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Energy hierarchies governing quarkonium dynamics in heavy ion collisions
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In this paper, we critically examine hierarchies between the energy scales that determine quarkonium dynamics
in the quark gluon plasma. A particularly important role is played by the ratio of the binding energy of species
(Eb) and the medium scales; temperature (T ) and Debye mass (mD). It is well known that if these ratios are
much larger than 1 then the dominant process governing quarkonium evolution is dissociation by thermal gluons
(gluodissociation). On the other hand, if the ratio Eb/T is much smaller than one then quarkonium dynamics
is dominated by screening and Landau damping of the exchanged gluons. Here we show that over most of the
evolution, the scale hierarchies do not fall in either limit and one needs to use the full structure of the gluonic
spectral function to follow the dynamics of the QQ̄ pair. This has a significant bearing when we follow the
quantum dynamics of quarkonia in the medium. The inverse medium relaxation time is also ≈T and if Eb is
comparable (or larger) in magnitude to T , the quantum evolution of QQ̄ is nonlocal in time within the Brownian
approximation.
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I. INTRODUCTION

In the vacuum, the bound states of heavy quarks (Q, which
can be b or c) and antiquarks (Q̄) feature three prominent
momentum scales: the heavy quark masses M, the inverse
relative separation 1

r , and the binding energies Eb (see Ref. [1]
for a comprehensive review). These scales satisfy the hierar-
chies M � 1

r � Eb, which justifies nonrelativistic treatments
of these states. An additional relevant scale for their descrip-
tion is the scale of quantum chromodynamics (�QCD), which
may or may not be somewhat smaller than Eb [1] but can be
assumed to be significantly smaller than 1/r (especially for
b̄b pair). The hierarchy of these scales allows one to integrate
out modes at the scale M, and 1/r systematically, and derive a
low-energy effective field theory (EFT) valid at the scale Eb.
At the lowest order in rEb, the EFT consists of nonrelativistic
quarks bound by a potential [2]. At higher order, the theory
features interactions mediated by gluons of wavelength 1/Eb.
Effects of higher-order terms are suppressed by positive pow-
ers of rEb, where factors of r can be seen as arising from a
long wavelength expansion of the fields. This framework is
called pNRQCD [1].

In a thermal medium at temperature T , new scales appear,
which govern the dynamic properties of quarkonia in the
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medium. It was pointed out in a classic paper [3] that the
screening of the QQ̄ interaction on an inverse length scale mD

could lead to the melting of the bound states. Moreover, later
on, it was realized that scattering between bound states and
the thermal constituents of the medium plays a major role in
the dissociation of the quarkonium states. This leads to the
generation of the imaginary part of the quarkonium potential
in a thermal medium [4]. Additionally, absorption of thermal
gluons in the medium could lead to gluodissociation [5]. It
was shown [6] that pNRQCD naturally incorporates processes
leading to gluodissociation [5,7] as its dynamical degree of
freedom that includes low-energy gluonic degrees of freedom
(and other light degrees of freedom if any) in addition to the
wave functions of QQ̄ pair. The corresponding emergent scale
� ≈ 1/τR (where τR is the relaxation time of quarkonia) is
related to the dynamics of inelastic interactions of Q̄Q with
the medium. Furthermore, Eb and 1/r might themselves be
modified from their vacuum values by these thermal effects.

Two medium scales that play a role in quarkonium dynam-
ics in the quark gluon plasma (QGP) are T and mD. In the
weak-coupling limit, there is a hierarchy between mD and T
[8]. In this regime, the coupling g is small and mD ≈ gT � T .
However, for the temperatures of interest (150–500 MeV),
lattice results suggest that mD/T ≈ 2 [9]. Using 2πT as the
relevant energy scale [10] at which αs is computed, also gives
similar values of g.

This implies that in this regime, leading-order, weak-
coupling expressions in g are not quantitatively reliable. For
example, it is known that the higher-order corrections to the
momentum diffusion coefficient are larger than the leading-
order value [11]. However, nonperturbative calculations of
some relevant dynamical processes are still challenging and
weak-coupling calculations are still useful. An important re-
sult in weak coupling was obtained in Ref. [4], which showed
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that the potential between quark-antiquark pair is complex
at finite T . Recently, in the weak-coupling limit, the qual-
itative effects (for ϒ states) of the finite-energy difference
between singlet and octet state has also been investigated in
Ref. [12]. It was observed that these corrections lead to a
reduction in the decay width when compared to the imaginary
potential. (For more details see Refs. [13,14].) In an alternate
approach to include the effects of the finite-energy difference
of singlet and octet state, one can make an Eb/T expansion
in the Lindblad operators to obtain a Lindblad equation and
keep higher-order terms in Eb/T . Up to NLO this has been
implemented in Ref. [15] in pNRQCD. Such weak-coupling
calculations have given insight into the problem and results
from these calculations can be used to obtain estimates for ex-
perimental observables of interest: for example RAA in heavy
ion collisions (HIC).

Many such calculations have been attempted to address
the phenomenology of quarkonium states in the QGP (see
Ref. [16] for a review). For approaches using a medium-
modified T -matrix approach see Refs. [17–23]. Gluodis-
sociation as the dominant mechanism for dissociation has
been used in Refs. [24–26]. For approaches based on the
complex potentials derived by Ref. [4] see Refs. [27–32].
For approaches based on Schrödinger-Langevin equation see
Refs. [33–35]. Quarkonia at high pT have been explored in
Refs. [36–38]. For quantum dynamics in weak coupling see
Refs. [39–43].

In this paper, we will focus on bottomonia and use leading-
order expressions for the gluon polarization tensor. But we
will not assume that mD/T is small. This is not a formal
expansion in g but might better capture some important quali-
tative dynamical properties of the QGP. This has been used in
other papers for open heavy flavor [44].

The next question is how the thermal scales compare to
the scales associated with bound states. Clearly, M � T and
a nonrelativistic treatment is applicable for quarkonia slowly
moving in the medium. For bottomonia, the values of 1/r
are comparable to ≈1 GeV [45] and we will assume that
1/r � T and hence use pNRQCD to describe the system.
However, we do not assume that the hierarchy between 1/r
and the screening mass mD is so strong that we can ignore the
screening of the QQ̄ potential when calculating quarkonium
properties in the medium. In practice, we see that the effect of
screening on the ϒ(1S) wave function is small, but the ϒ(2S)
and ϒ(3S) states are affected by screening.

On the other hand, there is no clear separation between Eb

and mD, T (see Fig. 4). Moreover, their relative order depends
on the species and can change as the medium cools down as it
evolves. In this paper, we will take all three to be of the same
order. Therefore, a nonrelativistic treatment is still applicable.
However, the integration of modes from 1/r to Eb includes
thermal effects.

Here we would like to point out that further assuming scale
separations between Eb, mD, and T can allow us to write
simpler EFTs assuming specific choices of these hierarchies.
These have been investigated in detail in a series of papers
[6,46–48]. Our goal in this paper is to avoid assuming a clear
separation between the three scales. In specific regimes where
the separations exist, our results will clearly reduce to results

from Refs. [46,48]. However, we will see that in a wide range
of parameters, physics lies in an intermediate regime where
clear separations do not exist.

To do this we use the full perturbative form of the gluon
spectral function. We include contributions from the trans-
verse and longitudinal gluons both in the Landau damping
(LD) regime and in the spacelike regime where gluodisso-
ciation occurs. This gives a clear framework to include both
processes in a unified language and allows us to compare
the contributions to decay from the various process. This is
the first time the full gluonic spectral function applicable
in both kinematic regimes has been used to compute the
total decay rates. In our calculation, the singlet wave func-
tion is approximated to be the instantaneous eigenstate of
a lattice inspired thermal potential and hence incorporates
screening. For the octet state, the spectrum is fixed by the
constraint that at large r the real part of the octet potential
approaches the real part of the singlet potential. For the wave
function, we systematically compare two limiting cases: one
where the screening is strong that the potential is flat in r
and the other where the screening is very weak. These can
be seen as limiting cases of the physical situation where
the screening length is comparable to that in the singlet
channel [49].

The comparison between Eb and T is shown in Fig. 4,
which clarifies that these two scales are close to each other.
The consequence of this is shown in Fig. 7 where we show for
the ϒ(1S) state gluodissociation dominates in a wide tempera-
ture region of interest. Figure 8 shows that for the ϒ(2S) state
also both contributions are comparable. Finally, we find that
(Fig. 6) the imaginary potential overpredicts the contribution
from LD substantially.

The plan of the paper is as follows. In Sec. II we will review
the formalism and highlight the assumptions and approxi-
mations involved in our method. In Sec. III, we discuss the
connection between EE correlator and the momentum diffu-
sion coefficient of heavy quark, particularly, in the static limit.
In Sec. IV, we discuss the implementation of the real part of
the singlet potential to obtain the singlet wave function at a
given T . We also discuss the two extreme cases of complete
screening and no screening for octet interactions. Finally, in
Sec. V, we discuss our results followed by the conclusion and
future directions in Sec. VI.

II. FORMALISM

pNRQCD [1] is an EFT for bound states of quarkonia. In
vacuum, it relies on the hierarchy of scales M � 1

r � Eb. The
scale separation M � 1

r ensures that the Q and Q̄ are nonrel-
ativistic, and 1

r � Eb means that the interactions between Q
and Q̄ (at leading order in 1/M) can be written as potentials.

One can think of it as a two-step process where relativis-
tic dynamics of Q and Q̄ are integrated out first, to obtain
NRQCD at scales 1/r [50]. If 1/r � T, mD, the energies
corresponding to the thermal scales is much smaller than the
relative momentum between QQ̄ (≈1/r) then NRQCD at this
scale is unaffected by T, mD, and hence this theory is the same
as the theory in vacuum [50].
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The pNRQCD Lagrangian is obtained by integrating out
modes from 1/r to Eb. The structure of the EFT is governed
only by the symmetries and the particle content of the theory.
In the rest frame of QQ̄ in vacuum, this theory has been
extensively studied [1].

While the medium introduces a new vector uμ associated
with the medium rest frame, which can lead to additional
operators in the Lagrangian [51], we only consider the case
where the quarkonium is (nearly) at rest in the medium, and
hence the form of the Lagrangian is unchanged from that in
vacuum. The Lagrangian is of the form [1]

L = tr

{
S†

(
i∂t + ∇2

M
− Vs(r)

)
S

+ O†

(
i∂t + ∇2

M
− Vo(r)

)
O

+ gVA(r)[S†r · EO + O†r · ES]

+ g
VB(r)

2
[O†r · EO + O†Or · E ]

}
+ · · · . (1)

Here S(O) is the singlet (octet) wave function in the relative
coordinate between Q and Q̄. Vs(Vo) is the QQ̄ potential in the
singlet (octet) channel. M/2 is the reduced mass. The dots cor-
respond to terms that are higher order in the (nonrelativistic)
relative speed between Q and Q̄.

The Lagrangian [Eq. (1)] is obtained by systematically
performing a multipole expansion which encodes the factor-
ization of wavelengths of the order of 1/Eb compared to the
short distance r. The dots represent higher-order terms in this
expansion.

The low-energy coefficients (LEC’s) VA(r), VB(r) are 1 at
leading order in perturbation theory and are expected to be
close to 1 at a short distance. In our paper, we will take them
to be 1. The other input to the theory are the potentials, Vs(r)
and Vo(r). If Eb ∼ T, mD, then the integration of modes from
1/r to Eb is affected by the medium and hence the functional
forms of Vs(r) and Vo(r) is different from their forms in vac-
uum. If the Q and Q̄ can be treated as static (for example if
their mass is so high that their kinetic energy can be ignored),
then one can run the integration of modes all the way to zero
energy. It is well known that in this limit Vs and Vo are complex
[4,6]. The real and imaginary parts of the static potentials have
been calculated in weak-coupling limit [4,6,52]. Moreover, we
also expect that nonperturbative contributions to the potential
are substantial especially for the excited states of bottomonia,
because while 1/r is large compared to �QCD the hierarchy is
not very strong. Additionally, neither Eb nor T are much larger
than �QCD and hence the medium itself at this scale is strongly
coupled. Both the real and imaginary parts of Vs [53–57] and
Vo [49] have been computed nonperturbatively on the lattice.

Let us note that a complex potential describes the QQ̄
dynamics under the assumption that Eb is the smallest scale
in the problem and the kinetic energies of the Q and Q̄ are
negligible. However, if Eb and T are comparable, one needs
to go beyond the static approximation. In this case the thermal
losses can not be captured by an imaginary potential.

The potential at the scale Eb to leading order in the 1/M
expansion is given by the static limit of the gluon exchange
diagram (in weak coupling) or the long-time behavior of the
Wilson loop (nonperturbatively). It picks up an imaginary
piece from dynamics at scales ∼ T if T � Eb. However,
if T ∼ Eb (or if Eb > T ) then the imaginary part is small
[46,48].

Formally, assuming the hierarchy 1/r � T ∼ Eb ∼ mD in
pNRQCD, the real part of the potential at the scale Eb is the
vacuum potential [46,48]. This is the Coulombic potential to
the lowest order in αs. This is one of the cases we consider
below.1

However, the scale mD can be larger than T . For exam-
ple, estimates of the screening length on the lattice [9,58]
give values of mD roughly twice of T . In such cases it is
plausible that screening effects in the medium operate on a
shorter scale than T . Furthermore, one can incorporate the
long-distance part of the potential and its screening by adding
a screened Cornell component. This sort of a potential is
not formally needed for 1/r � T ∼ Eb ∼ mD, if one remains
within the validity regime of pNRQCD since pNRQCD is
valid in the limit where 1/r � �QCD, T . However, such po-
tentials have been widely considered in phenomenology (e.g.,
Refs. [18,20,31]) by taking the real part of the potential from
the lattice [49,54,56,57,59–61]. For ϒ(1S) the results from
the Coulombic and the nonperturbative potentials do not dif-
fer significantly. However, the excited states are wider, and
the long-distance parts of the potential do affect results. By
considering both, we therefore explore systematics associated
with the choice of the potentials, even though the use of non-
perturbative potentials is not completely self-consistent within
pNRQCD with our hierarchy.

On the other hand, to estimate losses due to thermal pro-
cess, we compute the imaginary part of the singlet self-energy
diagram in the multipole expansion. The key assumption here
is that in the pNRQCD Lagrangian [Eq. (1)] at scale ≈ Eb, the
imaginary part of the potential is small and losses predomi-
nantly arise from dynamics at scales ≈ Eb. In this hierarchy it
is important to take into account finite frequency effects in the
gluon spectral function to calculate decay rate.

Finite frequency corrections also appear in the real part of
the self-energy. These corrections can change the energy of
the singlet as well as the octet states and hence change the
binding energy of the bound states. These also change the
eigenstates of the singlet and octet Hamiltonians. However,
the effect of this contribution on the decay rate of the singlet
state is higher order in the multipole expansion (r4 instead of
r2) and can be safely ignored in our calculation.

Finally, we assume that the octet state, once formed, de-
coheres rapidly and can no longer lead to a reformation of
the singlet state. In quantum calculations [40,43,62] these
processes can be taken into account but this is beyond the
scope of our paper.

1While tracking the quantum dynamics of quarkonia, other medium
scales also play a role. For example, the time scales of medium
dynamics have been argued to be ≈1/(πT ) [10]. This will not play
a role in the rate-equation approach we follow here.

054905-3



RISHI SHARMA AND BALBEER SINGH PHYSICAL REVIEW C 109, 054905 (2024)

FIG. 1. Cut diagrams contributing to the decay width. Single
solid line is for singlet and double lines for octet. The gluon line
corresponds to a dressed gluon.

With this setup, let us start from a singlet state. The
dissociation is given by the imaginary part of the singlet
self-energy correction. The corresponding diagram is shown
in Fig. 1. Here, the gluon line is resummed and gets contri-
butions both from LD, which arises from the imaginary part
of the gluon self-energy and pole of the gluon propagator. In
Fig. 1, gluon momentum (k0, k) is directed inward at the first
vertex and octet momentum (q0, q) is directed outward from
the same vertex. The incoming momentum of the singlet is
pμ = qμ − kμ.

In order to calculate the imaginary part of the singlet self-
energy, we follow the cutting rules at the finite temperature are
given in Refs. [63,64]. There are two cut diagrams as shown in
Fig. 1. Following the cut rules and implementing appropriate
propagator for each cut diagram, the imaginary part of the
self-energy reads as

�	11(p0, p, r) = g2CF

6
ri

( ∫
d4k

(2π )4

{
ρoθ (q0)(θ (−k0)

+ f (|k0|))
[
k2

0ρ j j (k0, k) + k2
j ρ00(k0, k)

]}

+
∫

d4k

(2π )4

{
ρoθ (−q0)(θ (k0) + f (|k0|))

× [
k2

0ρ j j (k0, k) + k2
j ρ00(k0, k)

]})
ri. (2)

To avoid this lengthy expression, from here onwards we use
the following shorthand notation for the above equation:

�	11(p0, p, r) = riÔ(p0, p, r)ri. (3)

In Eq. (2), CF (= 4/3) is color factor. ρ00(k0, k) and ρ j j (k0, k)
are gluon spectral functions that are discussed in the next
section. pμ = (p0, 0) is the four-momentum of the incoming
singlet state, and ρo is the tree level QQ̄ spectral function
in the octet channel, which can be obtained from the octet
propagator [see Eq. (1)]

G(q0) = 1

q0 − ∇2/M − Vo
. (4)

Hence,

ρo = 2πδ(k0 + p0 − q̂0), where

q̂0 = Vo + ∇2

M
. (5)

To proceed further we need information about the temporal
and spatial gluonic spectral functions, ρ00 and ρii, which we
discuss below.

A. Gluon-polarization tensor

In this section, we review the well-known expressions for
the gluon polarization tensor [65] that are essential inputs
to the evaluation of the imaginary part of quarkonium self-
energy. The general form of the gluon self-energy is given as

μν (k0, k) = PL
μνL(k0, k) + PT

μνT (k0, k), (6)

where PL
μν (PT

μν ) are longitudinal (transverse) projection op-
erators and L(T ) are component of the gluon self-energy
along these directions. In order to evaluate quarkonium decay
width using Eq. (3), we need the imaginary part of the gluon
propagator. This may come from the pole of the propagator
in the region of phase space where the imaginary part of
the gluon self-energy is zero, and from the region where the
imaginary part of the gluon self-energy is finite. The pole
contribution is nonvanishing in the limit k0 > k, and the latter
contribution that requires the real and imaginary parts of the
gluon self-energy is finite when k0 < k [65]. Below we discuss
various components of the gluon self-energy.

Let us first consider the regime k0 < k (spacelike). This we
call the Landau damping regime. The gluon loop contribution
to the imaginary part of the longitudinal component of the
gluon self-energy is given as

�
g
L(k0, k) = g2N

4πk

∫ ∞

k+k0
2

dq q2

(
2 + k4

4q4
− k2

q2

)

× [ f (q − k0) − f (q)] θ (k − k0), (7)

where N = 3 and f (q) is Bose-Einstein distribution function.
Let us note that with an expansion in k0/T in the distribution
function and by taking the limit k � q, Eq. (7) goes to its hard
thermal loop (HTL) counterpart.

Similarly, The quark loop contribution with Nf (light)
quark flavors to the imaginary part of the longitudinal com-
ponent of the gluon self-energy is given as

�
f
L (k0, k) = g2Nf

2πk

∫
dq

(
q2 − k2

4

)
[ f̃ (q − k0)

− f̃ (q)] θ (k − k0), (8)

where f̃ (q) is Fermi-Dirac distribution function. The total
imaginary part of the longitudinal gluon self-energy can be
obtained by summing Eqs. (7) and (8).

The real part of the longitudinal component of the self-
energy is

	L(k0, k) = m2
D

(
1 − k0

2k
log

∣∣∣∣k + k0

k − k0

∣∣∣∣
)

, (9)

where m2
D = g2T 2

3 (N + Nf

2 ). In obtaining Eq. (9), we have
dropped terms of the order of k0/T, k/T . These terms are im-
portant when k0, k � T but we drop these terms because of the
following reason. The exact forms of these higher-order terms
depend on the gauge (e.g., see Ref. [65]). This is because the
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expression is not a formal expansion in g. Moreover Eq. (9)
is the HTL form and is gauge invariant [8]. This expression
is valid for both k0 > k and k0 < k. Moreover, from Eq. (3)
it is clear that the contribution to �	 from k0, k � T is ex-
ponentially suppressed and hence making this approximation
will not cause a significant error in our result.

Similarly, for the transverse gluon, the imaginary contribu-
tions to the gluon self-energy are,

�
g
T (k0, k) = g2N

2πk

∫ ∞

k+k0
2

dq

[
q2

(
1 − k2

2q2

)2

− k2

4

×
(

2 − k2

2q2

)2]
[ f (q−k0)− f (q)]θ (k−k0), (10)

and,

�
f
T (k0, k) = g2Nf

8πk

∫ ∞

k+k0
2

dq

(
2q2 + k2

2

)

× [ f̃ (q − k0) − f̃ (q)] θ (k − k0). (11)

The real part of the transverse component of the gluon self-
energy is

	T (k0, k) = m2
D

2

(
k2

0

k2
− k0

(
k2

0 − k2
)

2k3
log

∣∣∣∣k + k0

k − k0

∣∣∣∣
)

. (12)

Let us now consider the regime k0 > k (timelike). This we call
the pole regime. In this regime, the imaginary part of L and
T are zero and the real parts are as above. At order g3 the
widths of these modes are finite [65,66] but we ignore this in
our calculation.

Now we can calculate the gluon spectral function, which
goes in Eq. (3). Below we discuss it for both timelike and
spacelike gluons.

B. Gluon spectral functions

The general form of the gluon spectral function in a
medium reads as

ρμν (k0, k) = PL
μνρL(k0, k) + PT

μνρT (k0, k). (13)

Here ρL(k0, k) = DR
L (k0, k) − DA

L (k0, k) is the longitudinal
component of the spectral function and DR(A)

L is the longi-
tudinal component of resummed retarded (advanced) gluon
propagator. Similarly, one can obtain the transverse com-
ponent of the spectral function (ρT ) by using ρT (k0, k) =
DR

T (k0, k) − DA
T (k0, k). Below we discuss the form of these

spectral functions for both k0 > k as well as k0 < k.
For k0 < k (LD), we use the gluon self-energies (shown in

the previous section) to write the resummed gluon propagator
and obtain

ρL(k0, k) = 2�L(k0, k)

[k2 + 	L(k0, k)]2 + [�L(k0, k)]2
, (14)

where 	L(�L ) is sum of both gluon and quark
contributions.

Similarly, the transverse component of the spectral func-
tion can be written as

ρT (k0, k) = 2�T (k0, k)[
k2

0 − k2 + 	T (k0, k)
]2 + [�T (k0, k)]2

.

(15)
It is worth mentioning here that the above form of the spec-
tral functions reproduces the momentum diffusion coefficients
obtained within the kinetic theory framework in Ref. [44].

For k0 > k the gluon propagator is simply a pole. The
quarkonium dissociation in this regime is due to the absorp-
tion of a gluon from thermal medium. This process is known
as gluodissociation in the literature. In the limit k0 � T , the
spectral function is given by the imaginary part of free gluon
retarded propagator and gluodissociation in this case has been
studied in Refs. [43,47]. However, for realistic situations one
needs to take full resummed propagator. Thus, similar to
Eq. (13) the general form of the spectral function reads as

ρ p
μν (k0, k) = PL

μνρ
p
L (k0, k) + PT

μνρ
p
T (k0, k), (16)

where p stands for pole. The longitudinal spectral function in
this regime is given by

ρ
p
L (k0, k) = 2πδ[k2 − 	L(k0, k)]. (17)

The transverse spectral function is given by

ρ
p
T (k0, k) = 2πδ

[
k2

0 − k2 − 	T (k0, k)
]
. (18)

The imaginary part of 	11 gets contribution from both
Eqs. (13) and (16). While in the low-frequency limit, LD gives
the dominant contribution, pole contributions are significantly
large in the intermediate and high-frequency limit. The over-
all pole contribution merges with their free spectral function
counterpart at an asymptotically large frequency. This we
show in Fig. 3.

III. CONNECTION WITH THE MOMENTUM
DIFFUSION COEFFICIENT

In this section, we relate Eq. (3) with the standard definition
of the momentum diffusion coefficient in terms of the electric
field correlator, which is given as [67,68]

κ = g2

3N

∫ ∞

−∞
dt Tr〈U(−∞,t )Ei(t )U(t,0)Ei(0)U (0,−∞)〉,

(19)
where U is the Wilson line in the fundamental representation,
Ei = ∂iA0 − ∂0Ai − ig[A0, Ai] is the color electric field and
trace over color degrees of freedom. In Eq. (19), the infinite
integration limit represents the zero-frequency limit of the
correlator. For the leading-order results, one needs to replace
the Wilson lines by identity (i.e., U = 1) to obtain

κ = g2CF

3
lim

k0→0

∫
d̄3k k2 〈A0(k0, k)A0(0, 0)〉

= g2CF

3
lim

k0→0

∫
d̄3k k2[1 + f (k0)]ρL(k0, k), (20)

for more details see Refs. [44,68,69].
It is useful to compare this quantity [Eq. (20)] to the ex-

pression Eq. (3). Imposing the condition q0 > 0 in Eq. (3)
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and performing energy integration in Eq. (2) using the energy
δ function we rewrite the imaginary part of the singlet self-
energy as

�	11(k0) = g2r2CF

6

∫
d̄3k f (k0)

[
k2

0ρii(k0, k) + k2ρ00(k0, k)
]
,

(21)

where k0 = p0 − q0. For future use, we define a quantity

κ̃ (k0) = 2(�	11(k0)|pole + �	11(k0)|LD)

r2
. (22)

A single heavy quark, traversing through the thermal medium,
gets uncorrelated random kicks from the medium constituents
that give rise to κ . However, for quarkonium bound state, not
only scattering but also absorption of thermal gluons con-
tribute to the dissociation. The latter process is kinematically
forbidden for a single heavy quark. Therefore, in the fre-
quency regime where gluodissociation dominates κ̃ is not the
same as κ . However, in the static limit where dissociation via
scattering (i.e., LD) is dominant, the two coefficients defined
in Eqs. (19) and (22) seem identical, at the leading order.
We have checked that the LD part of κ̃ agrees with the one
obtained in Ref. [44].

We note that at higher order there is no reason for these
two coefficients to be identical. The reason is that for quarko-
nium, chromoelectric field correlator is defined with Wilson
lines in the adjoint representation [70]. On the other hand
for a single heavy quark, Wilson lines are in fundamental
representation.

It is useful to note here that in Eq. (22) if one makes
k0, k � T approximation before integrating over k, the inte-
grand is of the HTL form and is ultraviolet (UV) divergent.
This is due to the fact that the applicability of the HTL
resummation is restricted to the low-frequency limit. This
divergence can be cured by either using a cutoff k ≈ mD or
by adding the UV contribution to the integral carefully [48].
However, the contribution from Eqs. (14) and (15) vanishes in
the high-frequency limit. Therefore, if we use the imaginary
part of the longitudinal self-energy given by Eqs. (7) and (8)
and evaluate κ̃ , the integral is convergent and can be computed
numerically, which we do next.

In Fig. 2, we plot the electric field correlator arising from
various contributions that appear in the evaluation of singlet
self-energy diagram in Fig. 1 as a function of frequency. Here
we take T = 0.25 GeV and Debye mass mD = 0.5 GeV. The
black curves are for the longitudinal gluon with a solid line for
LD and a dashed one for pole contributions. The red curves
are for transverse gluon where solid and dashed lines are
for LD and pole contributions, respectively. As anticipated,
in the small-frequency limit the dominant contribution comes
from longitudinal gluon Landau damping. In this limit, other
contributions are either zero or very small. Pole contributions
switch on at a somewhat larger frequency, i.e., k0 ≈ 0.2 GeV.
Moreover, the transverse gluon pole contribution is larger
(in magnitude) compared to the longitudinal one. Finally, at
high frequency, transverse pole contribution dominates and
eventually approaches the corresponding free limit.

FIG. 2. Various contributions to scaled 〈EE〉 correlator as a func-
tion of frequency. Here we take T = 0.25 GeV and mD = 0.5 GeV.

In Fig. 3, we have plotted κ̃/T 3 as a function of k0. The red
(dashed) curve here gets contribution from both k0 < k as well
as k0 > k phase space regions. In the static limit, i.e., k0 ≈ 0,
we have checked that κ̃/T 3 agrees with that in Ref. [44]. The
black (solid) line is in the free limit, which, as expected, is
zero at zero frequency.

It is well known that the perturbative result for κ is too low
by roughly a factor of 5–10 than the nonperturbative value
[69,71–74]. For example, recent lattice results for κ/T 3 are
estimated as [72]

1.5 <
κ

T 3
< 2.8 for T = 1.5Tc,

0.9 <
κ

T 3
< 2.1 for T = 2.5Tc.

For finite k0 there are no lattice results available in the lit-
erature. Naively, we expect them to be different from the
perturbative estimates. Therefore, we expect that our predic-
tions for RAA are underestimated. However, our results capture
the qualitative features of relative contributions of pole and
LD in the range of temperatures available in HIC. Motivated
by lattice QCD calculations of mD, we choose g = 2 [42,58].

In the intermediate-frequency regime, the peak structure in
κ̃/T 3 is from the transverse pole contribution. Finally, in the
high-frequency limit, it merges with its free limit counterpart.

FIG. 3. κ̃/T 3 as a function of frequency for constant coupling
g = 2, T = 0.25 GeV, and Nf = 3. Black (solid) line is the free limit
and the dashed (red) is resummed one.
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IV. DECAY WIDTH

At any given temperature T , the decay width of a singlet
state |φ〉 at leading order is given by

� = 2 〈φ|�	11|φ〉, (23)

where �	11 is given in Eq. (3). Inserting a complete set of
octet states |o〉〈o| at the right bracket of Eq. (3), one obtains

� = 2
∑

o

〈φ|rÔ(p0, p, r)|o〉〈o|r|φ〉

= 2
∑

o

O(p0, p)〈φ|r|o〉〈o|r|φ〉, (24)

where summation is over all octet states allowed by the se-
lection rule. In operator form O(p0, p) is same as defined in
Eq. (3) and now p0 = q0 − k0 in terms of the chromoelectric
spectral function as shown in Eq. (2).

Let us note that the EE correlator that enters in decay width
is evaluated at frequency k0 = q0 − p0. We remark here that
the gluodissociation contribution to the dissociation rate in the
hierarchy Eb � T has been written in terms of the chromo-
electric field correlator, with the same frequency dependence
also in Ref. [75,76]. Their formalism is applicable also for
Eb ∼ T but the evaluation of the gluodissociation rate in
Ref. [75,76] was done in the high-frequency limit by approx-
imating the EE correlator by that of a noninteracting gluon
gas. The gluodissociation contribution in the high-frequency
limit for T ∼ Eb � mD was computed in Ref. [47] and in this
regime our expressions agree with theirs. Let us note that the
octet state lies in the continuum. q0 is the energy of the octet
state, which is given by,

q0|o〉 =
(

Vo + q̂2

M

)
|o〉. (25)

One point to note is that momentum conservation implies
that the center-of-mass momentum of the octet state is −k.
This implies that the energy of the |o〉 state has an additional
contribution k2/(4M ), which should be added to the right-
hand side of Eq. (25). The value of k is governed by T since
it is the region in k space where the gluon spectral function
multiplied by the Bose-Einstein distribution function is not
exponentially suppressed. In the hierarchy we are working,
Eb and T are both small scales compared to M and hence
quantities of the order of T 2/(4M ) are suppressed by an extra
power of M compared to the right-hand side of Eq. (25) and
hence can be safely dropped.

A. Modeling the singlet state

To complete the evaluation of Eq. (24), we need the func-
tional form of the singlet state |φ〉 as well as octet state |o〉.
The final decay rates are sensitive to the choice of the wave
functions. Various prescriptions have been used to model the
wave functions in the thermal medium.

For a state created in vacuum and dropped into the QGP, a
natural choice for |φ〉 is the wave function in vacuum. Further,
if the thermal effects are weak then |o〉 can be taken to as octet
states in vacuum. If the initial formation of quarkonia is not
affected by the medium (for example if the formation of the

quarkonium states occurs on a time scale much shorter than
the formation of the QGP) then this is a well-motivated model
for |φ〉 and |o〉. This picture has been previously used for phe-
nomenology [36,77]. More formally, as discussed above, if we
assume the hierarchy 1/r � T ∼ Eb ∼ mD in pNRQCD, the
real part of the potential at the scale Eb is the vacuum potential
[46,48]. This is the Coulombic potential to the lowest order in
αs and the corresponding bound states are Coulombic bound
states. This is one of the cases we consider below as described
in Sec. IV A 2.

Another prescription common in the literature is the use of
the eigenstates of the real thermal potentials corresponding to
the instantaneous temperature during evolution [21,37]. This
is one of the models we will consider in this paper and we
describe it in Sec. IV A 1.

1. Eigenstates of instantaneous thermal potentials

At the LHC and the RHIC, the formation time of the
QGP is a fraction of a fm/c and is not substantially larger
than the formation time of quarkonia, of the order of 1/Eb.
One can expect the formation dynamics of quarkonia to be
substantially affected by the medium.

One natural way to include these effects is to start the
evolution from a narrow initial QQ̄ state of width ≈ M and
follow its quantum evolution from very early time [40,42]. In
this paper, we do not study the quantum dynamics and this
analysis is beyond the scope of the paper. If dissociation can
be modeled by the imaginary part of the potential (i.e., in
the Eb � T regime) another possible approach is to assume
that the evolution dynamics is slow (adiabatic approximation)
and the quarkonium state is initially formed in the eigenstate
of the complex potential and at each instant the quarkonium
state is in the eigenstate of the complex potential [27,28].
In this paper, dissociation is calculated using Eq. (3), which
can not be captured by a complex potential and hence the
adiabatic method is not applicable. We model the effect of
the medium on the formation of quarkonia by making the
maximal approximation that the initial state and subsequent to
formation is determined by the real part of the instantaneous
thermal potential [21,37].

More concretely, for the singlet states wave function, we
use the eigenstates

p0|φ〉 =
(

p2

M
+ Vs(r, T )

)
|φ〉, (26)

where Vs(r, T ) is the real part of the thermal potential. Here
we have subtracted the rest energy from all the QQ̄ states.
Similarly, |o〉 is given by Eq. (25) with Vo given by the real
part of the octet potential in the thermal medium. In summary,
to calculate |φ〉 and |o〉 we need the real parts of the potentials
Vs, Vo.

For the singlet potential we use the lattice inspired poten-
tial, which is given by Refs. [42,78]

Vs(r, T )=−a

r
(1 + mDr)e−mDr + 2σ

mD
(1− e−mDr )− σ re−mDr.

(27)
The effective coupling a = 0.409 and the string tension σ =
0.21 GeV2 are fixed from the vacuum masses and binding
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TABLE I. Binding energies, mass and 〈r2〉 of various bounds
state at T = 0 using Eq. (27). All dimensions are in GeV.

ϒ(1S) ϒ(2S) χb(1P) ϒ(3S) χb(2P)

MM 9.46 10.0 9.88 10.36 10.25
Eb 1.20 0.66 0.78 0.30 0.41
〈r2〉 1.42 6.58 4.20 13.68 10.60

energies (see Table I) with bottom mass M = 4.7 GeV [42].
Here we take mD = 0 to obtain the vacuum spectrum.

For finite T we keep a and σ the same as in T = 0 and
mD = √

(1 + Nf /6)gT . For g = 2 Eq. (27) gives potentials
consistent with those used for bottomonium phenomenology
with lattice-based potentials [31,59]. We have checked that the
potentials agree with the real parts of the potentials extracted
nonperturbatively on the lattice (Ref. [79]) within error bars.
For comparison, we note that the potentials are very similar to
the Set 2 considered in Ref. [45].

The QQ̄ potential in the medium is screened, as a result
of which Eb becomes smaller with increasing temperature. At
sufficiently high temperature the bound state is dissolved [3].
It is worth mentioning that for the 1S state, the wave function
does not depend on the temperature of the medium up to
T ≈ 480 MeV and it remains approximately the same as that
of vacuum Coulombic state while the excited states dissolve
earlier [45].

In Fig. 4, we plot the binding energy of ϒ(1S), ϒ(2S), and
ϒ(3S) states as a function of medium temperature. At T = 0,
Eb is given by

Eb = 2M − MM + V∞, (28)

where M is bottom current mass, MM is bound state mass, and
V∞ is the asymptotic value of real part of the potential. For
parameters in Table I, we use the potential given in Ref. [42].
Let us note that while MM − 2M is a small quantity the actual
binding energy is not small because of the V∞(≈ 1.2 GeV).
This phenomenological approach for obtaining the ϒ spec-
trum reasonably describes the mass spectrum [42].

FIG. 4. Binding energies for ϒ(1S), ϒ(2S), and ϒ(3S) states as
a function of temperature. Here we take constant coupling g = 2.

Moreover, for finite T , we solve Eq. (26) and obtain Eb

using

Eb(T ) = V∞(T ) − p0(T ). (29)

The key point we want to highlight in Fig. 4 is that for the
temperature range relevant for HICs, the hierarchies Eb � T
or Eb � T may not be satisfied, at least for 1S and 2S states.
It is worth mentioning that Eb obtained here agrees with the
one in Ref. [80]. On the other hand for higher states, binding
energy approaches zero around this temperature and Eb � T .

It is worth mentioning here that both the binding energy
and heavy quark mass are scheme dependent [81]. This arises
since the loop corrections in the heavy quark pole mass
and the interaction potential have an infrared renormalon
[82,83] and different prescriptions have been used in the liter-
ature [81,84,85] to define renormalon subtracted heavy quark
masses. We leave a systematic analysis of the effect of the
scheme dependence of the bottomonium mass on our results
for future work. We only note here that the value of the bottom
quark mass used in our calculations (M = 4.7 GeV) is within
one standard deviation of the values obtained in Ref. [81] for
the RS′ scheme at the renormalization scale of 2 GeV. It is
about 7% larger than the values obtained in Ref. [81] for a
different (RS) scheme at the renormalization scale of 2 GeV.

A consequence of this model is that we can not address the
observed phenomenology of the 3S state [86] as for the central
bins RAA for 3S state (in this model) is zero. The key dynamics
missing from the classical model are (i) quantum formation
dynamics and (ii) processes that allow for reformation of
bound states, which are important for capturing 3S dynamics.

2. Eigenstates of Coulombic potentials

An alternative choice follows from pNRQCD [6,48] if we
assume that the hierarchy 1/r � T, mD, �QCD is very well
satisfied. In that case the potential at the distance scale r
is strictly unaffected by thermal and screening effects. Fur-
thermore, assuming 1/r � �QCD (since T is comparable to
�QCD in the QGP), the potential at the distance scale r is
also unaffected by nonperturbative effects. Therefore, in this
regime

Vs(r, T ) = −ξ

r
. (30)

Following Ref. [15] we take M = 4.8,

Eb(1S) = 0.47 GeV. (31)

For these parameters,

Eb(2S) = 0.12 GeV, (32)

and,

ξ = 0.62. (33)

This is the second choice we will consider in our analysis.

B. Modeling the octet state

The octet states are also affected by the thermal medium.
At short distances we know that the potential is repulsive
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Coulombic. In perturbation theory both the real and the imag-
inary parts of the medium modified octet potential have been
computed [52]. Recently, both the real and imaginary parts of
the octet potential have also been computed in pure gluonic
theory on the lattice [49]. An important outcome from these
papers is that in both perturbative and nonperturbative calcu-
lations one finds that at large r the singlet potential approaches
the octet potential. This is still an active area of research but
the form of the potential for 2 + 1 flavor QCD is not yet
known.

Based on these considerations, we take two limiting cases
for the octet potential. The first is when the screening is strong
and one can ignore the octet repulsion at the distance scale of
interest and hence

Vo(r, T ) = V∞, (34)

where V∞ = 2σ
mD

is the asymptotic value of singlet potential.
In this case, the |o〉 wave functions are the same as the wave
functions of the free particle but the energy levels start from
V∞.

The other limit is where the screening is weak (gluodisso-
ciation in this case was discussed for Coulombic singlet states
in Ref. [47]) and

Vo(r, T ) → CF
α

2Nr
+ V∞. (35)

We expect the true physics to be between these two limiting
cases.

Finally, the octet potential also has an imaginary piece,
which corresponds to the scattering of the octet state to the sin-
glet state or an octet state. In this paper, we assume that these
processes do not significantly regenerate bound states because
the octet states are much broader than the singlet state. This
is found to be phenomenologically important in quantum cal-
culations for the excited ϒ(2S) and ϒ(3S) [73,87,88] but is
ignored in our calculation.

For the repulsive Coulombic potential, the general form of
the radial wave function is given as [89]

Rl (ρ) = Cl

ρ
ρ l+1eiρ

1F1(1 + l + iν, 2l + 2,−2iρ), (36)

where 1F1 is confluent hypergeometric function, ρ = r p, ν =
1

8a0 p with a0 = 2
α̃M as Bohr radius. The normalization factor

Cl in Eq. (36) reads as

Cl = 2l e− νπ
2
√

�(1 + l + iν)�(1 + l − iν)

�(2 + 2l )
. (37)

Let us note that for the above form of Cl , the wave function
obeys the following form for normalization:∫

r2Rl (pr)Rl (p′r) = (2π )3

p2
δ(p − p′). (38)

With this choice of normalisation, the decay width has the
form given in Eqs. (42), (43), and (45). With the above form
of the radial wave function, the general form of the octet wave
function can be written as

|o〉 = 4πRl (pr)
∑

m

Y ∗l
m (r̂)Y ∗l

m ( p̂). (39)

Here Y l
m is spherical harmonics. For the 1P state, replacing l =

1 in the obove equation and summing over quantum number
m, the octet wave function |o〉 reads as

|o〉 =
√

2πp · reipr

√
ν(ν2 + 1)

e2πν − 1
1F1(2 + iν, 4,−2ipr). (40)

For s(d ) states, the wave function can be obtained by replacing
l = 0(2) in Eq. (39).

In the case of no final-state interaction, we take free wave
function, which in terms of Bessel function is given as

|o〉 = 4π jl (pr)
∑

m

Y ∗l
m (r̂)Y l

m( p̂). (41)

Below we discuss the contribution from the Landau damping
and gluon absorption in the decay width.

C. Landau damping contribution

One way to organize the kinematic regimes, which con-
tribute to the decay width [Eq. (23)], is spacelike and timelike.
Dissociation (of quarkonia) via scattering of the bound state
with the thermal partons occurs when the momentum of the
exchanged gluon is spacelike. As mentioned, this mechanism
is known as LD. It is estimated by taking the resummed
propagator for the gluon line in Fig. 1. The LD contribution is
dominant when Eb � mD, T [6]. The overall contribution is
both from the longitudinal as well as transverse gluon. More-
over, in the small k0 limit, the longitudinal gluon contribution
turns out to be dominant. This is easily understood by noting
that while both ρL and ρT go as k0 at small k0, ρT is multiplied
by (k0)2 in Eq. (3) while ρL is multiplied by (ki )2. For Eb �
mD, T , k0 � k, and hence the longitudinal gluon contribution
turns out to be dominant. However, we evaluate both of them
numerically and do not drop the transverse contribution.

The explicit expression of the contribution to �L from
Eq. (7) in the numerator [gluon loop contribution to
�L(k0, k)] by the transition from a specific |φ〉 to a specific
|o〉, is given [see Eq. (24)] by,

�L = CF g4N

6π

∫
d̄3 p f (k0)

∫
d̄3k

kθ (k − k0)

(k2 + 	L )2 + �2
L

×
∫ ∞

k+k0
2

dq q2

(
2 + k4

4q4
− k2

q2

)
[ f (q − k0) − f (q)]

× |〈φ|r|o〉|2. (42)

Here p is relative momentum between in the Q and Q̄ in the
octet state, defined by its energy from the threshold (Eo = p2

M ),

and k0 = p2

M − E where E is binding energy of the bound
state.

For finite Nf (we will take Nf = 3 in our calculation), 	L

and �L get contributions from the gluon as well as quark
loop. The quark loop contribution has �L with the form
given in Eq. (8) and gives a similar expression to Eq. (42)
that we do not write explicitly here. The total longitudinal
contribution is obtained by adding the quark loop and the
gluon loop contributions and summing over the final state
|o〉 (really an integral over p). Assuming a strong hierarchy
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between Eb and T , this can be simplified to the one obtained
in Ref. [6].

The transverse gluon contribution arises from the trans-
verse part of the spectral function given in Eq. (15). As may
be noticed in Eq. (3), for finite k0 this term can not be ignored.
Moreover, at significantly large k0, this term can dominate
over the longitudinal gluon contribution. This situation may
arise when the hierarchy between Eb and medium temperature
is not very strong. This can be observed from Fig. 2 that
for k0 sufficiently large, the transverse contribution to �	11

can be larger than the longitudinal. It is also clear that in
the kinematic regime where the transverse LD contribution is
comparable to the longitudinal LD contribution, the binding
energy and the final-state interactions can not be ignored in
either.

Following the similar prescription as for the case of lon-
gitudinal gluon, the contribution to the decay width from the
transverse gluon from the gluon loop reads as

�T = g4CF N

3π

∫
d̄3 p f (k0)

∫
d̄3k

k2
0θ (k − k0)(

k2
0 − k2 − 	T

)2 + �2
T

× 1

k

∫ ∞

k+k0
2

dq

(
q2

(
1 − k2

2q2

)2

− k2

4

(
2 − k2

2q2

)2)

× [ f (q − k0) − f (q)]|〈φ|r|o〉|2. (43)

The total contribution from Landau damping is sum of
Eqs. (42) and (43).

D. Pole contribution

In the kinematic regime Eb � T , the dominant contribu-
tion to quarkonium dissociation from singlet to unbound octet
state occurs by absorbing a timelike gluon from the thermal
medium. This process is known as gluodissociation [47]. For
the decay width evaluation, the contribution to the quarko-
nium self-energy arises from the pole of the gluon propagator.
In the free limit, i.e., T � Eb, the medium contribution to the
singlet to octet thermal breakup appears in the thermal weight
only. However, in the intermediate temperature range, HTL
effects also become important and one needs to use resummed
propagator. In the HTL resummed propagator, both longitudi-
nal and transverse gluon contribute to the imaginary part of
the gluon propagator. After adding both of these contributions
and performing k0 integration using energy δ function, �	11

reads as

�	P
11 = CF g2r2

6
f (k0)

∫
d̄3k

(
2k2

0δ
(
k − kT

0

)
|∂	L/∂k|kT

0

+ k2δ
(
k − kL

0

)
|∂	T /∂k|kL

0

)
, (44)

where kT
0 is solution of k2

0 − k2 − 	T = 0 and kL
0 is that of

k2
0 − 	L = 0. In the limit T � Eb, Eq. (44) can be solved

analytically by making an expansion in the bosonic distribu-
tion and replacing the spectral function by the free spectral

function. Using Eq. (44), decay width is given as

�P = CF g2

3

∫
d̄3 p f (k0)

∫
d̄3k

(
2k2

0δ
(
k − kT

0

)
|∂	T /∂k|kT

0

+ k2δ
(
k − kL

0

)
|∂	L/∂k|kL

0

)
|〈φ|r|o〉|2. (45)

The contribution of transverse gluon to the decay width of the
bound states is dominant over the longitudinal one. This can
be observed from the frequency behavior of �	11 shown in
Fig. 2. Below we discuss the results obtained for the decay
width and RAA.

V. RESULTS FOR CLASSICAL DYNAMICS

In this section, we discuss the results for ϒ(1S) and ϒ(2S)
states using the decay width obtained in the previous section.
We mainly focus on the relative contributions of pole and LD
within the perturbative limit and show the overall effect on
RAA.

At any given time t , the survival probability of a given
singlet state can be obtained by using the rate equation

dN (t )

dt
= −N (t )

∑
i

�i(t ), (46)

where N (t ) is the number of bound states at time t and sum-
mation is over the two contributions arising from LD and pole.
The total number of states produced after some time t f may be
obtained from Eq. (46) and is given as

N = N0e− ∫ t f
t0

�(t )dt . (47)

Here t0 is the initial time, N0 is number of bound states at time
t0, and �(t ) = ∑

i �i(t ).

A. Medium model

To calculate � as a function of time we need a model for
the background evolution of the thermal medium. In this paper
we use a simple model and take the medium by a Bjorken
expanding medium [90] with a temperature

T (t ) = T (t0)

(
t0
t

) 1
3

. (48)

We are interested in quarkonia with zero rapidity and hence
have replaced the proper time with the local time. T (t0) is the
temperature at a reference proper time t0. We take t0 = 0.6 fm,
which is a little later than the start of hydrodynamics for LHC
energies [91]. This is starting time for the quarkonium evolu-
tion and is comparable to the formation time for quarkonia.
Similar numbers were taken in Ref. [41].

The temperature at time t0 depends on the impact pa-
rameter or equivalently the centrality. We use centrality bins
analogous to the one used in ALICE [92]. For this purpose,
we use the Glauber model (we do not use the Monte Carlo
Glauber model here though we see that the difference between
our centrality bins and the bins obtained from the Monte Carlo
Glauber model [93] is small) to relate the impact parameter
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TABLE II. Mean value of Npart, impact parameter (b) and initial
temperature (T0) for various centrality bins. T0 is temperature at time
t0 = 0.6 fm. The left column in T0 is for f = 1.462 and the right one
is for f = 1.782 [see text below Eq. (53)].

Centrality (%) Npart b (fm) T0 (MeV)

0–2.5 393 2.5 446 478
2.5–5 363 3.5 443 475
5–7.5 334 5.0 439 470
7.5–10 307 7.0 434 465
10–20 248 8.7 420 450
20–30 173 10.0 408 437
30–40 116 11.2 371 398
40–50 74 12.2 317 339
50–60 44 13.2 267 286
60–70 23 14.0 207 222

to the number of participants (Npart) and the number of bi-
nary collisions(Nbin). Following ALICE, bins in the observed
dNch/dη are related to bins in Npart using the relation

dNch

dη
= λ[ f Nbin + (1 − f )Npart], (49)

where λ = 2.75 and f = 0.212 [92]. With these values of the
parameters λ and f , we quantitatively agree with the centrality
dependence of dNch/dη as a function of Npart given in Fig. 10
of Ref. [94]. For each centrality bin, we have mentioned the
mean value of Npart and impact parameter b in Table II.

With dNch/dη in hand for each centrality bin, the initial
temperature at t0 is obtained by using following prescription
[95]. The value of dN /dy is related to the experimentally
measured charged particle multiplicity by the relation,

dN
dy

= 3J

2

dNch

dη
, (50)

where J = 1.12 is the Jacobian for y to η transformation [96].
N is the multiplicity of the particles produced at the end, y
is pseudorapidity. The factor 3/2 in Eq. (50) incorporates the
contribution from neutral particles. In order to be consistent
within our model, for each centrality bin, we take dNch/dη

obtained by using Eq. (49) with the parameters mentioned
above.

In the nuclear collision experiments, the number density
of partons or entropy is decided by the rapidity distribution of
the produced particles. Assuming that initially the system is at
chemical equilibrium, and assuming that the entropy does not
change during the evolution, we can write the initial parton
density as

n0 = 1

A⊥t0

dN
dy

, (51)

where A⊥ is transverse size of the system. We estimate it from
the Glauber model for each centrality via [97]

A⊥ = 4π
√

〈x2〉〈y2〉, (52)

where 〈x2〉, 〈y2〉 is size along the transverse directions. A
rough estimate of T0 can be made from the initial number

FIG. 5. Temperature as a function of time. Red band is for the
most central bin and, central and green one are for 20–30 % and
40–50 % centrality, respectively. Here the initial time t0 = 0.6 fm for
all centrality bins. The band here covers upper and lower temperature
corresponding to two different values of the fudge factor.

density assuming a noninteracting QGP. Then, n0 = (β1 +
2β2)T 3

0 with β1 = 8π2/15 and β2 = 7π2Nf /40 represents
equilibrium density for gluon and quark. Plugging it back in
Eq. (51) along with Eq. (50), we obtain the initial temperature
at time t0 to be

T0 =
(

3J

2A⊥t0

dNch

dη

1

β1 + 2β2

) 1
3

. (53)

For
√

s = 2.76 TeV, Eq. (53) gives T0 ≈ 250 MeV for
the most central bin (0–2.5 %). This is significantly lower
than estimates of the temperatures obtained at t0 ≈ 0.6 fm in
hydrodynamic simulations [91]. We note that Eq. (51) ignores
various effects such as particleization, viscous effects, inter-
action in the QGP, and expansion in the transverse direction.
Moreover, losses in the work done by the system during the
expansion are also not taken into account. These effects may
lead to entropy generation and energy loss restricting the
applicability of Bjorken expansion. Thus the initial parton
density will be somewhat larger than estimated by Eq. (51). In
order to take these losses into account we redefine the initial
parton density by multiplying Eq. (51) with a fudge factor ( f ),
i.e., n0 = f n0.

This fudge factor is adjusted in such a way that we obtain
the initial temperature in the most central bin to range from
T0 ≈ 450 MeV ( f = 1.46) to T0 ≈ 480 MeV ( f = 1.78) at
t0 = 0.6 fm. For our final results of RAA we provide the band
corresponding to these two values of the initial temperatures.
While this is a highly simplified model for the background
medium, we hope that this band of variation captures im-
portant features of its hydrodynamic evolution. In Fig. 5, we
show the variation of temperature as a function of time starting
with t0 = 0.6 fm till the temperature reaches the final value of
190 MeV.

Finally, for completeness, we also consider the final
state feed-down effect, we follow the prescription given in
Ref. [42]. Therefore, for a given bound states, RAA is given
by

RAA = N + αNh

N0 + αN0h
, (54)
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FIG. 6. Longitudinal LD contribution to the decay width of 1S
(black) and 2S (red) states. The width obtained by using the imag-
inary potential (solid line) given by Eq. (55) is compared with the
longitudinal LD contribution (dashed line) given by Eq. (42) for the
thermal potentials [Eq. (27)]. In this plot the octet is assumed to be a
interacting state [Eq. (40)].

where Nh is number of higher states at the end of evolution and
α is feed-down parameter from higher state (Nh) to the state
being considered. Feed-down matrix is given in Eq. (5.2) of
Ref. [42]. N0 is number of states at the initial time t0. In the
results presented here, for feed down, we only consider higher
states with contributions more than 10%. Thus for ϒ(1S),
we take the contribution from ϒ(2S), χb0(1P), χb1(1P), and
χb1(2P) states. We follow the same for ϒ(2S) state as well.
For more details on feed down see Ref. [42].

Now we have all the pieces needed to compute the decay
width and the suppression of bottomonia. We discuss results
for these below.

B. Results for the decay width

For clarity, in this section, we will only show results for
the thermal potentials [Eq. (27)]. We will make comments on
how the results change if we take the singlet potential to be
Coulombic [Eq. (30), Sec. IV A 2]. In particular, the analog of
Fig. 6 for the Coulombic potential, comparing the decay width
from the LD contribution with the decay width calculated
using the imaginary potential, is shown in Appendix.

Let us first start by only considering only the LD contri-
bution from the longitudinal modes. This is of interest as it
is well known that in the static limit, this gives an imaginary
potential [4,98]. The decay width for the imaginary potential
is obtained from

� = 2〈φ|�Vs(r, T )|φ〉, (55)

where �Vs is the imaginary part of the singlet potential. The
form of the potential is given in Refs. [4,98].

In order to be consistent with the r2 expansion in Eq. (1),
we also make this approximation in the imaginary part of
the potential. In this limit, the momentum integration in the
potential becomes divergent, limiting its applicability in the
small momentum ranges. We therefore put an upper cutoff mD

to get a finite result for �Vs(r, T ). The resulting form is

�Vs(r, T ) = g2TCF m2
Dr2π

3

∫ ∼mD

0

d3k

(2π )2

k(
m2

D + k2
)2 . (56)

The cutoff ∼mD is motivated by the fact that the screened
HTL propagator giving the integrand in Eq. (56) is not the
valid at scales k > mD. A more sophisticated approach is to
use weakly coupled QCD to compute the UV completion of
the contribution to �Vs from scales ∼T (e.g., see Refs. [6,44]).
Numerically, the simple approximation Eq. (56) gives similar
results. The decay width [using Eq. (55) with Eq. (56)] for
ϒ(1S) and ϒ(2S) states are shown by the solid line in Fig. 6.
In the same figure, we show the decay width obtained from
Eq. (42) with Eb = 0.6 GeV (for 1S) and 0.2 GeV for 2S. As
may be noticed, �Vs(r, T ) gives a larger decay width, which
can be understood as follows.

Equation (55) assumes that the binding energy of the sin-
glet state, and the octet state energy (q2/M) of the quarkonium
states is negligible compared to the temperature. This can
be seen from Eq. (42). The energy δ function gives k0 =
q2/M − Eb. Taking the limit k0 → 0 (static limit) in Eq. (42)
is equivalent to calculating the decay rate by using Eq. (55)
with Eq. (56). The main takeaway from Fig. 6 is that for
realistic parameter values values, the k0 → 0 approximation
significantly overpredicts the decay rate from the longitudinal
LD process.

We also remark that if we take the static limit and do not
make a quadratic expansion in r in the imaginary potential
[4,98], the decay width turns out to be even larger than that
obtained using Eq. (56). This is because for the typical size of
the lowest ϒ states Eq. (56) is smaller than the full expression
[4,98], although at large r Eq. (56) is larger.

Finally, we note that we obtain a qualitatively similar be-
havior if we use Coulombic states with binding energies given
in Eqs. (31) and (32). The decay rate using the imaginary
potential significantly overpredicts the actual LD contribution.
This is because, while the binding energy for the Coulombic
potential is somewhat smaller for Coulombic potential com-
pared to the thermal potential, Eb � T is still not a good
approximation for the eigenstates of the Coulombic potential,
and hence dynamic effects are important. For more details see
Appendix. We comment that a similar reduction in the longi-
tudinal LD contribution at finite k0 was noticed in Ref. [12].

Now we consider all the contributions to the decay width
[Eq. (24)]. Focussing on the thermal potentials [Eq. (27)],
in Fig. 7 we plot the LD (longitudinal and transverse com-
bined) and the pole (longitudinal and transverse combined)
contributions to ϒ(1S) state. For ϒ(2S) we plot the same
quantity in Fig. 8. The bands correspond to the effect of
taking the no screening [Eq. (39)] and complete screening
[Eq. (41)] scenarios. Here we take Eb = 0.6 GeV (for 1S) and
Eb = 0.2 GeV (for 2S), which lie in the middle (see Fig. 4) of
the binding energies within the temperature range of interest.

It may be observed (from Fig. 4) that the hierarchies Eb �
T or Eb � T are not very well satisfied for both 1S and 2S
states. One would therefore expect a significant contribution
from the finite frequency region of Fig. 3. For ϒ(1S), this may
be observed in Fig. 7. As anticipated, with this value of Eb,
pole (blue band) and LD (red band) give somewhat similar
contributions for a wide range of temperatures.

Moreover, LD contribution dominates at high tempera-
tures. Similarly, for ϒ(2S) state, pole contribution is a bit
larger at temperature ≈0.2 GeV and at high temperature, ≈0.4
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FIG. 7. All contributions to the decay width of the ϒ(1S) state as
a function of medium temperature. The upper curve of each band
corresponds to the taking the octet states as free wave functions
[Eq. (41)] and the lower curve of each band corresponds to taking
the octet states as Coloumbic repulsive wave functions [Eq. (39)].
The red color band is the total LD contribution and the blue color
band is the total pole (gluodissociation) contribution.

GeV, LD contribution is significantly larger than the pole
contribution. This suggests that for ϒ(2S) dissociation, LD
gives the dominant contribution.

We have checked that this observation remains the same if
we take Coulombic wave function for singlet- and final-state
interactions in the octet channel. However, because of the
smaller binding energy of Coulombic potentials, the transi-
tion from between pole and LD occurs at somewhat lower
temperatures. This check is done with Eb = 0.47 GeV, for
1S. Similarly, for 2S, Coulombic states with Eb = 0.12 GeV,
we find that this result does not change and LD remains the
dominant contribution.

C. Results for RAA

In Figs. 9 and 10, we combine both gluon absorption
and scattering processes and plot RAA for ϒ(1S) and ϒ(2S)
state as a function of 〈Npart〉 for each centrality bin. For
a given centrality, we first evaluate singlet-state wave
functions at each temperature by solving the Schrodinger
equation given in Eq. (26). With temperature-dependent wave
functions at hand, we estimate matrix element, i.e., |〈φ|r|o〉|2

FIG. 8. Decay width of the ϒ(2S) state as a function of medium
temperature. The color conventions are the same as in Fig. 7

FIG. 9. RAA for ϒ(1S) state as a function of 〈Npart〉 for each
centrality bin. For blue color we take octet potential as vacuum
potential and for red color we switch off octet potential assuming
complete screening.

[see Eq. (42)] and obtain corresponding decay width for
all processes. Here we use temperature-dependent binding
energy shown in Fig. 4. Finally, we use Eq. (54) to estimate
RAA for a given state. As mentioned earlier, we consider two
cases; (i) when there is no screening in the final-state octet
interaction (shown in blue color) and (ii) when octet states
are completely screened (shown in red color). Here, the upper
and lower edge of the band corresponds to the lower and
higher initial temperature given in Table II.

Let us note that in realistic situations, the octet potential is
neither completely screened nor has the form of pure vacuum
potential. Therefore, we expect the true value of suppression
to lie somewhere between the blue and the red bands. It is
evident that the suppression is underpredicted for these states.
This may largely be due to the fact that the spectral functions
are obtained at the leading-order (LO) accuracy. Further im-
provements of our results require nonperturbative estimate of
these spectral functions on the lattice, which, so far, has been
computed only in the static limit.

VI. CONCLUSION

In this work, we perform a comprehensive analysis to
quantify the relative contributions arising from LD and
gluodissociation to the ϒ(1S) and ϒ(2S) states within

FIG. 10. RAA for ϒ(2S) state as a function of < Npart > for each
centrality bin. Color representation is same as Fig. 9.
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leading-order perturbation theory for the medium. We assume
that the real part of the singlet potential is screened in a
thermal medium, and we take lattice motivated real parts of
the QQ̄ potential and estimate the binding energy and wave
function as a function of T for ϒ and χ states. By comparing
the binding energy (shown in Fig. 4) and temperature it can
be seen that for the 1S and 2S states both Eb and T are
comparable to each other (although for the 2S state for T >

300 MeV one could take T � Eb). We, therefore, expect that
neither Eb � T nor Eb � T hierarchy is strictly satisfied in
the interesting range of temperatures for the QGP, at least for
1S and 2S. However, for other higher excited states, Eb � T
seems to be satisfied quite well. For ϒ(3S) this can be seen in
Fig. 4.

We note that this conclusion does depend on the choice
of the potential used to calculate the binding energy. For our
analysis we have used lattice-motivated in-medium potentials
[31,78]. It is possible that for weaker model potentials Eb

will be smaller and the hierarchy Eb � T might be a bet-
ter approximation. It is interesting to note that even for the
comparatively less binding Coulombic potentials (Appendix)
we find that for ϒ(1S), Eb is competitive with T , which has
interesting consequences.

The consequence for the 1S state (and for the 2S in the later
stages of the evolution) is that LD can not adequately describe
the decay of the state. It is well known that in the static limit,
i.e., k0 → 0, decay dominantly happens via longitudinal LD,
which can be captured by an imaginary potential between
QQ̄. However, this limit is valid if the binding energy of the
quarkonium species is negligible compared to the medium
temperature. As discussed in the text below Fig. 6, this also
requires the kinetic energy of the octet states to be small.
For Eb ≈ T , the full finite frequency region of the spectral
function for the chromoelectric field correlator becomes im-
portant. Let us note that Eq. (2) is valid in the case where
thermal effects on the potential are small perturbations over
vacuum potential. Therefore the eigenstates of the thermal
Hamiltonian should be approximately the same as that of
vacuum. This is indeed true for 1S state when T < 500 MeV.
This is clear from the comparison of the total decay width
computed using the eigenstates of the thermal potentials and
the Coulomb potential shown in Fig. 12 in Appendix. For 2S
state we do see a difference in the decay widths calculated
using the thermal and the Coulombic potentials (Fig. 13 in
Appendix), suggesting that the dipole approximation is being
stretched to the limit of its applicability. Moreover, for higher
states including 3S, this may not be applicable above Tc.

There is a caveat to the above conclusion. The perturbative
value of the k0 → 0 value of the chromoelectric spectral func-
tion is a factor of 5–10 times smaller than the nonperturbative
value calculated on the lattice. If this enhancement persists till
k0 values of a few 100 MeV (see Fig. 3) then our conclusion
about the relative contribution of the LD and the other con-
tributions will still be true. However, if the spectral function
rapidly drops down towards the perturbative estimate (at k0 ≈
GeV we expect the leading-order perturbative result to be
more reliable) then the LD contribution dominates for all the
states and the static results can be used to capture the physics
of interest. This provides a motivation to study the spectral

FIG. 11. Decay width of 1S (black) and 2S (red) from imagi-
nary potential (solid line) and longitudinal LD (dashed line) using
Coulombic wave functions both for 1S and 2S states.

function at finite frequency nonperturbatively, although it is a
difficult problem.

The hierarchy between Eb and T (T is related to the in-
verse of the environment time scale) plays an important role
while performing quantum calculations of quarkonia dynam-
ics within the open quantum system framework. It has been
shown [40,99,100] that if Eb � T quarkonium system is in the
quantum Brownian motion regime and the evolution is local
in time. In this case, one can obtain a Lindblad equation for
the density matrix evolution for the QQ̄ system. On the other
hand if Eb � T then this proof fails. We show here that this is
the case for the ϒ(1S) state throughout the evolution if one
considers the state to be an eigenstate of the instantaneous
(real) potential. Eb is � T for the excited states in the early
part of the evolution. However, If substantial regeneration of
the excited states happens at a later time (low temperature)
then the hierarchy Eb � T might be satisfied. In this regime, if
a quantum Brownian description of the dynamics is attempted,
one might need dynamics that are correlated in time. Although
a quantum optical description might become applicable in this
case [75,76]. We do not discuss quantum evolution in this
work and leave this for the future.

FIG. 12. Decay width of ϒ(1S) for Coulombic wave function
(blue) and temperature-dependent wave function (red). The dashed
lines are pole contribution and solid line are Landau damping contri-
bution to the decay width.
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FIG. 13. The Landau damping contribution to the decay width
of ϒ(2S) for Coulombic wave function (blue) and temperature-
dependent wave function (red). For the 2S the gluodissociation
contribution is relatively much smaller and hence is not shown here.
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APPENDIX: COULOMBIC WAVE FUNCTION

In Fig. 11, we show the decay width for 1S and 2S states
using the Coulombic wave functions. For better visibility, we
have scaled 2S decay width by a factor of 0.2. The correspond-
ing binding energies of these states are given in Eqs. (31)
and (32). Note that similar to the case of wave functions
obtained using Eq. (26), for Coulombic states also, keeping
the finite-energy transitions reduces the decay width.

For a clearer comparison, in Fig. 12, we show the decay
width of ϒ(1S) state for both Coulombic wave function (blue)
with parameters discussed in Sec. IV A 2 and thermal wave
function in red, with parameters discussed in Sec. IV A 1.
We can see that for ϒ(1S), temperature effects are small and
hence can be treated as a perturbation. This is mainly because
of the small size of ϒ(1S) state, which satisfies pNRQCD
hierarchies. Hence, the thermal potential seems to have a
minor effect on the result.

On the other hand, ϒ(2S) has a larger size and one can see
that the results for the Coulombic and the thermal potentials
differ (see Fig. 13). This suggests that the effects beyond
the dipole approximation might be important for the 2S
state.
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[85] C. Ayala, G. Cvetič, and A. Pineda, J. High Energy Phys. 09

(2014) 045.
[86] CMS, Observation of the ϒ(3S) meson and sequential sup-

pression of ϒ states in PbPb collisions at
√

sNN = 5.02TeV,
CMS-PAS-HIN-21-007 (2022).

[87] X. Yao, W. Ke, Y. Xu, S. A. Bass, and B. Müller, J. High
Energy Phys. 01 (2021) 046.

[88] N. Brambilla, M. A. Escobedo, A. Islam, M. Strickland, A.
Tiwari, A. Vairo, and P. Vander Griend, Phys. Rev. D 108,
L011502 (2023).

[89] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables,
9th Dover printing, 10th GPO printing ed. (Dover, New York,
1964).

[90] J. D. Bjorken, Phys. Rev. D 27, 140 (1983).
[91] N.-B. Chang et al., Sci. China Phys. Mech. Astron. 59, 621001

(2016).
[92] J. Adam et al. (ALICE), Phys. Rev. Lett. 116, 222302

(2016).
[93] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg,

Annu. Rev. Nucl. Part. Sci. 57, 205 (2007).
[94] B. Abelev et al. (ALICE), Phys. Rev. C 88, 044909 (2013).
[95] D. K. Srivastava, R. Chatterjee, and M. G. Mustafa, J. Phys. G

45, 015103 (2018).
[96] J. Adam et al. (ALICE), Phys. Rev. C 94, 034903 (2016).
[97] G. K. Eyyubova, V. L. Korotkikh, A. M. Snigirev, and E. E.

Zabrodin, J. Phys. G 48, 095101 (2021).
[98] M. Laine, O. Philipsen, and M. Tassler, J. High Energy Phys.

09 (2007) 066.
[99] Y. Akamatsu, Phys. Rev. D 91, 056002 (2015).

[100] Y. Akamatsu, Prog. Part. Nucl. Phys. 123, 103932 (2022).

054905-16

https://doi.org/10.1103/PhysRevD.97.074009
https://doi.org/10.1007/JHEP03(2021)235
https://doi.org/10.1103/PhysRevD.101.074004
https://doi.org/10.1103/PhysRevC.71.064904
https://doi.org/10.1103/PhysRevLett.99.211602
https://doi.org/10.1007/JHEP09(2010)038
https://doi.org/10.1007/JHEP12(2011)116
https://doi.org/10.1007/JHEP05(2013)130
https://doi.org/10.1103/PhysRevD.103.014512
https://doi.org/10.1103/PhysRevD.51.1125
https://doi.org/10.1103/PhysRevD.55.5853
https://doi.org/10.1103/PhysRevD.84.016008
https://doi.org/10.1103/PhysRevD.87.045016
https://doi.org/10.1103/PhysRevLett.108.162001
https://doi.org/10.1103/PhysRevLett.114.082001
https://doi.org/10.1088/0954-3899/39/9/093002
https://doi.org/10.1103/PhysRevD.101.034507
https://doi.org/10.1103/PhysRevD.105.054513
https://doi.org/10.1103/PhysRevD.71.114510
https://doi.org/10.1103/PhysRevD.95.054511
https://doi.org/10.1016/j.nuclphysa.2018.10.012
https://doi.org/10.22323/1.430.0188
https://doi.org/10.1103/PhysRevD.101.034011
https://doi.org/10.1103/PhysRevD.43.1269
https://doi.org/10.1016/0550-3213(86)90006-4
https://doi.org/10.1103/PhysRevD.74.085012
https://doi.org/10.1088/1126-6708/2008/02/081
https://doi.org/10.1103/PhysRevD.92.116003
https://doi.org/10.1103/PhysRevD.99.094042
https://doi.org/10.1103/PhysRevD.102.039901
https://doi.org/10.1103/PhysRevD.85.014510
https://doi.org/10.1016/j.nuclphysa.2023.122721
https://doi.org/10.1103/PhysRevD.107.054508
https://doi.org/10.1103/PhysRevD.99.096028
https://doi.org/10.1007/JHEP02(2021)062
https://doi.org/10.1103/PhysRevC.76.044907
https://doi.org/10.1103/PhysRevD.79.054019
https://doi.org/10.1103/PhysRevD.101.056010
https://doi.org/10.1016/j.nuclphysa.2017.05.079
https://doi.org/10.1007/JHEP09(2018)167
https://doi.org/10.1103/PhysRevD.59.114014
https://doi.org/10.1016/S0370-2693(98)00741-2
https://doi.org/10.1088/1126-6708/2001/06/022
https://doi.org/10.1007/JHEP09(2014)045
https://doi.org/10.1007/JHEP01(2021)046
https://doi.org/10.1103/PhysRevD.108.L011502
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1007/s11433-015-5778-0
https://doi.org/10.1103/PhysRevLett.116.222302
https://doi.org/10.1146/annurev.nucl.57.090506.123020
https://doi.org/10.1103/PhysRevC.88.044909
https://doi.org/10.1088/1361-6471/aa9421
https://doi.org/10.1103/PhysRevC.94.034903
https://doi.org/10.1088/1361-6471/ac1079
https://doi.org/10.1088/1126-6708/2007/09/066
https://doi.org/10.1103/PhysRevD.91.056002
https://doi.org/10.1016/j.ppnp.2021.103932

