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Speed of sound in magnetized nuclear matter
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Employing the nonlinear Walecka model we investigate the characteristics of nuclear matter under the
influence of a background magnetic field at a finite temperature and baryon chemical potential. In the presence
of the magnetic field the spinodal lines and the critical endpoint (CEP) undergo changes in the T -μB plane.
The squared speed of sound exhibits anisotropic behavior, dividing into parallel and perpendicular components.
Additionally, the presence of a magnetic field induces anisotropy in the isothermal compressibility. It is found
that the parallel component is smaller than the perpendicular one for all values of temperature, chemical potential,
and magnetic field, indicating that the equation of state is stiffer along the magnetic-field direction.
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I. INTRODUCTION

The speed of sound, represented as Cx, is an important
quantity intrinsic to all thermodynamic systems. In the context
of fluid dynamics, it denotes the speed at which a longi-
tudinal compression wave propagates through the medium.
Mathematically, it is calculated as the square root of the ratio
between a change in pressure p and a corresponding shift
in energy density ε while holding x as a constant parameter
employed in the calculation. Hence, it establishes a direct
correlation with the thermodynamic properties of the system,
including its equation of state (EoS).

In the domain of dense nuclear matter the speed of sound
holds particular significance for neutron-star research. The
variation of Cx with density has a substantial impact on the
mass-radius relationship, cooling rate, the maximum possible
mass of neutron star [1] and tidal deformability. Analysis of
current neutron-star data indicates a substantial increase in
C2

x at densities nB beyond the nuclear saturation density n0

[2–5]. Moreover, as indicated in Ref. [6], the speed of sound
has crucial impact on the frequencies of gravitational waves
generated by the g-mode oscillation of a neutron star.

Currently, the sole experimental method available for
studying strongly interacting hot and/or dense matter in the
laboratory is through relativistic heavy-ion collisions in which
a new state of transient matter called quark-gluon plasma
(QGP) is expected to be formed as a result of phase transition
or crossover from hadronic matter at high temperature and/or
density [7]. The first-principle lattice QCD (LQCD) calcula-
tions indicates that the transition from hadronic matter to QGP
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is a smooth crossover at high temperature and low baryon
chemical potential [8–11]. A first-order phase transition is pre-
dicted by few models at large chemical potential with a critical
endpoint connecting with a crossover transition [12–14]. The
investigation of nuclear matter at high baryon number densi-
ties nB, as conducted by programs like the Beam Energy Scan
at the Relativistic Heavy Ion Collider (RHIC) plays a particu-
larly vital role in the search for the QCD critical point. During
the space-time evolution of the QGP the speed of sound plays
a crucial role emerges in characterizing the EoS which is an
essential input to the hydrodynamic equations. The sensitivity
of the speed of sound on temperature, density, chemical poten-
tial, etc. provides crucial insights: it exhibits a local minimum
at a crossover transition, while it reaches zero at the critical
point and along the corresponding spinodal lines. At a vanish-
ing baryon chemical potential (μB = 0), LQCD demonstrates
a minimum in the speed of sound Cs at temperature T0 =
156.5 ± 1.5 MeV, signifying crossover transition between
hadron gas and QGP [15]. The speed of sound in QCD matter
has been computed using various methods including LQCD
[8,10,11,16], the (Polyakov-)Nambu–Jona-Lasinio [(P)NJL]
model [17–19], the quark-meson coupling model [20,21], the
hadron resonance gas (HRG) model [22,23], the field correla-
tor method (FCM) [24,25] and the quasiparticle model [26].

It is conjectured that in noncentral heavy ion collisions
(HICs), a very strong magnetic field is generated due to the
rapid movement of the electrically charged spectators during
the initial phase of the collision. The estimated strength of
this magnetic field is around 1015–1018 Gauss [27–29] and it
experiences a rapid decay within a few fm/c. However, owing
to the finite conductivity (approximately a few MeV) of the
produced medium, the decay of the magnetic field is signifi-
cantly delayed, allowing a nonzero magnetic field to persist
even during the subsequent hadronic phase, following the
phase transition or crossover from the QGP [30–32]. All these
estimations are done by including the effect of finite electrical
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conductivity of the medium by using Ohm’s law. However the
validity of conventional Ohm’s law in the context of a rapidly
evolving quark-gluon plasma produced in HICs is a topic of
an ongoing discussion [33,34]. It is argued that the rapidly
expanding medium presents an incomplete electromagnetic
response due to the fact that the relaxation time for the induced
electric current towards Ohm’s law is much larger than the
lifetime of the external magnetic field created in noncentral
HICs. Additionally the study of strongly interacting matter
in the presence of background magnetic field is also relevant
for astrophysical scenarios as such type of matter can also be
found in the interior of magnetars [35,36].

The presence of magnetic field could lead to significant
modifications in the properties of the hadronic matter, leading
to extensive research in this area, a few notable examples
of which we mention here. The impact of magnetic fields
on transport properties within the hadronic medium has been
studied in Refs. [32,37–41]. Additionally, estimates of shear
and bulk viscosity from magnetically modified hadronic mat-
ter have been explored in various approaches in Refs. [37–40].
Furthermore, the effects of magnetic fields on the electri-
cal conductivity of a strongly interacting hadron gas have
been investigated in Refs. [32,41]. The present authors have
also studied the dilepton production rate from magnetized
hadronic medium in Refs. [42,43]. Reference [44] describes
the effect of a constant background magnetic field on nucleon
mass in a strongly interacting medium in the weak-field ap-
proximation within the Walecka model. Recently, in Ref. [45],
the authors studied the speed of sound and liquid-gas phase
transition in nuclear matter at finite temperature and den-
sity (chemical potential) using the nonlinear Walecka model.
In this work, we study the nature of speed of sound and
liquid-gas phase transition in nuclear matter in presence of
background magnetic field in the framework of the nonlinear
Walecka model. The range of temperature and baryon chem-
ical potential investigated in this article are more suitable for
the physical scenario of compact astrophysical objects such as
a neutron star or magnetar. In addition we also investigate the
isothermal compressibility in the presence of magnetic field.

The article is structured as follows: Section II provides a
concise overview of the general formalism of the nonlinear
Walecka model, while Sec. III presents expressions for the
speed of sound in various thermodynamical situations. In
Sec. IV, we investigate the results, followed by a summary
and conclusion in Sec. V. Additional details can be found in
the Appendix.

II. WALECKA MODEL

The Lagrangian density of the Walecka model, describing
the nucleons-meson system, is given by

L = Lem + LN + Lmes + LI . (1)

Here, Lem = − 1
2 FμνFμν represents the free field part where

Fμν is the field tensor corresponding to the external magnetic
field, LN describes nucleons in a magnetic field, Lmes denotes
the free mesons and their self-interactions, and LI contains
the interactions between nucleons mediated by the σ and ω

mesons:

LN = ψ̄ (iγ μDμ − mN + γ 0μB)ψ, (2)

LI = gσ ψ̄σψ − gωψ̄γ μωμψ, (3)

Lmes = 1

2

(
∂μσ∂μσ − m2

σ σ 2
) − b

3
mN (gσ σ )3

− c

4
(gσ σ )4 − 1

4
ωμνω

μν + 1

2
m2

ωωμωμ, (4)

where ωμν = ∂μων − ∂νωμ, ψ represents the nucleon isospin
doublet, the covariant derivative Dμ = ∂μ + ieAμ with Aμ =
(0, yB, 0, 0) representing a homogeneous background mag-
netic field in the z direction, and e is the electric charge of
the proton.

We apply the mean-field approximation to calculate the
free energy, i.e., we neglect the fluctuations around the back-
ground mesonic fields assumed to be uniform in space-time.
Therefore, the dynamical mass and the effective chemical
potential of nucleon are

M = mN − gσ σ̄ , μ	 = μB − gωω̄0, (5)

where σ̄ = 〈ψ̄ψ〉 and ω̄0 = 〈ψ̄γ 0ψ〉.
The model parameters gσ , gω, b, c are fitted in mean-

field approximation to reproduce the properties of nuclear
matter at saturation in absence of magnetic field such as the
saturation density n0 = 0.153 fm−3, compression modulus
K = 240 MeV, binding energy Ebind = −16.3 MeV, and the
effective nucleon mass M = 0.8mN . This leads to the chem-
ical potential μ0 = 922.7 MeV at saturation. The parameters
are listed in Table I. [46]

In this model the free energy has the form


 = B2

2
+ U + 
N . (6)

B2/2 stems from the magnetic field pointing in the z direction,
i.e., B(0, 0, B), U is the tree-level potential given by

U = 1

2
m2

σ σ̄ 2 + b

3
mN (gσ σ̄ )3 + c

4
(gσ σ̄ )4 − 1

2
m2

ωω̄2
0, (7)

and 
N is the nucleonic contribution to the free energy. It
depends on the dynamical nucleon mass M(B, μ, T ) which is
determined by minimizing the free energy. We can decompose

N (M, B, μ, T ) as


N = 
sea + 
TM, (8)

where 
sea contains pure vacuum as well as the magnetic-
field-dependent vacuum contributions and 
TM is the thermo-
magnetic (TM) contribution to the free energy. We can write
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TABLE I. Parameters in Walecka model.

mσ (MeV) mω(MeV) mN (MeV) gσ gω b c

550 782 939 8.1617 8.5062 1.0784 × 10−2 −6.2205 × 10−3

the expressions as


sea = −2
∫

d3k

(2π )3 E − eB

2π

∞∑
n=0

αn

∫
dkz

2π
En (9)

= 
vac + 
B
vac, (10)

where αn = 2 − δn0 arises due to the spin degener-
acy of each Landau level (n), E = (M2 + k2)1/2, En =
(M2 + k2

z + 2neB)1/2 for the spin-1/2 fermion with electric
charge e. We can drop the pure vacuum contribution 
vac by a
redefinition of the free energy because the model employed
is renormalizable [47]. Even if the contribution from 
vac

is included, Ref. [46] explicitly demonstrates by choosing a
suitable renormalization scheme that it has a very small effect
on the final results. Thus, we proceed with eB-dependent
vacuum contributions 
B

vac which is given by (see Appendix A
for details)


B
vac = − (eB)2

2π2

{
ζ ′(−1, x) + 1

4
x2 + 1

2
x(1 − x) ln x

}
, (11)

where x = M2/2eB, ζ ′(−1, x) = dζ (z, x)/dz|z=−1, and
ζ (z, x) is Hurwitz zeta function. Furthermore, 
TM can be
expressed as


TM = 2β−1
∫

d3k

(2π )3 {ln(1 − f +) + ln(1 − f −)} + β−1 eB

2π

∞∑
n=0

αn

∫
d pz

2π
{ln(1 − f +

n ) + ln(1 − f −
n )}. (12)

Here f ± = f (E ∓ μ	), f ±
n = f (En ∓ μ	), β = 1/T , f (x) = 1/(ex/T + 1) is the Fermi distribution function, and + (−) corre-

sponds to the fermion (antifermion) distribution function. Now, minimizing the free energy, i.e., putting

∂


∂σ̄
= ∂


∂ω̄0
= 0, (13)

we get the equations

ns = − M − mN

(gσ /mσ )2 + bmN (mN − M )2 + c(mN − M )3 + eB

2π2
M

{
x(1 − ln x) + 1

2
ln

x

2π
+ ln �(x)

}
, (14)

nB = μB − μ	

(gω/mω )2 , (15)

where we have defined the scalar and baryon densities as

ns = 2
∫

d3k

(2π )3

M

E
( f + + f −) + eB

2π

∞∑
n=0

αn

∫
dkz

(2π )

M

En
( f +

n + f −
n ), (16)

nB = 2
∫

d3k

(2π )3 ( f + − f −) + eB

2π

∞∑
n=0

αn

∫
dkz

(2π )
( f +

n − f −
n ). (17)

Both ns and nB contain contributions from neutrons and protons, while the term within second brackets in Eq. (14) is the
renormalized term coming from the derivative ∂
sea/∂M which contributes only for protons. Furthermore, the expressions for
entropy density and magnetization are as follows:

s = −∂


∂T
= −2

∫
d3k

(2π )3

{
ln(1 − f +) + ln(1 − f −) − E

T
( f + + f −) + μ	

T
( f + − f −)

}

− eB

2π

∞∑
n=0

αn

∫
dkz

2π

{
ln(1 − f +

n ) + ln(1 − f −
n ) − En

T
( f +

n + f −
n ) + μ	

T
( f +

n − f −
n )

}
, (18)

M = −∂


∂B
= −B − e

[
eB

2π2
x

{
x(1 − lnx) + ln�(x) + 1

2
ln

x

2π

}

− T

2π

∞∑
n=0

αn

∫
d pz

2π
{ln(1 − f +

n ) + ln(1 − f −
n )} − eB

2π

∞∑
n=0

αn

∫
d pz

2π

n

En
{ f +

n + f −
n }

]
. (19)
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III. SPEED OF SOUND

The general definition of the speed of sound requires the
specification of a constant quantity x such as entropy density
s, s/nB, T , μB, etc. during the propagation of the compression
wave through a medium. The squared speed of sound (C2

x ) is
defined as

C2
x =

(
∂ p

∂ε

)
x

. (20)

Here, p represents pressure and ε denotes energy density.
In relativistic HICs, the created ideal fluid evolves with

constant s/nB. This conclusion can be derived in hydrody-
namics due to the conservation of energy and baryon number.
Therefore, it is important to compute the squared speed of
sound C2

s/nB
along the isentropic curve.

The other definitions of speed of sound found in literature
at constant baryon number density or entropy are usually used
to describe the intermediate stages of hydrodynamic evolu-
tion. Furthermore, it is also interesting to compute the squared
speed of sound with constant temperature T and chemical
potential μB. In this paper, we investigate the speed of sound
in nuclear matter subjected to a background magnetic field in
the T -μB plane. The expressions for energy density and the
longitudinal and transverse components of the pressure are as
follows [48,49]:

ε = 
 + T s + μBnB, (21)

p‖ = −
, p⊥ = p‖ − BM. (22)

Correspondingly, the speed of sound becomes anisotropic
due to the presence of magnetic field. We specify the speed
of sound using different thermodynamic relations expressed
in terms of temperature T and baryon chemical potential

μB as

C2
x (T, μB) = C2

x
(‖)

(T, μB) =
(

∂ p‖
∂ε

)
x

=
(

∂ p‖
∂T

)
μB

(
∂x

∂μB

)
T − (

∂ p‖
∂μB

)
T

(
∂x
∂T

)
μB(

∂ε
∂T

)
μB

(
∂x

∂μB

)
T − (

∂ε
∂μB

)
T

(
∂x
∂T

)
μB

, (23)

C2
x

(⊥)
(T, μB) =

(
∂ p⊥
∂ε

)
x

= C2
x

(‖) − B

(
∂M
∂ε

)
x

= C2
x

(‖) − B

(
∂M
∂T

)
μB

(
∂x

∂μB

)
T − (

∂M
∂μB

)
T

(
∂x
∂T

)
μB(

∂ε
∂T

)
μB

(
∂x

∂μB

)
T − (

∂ε
∂μB

)
T

(
∂x
∂T

)
μB

,

(24)

where Cx = Cx
(‖) and Cx

(⊥) are the sound velocities along and
perpendicular to the magnetic-field direction, respectively.
Using the thermodynamic relation in Appendix B, we can
further write down the sound velocity along the magnetic
field as

C2(‖)
s/nB

=
nBs

(
∂s

∂μB

)
T − s2

(
∂nB
∂μB

)
T − n2

B

(
∂s
∂T

)
μB

+ snB
(

∂nB
∂T

)
μB

(sT + μBnB)
{(

∂s
∂μB

)
T

(
∂nB
∂T

)
μB

− (
∂s
∂T

)
μB

(
∂nB
∂μB

)
T

} ,

(25)

C2(‖)
nB

=
s
(

∂nB
∂μB

)
T − nB

(
∂nB
∂T

)
μB

T
{(

∂s
∂T

)
μB

(
∂nB
∂μB

)
T

− (
∂s

∂μB

)
T

(
∂nB
∂T

)
μB

} , (26)

C2(‖)
s =

s
(

∂s
∂μB

)
T

− nB
(

∂s
∂T

)
μB

μB
{(

∂s
∂μB

)
T

(
∂nB
∂T

)
μB

− (
∂s
∂T

)
μB

(
∂nB
∂μB

)
T

} , (27)

C2(‖)
T = nB

T
(

∂s
∂μB

)
T + μB

(
∂nB
∂μB

)
T

, (28)

C2(‖)
μB

= s

T
(

∂s
∂T

)
μB

+ μB
(

∂nB
∂T

)
μB

, (29)

and sound velocity perpendicular to the magnetic field as

C2(⊥)
s/nB

= C
2
(
‖
)

s/nB
− B

nB
{(

∂M
∂T

)
μB

(
∂s

∂μB

)
T − (

∂M
∂μB

)
T

(
∂s
∂T

)
μB

} − s
{(

∂M
∂T

)
μB

(
∂nB
∂μB

)
T − (

∂M
∂μB

)
T

(
∂nB
∂T

)
μB

}
(sT + μBnB)

{(
∂s

∂μB

)
T

(
∂nB
∂T

)
μB

− (
∂s
∂T

)
μB

(
∂nB
∂μB

)
T

} ,

(30)

C2(⊥)
nB

= C2(‖)
nB

− B

(
∂M
∂T

)
μB

(
∂nB
∂μB

)
T − (

∂M
∂μB

)
T

(
∂nB
∂T

)
μB

T
{(

∂s
∂T

)
μB

(
∂nB
∂μB

)
T − (

∂s
∂μB

)
T

(
∂nB
∂T

)
μB

} , (31)

C2(⊥)
s = C2(‖)

s − B

(
∂M
∂T

)
μB

(
∂s

∂μB

)
T − (

∂M
∂μB

)
T

(
∂s
∂T

)
μB

μB
{(

∂s
∂μB

)
T

(
∂nB
∂T

)
μB

− (
∂s
∂T

)
μB

(
∂nB
∂μB

)
T

} , (32)

C2(⊥)
T = C2(‖)

T − B

(
∂M
∂μB

)
T

T
(

∂s
∂μB

)
T + μB

(
∂nB
∂μB

)
T

, (33)

C2(⊥)
μB

= C2(‖)
μB

− B

(
∂M
∂T

)
μB

T
(

∂s
∂T

)
μB

+ μB
(

∂nB
∂T

)
μB

, (34)
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FIG. 1. The effective nucleon mass (M ) as a function of baryon chemical potential (μB) for different values of temperatures T = 0,

10, 20, 30 MeV at (a) eB = 0, (b) eB = 0.02 GeV2, (c) eB = 0.05 GeV2.

where the analytical expressions for the derivatives
(∂M/∂T )μB , (∂M/∂μB)T , (∂s/∂μB)T , (∂s/∂T )μB ,
(∂nB/∂μB)T , (∂nB/∂T )μB are provided in Appendix C.

In the case of zero magnetic field, the isothermal compress-
ibility of the medium is defined by the relation

KT = 1

nB

∂nB
∂μB

∂ p
∂μB

= 1

n2
B

(
∂nB

∂μB

)
T

. (35)

Due to the anisotropy in pressure KT splits into parallel and
perpendicular components with respect to the magnetic-field
direction. The expressions for K (‖)

T and K (⊥)
T are given by

K (‖)
T = 1

n2
B

(
∂nB

∂μB

)
T

, (36)

K (⊥)
T = 1

nB
{
nB − B

(
∂M
∂μB

)
T

}(
∂nB

∂μB

)
T

. (37)

IV. NUMERICAL RESULTS

In this section we perform a numerical analysis of ther-
modynamic variables in magnetized nuclear matter. It is well
known that the energy-momentum tensor shows anisotropies
due to the breaking of spatial rotational symmetry when a
finite value of magnetic field is present. Hence, the pres-
sure becomes dependent on the direction of the background
magnetic field [48,49]. Since we are interested in the ther-
modynamic properties of magnetized nuclear matter, we
choose two representative values, eB = 0.02 GeV2 and eB =
0.05 GeV2 along with eB = 0 which will provide us the
opportunity to explore the interplay between the magnetic
field and the thermal effects. In this section all the numerical
calculations with finite values of background magnetic field
will be evaluated by considering up to 1000 Landau levels
ensuring the convergence of the results.

A. Mass of nucleon

We begin this section with an investigation of the effective
mass of nucleons which is a function of chemical potential,
temperature, and magnetic-field strength. Hence, it is neces-
sary to find self-consistent solutions for Eqs. (14) and (15).
In Figs. 1(a)–1(c), we show the variation of nucleon mass
with chemical potential for several values of temperatures
T = 0, 10, 20, 30 MeV at different magnetic-field strengths

eB = 0, 0.02, 0.05 GeV2 in the vicinity of liquid-gas phase
transition. At T = 0, if the effective chemical potential μ	 is
smaller than the effective energy of the nucleon, then both the
scalar density ns and baryon density nB will be zero. This can
be seen from Eqs. (16) and (17). Hence, at T = 0, there is no
contribution in effective nucleon mass from the medium. Now,
since according to Eq. (15), μB = μ	 at T = 0 the same holds
for μB. Therefore, the solution for M remains independent
of μB leading to a horizontal line in the Figs. 1(a)–1(c) (see
magenta line). The medium terms contribute when effective
chemical potential μ	 is larger than the effective energy of the
nucleon. In a certain range of μB three solutions are present
and hence three distinct values for the nucleon mass exist.
In this regime, a first-order phase transition presumably oc-
curs. As the temperature rises, the medium-term contributions
tend to reduce the effective nucleon mass as depicted in the
figures. Additionally, the existence of multiple solutions for
the nucleon mass disappears at a particular value of T and
μB called critical endpoint (CEP) beyond which the phase
transition goes towards the crossover regime. This result is
consistent with the previous findings in Ref. [46]. It is also
interesting to observe the nucleon mass as a function mag-
netic field for various values of chemical potential (μB =
0.3, 0.7, 1.5 GeV) and temperature (T = 10, 20, 30 MeV),
as shown in Figs. 2(a) and 2(c). It is evident from the Figs. 2(a)
and 2(b) that, for a constant value of μB and T , the effective
nucleon mass consistently rises with the magnetic field. This
phenomenon at low values of μB is referred to as magnetic
catalysis [46]. However, if the value of μB increases [e.g.,
μB = 1.5 GeV in Fig. 2(c)], the variation of effective nucleon
mass with eB is marginal.

B. Nuclear liquid-gas phase transition

Now, in Figs. 3(a)–3(c), we illustrate the nuclear liquid-
gas phase structure and isentropic curves for various s/nB

values (ranging from 0.05 to 15.0), in the T -μB plane under
background magnetic fields eB = 0, 0.02, 0.05 GeV2. The
isentropic curves depicted in Figs. 3(a) and 3(b) illustrate
the trajectories of an ideal fluid under adiabatic conditions.
Notably, Fig. 3(b) is a similar plot as Fig. 3(a) in a smaller
T -μB space. The graphs in Fig. 3(b) exhibit a discernible shift
as the magnetic-field strength varies for a specific value of
s/nB. However, as s/nB increases, the distinctions between the
graphs corresponding to the different magnetic-field strengths
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FIG. 2. The effective nucleon mass (M ) as a function of background magnetic field eB for different values of temperature T = 10,

20, 30 GeV at (a) μB = 0.3 GeV, (b) μB = 0.7 GeV, (c) μB = 1.5 GeV.

decrease. Furthermore, it is evident from Fig. 3(b) that, at
T = 0, for a given value of eB, the plots for different values
of s/nB meet at a single point on the μB axis. This point
shifts towards higher μB with the increase of magnetic-field
strength. This is a reflection of the so-called “magnetic catal-
ysis” observed in Figs. 2(a) and 2(b). Figure 3(c) illustrates
the CEP of a liquid-gas phase transition along with the corre-
sponding spinodal lines in the T -μB plane for magnetic-field
strengths eB = 0.0, 0.02, 0.05 GeV2. The position of CEP
shifts towards higher T and lower μB as the magnetic-field
strength increases. It is to be noted that the spinodal lines are
determined from the extrema of ∂M/∂T . This gives rise to
two distinct segments of spinodal lines which converge at the
CEP, as illustrated in the Fig. 3(c). Notably, the presence of
a magnetic field leads to significant changes in the spinodal
lines.

C. Magnetization of the medium

In presence of background magnetic field the system will
also be magnetized. The expression for the magnetization
is given in the Eq. (19). We scale the magnetization of the
system as

eMscaled = M + B. (38)

In Figs. 4(a)–4(c), the dependence of scaled magnetization on
the background magnetic field eB is illustrated for different
values of the parameter μB = 1.2, 1.5, 1.8 GeV. Each sub-
plot corresponds to distinct temperatures: Fig. 4(a) at T =
10 MeV, Fig. 4(b) at T = 15 MeV, Fig. 4(c) at T = 25 MeV.

In Fig. 4(a), it is observed that the positive scaled magne-
tization shows an oscillating trend with the magnetic field
eB. These oscillations can be attributed to the so-called de
Haas–van Alphen oscillations [50] of the magnetization in
metals and originates from the quantization of the energy
levels associated with the orbital motion of charged particles
in a magnetic field. Such oscillatory behavior in the mag-
netization of strongly interacting matter is also observed in
Refs. [48,51–53]. Additionally, as the temperature increases,
there is a discernible reduction in the oscillating nature of
the scaled magnetization, as depicted in Figs. 4(b) and 4(c).
It is important to note that the oscillatory behavior observed
in the magnetization for NJL-type nonrenormalizable models
might be an artifact of the regularization scheme and could
vanish for a specific method of regularization [54]. However,
the renormalizability of the Walecka model precludes such
modifications. This is because the B-dependent vacuum con-
tributions of the thermodynamic potential do not introduce
any renormalization scheme dependence in the gap equa-
tions or other thermodynamic quantities.

D. Speed of sound at constant s/nB

In this section, we investigate the variations of the speed
of sound with chemical potential in presence of a background
magnetic field in nuclear matter. As discussed in Sec. III, in
the presence of a magnetic field, C2

s/nB
splits into C2(‖)

s/nB
and

C2(⊥)
s/nB

along and perpendicular to the magnetic-field direction,
respectively. To find the speed of sound, we use Eqs. (25)–(29)

FIG. 3. The isentropic curves for various values of magnetic field eB (= 0, 0.02, 0.05 GeV2) and different values of s/nB (a) in large T -μB

plane, (b) in small T -μB plane. Different line styles represent specific s/nB values while a uniform color scheme is used to denote a particular
eB value. (c) The spinodal lines and critical endpoints (CEPs) for various values of eB = 0, 0.02, 0.05 GeV2 in T -μB plane.
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FIG. 4. Scaled magnetization (Mscaled) as a function of eB for μB = 1.2, 1.5, 1.8 GeV at (a) T = 5 MeV, (b) T = 10 MeV, (c) T =
25 MeV.

and Eqs. (30)–(34). We plot the parallel component of the
squared speed of sound, denoted as C2(‖)

s/nB
, as a function of

baryon chemical potential (μB) for various temperatures T =
5, 10, 16, 25, 50, 100 MeV. These are shown in Fig. 5(a) for
the case of zero magnetic-field strength (eB = 0), in Fig. 5(b)
for eB = 0.02 GeV2, in Fig. 5(c) for eB = 0.05 GeV2. In
absence of background magnetic field, it is evident from
Fig. 5(a) that C2(‖)

s/nB
exhibits a steady increase as a function

of μB for a particular value of temperature. Moreover it can
be seen that for smaller values of μB, the magnitude of C2(‖)

s/nB

increases with temperature as the pressure and energy den-
sity are dominated by temperature-driven influence. However
at large μB, the magnitude of C2(‖)

s/nB
slightly decreases with

increasing T . The transition from the region where pressure
and energy density are driven by temperature to the region
where density-driven effects prevails is presumably due to the
factor (sT + μBnB) present in the denominator of Eq. (25).
Furthermore, the transition does not occur at a fixed value
of μB. Rather this values shifts towards slightly higher val-
ues of μB with increasing temperature. This is clear from
the magnified view of the μB dependence of C2(‖)

s/nB
around

μB ≈ 1.38 GeV provided the inset plot of Fig. 5(a) where
T = 10, 25, 50, 100 MeV are considered for the clarity of
the presentation. Now if we concentrate on the graph for
T = 10 MeV in the inset plot, then it is evident that as the
temperature increases the crossing occurs at higher values
of μB. In the case of a nonzero magnetic field, as shown in
Figs. 5(b) and 5(c), it is also observed that C2(‖)

s/nB
is larger at

high temperature due to the temperature-driven influence on

pressure and energy density at smaller chemical potentials, as
in the zero-field case. However, in the domain of higher values
of μB, no monotonic behavior is observed as in the zero-field
case.

Few comments on the magnitude of speed of sound are in
order here. In Walecka model at large densities the total pres-
sure is dominated by the vector meson-exchange contribution
and in the limit nB → ∞ it approaches the energy density.
Consequently, the speed of sound tends towards the speed of
light at large densities [55]. Since the interaction involving
the ω meson is proportional to the baryon density, there is a
consistent rise in the speed of sound with increasing baryon
chemical potential (μB), reaching a limiting value of 1 as
nB (or μB) approaches infinity. In contrast, NJL-like models
present a significantly different scenario. In these models,
the value of the sigma mean field and consequently the cor-
responding interaction, diminishes with increasing density.
Thus the NJL-like model behaves like a gas of noninteracting
relativistic particles at nB → ∞. So the Walecka model can
be thought to describe nuclear matter and the NJL-like model
can give one some insight of high-density quark matter. If
a phase transition from nuclear matter to quark matter takes
place with growing density, the value of speed of sound is
expected to exhibit a peak at a certain density. Recent limits
on the speed of sound derived from astrophysical observation
were obtained in Ref. [2] using a parametrized EoS and in
Ref. [3] in the framework of the chiral effective-field theory
and it has been argued that the speed of sound in neutron-star
matter may exceed the conformal limit. The speed of sound
in neutron-star matter considering different phase-transition

FIG. 5. Parallel component of squared speed of sound C2(‖)
s/nB

as a function of chemical potential μB for a few fixed temperature (T =
5, 10, 16, 25, 50, 100 MeV) at (a) eB = 0, (b) eB = 0.02 GeV2, (c) eB = 0.05 GeV2.
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FIG. 6. Parallel component of squared speed of sound C2(‖)
s/nB

as a function of chemical potential μB for eB = 0.02, 0.05 GeV2 at (a)
T = 5 MeV, (b) T = 10 MeV, (c) T = 25 MeV.

mechanisms and observational constraints is a topic of ongo-
ing studies [56–58].

The parallel squared speed of sound C2(‖)
s/nB

is presented
as a function of μB for different magnetic-field strengths
eB = 0, 0.02, 0.05 GeV2 in Fig. 6(a) for T = 5 MeV, in
Fig. 6(b) for T = 10 MeV, and in Fig. 6(c) for T = 16 MeV,
respectively. In Fig. 6(a), the plots corresponding to nonzero
magnetic fields mildly oscillates around the eB = 0 plot and
the oscillations increase with the increase of magnetic-field
strength. As the temperature increases, in Figs. 6(b) and 6(c),
the oscillation decreases, i.e., the magnetic field effect de-
creases. This is also understandable from Figs. 5(b) and 5(c).
Therefore, the influence of magnetic field on C2(‖)

s/nB
, which

is particularly evident at lower temperatures, demonstrates a
diminishing trend as temperature rises.

The variation of C2(⊥)
s/nB

with respect to μB is plotted for vari-
ous temperatures T = 5, 10, 16, 25, 50, 100 MeV in Fig. 7(a)
at eB = 0.02 GeV2 and in Fig. 7(b) at eB = 0.05 GeV2, re-
spectively. Figure 7(a) shows that the oscillating behavior of
C2(⊥)

s/nB
diminishes with increasing temperature for larger μB

values. However, in the lower-μB domain, C2(⊥)
s/nB

rises with
temperature. Figure 7(b) shows a similar trend as in Fig. 7(a).
The comparison between the parallel and perpendicular com-
ponents of C2

s/nB
with respect to μB for a temperature of T =

5 MeV and a magnetic field of eB = 0.02 GeV2 is illustrated
in Fig. 7(c). The figure shows a significant difference between
the parallel and perpendicular components of the speed of

sound. In the higher range of μB values, the magnitude of C2(‖)
s/nB

is greater than that of C2(⊥)
s/nB

.

Figure 8(a) represents C2(⊥)
s/nB

as a function of μB for back-
ground fields eB = 0.02, 0.05 GeV at T = 5 MeV, while
Fig. 8(b) and Fig. 8(c) do so for T = 10 MeV and T =
25 MeV, respectively. In Figs. 7(a) and 7(b) and 8(a)–8(c), the
minima of C2(⊥)

s/nB
around μB = 0.92 GeV mark the occurrence

of the liquid-gas phase transition, which is consistent with
C2(‖)

s/nB
. Examination of Fig. 8(a) at temperature T = 5 MeV

reveals that the oscillations in C2(⊥)
s/nB

intensify with an increase
in the background magnetic field for larger μB values. As
the temperature rises, the oscillations in C2(⊥)

s/nB
diminish [see

Fig. 8(b)], achieving a smoother profile [see Fig. 8(c)] for
eB = 0.02, 0.05 GeV in the domain of higher μB values.
Conversely, in the domain of lower μB values, the values
of C2(⊥)

s/nB
exhibit an increase with rising temperature. This

trend is consistent with the patterns illustrated in Figs. 7(a)
and 7(b).

The contour plots in Figs. 9(a)–9(c) demonstrate the pro-
files of C2(‖)

s/nB
in the full T -μB plane for eB = 0, 0.02, and

0.05 GeV2, respectively. In each of the contour plots the
profiles corresponding to C2(‖)

s/nB
= 0.1, 0.30, 0.50, 0.75 are

identified separately. Recall that in Figs. 5, 6, and 9 the
squared speed of sound is larger than its conformal value, i.e.,
1/3 at high chemical potential or high density. Importantly,
causality is always preserved, i.e., C2(‖)

s/nB
< 1. Note that the

FIG. 7. C2(⊥)
s/nB

as a function of chemical potential μB for a few fixed temperature (T = 5, 10, 16, 25, 50, 100 MeV) at (a) eB = 0.02 GeV2,
(b) eB = 0.05 GeV2. Parallel and perpendicular components of C2

s/nB
as a function of chemical potential μB at T = 5 MeV and eB = 0.02 GeV2

in panel (a).
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FIG. 8. Perpendicular component of squared speed of sound C2(⊥)
s/nB

as a function of chemical potential μB for eB = 0.02, 0.05 GeV2 at (a)
T = 5 MeV, (b) T = 10 MeV, (c) T = 25 MeV.

value of C2(‖)
s/nB

approaches 1/3 in quark matter at high chemical
potential or high baryon density [17].

E. Speed of sound at constant nB or s

We present contour maps illustrating C2(‖)
nB

in the T -μB

plane under various magnetic-field strengths for eB = 0 in
Fig. 10(a), eB = 0.02 GeV2 in Fig. 10(b), eB = 0.05 GeV2

in Fig. 10(c). In the absence of a magnetic field, in
Fig. 10(a), C2(‖)

nB
exhibits a nonmonotonic behavior with chem-

ical potential for almost all temperatures. Notably, there
is a distinctive peak-like structure observed at intermedi-
ate chemical-potential values. When the magnetic field is
switched on, these characteristics manifest in a similar fash-
ion. However, at lower temperatures C2(‖)

nB
exhibits a distinct

variation which increases with the increasing magnetic-field
strength.

Next, we now show the contour maps of C2(‖)
s at con-

stant entropy density under different magnetic-field strengths,
specifically, for eB = 0 in Fig. 11(a), eB = 0.02 GeV2 in
Fig. 11(b), eB = 0.05 GeV2 in Fig. 11(c) respectively. In the
absence of magnetic field, as shown in Fig. 11(a), the contour
plots of C2(‖)

s exhibit a complicated structure. The graphs
demonstrate that C2(‖)

s has both negative and positive values
separated by the red dashed line in the Fig. 11(a). The value
of C2(‖)

s vanishes on the boundary given by the red dashed
line. This feature possibly represents a general phenomenon
observed in first-order phase transitions within interacting
systems where the fermion mass exhibits a dependency on
both temperature and density. A similar behavior in the speed
of sound within quark matter is observed in Ref. [17]. Indeed,

the boundary denoted by the red dashed line in Figs. 11(a) can
be correlated with the thermodynamic formula(

∂μB

∂T

)
s/nB

= μB
(

∂ p(‖)

∂ε

)
s

T
(

∂ p(‖)

∂ε

)
nB

= (μB/T )
Cs

2(‖)

C2(‖)
nB

. (39)

Therefore, one can obtain the boundary of C2(‖)
s = 0 us-

ing Eq. (39) and by taking the condition (∂μB/∂T )s/nB = 0.
Moreover, one of the two physical quantities C2(‖)

s and C2(‖)
nB

takes negative value when (∂μB/∂T )s/nB < 0. Since C2(‖)
nB

is
always positive, C2(‖)

s is negative in this situation. The region
enclosed by the dashed red line in Figs. 11(a) represents this
region. With the introduction of a magnetic field, the contour
plots exhibit a similar behavior except at lower temperature
and high chemical potential, as demonstrated in Figs. 11(b)
and 11(c).

F. Speed of sound at constant T

In the following, we explore the speed of sound at con-
stant temperature T . The estimation of C2(‖)

T as a function of
the baryon number density during the chemical freeze-out of
quark-gluon plasma created in relativistic heavy-ion collisions
has been carried out in Ref. [59]. In recent times, there has
been a lot of discussion regarding the density-dependent C2(‖)

T
in the context of neutron-star matter. The observational data
indicate a substantial value of C2(‖)

T (greater than 1/3) at
densities several times that of nuclear saturation. Here, we see
the behavior of C2(‖)

T in nuclear matter in the full T -μB plane
under different magnetic-field strengths, specifically, for
eB = 0 in Fig. 12(a), eB = 0.02 GeV2 in Fig. 12(b),

FIG. 9. Contour plots of C2(‖)
s/nB

in the full T -μB plane at (a) eB = 0, (b) eB = 0.02 GeV2, (c) eB = 0.05 GeV2.
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FIG. 10. Contour plots of C2(‖)
nB

in the full T -μB plane at (a) eB = 0, (b) eB = 0.02 GeV2, (c) eB = 0.05 GeV2.

FIG. 11. Contour plots of C2
s

(‖) in the full T -μB plane at (a) eB = 0, (b) eB = 0.02 GeV2, (c) eB = 0.05 GeV2.

FIG. 12. Contour plots of C2
T

(‖) in the full T -μB plane at (a) eB = 0, (b) eB = 0.02 GeV2, (c) eB = 0.05 GeV2.
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FIG. 13. Parallel and perpendicular components of isothermal compressibility K (‖, ⊥)
T as a function of μB for eB = 0.02, 0.05 GeV2 at (a)

T = 5 MeV, (b) T = 10 MeV, (c) T = 25 MeV.

eB = 0.05 GeV2 in Fig. 12(c). In the case of zero mag-
netic field strength in Fig. 12(a), the value of C2(‖)

T always
increases with the rising chemical potential. At low tempera-
ture the behavior of C2(‖)

T closely resembles C2(‖)
s/nB

. The effects
of the magnetic field are shown in Figs. 12(b) and 12(c).

G. Isothermal compressibility

In the absence of magnetic fields, the isothermal com-
pressibility KT exhibits isotropy. However, in the presence of
magnetic field KT becomes anisotropic and splits into K (‖)

T

(along the magnetic-field direction) and K (⊥)
T (perpendicular

to the magnetic-field direction). To estimate isothermal com-
pressibility, we use Eqs. (36) and (37). K (‖, ⊥)

T are plotted
as a function of chemical potential μB for magnetic field
eB = 0.02, 0.05 GeV2. The plots are depicted in Fig. 13(a)
at T = 5 MeV, Fig. 13(b) at T = 10 MeV and Fig. 13(c) at
T = 25 MeV. Figure 13(a) shows that K (‖)

T is smaller than
K (⊥)

T for given values of T , μB, eB. Therefore, the equation of
state is stiffer along the magnetic-field direction. Figures 13(b)
and 13(c) show a similar behavior at higher temperatures. In
all the graphs both the compressibilities become smaller at
higher μB indicating a stiffer EoS in this region.

V. SUMMARY AND CONCLUSION

In summary, we have investigated the modifications of
nucleon mass, the nuclear liquid-gas phase transition, squared
speed of sound and isothermal compressibility in nuclear
matter subjected to a background magnetic field at finite

temperature and chemical potential (baryon density) within
the framework of the nonlinear Walecka model. Our findings
reveal that the effective mass of the nucleon increases with the
growing background magnetic field, a phenomenon known as
magnetic catalysis. Additionally, the presence of a magnetic
field is found to influence the positions of the critical endpoint
(CEP) and spinodal lines in the T -μB plane. Furthermore, our
study demonstrates that the presence of magnetic field induces
anisotropy in the speed of sound, showing variations between
C2

x
(‖,⊥) components. Our calculations support the assertion

that the speed of sound in nuclear matter can exceed
√

1/3 at
high chemical potential even in the presence of the magnetic
field. However, it is important to note that causality is always
upheld, ensuring C2

x < 1. Notably, we also observed that the
influence of the magnetic field on the speed of sound is most
pronounced at high chemical potential and low temperature.
Moreover, our investigation revealed that the magnetic field
can induce anisotropy in the isothermal compressibility of
nuclear matter in a similar manner. It is found that K (‖)

T is
smaller than K (⊥)

T for given values of T , μB, eB indicating
that the equation of state is stiffer along the magnetic-field
direction. It should be noted that the values of temperature
and chemical potential considered in this work are more
applicable to the case of neutron-star matter. However, the
values of the background magnetic field used during the dis-
cussions of the numerical results are somewhat higher than
expected values in such scenarios. In spite of this the thermo-
dynamic quantities studied in this work exhibit only moderate
modifications in the presence of a background magnetic
field.
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APPENDIX A: eB-DEPENDENT VACUUM CONTRIBUTION

The vacuum contribution to the free energy is


sea = −2
∫

d3k

(2π )3 E − qB

2π

∞∑
n=0

αn

∫
dkz

2π
En (A1)

= −I0 − I1 = −2I0 − (I1 − I0), (A2)
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where

I1 = qB

2π

∞∑
n=0

αn

∫
dkz

2π
En, (A3)

I0 = 2
∫

d3k

(2π )3 E . (A4)

The momentum integration in d dimensions is

∫
dn p

(2π )n (p2 + M2)−A = �(A − d/2)

(4π )d/2�(A)

(
1

M2

)A−d/2

. (A5)

We first convert the integration in Eq. (A3) into d dimensions and then use the standard dimensional regularization formula (A5)
with A = −1/2 and d = 1 − ε (� 1). Thus,

I1 = (eB)

2π

�(−1 + ε/2)

(4π )(1−ε)/2�(−1/2)

[
2

∞∑
n=0

(
1

M2 + 2neB

)−1+ ε
2

−
(

1

M2

)−1+ ε
2

]
. (A6)

Now defining x = M2/2eB and using the formula of Hurwitz zeta function ζ (z, x) = ∑∞
n=0 1/(n + x)z, Eq. (A6) can be written

as

I1 = − (eB)2

2π2

(
eB

2π

)− ε
2

�
(
−1 + ε

2

)[
ζ
(
−1 + ε

2
, x

)
− 1

2x−1+ ε
2

]
. (A7)

Equation (A7) can be further simplified to obtain

I1 = (eB)2

2π2

[
−x2

ε
− 1

2
x2 + 1

2
γ x2 + 1

2
x2ln

eB

2π
+ 1

2
xlnx + ζ ′(−1, x)

]
+ x-independent terms. (A8)

Similarly, we convert the integration in Eq. (A4) into d dimensions using the standard dimensional regularization formula (A5)
with A = −1/2 and d = 3 − ε (� 1). Then the simplified equation can be written as

I0 = − 1

8π
M4

(
1

ε
+ 3 − 2γ

4
− 1

2
lnM2 + 1

2
ln4π

)
. (A9)

Inserting M2 = 2eBx and simplifying, Eq. (A9) can be expressed as

I0 = − (eB)2

2π2

[
x2

ε
+ 3 − 2γ

4
x2 − 1

2
x2lnx − 1

2
x2ln

eB

2π

]
. (A10)

Now


sea = −2I0 − (I1 − I0) (A11)

= (2I0 + x-independent terms) + 
B
vac, (A12)

where eB-dependent vacuum part is


B
vac = − (eB)2

2π2

{
ζ ′(−1, x) + 1

4
x2 + 1

2
x(1 − x) ln x

}
. (A13)

APPENDIX B: IMPORTANT THERMODYNAMICS RELATION

(
∂ε

∂T

)
μB

= T

(
∂s

∂T

)
μB

+ μB

(
∂nB

∂T

)
μB

,

(
∂ε

∂μB

)
T

= T

(
∂s

∂μB

)
T

+ μB

(
∂nB

∂μB

)
T

, (B1)

(
∂ (s/nB)

∂μB

)
T

= 1

nB

(
∂s

∂μB

)
T

− s

n2
B

(
∂nB

∂μB

)
T

,

(
∂ (s/nB)

∂T

)
μB

= 1

nB

(
∂s

∂T

)
T

− s

n2
B

(
∂nB

∂T

)
μB

. (B2)
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APPENDIX C: SUSCEPTIBILITIES

In Sec. III, we have seen that the speed of sound contain (∂M/∂T )μB , (∂M/∂μB)T , (∂s/∂μB)T , (∂s/∂T )μB , (∂nB/∂μB)T ,
(∂nB/∂T )μB and can be obtained from the free energy 
. The expressions are given below:

(
∂M
∂T

)
μB

= − M

2π2

[
2x(1 − lnx) + ln�(x) + x(�(x) − 1) + 1

2

(
1 + ln

x

2π

)]
∂M

∂T
−

∞∑
n=0

αn

∫
d pz

4π2
[ln(1 − f +

n ) + ln(1 − f −
n )]

− T
∞∑

n=0

αn

∫
d pz

4π2

[
− En

T 2
( f +

n + f −
n ) − μ	

T 2
( f −

n − f +
n ) + 1

T

M

En

∂M

∂T
( f +

n + f −
n ) + 1

T

∂μ	

∂T
( f −

n − f +
n )

]

− eB
∞∑

n=0

αn

∫
d pz

4π2

n

En

[
− M

E2
n

∂M

∂T
( f +

n + f −
n ) + 1

T 2
{(En + μ	) f −(1 − f −) + (En − μ	) f +

n (1 − f +
n )}

− 1

T

M

En

∂M

∂T
{ f +

n (1 − f +
n ) + f −

n (1 − f −
n )} − 1

T

∂μ	

∂T
{ f −

n (1 − f −
n ) − f +

n (1 − f +
n )}

]
, (C1)

(
∂M
∂μB

)
T

= − M

2π2

[
2x(1 − lnx) + ln�(x) + x(�(x) − 1) + 1

2

(
1 + ln

x

2π

)]
∂M

∂μB

−
∞∑

n=0

αn

∫
d pz

4π2

[
M

En

∂M

∂μB
( f +

n + f −
n ) + ∂μ	

∂μB
( f −

n − f +
n )

]
+ qB

∞∑
n=0

αn

∫
d pz

4π2

n

E3
n

M( f +
n + f −

n )
∂M

∂μB

− eB

T

∞∑
n=0

αn

∫
d pz

4π2

n

En

[
M

En

∂M

∂μB
{ f +

n (1 − f +
n ) + f −

n (1 − f −
n )} + ∂μ	

∂μ
{ f −

n (1 − f −
n ) − f +

n (1 − f +
n )}

]
, (C2)

where �(x) = ∂
∂x [ln �(x)] is digamma function and

(
∂s

∂T

)
μB

=
∫

d3k

(2π )3

1

T 2

[{
E − μ	

T
− M

E

∂M

∂T
+ ∂μ	

∂T

}
(E − μ	) f +(1 − f +) +

{
E + μ	

T
− M

E

∂M

∂T
− ∂μ	

∂T

}

× (E + μ	) f −(1 − f −)

]

+ qB

2π

∞∑
n=0

αn

∫
dkz

2π

1

T 2

[{
En − μ	

T
− M

En

∂M

∂T
+ ∂μ	

∂T

}
(En − μ	) f +

n (1 − f +
n ) +

{
En + μ	

T
− M

En

∂M

∂T
− ∂μ	

∂T

}

× (En + μ	) f −
n (1 − f −

n )

]
, (C3)

(
∂s

∂μB

)
T

= − qB

2π

1

T 2

∞∑
n=0

αn

∫
dkz

2π

[{
M

En

∂M

∂μB
− ∂μ	

∂μB

}
(En − μ	) f +

n (1 − f +
n ) +

{
M

En

∂M

∂μB
+ ∂μ	

∂μB

}
(En + μ	) f −

n (1 − f −
n )

]

− 2

T 2

∫
d3k

(2π )3

[{
M

E

∂M

∂μB
− ∂μ	

∂μB

}
(E − μ	) f +(1 − f +) +

{
M

E

∂M

∂μB
+ ∂μ	

∂μB

}
(E + μ	) f −(1 − f −)

]
, (C4)

(
∂nB

∂T

)
μB

= qB

2π

∞∑
n=0

αn

∫
dkz

2π

[{
En − μ	

T 2
− 1

T

(
M

En

∂M

∂T
− ∂μ	

∂T

)}
f +
n (1 − f +

n )

−
{

En + μ	

T 2
− 1

T

(
M

En

∂M

∂T
+ ∂μ	

∂T

)}
f −
n (1 − f −

n )

]

+ 2
∫

d3k

(2π )3

[{
E − μ	

T 2
− 1

T

(
M

E

∂M

∂T
− ∂μ	

∂T

)}
f +(1 − f +) −

{
E + μ	

T 2
− 1

T

(
M

E

∂M

∂T
+ ∂μ	

∂T

)}
f −(1 − f −)

]

(C5)

= YT + YM
∂M

∂T
+ Yμ	

∂μ	

∂T
, (C6)

054911-13



MONDAL, CHAUDHURI, ROY, AND SARKAR PHYSICAL REVIEW C 109, 054911 (2024)

(
∂nB

∂μB

)
T

= qB

2π

∞∑
n=0

αn

∫
dkz

2π

[
− 1

T

(
M

En

∂M

∂μB
− ∂μ	

∂μB

)
f +
n (1 − f +

n ) + 1

T

(
M

En

∂M

∂μB
+ ∂μ	

∂μB

)
f −
n (1 − f −

n )

]

+ 2
∫

d3k

(2π )3

[
− 1

T

(
M

E

∂M

∂μB
− ∂μ	

∂μB

)
f +(1 − f +) + 1

T

(
M

E

∂M

∂μB
+ ∂μ	

∂μB

)
f −(1 − f −)

]
(C7)

= YM
∂M

∂μB
+ Yμ	

∂μ	

∂μB
, (C8)

(
∂ns

∂T

)
μB

= 2
∫

d3k

(2π )3

(
1

E
− M2

E3

)
∂M

∂T
( f + + f −) + eB

2π

∞∑
n=0

αn

∫
dkz

2π

(
1

En
− M2

E3
n

)
∂M

∂T
( f +

n + f −
n )

+ 2
∫

d3k

(2π )3

M

E

[{
E + μ	

T 2
− 1

T

(
M

E

∂M

∂T
+ ∂μ	

∂T

)}
f −(1 − f −)

+
{

E − μ	

T 2
− 1

T

(
M

E

∂M

∂T
− ∂μ	

∂T

)}
f +(1 − f +)

]

+ eB

2π

∞∑
n=0

αn

∫
dkz

2π

M

En

[{
En + μ	

T 2
− 1

T

(
M

En

∂M

∂T
+ ∂μ	

∂T

)}
f −
n (1 − f −

n )

+
{

En − μ	

T 2
− 1

T

(
M

En

∂M

∂T
− ∂μ	

∂T

)}
f +
n (1 − f +

n )

]

= XT + XM
∂M

∂T
+ Xμ	

∂μ	

∂T
, (C9)

(
∂ns

∂μB

)
T

= 2
∫

d3k

(2π )3

(
1

E
− M2

E3

)
∂M

∂μB
( f + + f −) + eB

2π

∞∑
n=0

αn

∫
dkz

2π

(
1

En
− M2

E3
n

)
∂M

∂μB
( f +

n + f −
n )

+ 2
∫

d3k

(2π )3

M

E

[{
− 1

T

(
M

E

∂M

∂μB
+ ∂μ	

∂μB

)}
f −(1 − f −) +

{
− 1

T

(
M

E

∂M

∂μB
− ∂μ	

∂μB

)}
f +(1 − f +)

]

+ eB

2π

∞∑
n=0

αn

∫
dkz

2π

M

En

[{
− 1

T

(
M

En

∂M

∂μB
+ ∂μ	

∂μB

)}
f −
n (1 − f −

n ) +
{
− 1

T

(
M

En

∂M

∂μB
− ∂μ	

∂μB

)}
f +
n (1 − f +

n )

]

= XM
∂M

∂μB
+ Xμ	

∂μ	

∂μB
, (C10)

where

XT = 2
∫

d3k

(2π )3

M

E

1

T 2
{(E + μ	) f −(1 − f −) + (E − μ	) f +(1 − f +)}

+ eB

2π

∞∑
n=0

αn

∫
dkz

2π

M

En

1

T 2
{(En + μ	) f −

n (1 − f −
n ) + (En − μ	) f +

n (1 − f +
n )}, (C11)

XM = 2
∫

d3k

(2π )3

[(
1

E
− M2

E3

)(
f + + f −) − 1

T

(
M

E

)2

{ f +(1 − f +) + f −(1 − f −)}
]

+ eB

2π

∞∑
n=0

αn

∫
dkz

2π

[(
1

En
− M2

E3
n

)
( f +

n + f −
n ) − 1

T

(
M

En

)2

{ f +
n (1 − f +

n ) + f −
n (1 − f −

n )}
]
, (C12)

Xμ	 = 2
∫

d3k

(2π )3

1

T

M

E
{ f +(1 − f +) − f −(1 − f −)} + eB

2π

∞∑
n=0

αn

∫
dkz

2π

1

T

M

En
{ f +

n (1 − f +
n ) − f −

n (1 − f −
n )}, (C13)
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YT = 2
∫

d3k

(2π )3

1

T 2
{(E − μ	) f +(1 − f +) − (E + μ	) f −(1 − f −)}

+ eB

2π

∞∑
n=0

αn

∫
dkz

2π

1

T 2
{(En − μ	) f +

n (1 − f +
n ) − (En + μ	) f −

n (1 − f −
n )}, (C14)

YM = 2
∫

d3k

(2π )3

1

T

M

E
{− f +(1 − f +) + f −(1 − f −)} + eB

2π

∞∑
n=0

αn

∫
dkz

2π

1

T

M

En
{− f +

n (1 − f +
n ) + f −

n (1 − f −
n )}, (C15)

Yμ	 = 2
∫

d3k

(2π )3

1

T
{ f +(1 − f +) + f −(1 − f −)} + eB

2π

∞∑
n=0

αn

∫
dkz

2π

1

T
{ f +

n (1 − f +
n ) + f −

n (1 − f −
n )}. (C16)

The derivatives ∂M/∂T , ∂μ	/∂T , ∂M/∂μB, and ∂μ	/∂μB in Eqs. (C3), (C4), (C5), and (C7) can be obtained analytically from
Eqs. (14)–(17) and are given by the matrix equations as(

f ′ − XM −Xμ	

YM Yμ	 + 1
(gω/mω )2

)(
∂M
∂T
∂μ	

∂T

)
=

(
XT

−YT

)
, (C17)

(
f ′ − XM −Xμ	

YM Yμ	 + 1
(gω/mω )2

)(
∂M
∂μB
∂μ	

∂μB

)
=

(
0
1

(gω/mω )2

)
, (C18)

where

f = − M − mN

(gσ /mσ )2 + bmN (mN − M )2 + c(mN − M )3 + qB

2π2
M

{
x(1 − ln x) + 1

2
ln

x

2π
+ ln�(x)

}
, (C19)

f ′ = ∂ f (M )

∂M
= − 1

(gσ /mσ )2 − 2bmN (mN − M ) − 3c(mN − M )2

+ eB

2π2

{
x(1 − ln x) + 1

2
ln

x

2π
+ ln �(x)

}
+ M2

2π2

{
�(x) + 1

2x
− ln x

}
. (C20)
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