systems, one could replace particle num-
bers by chemical potentials which control the average number
of particles in the grand-canonical ensemble. In the following
the CE is adopted, however, since it is more frequently used
to employ densities instead of chemical potentials.

In the CE the thermodynamical potential is defined to be
the Helmholtz free-energy density φ, which is expressed in
terms of the energy density ε and entropy density σ as

φ ≡ ε − T σ. (1)

It can be decomposed into a kinetic and a potential contribu-
tion as

φ(n, δ, T, {ϕ}) = φ∗
kin(n, δ, T, {ϕ}) + φpot (n, δ, {ϕ}), (2)

where {ϕ} stands for a set of field contributions ϕi, which
could depend on the thermodynamical variables n, δ, or T .
The detailed expression of {ϕ} depends on the model for
which this formalism is applied to. The general notation
adopted in this section is illustrated in the next section.
For instance, we could have {ϕ} = {m∗

n, m∗
p} in the case of

the Skyrme interaction, while in relativistic mean-field ap-
proaches, the fields are those of the meson contributions to
the mean field.

The kinetic term originating from the neutron and proton
contributions can be expressed in the following equation, with
q representing neutrons or protons:

φ∗
kin(n, δ, T, {ϕ}) =

∑
q=n,p

φ∗
kin,q(n, δ, T, {ϕ}q ), (3)

where the two kinetic terms φ∗
kin,q are those of the FG cor-

rected by a field {ϕ}q = m∗
q , the density-dependent nucleon

effective mass; see Ref. [7] for more details. We consider the
notation introduced in Ref. [7] where the thermodynamical
quantities with ∗, such as φ∗, for instance, are calculated using
analytical expressions valid at fixed and constant in-medium
effective mass. Note that the mass is not necessarily taken
to be the bare mass, but the correction due to its variation
as a function of the thermodynamical variables is not incor-
porated in quantities with ∗. In other words, the quantities
with ∗ are the ones that are calculated directly using analytical
expressions, such as the ones given in the JEL approximation.
As noted in Ref. [7], some thermodynamical properties cal-
culated by using the JEL approximation, for instance, shall
be corrected by the modification of the in-medium effective
mass, which is not given by the JEL approximation.

In Eq. (2) the term φpot (n, δ, {ϕ}) is the potential contri-
bution, which is considered as (explicitly) independent of T
in the present work. In general, phenomenological nucleonic
potentials do not explicitly depend on the temperature.

The pressure of the system is obtained from the Helmholtz
free energy per particle, f (n, δ, T, {ϕ}) = φ(n, δ, T, {ϕ})/n,
as

p = n2 ∂ f

∂n

∣∣∣∣∣
T,δ

= n2 ∂ f ∗
kin

∂n

∣∣∣∣∣
T,δ,{ϕ}

+ n2
∑

i

∂ϕi

∂n

∣∣∣∣∣
T,δ

∂ f

∂ϕi

∣∣∣∣∣
T,n,δ,{ϕ j �=i}

+ n2 ∂ fpot

∂n

∣∣∣∣∣
T,δ,{ϕ}

=
∑

q=n,p

p∗
kin,q + pcorr + ppot, (4)

with p∗
kin,q = n2∂ f ∗

kin,q/∂n|T,δ,{ϕ} and pcorr the correction due
to the implicit density dependence of the fields,

pcorr = n2
∑

i

∂ϕi

∂n

∣∣∣∣∣
T,δ

∂ f

∂ϕi

∣∣∣∣∣
T,n,δ,{ϕ j �=i}

= n
∑

i

∂ϕi

∂n

∣∣∣∣∣
T,δ

∂φ

∂ϕi

∣∣∣∣∣
T,n,δ,{ϕ j �=i}

, (5)

where we employ the usual notation: for the particle number
i, j �= i means all other particle numbers. The potential con-
tribution to the pressure is defined as

ppot = n2 ∂ fpot

∂n

∣∣∣∣∣
T,δ,{ϕ}

= n
∂φpot

∂n

∣∣∣∣∣
T,δ,{ϕ}

− φpot. (6)

Note that sometimes the derivative of fpot with respect to
the density is decomposed into a rearrangement term �R

related to the explicit density dependence of the interaction,
or Lagrangian, from the rest; see the section dedicated to the
density-dependent relativistic mean-field model.

The kinetic pressure p∗
kin,q can also be expressed in terms

of the Fermi-Dirac distribution FD,

FD(k, μ∗
kin,q, T, m∗

q ) = [1 + e((k2+m∗2
q )1/2−μ∗

kin,q )/T ]−1, (7)

where μ∗
kin,q is the chemical potential at finite T , defined as

μ∗
kin,q = ∂φ∗

kin,q

∂nq

∣∣∣∣∣
T,nq̄,{ϕ}

, (8)

in which q represents a particle of a given isospin index, and
q̄ describes the other one.

The relativistic kinetic energy density and the kinetic pres-
sure are defined as

ε∗
kin,q = γ

2π2

∫ ∞

0
dk k2

(
k2 + m∗2

q

)1/2
FD(k, μ∗

kin,q, T, m∗
q ),

(9)

p∗
kin,q = γ

6π2

∫ ∞

0

dk k4(
k2 + m∗2

q

)1/2 FD(k, μ∗
kin,q, T, m∗

q ), (10)
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where γ = 2 is the spin degeneracy for spin saturated systems.
The nucleon entropy density is defined as

σq = − γ

2π2

∫ ∞

0
dk k2[FD lnFD + (1 − FD)ln(1 − FD)],

(11)
with σ = σn + σp.

By fixing h̄ = c = kB = 1, momenta, masses, and tempera-
tures are given in units of energy. For simplicity, we disregard
here possible antiparticle contributions, but they can be simply
added to the formalism.

The neutron and proton chemical potentials μq read

μq = ∂φ

∂nq

∣∣∣∣∣
T,nq̄

= ∂φ∗
kin

∂nq

∣∣∣∣∣
T,nq̄,{ϕ}

+ ∂φpot

∂nq

∣∣∣∣∣
T,nq̄,{ϕ}

+
∑

i

∂φ

∂ϕi

∣∣∣∣∣
T,nq,nq̄,{ϕ j �=i}

∂ϕi

∂nq

∣∣∣∣∣
T,nq̄

= μ∗
kin,q + μcorr,q + μpot,q, (12)

with μ∗
kin,q defined from Eq. (8), and

μcorr,q =
∑

i

∂ϕi

∂nq

∣∣∣∣∣
T,nq̄

∂ (φ∗
kin + φpot )

∂ϕi

∣∣∣∣∣
T,nq,nq̄,{ϕ j �=i}

, (13)

μpot,q = ∂φpot

∂nq

∣∣∣∣∣
T,nq̄,{ϕ}

. (14)

In relativistic approaches, the scalar density is often in-
troduced, since it arises naturally in the coupling between
nucleons and scalar fields. It also contributes to the satura-
tion mechanism, since vector and scalar fields interact with
nucleons with different vertex defining different densities. The
scalar density for neutrons and protons is defined as

ns,q = γ m∗
q

2π2

∫ ∞

0

dk k2(
k2 + m∗2

q

)1/2 FD(k, μ∗
kin,q, T, m∗

q ), (15)

and the isoscalar scalar density is ns = ns,n + ns,p. One could
demonstrate that the scalar field ns,q can be expressed in
terms of kinetic energy density, pressure, and effective mass
as follows:

ns,q = ε∗
kin,q − 3p∗

kin,q

m∗
q

. (16)

As shown in Eq. (16), the scalar density can be deter-
mined from the thermodynamical quantities given by the JEL
approximation. This is what we have done to obtain the equa-
tions of state within the JEL approximation for the relativistic
models used in this work.

III. APPLICATION TO PHENOMENOLOGICAL MODELS

In this section we present applications of the aforemen-
tioned formalism to some of the most widely employed
phenomenological models used to describe nuclear physics
systems.

A. Skyrme model

We start by considering a Skyrme model [1,5,12,13] for
which the energy density can be written as the sum of the rest
mass and the internal energy densities as

εsky = εmass + ε
sky
int , (17)

with εmass = ∑
q mqnq and the internal energy expressed as

ε
sky
int =

∑
q

ε
sky∗
intkin,q + ε

sky
pot , (18)

where

ε
sky∗
intkin,q = γ

2π2

∫ ∞

0
dk k2 k2

2m∗
q

FD(k, μ∗
kin,q, T, m∗

q ), (19)

and

ε
sky
pot (n, δ) = 1

8
t0n2[2(x0 + 2) − (2x0 + 1)H2]

+ 1

48
t3nα+2[2(x3 + 2) − (2x3 + 1)H2], (20)

with

H2 = 1
2 [(1 − δ)2 + (1 + δ)2]. (21)

For the Skyrme model, the fields are the effective masses,
{ϕ} = {m∗

n, m∗
p}, which are defined in terms of n and δ as

m∗
q (n, δ)

m
= [

1 + 2m
(
Cτ

0 + τ3C
τ
1 δ

)
n
]−1

, (22)

where m is the nucleon bare mass, and τ3 = 1 for neutrons and
−1 for protons. Here there are seven model parameters which
are x0, t0, x3, t3, α, Cτ

0 , Cτ
1 .

According to Ref. [7], the entropy density, σ sky, does not
present any correction due to the in-medium effective mass m∗

q

in the Skyrme model, σ sky = σ sky∗, since the effective nucleon
mass is independent of T , see Eq. (22). It is therefore possible
to express the Helmholtz free energy (1) as

φsky ≡ εsky − T σ sky = εsky − T σ sky∗, (23)

which gives

φsky ≡ φmass + φ
sky∗
intkin + φ

sky
pot (24)

with

φmass = εmass, (25)

φ
sky∗
intkin =

∑
q=n,p

ε
sky∗
intkin,q − T σ sky∗, (26)

φ
sky
pot = ε

sky
pot , (27)

where ε
sky∗
intkin,q and σ sky∗ are obtained directly from the ana-

lytical approximation of the Fermi integrals at fixed effective
mass. The Helmholtz free energy φsky is therefore directly
obtained from the analytical expressions without in-medium
correction.

For the Skyrme model, the potential term is independent
of the fields {ϕ}, see Eq. (20), which implies ∂ε

sky
pot /∂m∗

q = 0,
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and using Eq. (27), we obtain ∂φ
sky
pot /∂m∗

q = 0. As a result, we
obtain the following expression for the pressure:

psky =
∑

q=n,p

(
psky∗

kin,q + psky
corr,q

) + psky
pot, (28)

with the following contributions:

psky∗
kin,q = 2

3
ε

sky∗
intkin,q, (29)

psky
corr,q = −3

2
n

psky∗
kin,q

m∗
q

∂m∗
q

∂n

∣∣∣∣∣
T,δ

, (30)

psky
pot = 1

8
t0n2[2(x0 + 2) − (2x0 + 1)H2]

+ 1

48
t3(α + 1)nα+2[2(x3 + 2) − (2x3 + 1)H2],

(31)

where the correction term (30) implying the derivative of
φ with respect to the in-medium effective mass is obtained
directly from Eq. (5) using the relation

∂φ
sky∗
intkin

∂m∗
q

∣∣∣∣∣
T,n,δ

= 1

m∗
q

(
ε

sky∗
intkin,q − 3psky∗

kin,q

)
, (32)

and injecting the relation (29).
In particular, Eq. (32) was derived in Ref. [7] by taking into

account the analytical expressions furnished by the JEL ap-
proximation. We address the reader to this reference for more
details on this calculation. Since ε∗

kin,q = mqnq + ε∗
intkin,q, one

can use the relation (16) to express

∂φ
sky∗
intkin

∂m∗
q

∣∣∣∣∣
T,n,δ

= ns,q − mq

m∗
q

nq. (33)

Note that the pressure in the Skyrme model contains a correc-
tion term psky

corr,q due to the in-medium effective mass given by
Eq. (30).

For the chemical potentials, we have

μsky
q = mq + μ∗

kin,q + μsky
corr,q + μ

sky
pot,q, (34)

with μ∗
kin,q defined from Eq. (8), and

μsky
corr,q = −3

2

psky∗
kin,n

m∗
n

∂m∗
n

∂nq

∣∣∣∣∣
T,nq̄

− 3

2

psky∗
kin,p

m∗
p

∂m∗
p

∂nq

∣∣∣∣∣
T,nq̄

μ
sky
pot,q = t0

4
n{2(x0 + 2) − (2x0 + 1)[H2 ± (1 ∓ δ)δ]}

+ (α + 2)

48
t3nα+1

{
2(x3 + 2)

− (2x3 + 1)

[
H2 ± 2(1 ∓ δ)δ

α + 2

]}
, (35)

with upper (lower) signs for neutrons (protons).

B. Nonlinear relativistic mean-field model

The energy density of nonlinear relativistic mean-field
(RMF) models [2,3,6,14] with fixed coupling constants, de-
noted here as a nonlinear (NL) model, can be expressed as

εNL =
∑

q=n,p

ε∗
kin,q + εNL

pot , (36)

with the kinetic energy density defined in Eq. (9) and the
potential term expressed as

εNL
pot = 1

2
m2

σ σ 2
0 + A

3
σ 3

0 + B

4
σ 4

0 − 1

2
m2

ωω2
0 − C

4

(
g2

ωω2
0

)2

− 1

2
m2

ρρ
2
0(3) + gωω0n − gρ

2
ρ0(3)n3

+ 1

2
m2

δ δ
2
(3) − gσ g2

ωσ0ω
2
0

(
α1 + 1

2
α′

1gσ σ0

)

− gσ g2
ρσ0ρ

2
0(3)

(
α2 + 1

2
α′

2gσ σ0

)
− 1

2
α′

3g2
ωg2

ρω
2
0ρ

2
0(3),

(37)

where n3 = nn − np = δn. Here σ0, δ(3), ω0, and ρ0(3) are the
mean-field reductions of the meson fields with masses mσ , mδ ,
mω, and mρ . The coupling constants of the model are given by
gσ , gω, gρ , gδ , A, B, C, α1, α′

1, α2, α′
2, and α′

3. The effective
nucleon mass is given in terms of the scalar fields σ0 and δ(3),
namely,

m∗
q = m∗

q (σ0, δ(3) ) = mq − gσ σ0 + τ3gδδ(3). (38)

The field equations for the fields σ0 and δ(3), deduced from
the Euler-Lagrange equations, are given by

m2
σ σ0 = gσ (ns,n + ns,p) − Aσ 2

0 − Bσ 3
0

+ gσ g2
ωω2

0(α1 + α′
1gσ σ0)

+ gσ g2
ρρ

2
0(3)(α2 + α′

2gσ σ0), (39)

and

m2
δ δ(3) = −gδ (ns,n − ns,p), (40)

which shows that these fields are modified by the medium,
mostly from the scalar densities, see Eq. (15). Similar rela-
tions could be obtained for the other fields.

Since the effective mass can be expressed in terms of
the meson fields, see Eq. (38), and the fields are in-medium
quantities, the field contribution to the Helmholtz free energy
in the relativistic mean-field model can be developed as {ϕ} =
{σ0, δ(3), ω0, ρ0(3)}.

The entropy density is given by

σ NL = −∂φNL

∂T

∣∣∣∣∣
n,δ

= −∂φNL
kin

∂T

∣∣∣∣∣
n,δ,{ϕ}

− ∂φNL
pot

∂T

∣∣∣∣∣
n,δ,{ϕ}

−
∑

i

∂φNL

∂ϕi

∣∣∣∣∣
n,δ,T,ϕ j �=i

∂ϕi

∂T

∣∣∣∣∣
n,δ

. (41)

We remark that (i) the potential term in the RMF model does
not depend explicitly on T , so the second term in Eq. (41)
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vanishes, and (ii) the equilibrium relation [15] in the CE leads
to

∂φNL

∂ϕi

∣∣∣∣∣
n,δ,T,ϕ j �=i

= 0, (42)

which then cancels the last term in Eq. (41). We thus obtain
that

σ NL = −∂φNL
kin

∂T

∣∣∣∣∣
n,δ,{ϕ}

= σ NL∗, (43)

which means that the entropy density can be directly obtained
from the JEL approximation, with no in-medium correction.
The Helmholtz free energy can then be expressed as

φNL ≡ εNL − T σ NL = εNL − T σ NL∗ ≡ φNL∗
kin + φNL

pot , (44)

with

φNL∗
kin =

∑
q=n,p

εNL∗
kin,q − T σ NL∗, (45)

φNL
pot = εNL

pot . (46)

The pressure is therefore obtained as

pNL =
∑

q=p,n

p∗
kin,q + pNL

corr + pNL
pot, (47)

with p∗
kin,q given by the relation (10) and can be calculated

from the JEL approximation with in-medium effective mass,
as shown in Ref. [7], and

pNL
corr = n

∑
i

∂ϕi

∂n

∣∣∣∣∣
δ,T

∂φNL

∂ϕi

∣∣∣∣∣
n,δ,T,ϕ j �=i

= 0, (48)

pNL
pot = n

∂εNL
pot

∂n

∣∣∣∣∣
T,δ,{ϕ}

− εNL
pot , (49)

where we have used the equilibrium condition (42) to show
that pNL

corr = 0. In other words, there is no correction term to the
pressure induced by the in-medium effective mass, at variance
with Skyrme model. The final expression for pNL is

pNL =
∑

q=n,p

p∗
kin,q − 1

2
m2

σ σ 2
0 − A

3
σ 3

0 − B

4
σ 4

0

+ 1

2
m2

ωω2
0 + C

4

(
g2

ωω2
0

)2 + 1

2
m2

ρρ
2
0(3) − 1

2
m2

δ δ
2
(3)

+ gσ g2
ωσ0ω

2
0

(
α1 + 1

2
α′

1gσ σ0

)
+ 1

2
α′

3g2
ωg2

ρω
2
0ρ

2
0(3)

+ gσ g2
ρσ0ρ

2
0(3)

(
α2 + 1

2
α′

2gσ σ0

)
. (50)

Note that all the terms linear in the density n do not contribute
to the pressure. The pressure (50) coincides with the ex-
pression obtained directly from the momentum-energy tensor
[2,6].

Finally, the chemical potentials of the model are

μNL
q = ∂φNL

∂nq

∣∣∣∣∣
T,nq̄

= μ∗
kin,q +

∑
i

∂ϕi

∂nq

∣∣∣∣∣
T,nq̄

∂φNL

∂ϕi

∣∣∣∣∣
nq,nq̄,T,ϕ j �=i

+ ∂εNL
pot

∂nq

∣∣∣∣∣
T,nq̄,{ϕ}

. (51)

Once again, Eq (42) leads to μcorr,q = 0, and

μNL
q = μ∗

kin,q + ∂εNL
pot

∂nq

∣∣∣∣∣
T,nq̄,{ϕ}

= μ∗
kin,q + gωω0 ∓ gρ

2
ρ0(3), (52)

with − (+) for neutrons (protons). Note that similarly to
the pressure, there is no correction to the chemical potential
induced by the in-medium effective fields.

C. Density-dependent relativistic mean-field model

Another widely used nucleonic model is the one in which
the couplings are density-dependent functions [2,4,6,16],
namely,

εDD =
∑

q=n,p

ε∗
kin,q + εDD

pot , (53)

with

εDD
pot = 1

2
m2

σ σ 2
0 − 1

2
m2

ωω2
0 − 1

2
m2

ρρ
2
0(3) + 1

2
m2

δ δ
2
(3)

+ �ω(n)ω0n − �ρ (n)

2
ρ0(3)n3, (54)

where the functions � j ( j = σ, ω, ρ, δ) are given by polyno-
mial or fractional forms in terms of the density [4,16,17]. The
in-medium effective masses for the neutrons and the protons
are defined as

m∗
n = m − �σ (n)σ0 + �δ (n)δ(3), (55)

m∗
p = m − �σ (n)σ0 − �δ (n)δ(3). (56)

As in the NL model, there are four fields in the theory: {ϕ} =
{σ0, δ(3), ω0, ρ0(3)}.

By performing a similar analysis to the one presented in
Sec. III B, we conclude that

∂εDD
pot

∂n

∣∣∣∣∣
T,δ,{ϕ}

= �ωω0 − �ρ

2
ρ0(3)δ + �R(n), (57)

with the rearrangement term �R defined as

�R(n) = �′
ωω0n − �′

ρ

2
ρ0(3)n3 − m2

σ σ 2
0 �′

σ

�σ

− m2
δ δ

2
(3)�

′
δ

�δ

,

(58)

where �′
j ≡ d� j/dn.
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Finally we obtain the following expression for the pressure:

pDD =
∑

q=n,p

p∗
kin,q + n�R(n) − 1

2
m2

σ σ 2
0 + 1

2
m2

ωω2
0

+ 1

2
m2

ρρ
2
0(3) − 1

2
m2

δ δ
2
(3). (59)

For the chemical potentials, we have

μDD
q = μ∗

kin,q + �R(n) + �ωω0 ∓ �ρ

2
ρ0(3), (60)

with − (+) for neutrons (protons).

D. Metamodel

The nonrelativistic version of the metamodel developed in
Refs. [18–21] considers the energy density given by the sum
of kinetic and potential parts, with the latter expressed in terms
of an expansion in the parameter x = (n − nsat )/(3nsat ), where
nsat is the saturation density. At finite temperature, it reads

εmm(n, T, δ) = m n + εmm∗
intkin,p + εmm∗

intkin,n + εmm
pot (n, δ), (61)

with the nonrelativistic kinetic energy density of protons and
neutrons given as in the Skyrme model, i.e., by the expression
shown in Eq. (19), with the following nucleon effective mass:

m

m∗
q (n, δ)

= 1 + (κsat + τ3κsymδ)
n

nsat
. (62)

The potential part of the model is written as

εmm
pot (n, δ) = n

N∑
j=0

1

j!
(vsat, j + vsym, jδ

2)x ju j (x, δ), (63)

where

u j (x, δ) = 1 − (−3x)N+1− je−ζ (δ)(3x+1), (64)

and ζ (δ) = bsat + bsymδ2. Here we take N = 4 and use bsat =
6.9, bsym = 0 [18,19]. The coefficients vsat, j , vsym, j , and the
parameters κsat, κsym, are given in terms of the nuclear empir-
ical parameters, whose values can be given in the respective
ranges [18]

nsat = (0.155 ± 0.005) fm−3, (65)

Esat = (−15.8 ± 0.3) MeV, (66)

m∗
sat

m
= m∗

q (nsat, 0)

m
= 0.75 ± 0.1, (67)

Ksat = (230 ± 20) MeV, (68)

Qsat = (300 ± 400) MeV, (69)

Zsat = (−500 ± 1000) MeV, (70)

�m∗
sat

m
= m∗

n (nsat, 1)

m
− m∗

p(nsat, 1)

m
= 0.1 ± 0.1, (71)

Esym = (32 ± 2) MeV, (72)

Lsym = (60 ± 15) MeV, (73)

Ksym = (−100 ± 100) MeV, (74)

Qsym = (0 ± 400) MeV, (75)

Zsym = (−500 ± 1000) MeV. (76)

For the calculations performed in this paper, we adopted the
central values of each interval presented above.

As in the case of the Skyrme model, we verify that the
nucleon entropy density of the metamodel is also given by
Eq. (11), since its effective mass is a temperature-independent
quantity. Therefore we have

φmm(n, T, δ) = εmm∗
kin,p + εmm∗

kin,n − T
(
σ mm∗

p + σ mm∗
n

)
+ εmm

pot (n, δ). (77)

Therefore, for usual calculations, the pressure and chemical
potentials of the model can be numerically calculated from
this main thermodynamical quantity, namely,

pmm(n, T, δ) = n2 ∂ (φmm/n)

∂n

∣∣∣∣∣
T,δ

, (78)

μmm
q = ∂φmm

∂nq

∣∣∣∣∣
T,nq̄

. (79)

However, the procedure developed in Sec. II is a useful tool
in order to derive analytical expressions in replacement of
the numerical ones. For the pressure of the metamodel, for
instance, we obtain

pmm(n, T, δ) = 2

3

(
εmm∗

kin,p + εmm∗
kin,n

)

− n

⎛
⎝εmm∗

kin,p

m∗
p

∂m∗
p

∂n

∣∣∣∣∣
T,δ

+ εmm∗
kin,n

m∗
n

∂m∗
n

∂n

∣∣∣∣∣
T,δ

⎞
⎠

+ pmm
pot (n, δ), (80)

with

pmm
pot (n, δ) = n2

3nsat

[
N−1∑
i=0

1

i!
(vsat,i+1 + vsym,i+1δ

2)xiui+1(x, δ)

+
N∑

j=0

1

j!
(vsat, j + vsym, jδ

2)x jw j (x, δ)

]
, (81)

and

w j (x, δ) = ∂u j

∂x

= 3(−3x)N− je−ζ (δ)(3x+1)[N + 1 − j − 3xζ (δ)].
(82)

In addition, the chemical potential of the nucleon q reads

μmm
q = m + μ∗

kin,q − εmm∗
kin,n

m∗
n

∂m∗
n

∂nq

∣∣∣∣∣
T,nq̄

− εmm∗
kin,p

m∗
p

∂m∗
p

∂nq

∣∣∣∣∣
T,nq̄

+ μmm
pot,q, (83)

where

μmm
pot,q = 1

n

(
εmm

pot + pmm
pot

) + ∂εmm
pot

∂δ

∂δ

∂nq
, (84)
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FIG. 1. Thermodynamic quantities of nonrelativistic SLy4 model [32]. Exact calculation (squares) and JEL approximation (full lines), for
different temperatures and δ = 0.4: (a) energy per particle εsky/n − m, (b) pressure psky, (c) proton chemical potential μsky

p − m, (d) neutron
chemical potential μsky

n − m, (e) entropy per particle σ sky/n, and (f) Helmholtz free-energy per particle f sky − m = φsky/n − m.

with

∂εmm
pot

∂δ
= n

N∑
j=0

x j

j!
[2δvsym, ju j (x, δ) + (vsat, j

+ vsym, jδ
2)v j (x, δ)], (85)

and

v j (x, δ) = ∂u j

∂δ
= 2(3x + 1)bsymδ [1 − u j (x, δ)]. (86)

The derivative ∂δ/∂nq is equal to −2nn/n2 (2np/n2) for nq =
np (nq = nn).

These analytical expressions are important, for example, in
order to reduce time consumption in complex computational
methods, such as the Bayesian analysis, implemented in gen-
eral along with the Markov chain Monte Carlo, in which a
huge number of configurations are performed in each run.

E. Numerical implementation

In order to show how the aforementioned formalism is
applied, we compute in this section all the previous ther-
modynamical quantities for all phenomenological models at
different temperatures. For this purpose it is necessary to
choose a suitable treatment for the Fermi integrals. There are
several of them in the literature, as the reader can see, for in-

stance, in Refs. [8,22–31] and references therein. Here we use
the one proposed in Ref. [8], named the JEL approximation
and also used in our previous study [7], in which the Fermi
integrals are described in terms of analytical functions. We
compare such an approach with a typical numerical calcula-
tion using the Gauss-Legendre method with 600 Gauss points.
We display the results for two specific parametrizations of
the Skyrme and RMF models, namely, SLy4 [32] and BSR1
[33], for the density-dependent model DD-ME2 [34] and for
the metamodel used here. They were shown to be consistent
with experimental data regarding ground-state binding ener-
gies, charge radii, and giant monopole resonances of some
finite nuclei, as well as in good agreement with stellar matter
properties, according to the findings of [35].

The results for the SLy4 parametrization concerning en-
ergy per particle, pressure, chemical potentials, entropy per
particle, and Helmholtz free energy per particle are depicted
in Fig. 1.

Note the very good overlap between the JEL approxima-
tion and the exact calculation. In order to better quantify this
agreement, we calculate the residual difference, defined as

ξX =
√√√√ 1

N

N∑
i=1

(
XJEL,i − Xexact,i

Xexact,i

)2

, (87)
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TABLE I. Residual difference, defined in Eq. (87), between the exact calculations and the JEL approximation of the thermodynamical
quantities of the respective parametrizations of the phenomenological models presented in Figs. 1–4.

Model T ξε/n ξp ξμp ξμn ξσ/n ξ f

(MeV) (10−4) (10−4) (10−5) (10−5) (10−5) (10−5)

SLy4 [32] 5 1.34 4.83 66.9 25.1 1.84 2.48
10 0.54 3.58 52.3 14.3 1.01 0.63
15 0.28 3.46 45.6 10.8 0.89 0.21

BSR1 [33] 5 16.5 8.92 0.02 0.03 1.10 91.1
10 9.76 0.43 0.02 0.03 1.18 47.1
15 5.46 0.15 0.02 0.03 0.99 19.9

DD-ME2 [34] 5 0.16 0.61 0.22 3.07 10.5 0.59
10 0.67 0.92 1.40 11.7 3.89 1.01
15 1.91 0.85 0.28 18.9 2.94 0.50

Metamodel 5 8.60 7.12 61.2 18.9 1.43 1.85
10 0.79 3.69 49.7 12.7 0.97 0.49
15 0.32 3.52 43.8 10.1 0.86 0.20

where N is the number of points, XJEL,i is the thermody-
namical function calculated through the JEL approximation,
and Xexact,i is the same quantity obtained by performing the
exact calculation (numerical integration). The numbers are
presented in the first three lines of Table I.

The same thermodynamical quantities predicted by BSR1
[33] nonlinear and DD-ME2 [34] density-dependent rela-
tivistic models, as well as the metamodel, are displayed
respectively in Figs. 2–4. Note here also that the JEL ap-

proximation provides a very accurate approximation of the
exact calculation. The JEL approximation can therefore be
safely used as an alternative to the numerical integration, even
for the relativistic case. As in the previous case, we quantify
the comparison between the exact calculation and the JEL
approximation through Eq. (87). The numbers are shown in
Table I.

As a last remark, we emphasize the efficiency of the JEL
approximation in comparison with the numerical integration

FIG. 2. The same as Fig. 1 for the nonlinear relativistic model BSR1 [33].
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FIG. 3. The same as Fig. 1 for the density-dependent relativistic model DD-ME2 [34].

(600 Gauss points) used in this work. For the Skyrme model
we find that the JEL approximation is about 15 times faster
than the numerical calculation. This factor is changed to about
30 in the case of the nonlinear relativistic model.

IV. CONCLUSIONS

In this paper we have performed an improvement of the
recent study presented in Ref. [7], which presents a systematic
analysis of FG at finite temperature with in-medium effect
taken into account by effective masses. More specifically, we
now consider a generic nucleonic model with the respective
Helmholtz free-energy density depending on the effective
fields.

We have provided the generalized thermodynamical quan-
tities for this case and have shown examples of three
widely used models, namely, Skyrme, nonlinear, and density-
dependent relativistic mean-field models, as well as the
metamodel. We have also evaluated the equations of state
as a function of the density, and for different tempera-
ture values, by numerically solving the Fermi integrals and
comparing the results with the analytical formulation pro-
posed in Ref. [8] and which we also used in Ref. [7]. It

was shown that considering the proper in-medium corrections
to the thermodynamical quantities, generally defined as the
equation of state, one could safely employ analytical approxi-
mates of the Fermi integrals at finite temperature, such as, for
instance, the JEL approximation, to compute the properties of
nuclear matter at finite temperature.
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FIG. 4. The same as Fig. 1 for the metamodel.
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