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Spin relaxation rate for baryons in a thermal pion gas
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We study the relaxation dynamics of the spin polarization of baryons (nucleon and � baryon), in a thermal pion
gas as a simple model of the hadronic phase of the QCD plasma produced in relativistic heavy-ion collisions. For
this purpose, we formulate the quantum kinetic theory for the spin density matrix of baryons in the leading order
of the gradient expansion. Considering the baryon-pion elastic scattering processes as the dominant interaction
between baryons and thermal pions, we compute the spin relaxation rate of nucleons and � baryons in a pion
gas up to temperature 200 MeV. In the case of nucleons, we evaluate the spin relaxation rate in the s-channel
resonance approximation, based on the known experimental data on � resonances. We also estimate the spin
relaxation rate for � baryons, based on experimental inputs and theoretical models for the low-energy �π

scattering, including the chiral perturbation theory.
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I. INTRODUCTION

Experimentally observed spin polarization of hadrons
aligned with the orbital angular momentum of the colliding
nuclei [1–4] is the manifestation of a quantum mechanical
response to the strong vorticity of the QCD plasma created in
relativistic heavy-ion collisions. Broadly, theoretical predic-
tions based on local thermal equilibrium of spin polarization
and fluid vorticity are in reasonable agreement with the exper-
imental observation. However, any quantitative comparison in
detail clearly requires a more sophisticated treatment, which
should take into account the time evolution of spin polariza-
tion locally out of equilibrium. Currently, two mainstream
approaches for addressing the potentially out-of-equilibrium
dynamics of spin polarization are under intense investigation:
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kinetic theory incorporating spin [5–24] (see also Ref. [25] for
a recent review on the quantum kinetic theory), and hydrody-
namics incorporating spin [26–41].

Obviously, the key quantity in such out-of-equilibrium
time evolution is the relaxation rate of spin polarization
toward its equilibrium value. The spin polarization in gen-
eral is not a conserved quantity, and thus, gives one of the
nonhydrodynamic modes not amenable to a hydrodynamics
description. In the specific case where spin polarization shows
much slower relaxation than other nonhydrodynamic modes,
a quasihydrodynamics or hydro+ description [42], dubbed
as the spin hydrodynamics, can be introduced to include the
spin polarization as an additional quasihydrodynamic vari-
able. The spin hydrodynamics, in this case, is characterized by
a new transport coefficient, called rotational viscosity, which
corresponds to the spin relaxation rate γS . In Ref. [43], the
spin relaxation rate for heavy quarks in a high-temperature
weakly coupled quark-gluon plasma was computed to the
leading-order of QCD coupling constant αs. It behaves as
γS ∼ α2

s ln(1/αs) × (T 3/M2
q ) as a function of the heavy-quark

mass Mq(� T ) and the temperature T .
In this work, we extend our study of spin relaxation in QCD

plasma to a low-temperature hadronic phase, focusing on the
spin polarization of baryons, e.g., nucleons and � baryons. It
is directly motivated by the experimental observation of the
spin-polarized � baryons in RHIC [1–4]. The QCD plasma in
the hadronic phase at low temperature and vanishing baryon
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chemical potential is mostly a gas of weakly interacting pions,
described by chiral perturbation theory [44–46] (see, e.g.,
Ref. [47] for a recent pedagogical review). The chiral pertur-
bation theory, however, becomes inadequate around T � 100
MeV, although pions are still the major component of the
plasma. As a simple model for the hadronic phase in this
work, we will therefore approximate the plasma by a thermal
pion gas without heavy use of the chiral perturbation theory.
We note that our approach works well for a low-temperature
phase, while it eventually breaks down as the temperature
becomes closer to the crossover temperature Tc ∼ 200 MeV
from the hadronic to quark-gluon plasma phases.

The baryon density in this temperature range is dilute, and
thus, we will neglect inter-baryon interactions in the plasma.
In other words, we treat each baryon independent of other
constituents of the plasma, except thermal pions surrounding
it. The dominant baryon-pion interaction in this regime is the
elastic two-body scattering of the baryon with background
pions [48]. This motivates us to formulate the quantum ki-
netic theory of baryons interacting with the surrounding pions.
Based on this picture, we will construct the leading-order
collision operator in the quantum kinetic theory of the spin
density matrix, which allows us to compute the spin relaxation
rate from the spin-flipping scattering processes.

Let us briefly summarize our picture of the relevant degrees
of freedom and processes in the following. At a sufficiently
low temperature, the baryon-pion scattering amplitude is de-
scribable in the chiral perturbation theory. Indeed, there exists
a well-developed chiral perturbation theory including nucle-
ons (see, e.g., Ref. [47] for a pedagogical review). Above T =
100 MeV, this is no longer a good description of the nucleon-
pion scattering amplitudes because the �-baryon resonance
starts to dominate the scattering amplitudes. The nucleon-
pion scattering amplitudes in this energy range have been
experimentally measured with a good precision a while ago—
indeed, this was how the �-baryon resonance was discovered.
Thus, instead of relying on the chiral perturbation theory, we
can directly utilize these experimental data to evaluate the
spin-flipping amplitudes that are needed to compute the spin
relaxation rate.

On the other hand, experimental data on the �π scattering
amplitude is absent. We will thus resort to a reasonable model-
ing, taking into account the known hadron spectrum including
nearby strange baryons as well as the s-channel resonances in
the �π scattering. Specifically, we consider two most relevant
strange baryons, i.e., � baryon (of average mass 1190 MeV)
and �∗(1385). The former should be considered as a bound
state of �-π system in the total angular momentum J = 1/2
channel, and the latter a resonance of a finite width in the
J = 3/2 channel. Fortunately for us, the width of �∗(1385)
is known experimentally from its dominant decay to � + π ,
i.e., ��∗ = 36 MeV, which can be used to evaluate the spin
relaxation rate for the � baryon. Based on these inputs, we
are able to compute the spin relaxation rates of nucleons and
� baryons numerically, up to temperature T = 200 MeV.

The organization of the paper is as follows. In Sec. II, we
formulate the quantum kinetic theory with the spin density
matrix to describe the baryon spin relaxation. We also derive
the formulas for the spin relaxation rate of nucleons and �

baryon in terms of the scattering amplitude. In Sec. III, we
evaluate those spin relaxation rates mainly relying on the
experimental data. Section IV is devoted to the discussion.
In Appendix A, we give an alternative derivation of the spin
kinetic theory of baryons based on the Kadanoff-Baym for-
malism. Throughout the present paper, we use the unit system
where h̄ = 1 and c = 1.

II. SPIN DENSITY MATRIX AND ITS TIME EVOLUTION

In this section, we provide a density-matrix formulation
to describe the spin relaxation of baryons in the pion gas
following the formulation developed in Ref. [9]. After intro-
ducing the spin density matrix in Sec. II A, we apply it to
derive the formulas for the spin relaxation rate of nucleons in
terms of the scattering amplitude in Sec. II B and � baryons
in Sec. II C. In Appendix A, we present an alternative route
based on the Kadanoff-Baym formalism including spin de-
grees of freedom [49].

A. Spin density matrix for baryons

Let us consider a baryon in the low-temperature pion gas.
In the limit where the baryon density is dilute, we can neglect
baryon-baryon interactions compared to the leading-order
baryon-pion interactions. In this case, we can introduce a
notion of the density matrix operator ρ̂ for one baryon defined
in the Hilbert space of the single baryon state. Expanding this
baryon density operator in the basis of momentum and spin
eigenstates {|p, s〉} with s = ±1/2, we can, in general, express
ρ̂ as

ρ̂ =
∫

p1,p2

∑
s1,s2

|p1, s1〉ρ(p1, s1; p2, s2)〈p2, s2|, (1)

in terms of a function ρ(p1, s1; p2, s2). Here, we introduced a
shorthand notation for the momentum integral as∫

p1,···pn

≡
∫

d3 p1

(2π )3
· · · d3 pn

(2π )3
. (2)

Equivalently, we can represent the same information in the
mixed position-momentum basis by performing a Wigner
transform as

ρ(x, p) ≡
∫

pr

ρ(p + pr/2, p − pr/2)eipr ·x, (3)

where we have omitted the spin variables for simplicity.
Since we consider the single baryon dynamics in the ap-

proximately uniform pion gas, x dependence of the Wigner
transformed density matrix ρ(x, p) is assumed to be smooth
enough. Then, the baryon-pion interactions, which give rise
to spin relaxation of baryons, happen at a length scale that is
much shorter than the scale of variation in x of the density
matrix. As a result, we can neglect x dependence in ρ(x, p) in
the leading order of the gradient expansion. This amounts to
assuming that the density matrix is approximately diagonal in
the momentum space

ρ(p1, s1; p2, s2) � ρ(p1; s1, s2)(2π )3δ(3)(p1 − p2). (4)
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We here note that the 2 × 2 spin density matrix
ρ(p; s, s′) ≡ [ρ2×2(p)]s,s′ serves as the distribution function
in momentum space with matrix indices s and s′. When it is
summed over the two spin states, the result should be iden-
tified as the probability distribution function in the ordinary
kinetic theory [50] as n(p) = ∑

s ρ(p; s, s) = Tr[ρ2×2(p)].
Similarly, one can obtain the spin distribution in momentum
space by computing the expectation value of the spin operator
given by S(p) = (h̄/2)Tr[σρ2×2(p)], where σ are the Pauli
matrices.1

Suppose that the baryon is put into a thermal bath of pion
gas. Neglecting other baryons and mesons, we introduce the
total density operator at the initial time as ρ̂tot = ρ̂ ⊗ ρ̂π

eq.
Here, ρ̂π

eq denotes the equilibrium density operator of the
thermal pion gas. The time evolution of the total density
matrix is given by ρ̂tot (t + �t ) = Û (�t )ρ̂tot (t )Û †(�t ), where
Û (�t ) is the unitary time-evolution operator generated by the
total Hamiltonian, including interactions between baryons and
pions.

We now perform the average over the pions to obtain the
effective time-evolution equation for the baryon density ma-
trix ρ̂. The initial state for the pions is given by the thermal
density matrix ρ̂π

eq. We assume that the final states of the pions
after interactions with the baryon do not matter for the time
evolution of the baryon, due to fast thermal scrambling of the
pions. Therefore, we take a sum over all possible final states
of pions after interactions. Let us denote this thermal average
and the summation over final states by a symbol 〈· · · 〉πeq.

To see what the above procedure means, we now evaluate

Trπ ρ̂tot (t + �t ) = 〈Û (�t )ρ̂(t )Û †(�t )〉πeq, (5)

after expanding Û (�t ) and Û †(�t ) in power series of the pion
operators π̂ (x). Here, Trπ denotes the trace over all possible
final states of the pion in the background. Then, we are led to
compute the thermal average in the pion sector

Trπ

[
π̂ (x1)π̂ (x2) · · · ρ̂π

eqπ̂ (y1)π̂ (y2) · · · ], (6)

where π̂ (xi ) are the pion operator from Û (�t ), and π̂ (yi ) are
those from Û †(�t ). One can find that this is equivalent to
the correlation functions in the Schwinger-Keldysh contour
[51,52] with an initial thermal density matrix ρ̂π

eq as

Trπ

[
π̂ (x1)π̂ (x2) · · · ρ̂π

eqπ̂ (y1)π̂ (y2) · · · ]
= 〈π1(x1)π1(x2) · · · π2(y1)π2(y2) · · · 〉SK, (7)

where π1,2(x) are the pion fields placed in the forward or
backward time contours, respectively. In other words, we can
consider the pion operators appearing in Û (�t ) and Û †(�t )
as the fields in the forward and backward Schwinger-Keldysh
contours, respectively, and use their thermal correlation func-
tions in the Schwinger-Keldysh contour [9].

1In this definition of the spin distribution we write h̄ explicitly. We
will, however, use the unit system with h̄ = 1 in the reminder of the
paper.

FIG. 1. The nucleon-pion scattering that dominantly controls in-
medium properties of nucleons up to T = 150 MeV.

B. Dynamics of the nucleon spin in a pion gas

The leading-order interaction that we consider in this work
is the two-body baryon-pion scattering shown in Fig. 1. For
nucleons, it has been known that this is the dominant process
of nucleon-pion interactions for temperatures up to 150 MeV
[48]. In the chiral perturbation theory, there are tree-level
diagrams composed of NNπ and NNππ vertices, but the
chiral perturbation theory is no longer justified for temper-
atures above 100 MeV. In addition, the contribution from
the s-channel �-baryon resonance is significant for this tem-
perature range. Many state-of-the-art models of nucleon-pion
scattering [53–55] include higher baryon resonances, as well
as the loop corrections. The purpose of these models is to
use the existing experimental measurements of nucleon-pion
scattering cross sections, which in turn can be used to obtain
the scattering amplitudes, to constrain the model parameters.

For these reasons, let us first express the evolution equa-
tion of the spin density matrix in terms of the nucleon-pion
scattering amplitudes in general, which is model-independent.
On the one hand, we may then use the scattering amplitudes
that are determined from the experiments, without need to
resort to a model calculation. The existing nucleon-pion scat-
tering data can provide the necessary nucleon-pion scattering
amplitudes for the pion gas of temperature up to about 200
MeV [48]. Moreover, any model computation of scattering
amplitudes, including chiral perturbation theory, can be used
in our formulation of the time-evolution equation of the nu-
cleon spin density matrix.

In the following, we assume that the nucleon density matrix
is diagonal in the isospin space, and introduce the density
matrix for a single nucleon in the isospin space as

ρ̂N =
(

ρ̂p 0
0 ρ̂n

)
, (8)

where ρ̂p and ρ̂n are the density matrices for the isospin
Iz = ±1/2 states, i.e., proton and neutron, respectively. To
describe the effects of the nucleon-pion scattering in the time
evolution of the density matrix, we need to expand the unitary
time-evolution operators, Û (�t ) and Û †(�t ), to at least fourth
order of the nucleon-pion interaction Hamiltonian, and com-
pute the thermal correlation functions of the pion operators
in Gaussian factorization approximation. In the limit �t � τ ,
where τ is the correlation time of the scattering process, we
obtain a first-order time-evolution equation for the nucleon
density matrix ρ̂N (t ), which is expressed in terms of the
nucleon-pion scattering amplitude and its complex conjugate.
It is also possible to take a different route to obtain the same
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FIG. 2. (a) The cross diagram, and (b), (c) the self-energy diagrams for the nucleon-pion scattering in the time evolution of nucleon spin
density matrix. The blob represents the nucleon-pion scattering amplitude or its complex conjugate.

result from the collision term of the Kadanoff-Baym equa-
tion as shown in Appendix A.

Suppose that the scattering amplitude of a process
Ns

α (p) + πa(k) → Ns′
β (p′) + πb(k′) is represented by a ma-

trix, [T ba
βα (p′, k′; p, k)]s′,s = T ba

βα (p′, s′, k′; p, s, k), in spin

space with s, s′ = ±1/2. Here, α, β = p, n and a, b = 1, 2, 3
specify the nucleon and pion isospin states, respectively. We
assume that the pion gas is isospin symmetric. We then find
that the time evolution of the spin density matrix for the proton
is given by

∂ρ2×2
p (p)

∂t
=

∫
p′,k,k′

∑
a,b,β

T ba
pβ (p, k; p′, k′)ρ2×2

β (p′)
[
T ba

pβ (p, k; p′, k′)
]†

× nB(εk′ )[1 + nB(εk)](2π )4δ(3)(p + k − p′ − k′)δ(Ep + εk − Ep′ − εk′ ) − γ̃N (p)ρ2×2
p (p), (9)

where εk =
√

k2 + m2
π and Ep = p2/(2MN ) are the energy dispersion relations of the pions and the nucleons, respectively. Note

that ρα (p) and T ba
βα (p, k; p′, k′) are 2 × 2 matrices in the spin space. We also introduced the spin and isospin-independent thermal

damping rate γ̃N (p) given by

γ̃N (p) =
∫

p′,k,k′

∑
a,b,β

∣∣T ba
βp (p′, k′; p, k)

∣∣2
nB(εk)[1 + nB(εk′ )](2π )4δ(3)(p + k − p′ − k′)δ(Ep + εk − Ep′ − εk′ ), (10)

which is the total scattering rate of a nucleon of momentum p
interacting with thermal pions. The pictorial representation of
each contribution is given in Fig. 2. The first two terms arise
from the cross diagram, and the damping rate comes from
the self-energy terms (see, e.g., Ref. [9]). The time-evolution
equation for ρn is the same, with the replacement p ↔ n in
all terms. Simply speaking, the cross diagram is a product
of scattering amplitude and its complex conjugate, but with
different initial and final states depending on the components
of the density matrix. On the other hand, the total self-energy
term is simply the absolute square of the scattering amplitude,
which represents the usual scattering rate of the nucleon-pion
scattering. The self-energy term describes the loss of proba-
bility from the initial states due to scattering processes, while
the cross diagram restores the total probability to make sure
that the time evolution is unitary. This structure is ubiquitous
in the evolution of open quantum systems, and has a form of
the Lindblad equation [56].

The normalization of the T -matrix elements in the above
expression is conventional in the context of nonrelativistic
scattering theory, which is related to the nonrelativistic scat-
tering amplitudes as follows. The thermal damping rate is
equal to the total scattering rate of a nucleon with all thermal
pions in the background. In the heavy nucleon mass limit, the
velocity of a nucleon is negligibly small, the final-state pion
energy is equal to the initial one, and the cross section depends

only on the pion energy. In this limit, we have a simplified
formula

γ̃N (p) =
∫

k
σtot (εk)vknB(εk)[1 + nB(εk)], (11)

where vk = |k|/εk is the pion velocity, and vknB(εk) is the
flux of incoming pions with momentum k. The σtot (εk) is the
total cross section for pion energy εk with all possible isospin
states, i.e.,

σtot =
∑

a

σpπa→pπa + σpπ0→nπ+ + σpπ−→nπ0 . (12)

Comparing with the expression (10), we find

σtot (εk) = 2π

v2
k

∫
k′

∑
ab,β

∣∣T ba
βp (p′, k′; p, k)

∣∣2
δ(|k′| − |k|)

= ε2
k

(2π )2

∫
d�′ ∑

a,b,β

∣∣T ba
βp (p′, k′; p, k)

∣∣2

=
∫

d�′ ∑
a,b,β

dσ ba
βp

d�′ . (13)

Here, dσ ba
βp/d�′ is the differential cross section with fixed

spin and isospin states (
∫

d� denotes the angular integra-
tion). From the relation dσ/d� = | f (�)|2, where f is the
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nonrelativistic scattering amplitude related to the convention-
ally reported experimental data, we find the normalization
relation

f (k′, k) = − εk

(2π )
T (k′, k). (14)

Another conventional normalization is the relativistic ampli-
tude given by

M = −(2MN )(2εk)T = (8π )MN f . (15)

As mentioned above, the nucleon velocity is negligible in
the heavy nucleon mass limit, v ∼ √

T/MN � 1, where we
used Ep = p2/(2MN ) ∼ T with temperature T . The change
of nucleon energy is thus small compared to the pion energy,
i.e., �EN ∼ vk � k. In this limit, the scattering amplitudes
and the evolution equation (9) become independent of the
nucleon momentum, which allows us to express the evolution
equation in terms of the total densities

nα =
∫

p
nα (p) and Sα =

∫
p

Sα (p) (16)

only, where α = p, n. Furthermore, the scattering amplitude is
constrained by symmetry. The parity, rotational, and isospin
symmetry dictates the form of the scattering amplitude as
[55,57]

T ba
βα (p′, k′; p, k) = δbaδβα[12×2g+ + iσ · (k′ × k)h+]

+ iεbac(τ c)βα[12×2g− + iσ · (k′ × k)h−],
(17)

where g± and h± are functions of εk = εk′ and the angle θ ′
between k and k′, and (12×2, σ ) are the matrices in spin space
with indices s′, s, and τ c is the Pauli matrix in isospin space.
The first term is the charge-conserving amplitude, and the sec-
ond term is the charge-exchanging amplitude. Similarly, g±
and h± are the spin conserving and spin flipping amplitudes,
respectively.

In terms of (g±, h±), the time-evolution equation (9) can
be expressed as follows:

∂ρ2×2
p

∂t
= −

∫
k,k′

[4|g−|2 + 3(|h+|2 + 2|h−|2)|k × k′|2]nB(εk)[1 + nB(εk)]2πδ(εk − εk′ )ρ2×2
p

+
∫

k,k′
(3|h+|2 + 2|h−|2)

[
σ · (k × k′)ρ2×2

p σ · (k × k′)
]
nB(εk)[1 + nB(εk)]2πδ(εk − εk′ )

+ 4
∫

k,k′
|g−|2nB(εk)[1 + nB(εk)]2πδ(εk − εk′ )ρ2×2

n

+ 4
∫

k,k′
|h−|2[σ · (k × k′)ρ2×2

n σ · (k × k′)
]
nB(εk)[1 + nB(εk)]2πδ(εk − εk′ ). (18)

Defining ρ2×2
α = (1/2)nα12×2 + Sα · σ and taking a trace

of Eq. (18) multiplied by 12×2 or σ, we find, after some
algebra, that the evolution equation for the proton number and
spin densities becomes

∂np

∂t
= −γN (np − nn),

∂Sp

∂t
= −γ1Sp − γ2Sn, (19)

where we introduced the proton-neutron flipping rate γN given
by

γN = 4
∫

k,k′
(|g−|2 + |h−|2|k × k′|2)

× nB(εk)[1 + nB(εk)]2πδ(εk − εk′ ), (20)

and two relaxation rates γ1 and γ2 given by

γ1 = 4
∫

k,k′

[
|g−|2 +

(
|h+|2 + 5

3
|h−|2

)
|k × k′|2

]
× nB(εk)[1 + nB(εk)]2πδ(εk − εk′ ), (21)

γ2 = 4
∫

k,k′

[
−|g−|2 + 1

3
|h−|2|k × k′|2

]
× nB(εk)[1 + nB(εk)]2πδ(εk − εk′ ). (22)

The equation for the neutron number and spin densities are
the same with the replacement p ↔ n. As a result, we see that

γNs := γ1 + γ2 corresponds to the spin relaxation rate of the
total nucleon spin density, SN = Sp + Sn, i.e.,

∂SN

∂t
= −γNs SN . (23)

We then find a formula for the nucleon spin relaxation rate γNs

in terms of the scattering amplitude as

γNs = 4
∫

k,k′
(|h+|2 + 2|h−|2)|k × k′|2

× nB(εk)[1 + nB(εk)]2πδ(εk − εk′ ). (24)

Note that the spin relaxation rate is determined by the spin-
flipping amplitudes, i.e., h±, as expected. Although it is not
of our main interest, the nucleon thermal damping rate γ̃N

defined in Eq. (10) is given by

γ̃N = 3
∫

k,k′
[|g+|2 + 2|g−|2 + (|h+|2 + 2|h−|2)|k × k′|2]

× nB(εk)[1 + nB(εk)]2πδ(εk − εk′ ). (25)

C. Dynamics of the �-baryon spin in a pion gas

One advantage of our formulation is that we can study the
time evolution of the spin density matrix of � baryons in the
same framework. The � baryon is an isospin singlet state, and
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has spin 1/2 and parity P = +1. The scattering process with
the � baryon and the pion, �(s) + πa(k) → �(s′) + πb(k′),
has only the isospin conserving amplitude. Thus, we can
parametrize the corresponding T matrix as

T ba(k′; k) = δab[12×2g + iσ · (k′ × k)h]. (26)

We then derive the equation of motion for the spin density
matrix, ρ2×2

� = (12×2n�/2 + σ · S�)ss′ with the number den-
sity n� and spin density S� for the � baryon, as

∂ρ2×2
�

∂t
=

∫
k,k′

∑
a,b

T ba(k; k′)ρ2×2
� [T ba(k; k′)]†

× nB(εk′ )[1 + nB(εk)]2πδ(εk − εk′ )

− γ̃�ρ2×2
� , (27)

where the thermal damping rate γ̃� is given by

γ̃� =
∫

k,k′

∑
a,b

|T ba(k′; k)|2

× nB(εk)[1 + nB(εk′ )]2πδ(εk − εk′ ). (28)

Multiplying Eq. (27) by 12×2 or σ and taking a trace, we obtain
the evolution equation for n� and S� in the form

∂n�

∂t
= 0,

∂S�

∂t
= −γ�s S�. (29)

Here, the spin relaxation rate, γ�s , is expressed in terms of
(g, h) as

γ�s = 4
∫

k,k′
|h|2|k × k′|2

× nB(εk)[1 + nB(εk)]2πδ(εk − εk′ ). (30)

Although it is not of our main interest, the thermal damping
rate is expressed as

γ̃� = 3
∫

k,k′
(|g|2 + |h|2|k × k′|2)

× nB(εk)[1 + nB(εk)]2πδ(εk − εk′ ). (31)

III. EVALUATION OF THE SPIN RELAXATION
RATE OF BARYONS

In this section, we evaluate the baryon spin relaxation
rates based on the formulas (24) and (30), which express the
spin relaxation rate in terms of the baryon-pion scattering
amplitude. In Sec. III A, we apply the s-channel �-resonance
approximation, and use the available experimental data on the
nucleon-pion scattering amplitudes expressed in terms of the
scattering phase shift, to compute the nucleon spin relaxation
rate. In Sec. III B, we introduce reasonable phenomenological
models for the �π scattering amplitude, utilizing available
experimental data on strange baryons, as well as the chiral
perturbation theory at sufficiently low energy, and compute
the spin relaxation rate of � baryons.

A. Spin relaxation rate of nucleons
in �-resonance approximation

It has been known that � baryon—the s-channel resonance
of the spin 3/2 and isospin 3/2—gives the dominant contribu-
tion to the nucleon damping rate in the temperature range up to
150 MeV [48]. Based on this, it is reasonable to compute the
spin relaxation rate in the �-resonance approximation. The
tree-level diagrams for the amplitude with an intermediate �

baryon are depicted in Fig. 3, where only the first diagram
produces the s-channel resonance behavior. However, instead
of theoretically evaluating the scattering amplitude, we are
going to use the experimental data on the resonant scattering
amplitude. This analysis has the advantage that the resulting
prediction will be model independent.

We first express the scattering amplitude assuming that
the �-baryon resonance gives a dominant contribution. Since
� baryons are spin and isospin 3/2 states, a resonance is
seen only in the particular channel in partial wave analysis of
the nucleon-pion scattering, i.e., the channel where the total
angular momentum J and the isospin I are both 3/2. Here we
note that the amplitude for the I = 3/2 states is given by the
combination (g3/2, h3/2) = (g+ − g−, h+ − h−), whereas for
the I = 1/2 state by (g1/2, h1/2) = (g+ + 2g−, h+ + 2h−).2

Since the dominant resonance contribution appears only in the
I = 3/2 channel, we approximate (g1/2, h1/2) ≈ 0, which then
gives us (g3/2, h3/2) ≈ −3(g−, h−) ≈ (3/2)(g+, h+) for the
resonant amplitude. Then, the spin-damping rate for nucleons
is expressed in terms of the I = 3/2 amplitudes as

γNs ≈ 8

3

∫
k,k′

|h3/2|2|k × k′|2

× nB(εk)[1 + nB(εk)]2πδ(εk − εk′ ). (32)

Similarly, the nucleon flipping and the thermal damping rates
are given by

γN ≈ 4

9

∫
k,k′

(|g3/2|2 + |h3/2|2|k × k′|2)

× nB(εk)[1 + nB(εk)]2πδ(εk − εk′ ),

γ̃N ≈ 2
∫

k,k′
(|g3/2|2 + |h3/2|2|k × k′|2)

× nB(εk)[1 + nB(εk)]2πδ(εk − εk′ ). (33)

The amplitude for the nucleon-pion scattering has been
measured in experiments, which is available in the form of
scattering phase shift δ(εk) [58]. Thus, we need to relate
the resonance phase shift measured in experiments with the
amplitudes (g3/2, h3/2) based on the scattering theory.

First of all, rotational symmetry allows us to choose the
incoming pion momentum to be k = kẑ while the outgo-
ing one k′ is expressed in spherical coordinates system as

2This can be seen by observing that the isospin exchange oper-
ator iεbac(τ c )βα = −2(Ic

π Ic
N )ba

βα , where Ic
π and Ic

N are the isovector
components of the pion and nucleon isospin operators, respectively
(Iπ = 1 and IN = 1/2). The eigenvalues of this operator are equal to
11/4 − I (I + 1) for total isospin I .
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FIG. 3. The tree-level Feynman diagrams for the amplitude of nucleon-pion scattering with �-baryon resonance.

k′ = k(sin θ cos φ, sin θ sin φ, cos θ ). Then, consider the in-
coming plane wave state with a particular nucleon spin
orientation, say |sz = 1/2〉, i.e.,

ψin = eikzχs(1/2)

=
∞∑

l=0

il (2l + 1) jl (kr)Pl (cos θ )χs(1/2), (34)

with the spherical Bessel function jl (kr), the Legendre poly-
nomial Pl (cos θ ), and the spin wave function χs(s′) = 〈s|sz =
s′〉. The resonance appears in the total angular momentum
J = l ± 1/2 = 3/2 channel, with two possible values of or-
bital angular momentum l = 1 or l = 2. We focus on the
l = 1 state because only the l = 1 (P) channel exhibits res-
onance experimentally. Noting P1(cos θ ) = √

4π/3Y 0
1 (θ, φ)

with Y m
l (θ, φ) = 〈θ, φ|l, m〉, the spherical harmonics of the

orbital angular momentum (l, m), we can express the l = 1
state as

ψin = 3i j1(kr)

√
4π

3
〈θ, φ|l = 1, m = 0〉〈s|sz = 1/2〉. (35)

The state |l = 1, m = 0〉|sz = 1/2〉 in the incoming wave
is a linear combination of J = 3/2 and J = 1/2 states, i.e.,
using the Clebsch-Gordan coefficients, we have

|l = 1, m = 0〉|sz = 1/2〉

=
√

2

3
|J = 3/2, Jz = 1/2〉 −

√
1

3
|J = 1/2, Jz = 1/2〉.

(36)

Note that only the J = 3/2 wave function is affected by the
resonance phase shift, and we neglect the small phase shift in
the J = 1/2 channel. From the asymptotic form of the l = 1
spherical Bessel function j1(kr) → −(eikr + e−ikr )/(2kr) at
kr → ∞, we have the scattering wave that contains only
J = 3/2 state

ψscatt = f (�)
eikr

r

≡ 3

2ik

√
4π

3

√
2

3
(e2iδ(k) − 1)

× 〈θ, φ|〈s|J = 3/2, Jz = 1/2〉eikr

r
, (37)

where δ(k) = δ(εk ) is the phase shift in the J = 3/2 channel.
We then use the inverse of Clebsch-Gordan coefficients to
express the scattering wave in the original orbital-spin basis

as

|J = 3/2, Jz = 1/2〉 =
√

2

3
|l = 1, m = 0, sz = 1/2〉

+
√

1

3
|l = 1, m = 1, sz = −1/2〉.

(38)

Recalling that the initial nucleon spin state is |sz = 1/2〉, and
the final spin state is what appears in the scattering wave, we
read off the spin-dependent scattering amplitudes f (s′, s) as

f (1/2, 1/2) = 3

2ik

√
4π

3

2

3
(e2iδ(k) − 1)Y 0

1 (θ, φ)

= 1

ik
(e2iδ(k) − 1) cos θ

f (−1/2, 1/2) = 3

2ik

√
4π

3

√
2

3
(e2iδ(k) − 1)Y 1

1 (θ, φ)

= − 1

2ik
(e2iδ(k) − 1) sin θeiφ, (39)

where we used the spherical harmonics Y m
l (θ, φ) =

〈θ, φ|l, m〉 with Y ±1
1 = ∓√

3/(8π ) sin θ exp(±iφ) and
Y 0

1 = √
3/(4π ) cos θ . Repeating the same analysis with the

initial spin state |sz = −1/2〉, we arrive at

f (1/2,−1/2) = 1

2ik
(e2iδ(k) − 1) sin θe−iφ,

f (−1/2,−1/2) = f (1/2, 1/2). (40)

We then compare the result for the scattering amplitude in
Eqs. (39)–(40) with the expression

f (s′, s) = − εk

2π
T (s′, s)

= − εk

2π
[12×2g3/2 + iσ · (k′ × k)h3/2]s′,s

= − εk

2π

(
g3/2 −k2 sin θe−iφh3/2

k2 sin θeiφh3/2 g3/2

)
s′,s

.

(41)

From this, we obtain the relation between the phase shift and
the amplitudes for the resonance as follows:

g3/2 = −2π

εk

1

ik
(e2iδ(k) − 1) cos θ,

h3/2 = 2π

εk

1

2ik3
(e2iδ(k) − 1). (42)
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FIG. 4. The phase shift of the resonant I = J = 3/2 channel in
the nucleon-pion scattering. The open circles are the experimental
data from Ref. [58], and the solid line is our fitting curve given in
Eq. (44).

Using this in Eq. (32) and performing angular integrations, we
obtain the nucleon spin relaxation rate in terms of the phase
shifts as

γNs = 8

9π

∫ ∞

0
dk

k

εk
|e2iδ(k) − 1|2nB(εk )[1 + nB(εk )]

= 8

9π

∫ ∞

mπ

dω|e2iδ(ω) − 1|2nB(ω)[1 + nB(ω)], (43)

where we performed the change of variable from k = |k| to
the pion energy ω ≡ εk . Similarly, we obtain the nucleon
flipping and the thermal damping rates as γN = (1/2)γNs and
γ̃N = (9/4)γNs in the �-resonance approximation.

Relying on Eq. (43), let us evaluate the spin relaxation rate
of nucleons, using the experimentally measured phase shift
δ(ω). The scattering phase shift data up to ω = 500 MeV in
the I = J = 3/2 channel can be found in Ref. [58] (the P33

channel in their notation). We use these data to model the
phase shift as a function of ω in the simplest Breit-Wigner
resonance form:

tan(δ(ω) − δB) = �/2

ω0 − ω
. (44)

We find a good fit with � = 129 MeV, ω0 = 307 MeV, and
the background phase shift δB = −π/9 (see Fig. 4 for the
comparison with the fitting curve and data). We note that the
shape of the phase shift for the energies greater than 500 MeV
is not important in our result for γNs in the temperature range
T � 200 MeV, due to the thermal suppression from the Bose
distribution nB(ω) in Eq. (43).

Substituting this phase shift into Eq. (43), we numerically
evaluate the nucleon spin relaxation rate γNs as a function of
temperature T . The result is shown in Fig. 5. We see that γNs

is a monotonically increasing function of T , and it reaches to
values about 50 MeV (� 1/4 fm−1) for T close to 200 MeV.

B. Spin relaxation rate of � baryons

In Sec. II C, we have derived the formula (30) expressing
the spin relaxation rate of the � baryons in terms of the scat-
tering amplitudes (g, h). Since there is no direct experimental
data on (g, h), or equivalent scattering phase shifts, we need

FIG. 5. The nucleon spin relaxation rate γNs in the �-baryon
resonance approximation.

to rely on a reasonable theoretical model. In the following, we
consider two approaches: one based on the chiral perturbation
theory, and the other relying on the low-energy parametriza-
tion of the scattering amplitude with a reasonable value for the
scattering length.

1. Chiral perturbation theory

The first approach is the chiral perturbation theory for
baryons with Nf = 3 [44–47]. Within the chiral perturbation
theory, one can compute the scattering amplitude (26) in
the heavy-baryon limit as follows (see Appendix B for the
derivation):

g � −2m̄D2

3 f 2
π εk

[
1 + m̄�m

s − m2
�

+ m̄�m

u − m2
�

− m̄

4m�

(
s − u

s − m2
�

− s − u

u − m2
�

)]
,

h � m̄2D2

3 f 2
π m�εk

[
1

s − m2
�

− 1

u − m2
�

]
, (45)

where we introduced 2m̄ ≡ m� + m�, �m ≡ m� − m�, and
a D-type baryon-meson coupling constant D = 0.8, which
is determined from a semileptonic decay process [59]. We
also introduced two Mandelstam variables s and u, which
becomes s � (m� + Ek + εk)2 and u � (m� + Ek − εk)2 −
2k2(1 + cos θ ) in the center-of-mass frame in the heavy-
baryon limit. Here, we utilized the fact that for elastic
scattering in the center-of-mass frame, the absolute values
of the incoming and outgoing momenta are the same, i.e.,
|k| = |k′|.

Due to rotational symmetry, h depends only on k2 and z ≡
cos θ with the angle θ between k and k′, and we perform a part
of the integral in Eq. (30), introduce a change of variable from
k to ω ≡ εk to obtain

γ�s = 1

π3

∫ ∞

mπ

dωω2
(
ω2 − m2

π

)3
∫ 1

−1
dz

× |h|2(1 − z2)nB(ω)[1 + nB(ω)]. (46)

Substituting the expression for h in (45) into this equa-
tion, and performing the remaining integral, we can evaluate
the �-baryon spin relaxation rate numerically. With a
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FIG. 6. The spin relaxation rate of � baryon as a function of
temperature. Red, green, and blue solid lines are the results from the
effective range theory with a choice of the printed parameters. The
black dashed line is the result of the chiral perturbation theory with
� and � baryons.

choice of parameters mπ = 140 MeV, fπ = 90 MeV, m� =
1116 MeV, m� = 1190 MeV, and D = 0.8, we obtain the
result (black dashed curve) shown in Fig. 6.

2. Low-energy scattering theory

Similarly to the � resonance in the Nπ scattering, there
is a resonance �∗ appearing in the �π scattering, whose
contribution is likely to be large in the temperature win-
dow under consideration. Thus, it is important to include
a contribution from �∗-baryon resonance in the evalua-
tion of the � spin relaxation rate. In the following, after
rewriting the spin relaxation rate in terms of phase shifts,
we will employ the low-energy parametrization of the scat-
tering amplitude with a reasonable value of the scattering
length.

Let us first recall the relevant facts about hyperons. First
of all, note that there are two strange baryons with isospin
I = 1, with their masses close to the sum of �-baryon mass,
m� = 1116 MeV, and the pion mass, i.e., m� + mπ = 1256
MeV. They are spin 1/2, � baryon of average mass m� =
1190 MeV, and the spin 3/2, �∗(1385) baryon, respectively.
The former is a good candidate for a near threshold bound
state of �π system, and the latter is a resonance of a finite
width � = 36 MeV.

We note that all of �, �∗, and � baryons have the parity
P = +1 while pions have the parity P = −1. Thus, in order
to have � and �∗ baryons as possible intermediate states, the
orbital angular momentum l of �π scattering needs to be an
odd integer. Indeed, considering their spins, we see that both
� and �∗ baryons can only appear in the l = 1 channel of
the �π scattering. Specifically, � baryon can be interpreted
as a near threshold bound state in the total angular momentum
J = 1/2 channel, and �(1385) a resonance in the J = 3/2
channel, where J = L + S with l = 1 and s = 1/2.

In the following analysis, we assume that the scattering
phase shift is dominated by these intermediate baryon states,
and we approximate them by using the simplest model of
phase shifts for a near threshold bound state and a resonance,
respectively. We note that �∗(1385) decays dominantly to
�π with branching ratio 90%, but the remaining 10% goes
to �π , which means that � baryon can become � baryon by
scattering with pions. We will neglect this transition to leading
approximation, and focus on the � baryons only. A more com-
plete framework including both � and � in the time evolution
of their spin density matrix is postponed to a future study.
Note that both � and � have the decay lifetime, τ ∼ 10−10s,
due to weak interactions, which is much longer than the time
scale of QCD plasma created in heavy-ion collisions, and we
can treat them as stable particles to a good approximation.3

The relation between the scattering phase shifts in J = 1/2
and J = 3/2 channels and the amplitudes (g, h) is derived in
a similar manner as in the case of nucleons. The incoming
plane wave of a pion in l = 1 channel with a � baryon with
spin sz = 1/2 is given by the following linear combination of
J = 1/2 and J = 3/2 states:

ψin ∼ 3

2ik

1

r
(eikr + e−ikr )P1(cos θ )χs(1/2)

= 3

2ik

1

r
(eikr + e−ikr )

√
4π

3
〈θ, φ|〈s|

(√
2

3
|J = 3/2, Jz = 1/2〉 −

√
1

3
|J = 1/2, Jz = 1/2〉

)
. (47)

On the other hand, the outgoing scattering wave is given in terms of the two phase shifts, δ3/2 and δ1/2, for J = 3/2 and J = 1/2
channels, respectively, as

ψscatt =
√

4π

2ik
〈θ, φ|〈s|[

√
2(e2iδ3/2 − 1)|J = 3/2, Jz = 1/2〉 − (e2iδ1/2 − 1)|J = 1/2, Jz = 1/2〉]eikr

r
. (48)

3The lifetime of �0, τ ∼ 10−20 s, is shorter than that of �±, by isospin breaking electromagnetic interaction, �0 → � + γ , but it is still
much longer than the time scale of QCD plasma, i.e., 10−22 s.
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Going back to the orbital-spin basis by using

|J = 3/2, Jz = 1/2〉 =
√

2

3
Y 0

1 (θ, φ)|sz = 1/2〉 +
√

1

3
Y 1

1 (θ, φ)|sz = −1/2〉,

|J = 1/2, Jz = 1/2〉 = −
√

1

3
Y 0

1 (θ, φ)|sz = 1/2〉 +
√

2

3
Y 1

1 (θ, φ)|sz = −1/2〉, (49)

we find the spin-dependent scattering amplitudes as

f (1/2, 1/2) = 1

2ik
(2e2iδ3/2 + e2iδ1/2 − 3) cos θ,

f (−1/2, 1/2) = 1

2ik
(−e2iδ3/2 + e2iδ1/2 ) sin θeiφ. (50)

Comparing these result with f (s′, s) = −[εk/(2π )]T (s′, s),
we find the relations

g = −2π

εk

1

2ik
(2e2iδ3/2 + e2iδ1/2 − 3) cos θ,

h = −2π

εk

1

2ik3
(−e2iδ3/2 + e2iδ1/2 ). (51)

Substituting these results into Eq. (30) and performing the
angular integration and the change of variable, we find that
the spin relaxation rate of � baryons is given by

γ�s = 4

3π

∫ ∞

mπ

dω|e2iδ3/2(ω) − e2iδ1/2(ω)|2

× nB(ω)[1 + nB(ω)]. (52)

Thus, the remaining task is to find the phase shifts δ3/2 and
δ1/2 for the �π scattering.

As explained above, we assume that the phase shifts are
dominated, either by a bound state near the threshold in the
J = 1/2 channel, or a resonance in the J = 3/2 channel,
respectively. For the J = 3/2 channel, we use the standard
Breit-Wigner form of the S matrix corresponding to the
resonance �∗(1385):

S3/2 ≡ e2iδ3/2(ω) = ω − ω0 − i�/2

ω − ω0 + i�/2
. (53)

We will use the mass difference ω0 = m�∗ − m� ≈ 269 MeV
and the decay width � = 36 MeV for the known �∗(1385)
resonance found in, e.g., the PDG data book [60]. This enables
us to set the phase shift δ3/2.

For the J = 1/2 channel, we employ the simplest effective-
range approximation for the P-wave S matrix as

S1/2 ≡ e2iδ1/2(k) � ik − 1
a3k2 − 1

r

−ik − 1
a3k2 − 1

r

, (54)

with the two length parameters, a and r, which denote the
P-wave scattering length and the effective range, respectively.
This form is consistent with the analyticity requirement of the
S matrix in the complex k plane, i.e., S(−k) = S(k)−1 and
S(−k∗) = S(k)∗, as well as the low-k behavior of the phase
shift in the l = 1 channel, i.e., δ(k) ∼ k2l+1 = k3.

There is an important constraint on (a, r), which follows
from the hadron spectroscopy, i.e., the S matrix should have a

single bound-state pole at k = iκ , representing the � baryon.
Here, κ = √

m2
π − (m� − m�)2 ≈ 119 MeV is the location of

the � baryon pole on the imaginary axis of the complex pion
momentum k = √

ω2 − m2
π . This bound-state constraint takes

the form

κ + 1

a3κ2
− 1

r
= 0, (55)

which gives one relation between the two parameters a and r.
Besides, a further constraint exists for r; a positive value of
r would not work since the above bound-state equation for κ

then turns out to have an additional deeper bound state than
the � baryon, which does not exist in nature. To proceed
further, we choose three exemplar values for the effective
range r, that is, r = −1.0 fm, −0.5 fm, and −0.1 fm. Solv-
ing the constraint (55), we find the corresponding scattering
length determined as a = −1.2 fm, −1.0 fm, and −0.64 fm,
respectively. Then, Eq. (54) gives us the phase shift δ1/2.

With this phenomenological model for the scattering phase
shifts, the spin relaxation rate of � baryon as a function of
temperature is plotted in Fig. 6, for three different choices of
the parameters (a, r). We note that the dependence of the �-
baryon spin relaxation rate on different choices of parameters
is not very significant numerically, although we observe the
tendency of a larger spin relaxation rate for a larger value of
r. We find that the spin relaxation rate of the � baryon around
T = 150 MeV is between 30 MeV and 50 MeV, correspond-
ing to a relaxation time τ � 4−7 MeV/c.

IV. DISCUSSION

We find that the spin relaxation rate of baryons in the
hadronic phase around temperature T = 150 MeV is between
30 MeV and 50 MeV, corresponding to a relaxation time
τ � 4−7 MeV/c. This time scale is comparable to the time
scale of the plasma evolution in heavy-ion collisions, which
indicates that an initial out-of-equilibrium spin polarization in
the hadronic phase will remain so for a significant fraction of
the time spent by the plasma before freezeout. In realistic time
evolution of heavy-ion collisions, the average temperature of
hadronic phase would be lower than 150 MeV, and the effec-
tive relaxation time should be even longer. This finding clearly
demonstrates the necessity of including relaxation dynamics
of spin polarization in any reliable theoretical prediction or
phenomenological simulation for the spin polarization of ob-
served hadrons.

In our analysis, we have used the properties of baryons
and their interaction with pions as in the vacuum, without
considering possible thermal corrections at finite temperature.
For example, the mass and width of baryon resonances in a
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finite temperature plasma may significantly be different from
their value in the vacuum. While for mesons such corrections
have been studied in some detail previously [61], we are not
aware of a similar study for the baryon resonances in the
temperature range we are interested in.

We also note that the present paper employs a standard
power-counting scheme for the background fluid composed
of thermal pions, where vorticity is counted as a first order
in gradient. The spin relaxation equation takes the following
general form in the gradient expansion of hydrodynamics:

dS
dt

= −�S (S − Seq ), (56)

where S is the spin density, and Seq is the equilibrium value
driven by the vorticity. Here we omitted the nonlinear terms
related to spin and vorticity responsible for the spin precession
motion. The spin relaxation rate �S in general has an expan-
sion in the vorticity ω,

�S = �
(0)
S + �

(1)
S ω2 + · · · , (57)

and the equilibrium value of spin has a similar expansion,

Seq = χsω + O(ω3), (58)

where χs is the spin susceptibility. The leading lowest-order
equation is linear in either S or ω, and is given by

dS
dt

= −�
(0)
S (S − χsω). (59)

The hydrodynamic spin relaxation rate that we study in this
work corresponds to γS ≡ �

(0)
S . It is important to point out

that γS is defined and can be computed in a background of
zero vorticity, where the relaxation equation takes a simple
form dS

dt = −γSS, and any further effect from vorticity is of
higher order in gradient expansion, and does not affect γS .
Considering the effect of large vorticity (see, e.g., Ref. [39]),
among many other possible improvements in our treatment,
can be a subject of future study.
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APPENDIX A: KADANOFF-BAYM APPROACH
TO DERIVING KINETIC EQUATION

In this Appendix, as an alternative to Sec. II, we derive
the quantum kinetic equation for the single baryon density
matrix relying on the Kadanoff-Baym formalism [49]. In the
Kadanoff-Baym formalism, we derive the equation of mo-
tion for the Wigner-transformed real-time Green function Sab

(Keldysh indices a = 1, 2) of the baryon as(
∂t + 1

M
p · ∇x

)
S12 + [i Re �ra, S12]� − [�12, Im Sra]�

= − i

2
[{�21, S12}� − {�12, S21}�], (A1)

where � denotes the self-energy of baryons with the appro-
priate indices 1 and 2 (r and a) on the Schwinger-Keldysh
contour, [A, B]� and {A, B}� are the commutator and an-
ticommutator with the Moyal product. Note that we use
nonrelativistic Green’s functions for baryons with a 2 × 2 spin
matrix, not a 4 × 4 Dirac matrix.

The relation between quantities with 12 and ra indices is,
e.g., given by Sra = (S11 − S12 + S21 − S22)/2 for the Green’s
function (see, e.g., Appendix A of Ref. [43] for further de-
tails). A reasonable approximation for the self-energy enables
us to obtain the closed equation of motion for the Green’s
function. We note that the self-energy appearing in the right-
hand side of Eq. (A1) includes collision processes.

Before computing the self-energy in our setup, let us first
simplify the Kadanoff-Baym equation (A1). The collisions
between the baryon and the background thermal pions is the
dominant processes causing the baryon spin relaxation. To
capture these contributions at leading order, we perform the
following successive approximations. First of all, we sim-
plify Eq. (A1) by neglecting the commutator terms in the
left-hand side, since they represent higher-order corrections
for the energy dispersion relations, and also by replacing the
Moyal products in the right-hand side with the usual product,
in leading order of the gradient expansion. We also neglect
the spatial dependence of S12 in leading gradient expansion,
which results in the equation

∂t S12(t, p) = − 1
2 [{i�21(t, p), S12(t, p)}

− {i�12(t, p), S21(t, p)}]. (A2)

We employ the standard quasiparticle approximation for the
baryon Green’s functions as

S12(t, p) = −ρ(t, p)2πδ(p0 − Ep),

S21(t, p) = [12×2 − ρ(t, p)]2πδ(p0 − Ep), (A3)

where ρ(t, p) is identified as the 2 × 2 spin density matrix as
introduced in Eq. (4), and Ep = p2/(2MN ) is the energy of the
baryon with mass mN .

We now specify the relevant leading-order diagrams for
the self-energy. The vital point here is that the two-body
baryon-pion elastic scatterings are the dominant processes in
a low-temperature pion gas [48]. We then identify the self-
energy diagrams shown in Fig. 7, which correctly captures the
dominant scattering processes. The solid and dashed lines de-
note the baryon and the pion Green’s functions, respectively,
while the blob represents a vertex function, t ba

βα (p′, k′; p, k),
which reduces to the T matrix for a process Bα (p) + πa(k) →
Bβ (p′) + πb(k′), when we require the on-shell condition for
all particles (the indices α, β = p, n,� specify the baryon
species, and a, b = 1, 2, 3 the pion isospin triplet states). As-
suming that the baryon is nonrelativistic, we have a relation
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FIG. 7. The self-energy diagrams that capture the two-body baryon-pion scattering.

between t ba
βα and the T ba

βα in the main text [recall Eq. (15)] as

t ba
βα (p′, k′; p, k)

∣∣
on shell = 2εkT ba

βα (p′, k′; p, k), (A4)

with εk =
√

k2 + m2
π . It should be emphasized that t ba

βα [and

T ba
βα (p′, k′; p, k)] is a 2 × 2 matrix in the spin space. We do

not include a modification of the pion propagator, Dab(k), due

to higher-order interactions, and we have

D12(k) = nB(k0)
2π

2εk
[δ(k0 − εk) − δ(k0 + εk)],

D21(k) = [1 + nB(k0)]
2π

2εk
[δ(k0 − εk) − δ(k0 + εk)], (A5)

where nB(k0) = 1/[exp(k0/T ) + 1] is the Bose-Einstein dis-
tribution function with the temperature T .

The explicit expression for the self-energy following from
the Feynman rules is given by

−i�β

12(p) = 1

2

∫
k,k′,p′

∑
a,b,α

t ba
βα (p, k; p′, k′)Sα

12(p′)
[
t ba
βα (p, k; p′, k′)

]†
Da

21(k)Db
12(k′)(2π )4δ(4)(p + k − p′ − k′),

−i�β

21(p) = 1

2

∫
k,k′,p′

∑
a,b,α

t ba
βα (p, k; p′, k′)Sα

21(p′)
[
t ba
βα (p, k; p′, k′)

]†
Da

12(k)Db
21(k′)(2π )4δ(4)(p + k − p′ − k′) (A6)

where we used a shorthand notation
∫

p1,···pn
≡ ∫ d4 p1

(2π )4 · · · d4 pn

(2π )4 . Substituting these into Eq. (A2), neglecting O(ρ2) terms for the

dilute baryon system, and performing p0 integration using the energy δ function, we eventually obtain the following equation:

∂tρ
β (t, p) = 1

2

∫
d p0

2π

[{ − i�β

12(t, p), Sβ

21(t, p)
} − { − i�β

21(t, p), Sβ

12(t, p)
}]

= 1

2

1

2

∫
d p0

2π

∫
k,k′,p′

∑
a,b,α

[{
t ba
βα (p, k; p′, k′)Sα

12(p′)
[
t ba
βα (p, k; p′, k′)

]†
, Sβ

21(t, p)
}

× Da
21(k)Db

12(k′)(2π )4δ(4)(p + k − p′ − k′)

− {
t ba
βα (p, k; p′, k′)Sα

21(p′)
[
t ba
βα (p, k; p′, k′)

]†
, Sβ

12(t, p)
}
Da

12(k)Db
21(k′)(2π )4δ(4)(p + k − p′ − k′)

]
� −1

2

∫
k,k′,p′

∑
a,b,α

[{
T ba

βα (p, k; p′, k′)[−ρα (t, p′)]
[
T ba

βα (p, k; p′, k′)
]†

, 12×2
}

× nB(εk′ )[1 + nB(εk)](2π )4δ(3)(p + k − p′ − k′)δ(Ep + εk − Ep′ − εk′ )

− {
T ba

βα (p, k; p′, k′)12×2
[
T ba

βα (p, k; p′, k′)
]∗

, [−ρβ (t, p)]
}

× nB(εk)
[
1 + nB(εk′ )

]
(2π )4δ(3)(p + k − p′ − k′)δ(Ep + εk − Ep′ − εk′ )

]
=

∫
k,k′,p′

∑
a,b,α

[
T ba

βα (p, k; p′, k′)ρα (t, p′)
[
T ba

βα (p, k; p′, k′)
]†

× nB(εk′ )[1 + nB(εk)](2π )4δ(3)(p + k − p′ − k′)δ(Ep + εk − Ep′ − εk′ )

− ∣∣T ba
βα (p, k; p′, k′)

∣∣2
ρβ (t, p)

× nB(εk)[1 + nB(εk′ )](2π )4δ(3)(p + k − p′ − k′)δ(Ep + εk − Ep′ − εk′ )
]
, (A7)
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FIG. 8. The leading-order contribution to the �π scattering in the chiral perturbation theory.

where we used Eqs. (A4)–(A5) to obtain the third line, and also employed the center-of-mass frame in which εk = εk′ is satisfied.
To obtain the last line, we noticed that |T ba

βα (p, k; p′, k′)|2 after k and k′ integrations commutes with ρ, because it is proportional
to the identity matrix thanks to rotational symmetry. With appropriate identification of the baryon indices, these equations are
identical to the kinetic equations (9) and (27) in the main text.

APPENDIX B: CHIRAL PERTURBATION THEORY FOR �π SCATTERING

At sufficiently low temperature, the baryon-pion scattering is reliably described by the chiral perturbation theory. Here we
provide a derivation of the low-energy expression of (g, h) in Eq. (26) with the parameters in the chiral perturbation theory
[44–46].

First of all, we note that the pion is an isospin triplet pseudoscalar meson with negative parity while the � and � baryons
are isospin singlet and triplet JP = 1/2+ baryons with one strange quark. Taking into account that pions are pseudo-Nambu-
Goldstone bosons, we identify the leading-order chiral Lagrangian relevant for the �π scattering as (see, e.g, Ref. [47] for
details)

L�π = 1

2
(∂μπa)2 − 1

2
m2

π (πa)2 + �̄a(iγ μ∂μ − m� )�a + �̄(iγ μ∂μ − m�)� + D√
3 fπ

[�̄aγ μγ5�∂μπa + h.c.], (B1)

where πa, �a (a = 1, 2, 3) and � denote the pion, �-baryon, and �-baryon fields with the corresponding masses mπ =
140 MeV, m� = 1190 MeV, and m� = 1116 MeV, respectively. γ μ, and γ5 are the gamma matrices satisfying γ μγ ν + γ νγ μ =
2 diag(1,−1,−1,−1) and γ5 = iγ 0γ 1γ 2γ 3. We also introduced the pion decay constant fπ = 90 MeV and a dimensionless
coupling constant D, which one can determine as D = 0.80 from a semileptonic decay process [59].

From Eq. (B1), we identify leading-order processes in the �π scattering, diagrammatically shown in Fig. 8. Computing these
tree graphs, we find the relativistic scattering amplitude given by

iM�π = iδab
4m̄D2

3 f 2
π

ū(p′)
[

1 + m̄�m

(
1

s − m2
�

+ 1

u − m2
�

)
− m̄

2
γ μ(kμ + k′

μ)

(
1

s − m2
�

− 1

u − m2
�

)]
u(p)

= iδab
4m̄D2

3 f 2
π

ū(p′)
[

1 + m̄�m

s − m2
�

+ m̄�m

u − m2
�

+
(

s − u

4m�

− iσμν kμk′
ν

2m�

)(
− m̄

s − m2
�

+ m̄

u − m2
�

)]
u(p), (B2)

where we introduced �m ≡ m� − m�, 2m̄ ≡ m� + m�, σμν = i(γ μγ ν − γ νγ μ)/2, Mandelstam variables s ≡ (p0 + k0)2 −
(p + k)2 and u ≡ (p0 − k′0)2 − (p − k′)2, and the wave function for the � baryon u(k) [ū(k) = u†(k)γ 0]. To derive the
second line, we used the Gordon decomposition ū(p′)γ μu(p) = ū(p′)[pμ + p′μ + iσμν (p′

ν − pν )]u(p)/(2mN ) as well as the
energy-momentum conservation p + k = p′ + k′. Note that we parametrize the S-matrix element as 〈p′, k′|(S − 1)|p, k〉 =
(2π )4δ(4)(p + k − p′ − k′)iM�π .

To proceed further, let us take the center-of-mass frame, in which k + p = 0 = k′ + p′ and εk + Ek = εk′ + Ek′ , and thus,
|k| = |k′| is satisfied. Note that two Mandelstam variables are simplified to be s = (Ek + εk)2 and u = (Ek − εk)2 − 2k2(1 +
cos θ ) in the center-of-mass frame. Moreover, considering the heavy-baryon limit, we approximate the �-baryon wave function
as u(p) � (

√
2m�χ, 0)t with the two-component (or nonrelativistic) spinor χ (s), which results in

iM�π � iδab
8m�m̄D2

3 f 2
π

χ†

[
1 + m̄�m

s − m2
�

+ m̄�m

u − m2
�

− m̄

4m�

(
s − u

s − m2
�

− s − u

u − m2
�

)
− iσ · (k′ × k)

m̄

2m�

(
1

s − m2
�

− 1

u − m2
�

)]
χ. (B3)
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Then, recalling Eq. (15), we find the T matrix for the �π scattering predicted from the chiral perturbation as follows:

T�π � −δab
2m̄D2

3 f 2
π εk

[
1 + m̄�m

s − m2
�

+ m̄�m

u − m2
�

− m̄

4m�

(
s − u

s − m2
�

− s − u

u − m2
�

)
− iσ · (k′ × k)

m̄

2m�

(
1

s − m2
�

− 1

u − m2
�

)]
. (B4)

By matching this result with Eq. (26), we find the low-momentum expansion of the T -matrix (45) in the main text.
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