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Exploring freeze-out and flow using exact solutions of conformal hydrodynamics
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Exact solutions to the equations of hydrodynamics provide valuable benchmark tests for numerical hydrody-
namic codes and also provide useful insights into the nature of hydrodynamic flow. In this paper, we introduce
two novel, closely related exact solutions with nontrivial rapidity dependence which are generalizations of the
well-known Gubser flow solution to conformal hydrodynamics. We then use one of our solutions to explore
the consequences of choosing between two different criteria for implementing the freeze-out process in fluid
dynamical simulations of nuclear collisions: freeze-out at constant temperature vs freeze-out at constant Knudsen
number. We find that, employing our exact solution, the differences between these freeze-out criteria are heavily
influenced by the presence of strong collective flow. Our results highlight the importance of accurately describing
the freeze-out process in collisions with large flow gradients, particularly in small systems.
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I. INTRODUCTION

Relativistic fluid dynamics has proved to be an extremely
powerful tool for the description of high-energy nuclear col-
lisions [1–5]. To date, hydrodynamic models have been used
to quantitatively describe a host of experimental observables
[6–20]. With its ability now to make predictions which are
accurate at the percent level [21–23], the fluid dynamical
paradigm has arguably begun to enter the domain of precision
physics.

One of the remaining systematic uncertainties affecting
nuclear collision phenomenology involves the treatment of
the freeze-out process which terminates the fluid dynamical
evolution. The most common approach is to freeze-out along
a hypersurface of fixed temperature [24,25] or energy density
[26], where the latter allows a straightforward generalization
to finite chemical potentials which are probed by nuclear
collisions [27,28]. An alternative (although less widely used)
criterion for imposing freeze-out is to terminate at constant
Knudsen number Kn [2]. The Knudsen number represents the
competition between mechanisms which drive the system out
of equilibrium (e.g., strong flow gradients) and those which
relax the system toward local equilibrium (e.g., strong inter-
actions or dissipative effects) and thus provides a measure
of how well a system may be described fluid dynamically.
Freeze out at constant Knudsen number can thus be viewed
as a choice to decouple the system in terms of the degree to
which the fluid dynamical description is justifiable at a given
stage in the evolution.

The extent to which the use of different freeze-out
criteria influences experimental observables has already re-
ceived some attention in the context of hydrodynamic
models [25,29–33], including systems both with and without
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event-by-event fluctuations. However, less work has been
done on the differences between these criteria in small sys-
tems where large flow gradients drive fluid dynamics to its
breaking point [5,31,34–36], and relatively little progress has
been made in understanding the quantitative implications of
these differences for observables which probe specifically the
space-time geometry of nuclear collisions, such as Hanbury
Brown–Twiss interferometry [37].

In this paper, we begin to address this gap by exploring the
extent to which the shape of the freeze-out hypersurface is im-
pacted by the choice of freeze-out criterion and the presence
of collective flow in the system. In order to build intuition
and obtain results which can be straightforwardly interpreted,
we have chosen to answer this question in the context of an
exact solution to the equations of relativistic fluid dynamics.
The search for such exact solutions has a long history. Known
exact solutions include those obtained by Bjorken assuming
longitudinal boost invariance [38] and a later generalization
by Gubser [39,40] to include expansion in the transverse
plane as well. Exact solutions have also been constructed for
rotating systems [41,42] and systems which possess nontrivial
dependence on the space-time rapidity [43,44], as well as for
various generalizations including viscous effects [45].

In this study, we are interested in exploring the freeze-out
process using exact solutions which exhibit strong transverse
and longitudinal flow simultaneously. To do this, we first
construct two new, exact, Gubser-like solutions which contain
nontrivial transverse and longitudinal flow, and then use one
of these solutions to compare the geometries of fixed tem-
perature and fixed Knudsen number hypersurfaces. The first
solution (“Solution I”) represents a generalization of Gubser’s
ideal hydrodynamic solution and does not include viscosity,
while the second solution (“Solution II”) is a generalization of
Gubser’s viscous solution [39,40] (and thus allows us to define
and study freeze-out in terms of the Knudsen number). Both
of our solutions make use of a trick, recently suggested in [44]
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and which we refer to here as a “temporal shift,” to induce
a nontrivial rapidity dependence into the collective flow of
a known solution (see also [46,47] for a similar approach).
In this paper we focus our attention on the derivation of the
solutions themselves, as well as their qualitative implications
for the geometry of the freeze-out hypersurface. We defer a
more thorough discussion of the quantitative consequences
for nuclear collision phenomenology, such as HBT measure-
ments, to a subsequent study.

We have organized the paper as follows. In Sec. II, we
construct Solution I as a generalization of Gubser’s ideal
flow solution and show how to introduce rapidity dependence
by performing a temporal shift. We also discuss a number
of properties of Solution I and consider how its space-time
dependence is influenced by different choices of the free
parameters it contains. In Sec. III, we apply the same tem-
poral shifting procedure to the viscous version of Gubser’s
original solution, in order to obtain our Solution II which
possesses both viscosity and nontrivial η dependence. Finally,
in Sec. IV, we apply our Solution II to the question of how the
presence of both transverse and longitudinal flow influences
the shape of the freeze-out surface. Some conclusions are
presented in Sec. V.

II. SOLUTION I

Before presenting our derivation of Solution I, we first
briefly review the original ideal solution obtained by Gubser
[39,40].

A. The ideal Gubser solution

Relativistic fluid dynamics is predicated on the covariant
conservation of energy and momentum, expressed by

∇μT μν = 0, (1)

where ∇μ represents a covariant derivative and T μν is the
energy-momentum tensor. This yields four (three space, one
time) equations of motion which dictate the evolution of the
system. For most phenomenological applications, the initial
states of nuclear collisions and their subsequent evolution are
sufficiently complicated that they can only be solved numeri-
cally. However, in certain highly symmetric scenarios, it may
be possible to find exact solutions with at least some phe-
nomenological relevance to nuclear collisions. The challenge
is then to identify a suitable symmetry group which mimics
the dynamics of nuclear collisions sufficiently closely.

The original solution obtained by Gubser was constructed
in order to respect the symmetry group SO(3)q × SO(1, 1) ×
Z2, where SO(1, 1) represents boost-invariance along the
beam axis, Z2 represents a reflection symmetry under η →
−η, and SO(3)q denotes a conformal symmetry which in-
cludes azimuthal rotations around the beam axis as a subgroup
and is designed in such a way as to generate a nontrivial
flow profile in the radial direction. Since the generators of the
SO(3)q and SO(1, 1) commute, one thus obtains a solution
to the hydrodynamic equations (1) which exhibits radial flow
while also respecting boost invariance.

Gubser’s original solution can be formulated conveniently
in the frame dS3 ⊗ R, where dS3 denotes three-dimensional
de Sitter space and R is the real line. The dS3 ⊗ R
frame is parametrized by the target space coordinates x̂μ =
(ρ, θ, φ, η), while the physical Milne coordinates are xμ =
(τ, r, φ, η).1 In both sets of coordinates, φ represents the
azimuthal angle around the beam axis and η represents the
longitudinal rapidity, while in Milne coordinates τ and r
represent the Bjorken proper time and radial coordinate, re-
spectively. Then the dS3 ⊗ R coordinates ρ and θ are related
to Milne coordinates by

sinh ρ = q2(τ 2 − r2) − 1

2qτ
, (2)

tan θ = 2qr

1 + q2(τ 2 − r2)
, (3)

and thus offer an alternative parametrization of the (τ, r)
directions. In terms of the dS3 ⊗ R coordinates, boost in-
variance can be expressed as independence of the rapidity η,
while the SO(3)q symmetry amounts to independence of the
coordinates (θ, φ). The dS3 ⊗ R frame has the metric

ĝμν = diag(1,− cosh2 ρ,− cosh2 ρ sin2 θ,−1), (4)

while in Milne coordinates the metric is

gμν = diag(1,−1,−r2,−τ 2). (5)

To obtain Gubser’s original solution, one assumes the fluid
is stationary in the dS3 ⊗ R frame:

ûμ = (1, 0, 0, 0). (6)

By transforming the trivial solution (6) back to Milne coordi-
nates, Gubser obtained the solution [39,40]

uτ = τ
∂ρ

∂τ
= 1 + q2(τ 2 + r2)√

1 + 2q2(τ 2 + r2) + q4(τ 2 − r2)2
, (7)

ur = −τ
∂ρ

∂r
= 2q2 rτ√

1 + 2q2(τ 2 + r2) + q4(τ 2 − r2)2
, (8)

with a corresponding energy density ε given by

ε = ε̂0

τ 4/3

(2q)8/3

[1 + 2q2(τ 2 + r2) + q4(τ 2 − r2)2]4/3 . (9)

Equations (7)–(9) define Gubser’s ideal solution to conformal
hydrodynamics. It contains two free parameters: q, which
represents an inverse length scale characterizing the size of
the system, and ε̂0, which sets the scale for the energy density.

B. Derivation of Solution I

We now want to generalize Gubser’s solution by relaxing
the assumption of boost invariance. In order to break the boost
invariance of the Gubser solution, we may introduce ρ and η

1Here and below, hatted quantities (e.g., X̂ ) are defined in the
dS3 ⊗ R frame, while quantities with out hats (e.g., X ) are defined in
physical Milne coordinates.
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dependence without violating the SO(3)q symmetry. Explic-
itly, we take the following ansatz for the flow (cf. [39,40]):

ûμ = ( cosh ξ (ρ, η), 0, 0, sinh ξ (ρ, η)). (10)

This ansatz reduces to a stationary fluid (and therefore to
Gubser’s solution) whenever ξ = 0. We emphasize that boost
invariance is broken by the inclusion of η dependence, but
the SO(3)q symmetry is unaffected. Note that (10) is properly
normalized using the dS3 ⊗ R metric:

ûμûν ĝμν = 1 (11)

The Gubser solution requires a conformal equation of state.
For simplicity, we assume in this study that p̂ = ε̂/3. In
this case, the ideal energy-momentum tensor T̂ μν = ε̂ûμûν +
p̂(ûμûν − ĝμν ) has the following nonvanishing components:

T̂ ρρ = ε̂

3
(4(ûρ )2 − 1), (12)

T̂ ρη = 4ε̂

3
ûρ ûη (13)

= T̂ ηρ, (14)

T̂ θθ = ε̂

3
(4(ûθ )2 + sech2ρ) = ε̂

3
sech2ρ, (15)

T̂ φφ = ε̂

3
(4(ûφ )2 + sech2ρ csc2 θ ) = ε̂

3
sech2ρ csc2 θ,(16)

T̂ ηη = ε̂

3
(4(ûη )2 + 1). (17)

This energy-momentum tensor must be covariantly con-
served:

∇μT̂ μν = ∂μT̂ μν + �μ
αμT̂ αν + �ν

αμT̂ αμ = 0. (18)

Evaluating the Christoffel symbols for the metric (4) yields
the following nonvanishing components:

�
ρ

θθ = cosh ρ sinh ρ, �
ρ

φφ = sin2 θ cosh ρ sinh ρ, (19)

�θ
ρθ = �

φ

ρφ = tanh ρ, �θ
φφ = − sin θ cos θ, �

φ

θφ = cot θ.

(20)

Then (1) implies two independent equations in the ρ and η

directions:

0 = ∂μT̂ μρ + �μ
αμT̂ αρ + �ρ

αμT̂ αμ

= ∂ρ T̂ ρρ + ∂ηT̂ ρη + 2 tanh ρ T̂ ρρ

+ cosh ρ sinh ρ(T̂ θθ + sin2 θ T̂ φφ ), (21)

0 = ∂μT̂ μη + �μ
αμT̂ αη + �η

αμT̂ αμ

= ∂ρ T̂ ρη + ∂ηT̂ ηη + 2 tanh ρ T̂ ρη. (22)

Defining ε̂ = exp(4T) and making use of Eq. (10), the con-
servation equations (21)–(22) simplify to

− tanh ρ = ∂T

∂ρ
+ cosh(2ξ )

(
tanh ρ + ∂ξ

∂η
+ 2

∂T

∂ρ

)
+ sinh(2ξ )

(
∂ξ

∂ρ
+ 2

∂T

∂η

)
, (23)

0 = −∂T

∂η
+ sinh(2ξ )

(
tanh ρ + ∂ξ

∂η
+ 2

∂T

∂ρ

)
+ cosh(2ξ )

(
∂ξ

∂ρ
+ 2

∂T

∂η

)
. (24)

So far no assumptions have been made. In order to find an
exact solution to these equations, we now consider the special
case where both the flow rapidity ξ and T are independent
of η.2 In this case, they can depend only on ρ, so that the
equations simplify further to

0 = 2 cosh2 ξ tanh ρ + [1 + 2 cosh (2ξ )]
dT

dρ
+ sinh (2ξ )

dξ

dρ
,

(25)

0 = sinh (2ξ )

(
tanh ρ + 2

dT

dρ

)
+ cosh (2ξ )

dξ

dρ
. (26)

The second equation can be solved to find T in terms of ρ

and ξ (ρ); the solution is

T(ρ) = c1 − 1
2 ln cosh ρ − 1

4 ln sinh [2ξ (ρ)], (27)

with c1 an arbitrary constant. Substituting this solution for T
back into the first equation yields

sinh(2ξ ) tanh ρ − [2 + cosh(2ξ )]
dξ

dρ
= 0. (28)

This equation is trivially satisfied when ξ = 0. In this case,
one would have found the solution for T to be

T(ρ) = c̃1 − 2
3 ln cosh ρ, (29)

for some constant c̃1, implying that

ε̂ ∝ (cosh ρ)−8/3, (30)

which is simply Gubser’s original solution [40]. The ansatz
(10) thus provides a generalization of Gubser flow which
reduces to Gubser’s ideal solution when ξ = 0, as anticipated.

To solve Eq. (28) when ξ �= 0, we recast it into a more
manageable form using the changes of variables x = cosh2 ρ

and ξ = 1
2 lny(x):

dy

dx
= y(y2 − 1)

x[1 + y(y + 4)]
(31)

It has the solution

y(x) ≡ ỹ(c2x), (32)

where

ỹ(w) = 1 + w

3
+ 24/3w(w + 9)

a(w)
+ 22/3a(w), (33)

a(w) = [w[54 + w(2w + 27)] + 3|w|
√

3(108 − w2)]1/3,

(34)

2Note that η dependence may still be included below by applying a
temporal shift, as we describe in Sec. II D.
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and c2 > 0 is another arbitrary constant. Our solution in the
dS3 ⊗ R frame can therefore be written

r = cosh2 ρ = 1 + 2q2(τ 2 + r2) + q4(τ 2 − r2)2

4q2τ 2
, (35)

ε̂(ρ) = 2e4c1

r

(
ỹ(c2r)

ỹ(c2r)2 − 1

)
, (36)

ξ (ρ) = ±1

2
ln ỹ(c2r). (37)

The solution contains two undetermined constants, c1 and c2.
c1 determines the normalization of the energy density ε̂, by
Eq. (36). c2, on the other hand, determines the value of the ra-
pidity ξ at ρ = 0. Note that the energy density ε̂ is conformal;
the physical energy density is ε = ε̂/τ 4 in Milne coordinates.
Note also that the rapidity ξ can be chosen positive or negative
by the reflection symmetry which is apparent in the above
equations. Here we choose only the positive “branch” of ξ

for the sake of definiteness.
The flow uμ (10) can then be mapped to Milne coordinates

by the transformation rules [40]

uτ (τ, r) = τ
∂ρ

∂τ
cosh ξ, (38)

ur (τ, r) = −τ
∂ρ

∂r
cosh ξ, (39)

uη(τ, r) = − 1

τ
sinh ξ . (40)

We thus arrive at an exact solution for the energy density ε and
the flow profile uμ, given in Eqs. (33)–(40). Boost invariance
has clearly not yet been broken, since the solution is still
independent of η.

C. Asymptotics

Our exact solution (33)–(40) is singular in the limit c2 →
0+ unless c1 is chosen in an appropriate way [cf. (33) and
(36)]. To avoid this, we define

c1 = 1
12 ln

(
2c2ε̂

3
0

)
, (41)

where the parameter ε̂0 is the same one used in Gubser’s
solution [39]. This combination ensures that the energy den-
sity ε̂ is regular and reduces to Gubser’s original solution
as c2 → 0+. One can see this most easily by expanding the
solution for ε̂(ρ) in a power series for small c2 > 0:

ε̂(ρ)

ε̂0
= 1

(cosh ρ)8/3 − α

(cosh ρ)4/3 + 3α2

4

+ O(α3(cosh ρ)4/3), (42)

where we have also defined α ≡ c2/3
2 /(3 × 21/3). The general

term in this expansion is clearly of order αn(cosh ρ)4(n−2)/3,
so that the series reduces to (30) when α3/4 � cosh ρ, i.e., as
c2 → 0+.

On the other hand, for sufficiently large ρ one finds that the
ỹ increases linearly with its argument: ỹ(w) ∝ w. Plugging
this behavior into (36), we find that the conformal energy

density scales for large ρ as

ε̂(ρ) ∼ r−2 ∼ e−4ρ. (43)

One therefore expects a regime in ρ where the leading behav-
ior of ε̂(ρ) transitions from that of Gubser’s solution (30) to
a steeper exponential falloff in ρ (43). The transition should
happen in the neighborhood of some critical value ρ = ρ∗
where the subleading corrections become comparable to the
leading term in (42):

1

(cosh ρ∗)8/3 ≈ α

(cosh ρ∗)4/3 −→ ρ∗ ≈ arccosh(α−3/4)

= arccosh

(
541/4

√
c2

)
. (44)

Interestingly, we note that the definition (44) implies a con-
stant value for ξ (ρ∗) ≡ ξ∗ ≈ 1.188, since the c2 dependence
cancels in Eq. (37). Thus, while the precise “Gubser time”
ρ∗ at which the subleading corrections become important de-
pends on the value of c2, it occurs at the same flow rapidity ξ∗,
regardless of c2.

This behavior is illustrated in Fig. 1, which shows the
conformal energy density ε̂ [panel (a)] and the flow rapidity
ξ [panel (b)] for several choices of c2. For ε̂, one indeed ob-
serves that for sufficiently small ρ our solution is close to Gub-
ser’s original solution (solid black line), while for sufficiently
large ρ the solution instead scales like e−4ρ (black dotted line).
Moreover, the point ρ∗ where the transition occurs depends on
c2 roughly as implied by (44). For example, for c2 = 10−3, we
find using Eq. (44) that the critical value ρ∗ ≈ 5.14, in good
agreement with Fig. 1. Several other values of ρ∗ are marked
(large black points) for the various c2 shown.

Figure 1(b) shows that ξ is a monotonically increasing
function for positive ρ, and by symmetry under η → −η

is monotonically decreasing for negative ρ [cf. (35)]. As
c2 → 0+, however, the solution again converges smoothly
back to Gubser’s boost invariant solution. Note that, since
ξ �= 0 whenever c2 �= 0, uη is always nonzero except when
c2 = 0. As expected, ξ∗ has a constant value which is
independent of c2.

Finally, we emphasize that, aside from the reflection
symmetry η → −η, our unshifted solution preserves all of
Gubser’s original symmetries (including rotational invariance
around the beam axis and boost invariance). In the next sub-
section, we will show how to modify this solution to break
boost invariance as well.

D. The shifted solution

The new solution found above consists of a non-trivial
solution for ε and uμ in Milne coordinates, which introduces a
nonvanishing uη while remaining independent of η.3 However,
our original goal was to construct a solution without boost
invariance. As pointed out in Ref. [44], additional solutions

3To build intuition, one can also think of this solution as analogous
to an azimuthally invariant (φ-independent) system which neverthe-
less rotates in the azimuthal direction (uφ �= 0).
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FIG. 1. The conformal energy density ε̂ [panel (a)] and the flow rapidity ξ [panel (b)] vs the timelike coordinate ρ, for different choices of
the free parameter c2. Gubser’s original solution (corresponding to c2 = 0 is given by the thick (solid black) line in both panels. The horizontal
dashed black line in the righthand panel shows that ξ∗ = ξ (ρ∗) ≈ 1.188, independent of c2. See text for discussion.

possessing nontrivial η dependence can be generated by sim-
ply translating a known solution by a constant amount in
the Minkowski temporal coordinate: t → t ′ = t + t0. We call
this transformation a “temporal shift.” This is equivalent to a
change of Milne coordinates given by

τ → τ ′(τ, η, r) =
√

τ 2 + 2t0τ cosh η + t2
0 , (45)

η → η′(τ, η, r) = arctanh

(
τ sinh η

τ cosh η + t0

)
, (46)

r → r′(τ, η, r) = r. (47)

Notice that the transformation on the r coordinate is trivial,
since the temporal shift affects only τ and η, but we include a
shifted r′ as well for clarity below.

By definition, the energy density ε transforms as a scalar:4

ε(τ, r, η) = ε′(τ ′, r), (48)

where, here and below, τ ′ is defined as in Eq. (45). Since the
flow velocity is a four-vector, it transforms as

uτ ′ = ∂τ ′

∂τ
uτ + ∂τ ′

∂η
uη + ∂τ ′

∂r
ur, (49)

uη′ = ∂η′

∂τ
uτ + ∂η′

∂η
uη + ∂η′

∂r
ur, (50)

ur′ = ∂r′

∂τ
uτ + ∂r′

∂η
uη + ∂r′

∂r
ur . (51)

Thanks to the triviality of the transformation in the r direction,
the radial component of the flow velocity transforms only by
shifting the coordinates in Eq. (39) appropriately:

ur (τ, r, η) = ur′
(τ ′, r). (52)

4Here and below, quantities marked with primes (′) correspond to
the unshifted frame; unprimed quantities are defined in the shifted
frame.

The remaining components of the flow velocity are then found
by solving (49) and (50) for uτ and uη. The result is [with c1

set as in Eq. (41)]

r′ = cosh2 ρ ′ = 1 + 2q2(τ ′2 + r2) + q4(τ ′2 − r2)2

4q2τ ′2 ,

(53)

ε̂(ρ ′)
ε̂0

= (16c2)1/3

r′

(
ỹ(c2r

′)
ỹ(c2r′)2 − 1

)
, (54)

ξ (ρ ′) = 1

2
ln ỹ(c2r

′), (55)

uτ (τ, η, r) =
(

τ+t0 cosh η

τ ′

)
uτ ′

(τ ′, r)− (t0 sinh η)uη′
(τ ′, r),

(56)

ur (τ, η, r) = ur′
(τ ′, r), (57)

uη(τ, η, r) =
(

1 + t0
τ

cosh η

)
uη′

(τ ′, r)

− t0
τ

(
sinh η

τ ′

)
uτ ′

(τ ′, r). (58)

Eqs. (53)–(58), together with (45), constitute our complete
new Solution I which generalizes Gubser flow to include
non-boost-invariant longitudinal flow, where the unshifted
flow components uτ ′

, ur′
, and uη′

have been defined in
(38)–(40).

E. Properties of Solution I

We now consider how our Solution I obtained above de-
pends on the parameters c2 and t0. For definiteness, all other
parameters are fixed to their values as defined in Refs. [39,40].
Specifically, we take

q = (4.3 fm)−1 and ε̂0 = 880,

which are chosen in order to have a reasonable description of
central Au + Au collisions with

√
sNN = 200A GeV.
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FIG. 2. The physical energy density ε as a function of τ , for various radius r and rapidity η. Each panel shows a different combination of
free parameters t0 and c2: t0 = 0.1 fm/c and c2 = 0 [panel (a)]; t0 = 0.1 fm/c and c2 = 0.1 [panel (b)]; t0 = 0.5 fm/c and c2 = 0 [panel (c)];
t0 = 0.5 fm/c and c2 = 0.1 [panel (d)].

We begin by considering how the physical energy density
depends on c2 and t0. This is shown in Fig. 2. We observe
several qualitative behaviors. First, by comparing panels (a)
and (b) with panels (c) and (d), we see that increasing t0 has
the effect of steepening the rapidity dependence of the shifted
solution. This is intuitively plausible, since setting t0 = 0 must
lead back to an η-independent solution. A similar effect is
observed by making c2 nonzero: the rapidity dependence is
weakened as the value of c2 is increased. Notice further that
the effects of modifying t0 or c2 affect ε in different ways:
increasing t0 causes ε to fall faster at late τ , while increasing
c2 leads to a faster decrease of ε in the radial direction and
only weakly affects the τ dependence. We only show curves
with η � 0 since the energy density is always symmetric
under η → −η [cf. (54) and (45)].

Our solution’s flow profile is shown in Figs. 3 and 4. In
Fig. 3, we show the ratio ur/uτ plotted against rapidity η,
for different combinations of r, τ , t0, and c2. We observe
that increasing t0 [cf. panels (a) and (b) with panels (c) and

(d)] again reduces the solution’s width in η. Increasing c2,
however, manifestly breaks the reflection symmetry η → −η

as anticipated above [cf. panels (a) and (c) with panels (b) and
(d)]: having chosen the “positive” branch of ξ for our solution
in Eq. (37), we see that the resulting transverse flow is stronger
for η < 0. This is a consequence of the fact that a positive
flow rapidity ξ yields a negative rapidity component uη, by
Eq. (40). Choosing c2 > 0 therefore leads to an asymmetric
flow in η, by (56) and (58).

In Fig. 4, we show the corresponding results for the longi-
tudinal flow velocity, τuη/uτ . In panels (a) and (c), we see
that the only η dependence arises from the shift to t0 �= 0;
since c2 = 0, there is no additional rapidity dependence which
arises from breaking the reflection symmetry. In this case
τuη/uτ depends only on τ and η, but not on r [cf. Eqs. (56)
and (58)]. One also observes that increasing t0 steepens the
rapidity dependence, as was noted above; setting t0 = 0 would
result in uη = 0 for all τ and r. A more nuanced picture of
the flow emerges once we let c2 > 0 [shown in Figs. 4(b)
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FIG. 3. The transverse velocity ur/uτ as a function of η, for various τ and r. Each panel shows a different combination of free parameters
t0 and c2: t0 = 0.1 fm/c and c2 = 0 [panel (a)]; t0 = 0.1 fm/c and c2 = 0.1 [panel (b)]; t0 = 0.5 fm/c and c2 = 0 [panel (c)]; t0 = 0.5 fm/c
and c2 = 0.1 [panel (d)]. See text for discussion.

and 4(d)]. In this case, the location with the longitudinal flow
vanishes shifts to η < 0, with the size of the shift depending
on both τ and r. One therefore finds that the regions where
the rapidity flow (uη) is weakest are also those where the
radial flow (ur) is strongest. Note, however, that even in the
symmetric case (c2 = 0), ur/uτ does not reach a maximum
at η = 0 where the longitudinal flow vanishes. This is an
artifact of analyzing the flow using Milne coordinates: we
have checked that, by switching to Minkowski coordinates,
one indeed finds a one-to-one correspondence between the
points where vz = uz/ut vanishes and those where vr = ur/ut

reaches a maximum, for any choice of c2.
Our solution therefore exhibits some curious properties:

the energy density is always symmetric under η → −η, while
the flow profile is asymmetric whenever c2 > 0. This suggests
that scenarios with c2 > 0 may not bear much phenomenolog-
ical relevance to the modeling of nuclear collisions, where one
would expect to find both flow profiles and energy densities to
be asymmetric in η [44]. Nonetheless, this solution may also
be useful in generating extreme flow profiles which can be

used to subject hydrodynamic codes to valuable performance
tests. In the specific case that c2 = 0, however, the temporal
shift induces non-rivial η dependence without violating the
Z2 symmetry in η, and thus amounts to a shifted, non-boost-
invariant generalization of Gubser’s original, boost-invariant
solution for ideal hydrodynamics. In the next section, we show
how to apply the same “temporal shift” trick to the viscous
version of Gubser’s solution, for which the shear viscosity is
nonzero.

III. SOLUTION II

The solution derived above in Sec. II was obtained as-
suming only ideal hydrodynamics. However, Gubser [39]
originally derived a version of his boost-invariant solu-
tion to the Navier-Stokes equations with a finite specific
shear viscosity η̃/s �= 0.5 Gubser’s viscous solution is thus a

5Here and below, we denote the shear viscosity by η̃, in order to
distinguish it from the space-time rapidity η.
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FIG. 4. The longitudinal velocity τuη/uτ as a function of η, for various τ and r. Each panel shows a different combination of free parameters
t0 and c2: t0 = 0.1 fm/c and c2 = 0 [panel (a)]; t0 = 0.1 fm/c and c2 = 0.1 [panel (b)]; t0 = 0.5 fm/c and c2 = 0 [panel (c)]; t0 = 0.5 fm/c
and c2 = 0.1 (panel (d)). See text for discussion.

generalization of our Solution I (with c2 = 0) to a finite shear
viscosity. In this section, we apply a temporal shift to intro-
duce rapidity dependence also into this viscous solution. This
will allow us to define and examine the Knudsen number in
Sec. IV.

Gubser’s viscous solution is most conveniently written in
terms of the temperature TG, where the subscript “G” denotes
“Gubser.” TG is related to the energy density by ε ≡ f∗T 4

G
(where f∗ ≡ 11) and is defined by [39,40]

TG(τ, r) = h̄c

f 1/4
∗ τ

T̂ (ρ(τ, r)), (59)

T̂ (ρ) = T̂0

(cosh ρ)2/3

[
1 + H0

9T̂0
(sinh ρ)3

2F1

×
(

3

2
,

7

6
,

5

2
; − sinh2 ρ

)]
, (60)

where ρ is defined by Eq. (2) and H0 ∝ η̃/s. We set
T̂0 = 5.55 and H0 = 0.33, corresponding to a choice of
η̃/s = 0.134 [39].

The flow uμ

G in the viscous case is the same as that obtained
in the ideal case (7)–(9). One easily checks that (uτ

G)2 −
(ur

G)2 = 1. Gubser’s complete viscous solution for TG and uμ

G
is thus given by Eqs. (7), (8), and (59).

To obtain the shifted version of Gubser’s viscous solution
(denoted by the subscript “sG”), we apply the same transfor-
mation discussed in Sec. II D. Like the energy density ε, the
temperature TG must transform as a scalar. This implies that
Gubser’s viscous solution with rapidity dependence is given
by

TsG(τ, r, η) = TG(τ ′, r). (61)

In analogy with (57), the radial component of the shifted flow
uμ

sG is

ur
sG(τ, r, η) = ur′

G(τ ′, r). (62)
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The remaining components of the flow velocity are then found
by solving (49)–(50) for the shifted components as before, and
recalling that uη′

G = 0 as a result of the boost invariance and
reflection symmetry of the Gubser solution. The result is

uτ
sG(τ, r, η) = uτ ′

G (τ ′, r)

⎛⎜⎝ τ + t0 cosh η√
τ 2 + 2t0τ cosh η + t2

0

⎞⎟⎠, (63)

uη

sG(τ, r, η) = −uτ ′
G (τ ′, r)

⎛⎜⎝ t0 sinh η

τ

√
τ 2 + 2t0τ cosh η + t2

0

⎞⎟⎠.

(64)

Again, one easily confirms that the shifted flow still possesses
the correct normalization:(

uτ
sG

)2 − (
ur

sG

)2 − (
τuη

sG

)2 = 1. (65)

Equations (61)–(64) thus provide a generalization of Gubser’s
viscous solution which relaxes the assumption of boost invari-
ance by introducing a nontrivial dependence on the space-time
rapidity η. It coincides with the first solution found above in
Sec. II only if one takes c2 = 0 and η̃/s = 0. In Sec. IV, we
will consider several properties of this generalized solution
and their implications for the relationship between the freeze-
out hypersurface and flow in relativistic nuclear collisions.

IV. FLOW AND FREEZE-OUT

Having introduced the two new exact solutions derived
above, we turn finally to discuss how we can use them to
better understand the role of flow in influencing the freeze-out
process. Since we wish to compare freeze-out at constant
temperature with that at constant Knudsen number, we will
focus our attention on Solution II.

In general, the criteria defining freeze-out are normally
formulated [2] in terms of quantities which depend locally
on the hydrodynamic state of the system and which reflect
(directly or indirectly) the extent to which the system in a
given region may be represented as a strongly coupled plasma
of deconfined color charges. The two criteria we consider here
are (i) freeze-out at constant temperature and (ii) freeze-out at
constant Knudsen number. Freeze out at constant temperature
has historically been the more widely used criterion, and may
be interpreted either as a phenomenological choice of where to
“switch” from a partonic to a hadronic description of the sys-
tem [11,48] or as a way of characterizing the system’s passage
through the confinement/deconfinement transition [20]. On
the other hand, as noted earlier, freeze-out at constant Knud-
sen number characterizes the partonic-hadronic transition in
terms of the degree to which a fluid dynamical description
is applicable. Insofar as constant T hypersurfaces closely
approximate those of constant Kn in realistic hydrodynamic
simulations [31], the distinction between them is largely aca-
demic. Our goal here, however, is to explore in the context of
an analytical solution whether this identification always holds,
and, if not, under what kinds of conditions it may fail.

The Knudsen number Kn is defined by [2,31]

Kn ≡ 
mfp


macro
, (66)

where 
mfp is the mean free path of the fluid and 
macro is an
appropriate macroscopic length scale compared to which 
mfp

should be sufficiently small in order to justify the applicability
of fluid dynamics.

In order to compute the Knudsen number, we must estimate
both length scales entering Eq. (66). In terms of the quantities
employed here, 
mfp can be estimated by [2,31]


mfp ∼ 5η̃

sT
,

where T is the temperature, and η̃/s is the ratio of the
shear viscosity to entropy density. This choice of 
mfp cor-
responds to the value of the shear relaxation time τπ using
the 14-moment approximation of the relativistic Boltzmann
equation in the massless limit [49,50]. As noted above, since
a finite 
mfp �= 0 implies a nonvanishing shear viscosity ratio
η̃/s �= 0, we limit our discussion in this section to the shifted
viscous Gubser solution obtained in Sec. III.

Many choices are possible for the macroscopic length scale

macro [31]; here, we define it in terms of the scalar expansion
rate θ ,6 which defines a corresponding length scale 
macro =
Lθ given by

1

Lθ

≡ θ (τ, r, η) = ∂μuμ + �μ
μαuα

= 1 + q2(r2 + 5τ ′2)

τ ′
√

1 + 2q2(τ ′2 + r2) + q4(τ ′2 − r2)2
, (67)

where τ ′ is defined in (45), and the nonvanishing Christoffel
symbols in Milne coordinates are

�τ
ηη = τ, �η

ητ = �η
τη = 1

τ
, �r

φφ = r, �
φ

φr = �
φ

rφ = 1

r
.

(68)

Lθ thus characterizes the typical length scale over which the
strength of the system flow changes appreciably. As pointed
out above and in [31], these scales should be much larger than
the relevant microscopic scale which determines the strength
or frequency of interaction, i.e., the mean free path 
mfp, in or-
der for fluid dynamics to be applicable. The Knudsen number
may therefore be defined as

Kn ≡ Knθ ≡ 
mfp

Lθ

= 5η̃θ

sT
. (69)

From (69), it follows that that the Knudsen number is small
enough (Kn � 1) to warrant the use of fluid dynamics only
when either η̃/s (i.e., out of equilibrium viscous corrections)
or θ (i.e., the flow gradients) is sufficiently small. In the for-
mer case, one may have a violently expanding system which
nevertheless is describable using fluid dynamics, as long as

6Another possible choice is the spatial gradient of the energy den-
sity, ε, which is expected to be of the same order of magnitude as the
definition we use here [31].
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FIG. 5. Pairs of freeze-out contours using criteria of constant temperature (solid black lines) and constant Knudsen number Kn (dashed
black lines), plotted on top of the transverse flow vr = ur/uτ in the τ -r plane. Both panels take t0 = 0.5 fm/c and either η = 0 [panel (a),
where uη = 0] or η = 2 [panel (b)]. The Knudsen number contours correspond to Kn = 0.50, 0.75, 1.00, and 1.25 (ordered by increasing
τ at r = 0), and the temperature contours have been adjusted to match the Knudsen number contours at r = 0. A solid red contour at
T = 130 MeV is included for reference.

the mean free path is sufficiently short and the frequency of
interactions sufficiently high. In the latter case, one may have
a relatively large mean free path but nevertheless maintain
local equilibrium if the system evolves sufficiently slowly.
Conversely, when either η̃/s or θ becomes too large relative
to the other, then the interactions become too infrequent to
maintain local equilibrium and thus fluid dynamics no longer
provides a justifiable description of the system. It is at this
point when freeze-out in terms of Kn should be implemented.

In the remainder of this section, we consider two questions,
using our Solution II as a concrete model:

(1) How much do the two freeze-out criteria (constant
temperature, constant Knudsen number) differ in the
freeze-out contours which they produce?

(2) To what extent are these differences influenced by the
strength of collective flow and the size of its gradients
throughout the system?

To address the first question, in Fig. 5 we plot contours
of fixed Knudsen number (69) for Solution II (with t0 =
0.5 fm/c) as a function of τ and r (displayed as solid black
lines), for η = 0 [panel (a)] and η = 2 [panel (b)]. We also
show for reference an isothermal contour of T = 130 MeV
(solid, red line) corresponding roughly to Kn ≈ 0.75, accord-
ing to the definition (69). The contours are displayed on top of
a density plot of the radial velocity vr = ur/uτ which indicates
where the transverse flow is the strongest. Four pairs of T /Kn
(solid/dashed) contours are shown, where each pair is ad-
justed to coincide when r = 0. The Knudsen contours assume
values of Kn = 0.50, 0.75, 1.00, and 1.25 (corresponding at
r = 0 respectively to τ ≈ 2.2, 4.7, 7.3, and 10.3 fm/c and
temperatures of T ≈ 209, 115, 69, and 44 MeV).

One finds that, for η = 0, Kn � 0.5 at sufficiently small
r � 3 fm and times which are neither too early nor too late
(τ � 2 fm/c), and thus that both sets of contours (constant T
and constant Kn) demarcate similar regions in the (τ, r) plane
where the system may be treated fluid dynamically. Indeed,
the contour of Kn = 0.5 clearly agrees quantitatively with the
corresponding contour of constant T at sufficiently small radii
r and late times τ . Similar statements apply to the η = 2 case,
except that all freeze-out contours are reached at earlier times
and thus the regime where fluid dynamics is valid shrinks
accordingly.

For larger Kn, Fig. 5 shows explicitly that the shapes of
constant temperature contours can differ quite significantly,
both qualitatively and quantitatively, from contours of con-
stant Knudsen number. We find that the contours of fixed T
acquire a positive concavity at r = 0 at sufficiently late times
and low temperatures.7 This leads to the formation of a “wing-
like” structure at large radii which has been noted previously
[34] and which has been shown to reflect the violent collective
expansion of the system [37,51]. This is because the interior
of the fireball freezes out before the edges do, thanks to the
rapid cooling produced by the strong collective flow.

Moreover, one finds that, while the contours corresponding
to Kn = 0.50 and 0.75 agree qualitatively with one another,

7In the ideal case, which is a reasonable approximation to the
viscous solution at r = 0, one easily shows that the concavity of
the temperature contour changes sign at a critical proper time of
τc ≡ 1/(cq) = 4.3 fm/c, corresponding to an ideal temperature of
T (τc ) = h̄cqT̂0/ f 1/4

∗ ≈ 140 MeV. This seems to agree quite well with
where the temperature contours in Fig. 5 become flat at r = 0.
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FIG. 6. Panel (a) displays thick contours in the (τ, r) plane for Knθ = 0.75 (solid blue), 1.00 (dashed purple), and 1.25 (dot-dashed red).
For each of these respective contours, we also plot the temperature T [panel ](b)) and radial velocity ur/uτ [panel (c)] as a function of radius
r, with the same styling of lines in each panel. For each thick contour representing Knθ , we also plot a thin contour of the same color and line
style to represent K̃nθ .

significant discrepancies develop in the contour pairs with
Kn = 1.00 and 1.25 in the region where transverse flow be-
comes the strongest. This has a straightforward and intuitive
interpretation: since Kn essentially differs from T only by
a constant factor times θ , the differences between constant
temperature and constant Knudsen contours must arise from
the expansion rate, which pushes the constant Knθ contours to
earlier times and smaller radii, compared with constant T con-
tours. Note that since uη = 0 when η = 0 [by Eq. (58)], in this
case the discrepancies between the contours are completely
determined by ur , uτ , and the transverse and longitudinal flow
gradients.

In response to our first question above, then, we conclude
that different freeze-out criteria such as decoupling at a fixed
T vs a fixed Kn may indeed lead to dramatically different
contours and consequently produce different geometries for
the freeze-out process. In the present example, the largest
differences occur at larger Knudsen numbers Kn � 1.00 and
hence smaller temperatures T � 100 MeV. However, as we
have already suggested and now demonstrate, the real origin
of these discrepancies is the effect of powerful collective flow
with large gradients which drives a rapid cooling of the system
and forces an earlier freeze-out when it is sufficiently strong.

In order to facilitate a direct comparison between the
contours of fixed T and fixed Kn and to show how their
differences are influenced by collective flow, in Fig. 6 we plot
the temperature T and radial velocity vr along the contours of
constant Kn themselves, assuming t0 = 0.5 fm/c. In Fig. 6(a),
we plot portions of the Knθ as thick (τ, r) contours at values of
0.75 (solid blue), 1.00 (dashed purple), and 1.25 (dot-dashed
red), extending at late times from r = 0 to approximately
where dτ/dr along the contour diverges. Unlike the constant
T contours in Fig. 5, the constant Kn contours exhibit negative
concavity at r = 0: freeze-out occurs last at the center of the
fireball. In Figs. 6(b) and 6(c), we plot T and vr along these
same contours as functions of r and find that T is decidedly
not constant along the Kn contours. Instead, thanks to the
rapid growth of transverse flow with r and its competition with
the temperature gradients in the fireball’s interior [25], one
finds that T first increases from r = 0, before reaching a peak

and then decreasing toward larger radii. By inspecting the
curves in Fig. 6(b), we observe that the relative height of the
peak above the central temperature is approximately 13% for
Knθ = 0.75, 37% for Knθ = 1.00, and 72% for Knθ = 1.25.
Comparison with the curves in Fig. 6(c) then confirms that this
relative difference increases with the change in the maximum
transverse velocity of the fluid, indicating the strong influence
of the latter on the former. We can therefore answer our second
question by confirming that strong collective flow gradients
can generate qualitatively significant discrepancies between
different freeze-out criteria.8

The tight connection between flow and the freeze-out pro-
cess may be further clarified by considering how the Knudsen
contours would be affected by the omission of a portion of the
flow. To see this, we construct an unphysical flow which omits
the η component from uμ:

ũμ = (ũτ , ũr, 0, 0) ≡ (
√

1 + (ur )2, ur, 0, 0) (70)

with ur given by the shifted Gubser solution used in Eq. (67).
We emphasize that Eq. (70) is not a solution of the original
equations of motion (1), although it remains properly normal-
ized by construction:

ũμũμ = 1. (71)

8Note that only very slight discrepancies between freeze-out cri-
teria were observed in Ref. [31] in the case of p + Pb collisions
where the same “wing-like” structure was observed in the constant T
contours, in apparent contrast to the results found here. In this regard,
however, we emphasize several key differences between our exact
solution and the calculations performed in [31]: (i) Gubser’s solution
(and thus our Solution II) assumes Navier-Stokes hydrodynamics, for
which the shear correction πμν is directly proportional to the shear
tensor σμν , whereas [31] employed Israel-Stewart hydrodynamics
[52], in which πμν evolves according to a relaxation equation; (ii)
[31] did not use a constant η̃/s as assumed here; and (iii) it is unclear
whether the Gubser solution’s flow gradients are really comparable
to those present in the p + Pb simulation shown in [31]. Some
combination of these differences may account for the much larger
sensitivity to freeze-out criterion seen here.
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FIG. 7. Panel (a) displays contours in the (τ, r) plane for Knθ = 0.75 (solid blue), 1.00 (dashed purple), and 1.25 (dot-dashed red). For
each of these respective contours, we also plot the temperature T [panel (b)] and radial velocity ur/uτ [panel (c)] as a function of radius r, with
the same styling of lines in each panel. Thick contours represent Knθ at η = 0, while thin contours represent η = 2.

Using ũμ, we compute a corresponding unphysical Knudsen
number K̃nθ which may in turn be used to define modified
freeze-out contours. Specifically, we define

K̃nθ = η̃

sT

(
∂μũμ + �μ

μα ũα
)
. (72)

We use the same definition of T for both Knθ and K̃nθ as
in Eq. (67). The corresponding contours are shown as thin
lines in Fig. 6. We use three of the same values (Kn =
0.75, 1.00, 1.25) of the Knudsen numbers as before. By com-
paring the respective thick and thin line pairs we may then
estimate the importance of the component uη for the shape of
the freeze-out surface.

We first observe the effects of omitting uη on the shape
of the Knθ contours themselves. By Eq. (58), we see that
choosing t0 = 0 fm/c would have resulted in uη = 0 and
therefore no differences between the Knθ and K̃nθ contours.
With t0 = 0.5 fm/c, however, we see that the unphysical K̃nθ

contours shift to smaller τ and r values relative to the Knθ

contours. Omitting uη from the shifted viscous Gubser solu-
tion of Sec. III thus effectively enhances the flow gradients
in the system and shrinks the region where fluid dynamics
is applicable. As a result of the artificially shifted contours,
the unphysical flow also steepens the temperature and radial
flow dependence along the contours. Looking at the center
panel of Fig. 6, we find that the discrepancies between the
central (r = 0) and peak temperatures along the contours are
slightly enhanced along the shifted K̃nθ contours. The effects
on vr/c are more pronounced, producing up to a 6% reduc-
tion in the peak radial velocity for the Knθ = 0.75 contour.
Although we do not show it here, the effects of omitting uη

are enhanced further as t0 is increased. We conclude that one
effect of setting t0 > 0 is to “redirect” some amount of the
unshifted solution’s flow into the rapidity direction, such that
artificially suppressing the resulting η component of the flow
generates spurious gradients which exacerbate the differences
between freeze-out criteria. Both transverse and longitudinal
flow therefore play essential roles in determining the quanti-
tatively correct shape of the freeze-out surface, as well as the
variations in the temperature and radial flow along it.

The rapidity dependence itself of the shifted solution can
be seen in Fig. 7, where we compare contours of constant Knθ

for η = 0 (thick lines) with η = 2 (thin lines). We emphasize
that the solution is independent of η (i.e., boost invariant)
when t0 = 0. For t0 > 0, however, we see in Fig. 7(a) that
increasing η away from zero shifts freeze-out to earlier τ ,
without dramatically affecting the radial dependence. The
radial velocity [Fig. 7(c)] likewise shifts to smaller values
without modifying the radial dependence significantly, pro-
ducing a roughly 8% in the maximum vr/c at η = 2 relative to
mid-rapidity when Knθ = 0.75. In Fig. 7(b), we observe that,
since both T and Kn are Lorentz scalars, their relationship is
unaffected by the shift in t , and thus the thick and thin lines
coincide for all Knθ contours, regardless of the values of t0 and
η. Furthermore, increasing the magnitude of η further shifts
freeze-out to still earlier times. Taken together, these results
reinforce our main point that an accurate description of the
system’s shape and flow are both essential for a quantitatively
precise characterization of the freeze-out process in nuclear
collisions.

Our shifted version of Gubser’s original solution thus il-
lustrates the importance of accounting for both transverse
and longitudinal flow (and, more precisely, their gradients)
on the shape of the freeze-out surface. In particular, the con-
stant temperature contours and constant Knudsen contours
imply qualitatively similar geometries for the freeze-out hy-
persurface when the flow is relatively weak. However, in the
presence of strong collective flow, such as one might expect
to find in small collision systems [4,34,53], which freeze-out
criterion one adopts is likely to have a larger systematic effect
on experimental observables. The effects could be especially
pronounced for observables which are directly sensitive to the
geometry of the freeze-out hypersurface, such as the Han-
bury Brown–Twiss interferometric radii [37,51]. We plan to
explore the nature of this sensitivity in a subsequent study.

V. CONCLUSIONS

In this work, we have developed two novel exact solutions
conformal hydrodynamics. Both solutions apply a constant
shift of the Minkowski time coordinate (a “temporal shift”)
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to induce a non-trivial rapidity dependence into an already
known solution. In the first case (our “Solution I”), we
have generalized Gubser’s solution of ideal relativistic hy-
drodynamics to allow for flow in the rapidity direction and
combined this with a temporal shift to generate a solution with
rapidity dependence as well. In the second case (“Solution
II”), we have applied a temporal shift to Gubser’s original
solution of viscous relativistic hydrodynamics, yielding a so-
lution for which we can define out-of-equilibrium quantities
like the Knudsen number. Our new solutions admit a number
of interesting applications, including providing useful bench-
mark tests for 3 + 1-dimensional hydrodynamic codes, as
well as allowing analytically tractable insights into the nature
of far-from-equilibrium dynamics in nuclear collisions.

As a concrete instance of this latter application, we have
used the Solution II constructed here to clarify two related
questions: first, the amount by which alternative freeze-out
criteria may differ in the freeze-out hypersurfaces which they
produce, and second, the extent to which these differences are
influenced by the strength of collective flow and the size of its
gradients throughout the system.

We have answered the first question by considering the
qualitative differences which emerge in our solution between
contours of fixed temperature T and fixed Knudsen number
Kn. We have found that large discrepancies tend to arise as the
system falls progressively away from local equilibrium; in our
solution, this tends to occur at temperatures T � 100 MeV.
We anticipate that these differences should lead to systematic
effects on the implementation of the freeze-out process and
the evaluation of, e.g., Cooper-Frye integrals [54,55] in more
realistic numerical simulations.

To address the second question, we directly plotted the
local temperature T and radial velocity vr along contours of
constant Kn using our Solution II. This allowed us to quantify
the typical magnitude of these effects and to explore the role

played by collective flow on the discrepancies. We have also
considered how these results are affected by the artificial
suppression of uη in the full solution, as a way of assessing
their sensitivity to the flow itself. We found that our solution
predicts a strong temperature variation (of up to 72%) along
constant Kn contours in regions where the flow is sufficiently
strong. Even in regions where the T and Kn contours were in
qualitative agreement, we still observed up to 13% variation in
T (relative to Kn) in those regions where the bulk of particle
production occurs [25]. This underscores the fact that system-
atic effects can and do arise on the basis of which freeze-out
criterion one adopts in hydrodynamic simulations.

Since the discrepancies we observe between different
freeze-out criteria are somewhat more pronounced than those
seen in previous studies (e.g., [31,32]), it is important to de-
termine whether the results obtained here can be reproduced
in the context of more realistic numerical simulations and to
assess what, if any, are the systematic effects on predictions
for experimental observables. Doing so could shed valuable
light on the physical mechanisms underlying the robustness
of fluid dynamical behavior [34,56] and help to identify spe-
cific observables which are especially well suited to probing
the breakdown of hydrodynamics. In this respect, HBT in-
terferometry is an example of an observable which should
be ideal for probing the importance of these effects for the
geometry of the freeze-out hypersurface, and we plan to ex-
plore its sensitivity to the freeze-out criterion in a subsequent
study.
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