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Reaction processes in muon catalyzed fusion (μCF), (dtμ)J=v=0 → α + n + μ + 17.6 MeV or (αμ)nl +
n + 17.6 MeV in a deuterium-tritium (D-T) mixture were comprehensively studied by Kamimura, Kino, and
Yamashita [Phys. Rev. C 107, 034607 (2023)] by solving the dtμ-αnμ coupled channel (CC) Schrödinger
equation under a boundary condition where the muonic molecule (dtμ)J=v=0 was set as the initial state and
the outgoing wave was in the αnμ channel. We approximate this CC framework and propose a consider-
ably more tractable model using the T -matrix method based on the Lippmann-Schwinger equation. Nuclear
interactions adopted in the T -matrix model are determined by reproducing the cross section of the reaction
d + t → α + n + 17.6 MeV at low energies. The cross section of the strong-coupling rearrangement reaction is
presented in a simple closed form based on our new model. This T -matrix model has reproduced most of the
calculated results on the above μCF reaction reported by Kamimura et al. (2023) and is applicable to other μCF
systems such as (ddμ), (ttμ), (dtμ)∗, (ddμ)∗.
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I. INTRODUCTION

To ensure that nuclear fusion occurs within nuclear dis-
tance (a few fms) the Coulomb barrier between two nuclei
must be overcome, which typically requires very high tem-
peratures. At low temperatures, negative muons injected into
a mixture of deuterium (D) and tritium (T) can catalyze the
fusion reaction

d + t → α + n + 17.6 MeV, (1.1)

which is energetically the most effective nuclear fusion re-
action. Following the catalyzed reaction, free muons can
facilitate another fusion reaction taking the well-known cycle
illustrated in Fig. 1. This cyclic reaction is called muon cat-
alyzed fusion (μCF). The fusion of the muonic molecule dtμ
has attracted more attention compared to that of molecules
such as ddμ, ttμ from the perspective of utilization as a
future energy source. The history of μCF since 1947 has been
reviewed in Refs. [1–4]. The present status of the study of dtμ
fusion is briefly summarized in Ref. [5].

Recently, the μCF has regained considerable attention ow-
ing to experimental and theoretical developments (i) in the
production of energy by μCF using the high-temperature gas
target of a D/T mixture with high thermal efficiency and
(ii) in an ultraslow negative muon beam by utilizing μCF
for various applications including scanning negative muon
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microscope and an injection source for the muon collider. This
is explained in detail in the Introduction of Ref. [5].

The study of Ref. [5] performed a comprehensive exami-
nation of the following dtμ fusion reaction:

(dtμ)J=v=0 → α + n + μ + 17.6 MeV (1.2a)

↘ (αμ)nl + n + 17.6 MeV. (1.2b)

For the first time, this study solved a coupled-channel (CC)
Schrödinger equation for the reaction (1.2) using the appro-
priate boundary conditions where (dtμ)J=v=0 was set as the
initial state and the outgoing wave was expressed in the αnμ

channel. All interactions were selected such that the low-
energy cross sections of the reaction (1.1) were reproduced
using the CC calculations for the reaction. They calculated
the fusion rate of the (dtμ)J=v=0 molecule, energy (momen-
tum) spectra of the muon emitted by μCF, and α-μ sticking
probability [5].

As investigated in Ref. [6], the ddμ and ttμ fusions play
important roles for the new kinematics of the μCF cycle in
case of high temperature D-T mixtures. Although the ddμ

fusion is known to be considerably weaker than dtμ fusion,
the former should be studied more precisely because the ddμ

experiment is an important preliminary experiment of dtμ,
which has a difficulty in the tritium treatment. Although a
study on reaction processes in the ddμ and ttμ fusion is
underway [7] using the same CC method of Ref. [5], solving
the CC equations for the reactions expressed as Eq. (1.2)
is difficult. Therefore, creating a starting point from the CC
method [5], such as an approximation method that simulates
their results more easily would be beneficial.
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FIG. 1. Schematic diagram of the μCF cycle by a muon injected
into the D/T mixture. (a) Formation of dtμ molecule, (b) fusion
reaction, (c) α-μ initial sticking, and (d) muon reactivation. This
illustration is taken from Ref. [5].

The purpose of the present paper is to propose consider-
ably more tractable T -matrix model than the aforementioned
CC model of Ref. [5]. Instead of directly solving the CC
Schrödinger equations for the reactions (1.1) and (1.2), we
approximate the T matrix based on the Lippmann-Schwinger
equation [8] that is equivalent to the Schrödinger equation.
Nuclear interactions are selected to reproduce the cross sec-
tion of reaction (1.1) at the center-of-mass (c.m.) energy
≈1–300 keV. The total angular momentum I and parity of the
scattering states is known to be Iπ = 3/2+. In the following,
we explain the scenario of our model in Steps (i)–(v).

Step (i). First, we reproduce the cross section of low-energy
reaction (1.1) by using the d-t optical-potential model adopted
in Refs. [9]. Absorption cross section is regarded as the cross
section of reaction (1.1) because no other open channels exist
at these energies than the d-t and α-n channels. The d-t
scattering wave function is denoted as �

(opt)
dt, 3

2 M
(Sec. II A).

Step (ii). We diagonalize the dtμ Hamiltonian composed
of the Coulomb potentials and d-t optical potential to ob-
tain the complex eigenenergy (ER + iEI) and wave function
�J=v=0(dtμ) of the ground state of (dtμ) molecule. The fu-
sion rate (decay rate) of the molecule is expressed as −2EI/h̄
(Sec. II B). Here, we introduce �

(J=v=0)
3
2 M

(dtμ) as the product

of �J=v=0(dtμ) and the d-t spin function χ 3
2 M (dt ).

Step (iii). The cross section of reaction (1.1) can also be
expressed by the exact T matrix introduced in Eq. (4.1) of
Ref. [5], where � (+)

α denotes the exact solution of the CC
wave function for the reaction (1.1) and Vβ stands for a
coupling potential Vdt,αn between the d-t and α-n channels.
In our model, we replace the exact � (+)

α with the d-t wave
function �

(opt)
dt, 3

2 M
obtained in Step (i). �

(opt)
dt, 3

2 M
is considered

to include the effects of the outgoing α-n channel using the
imaginary part of the d-t potential. The coupling potential
Vdt,αn is determined by reproducing the cross section of re-
action (1.1). Notably, the cross section of a strong coupling
rearrangement reaction as shown in Eq. (1.1) is expressed,
based on our model, in a simple closed form that can success-

fully reproduce the observed data at low energies (Sec. III).
This coupling potential Vdt,αn is used in Steps (iv) and (v).

Step (iv). In the work of Ref. [5], the T matrix (4.1) was
used to study the three-body fusion reaction (1.2) in the man-
ner of Eqs. (5.2)–(5.7) with outgoing waves in the (αμ)-n
channel. There, the exact � (+)

α in the T matrix was replaced
with the three-body CC wave function �

(+)
3
2 M

of Eq. (3.3) [5]. In

our model, the exact � (+)
α is replaced with the wave function

�
(J=v=0)
3
2 M

(dtμ) of the dtμ molecule obtained in Step (ii). Fur-

ther, the α-μ sticking probability is derived using the fusion
rates to the α-μ continuum states and those to the α-μ bound
states.

Step (v). We make another calculation of the fusion rate of
reaction (1.2) using T matrix (4.1) in Ref. [5] with outgoing
waves in the (αn)-μ channel. The exact � (+)

α of Eq. (3.3) in
Ref. [5] is again replaced with �

(J=v=0)
3
2 M

(dtμ) as in iv). We

further calculate the momentum and energy spectrum of the
muons emitted by μCF.

We shall examine 20 sets of the parameters for the nuclear
interactions and show that the results do not significantly
depend on the choice of the parameter sets as long as the
reaction (1.1) is explained by using them. We shall report that
most of the results obtained in Ref. [5] are well reproduced by
the present model.

This paper is organized as follows. In Sec. II, using the
optical-potential model, we calculate the cross section of re-
action (1.1) and fusion rate of the (dtμ)J=v=0 molecule. In
Sec. III, the coupling potential between d-t and α-n channels
is determined using the T -matrix method. In Sec. IV, we
calculate the α-μ sticking probability and the fusion rate of
(dtμ)J=v=0 with the method described in Step (iv). In Sec. V,
the spectra of the muons emitted by μCF and the fusion rate
of the (dtμ)J=v=0 are calculated using the method in Step (v).
The conclusions are presented in Sec. VI.

II. OPTICAL-POTENTIAL MODEL FOR
FUSION PROCESSES

A. Fusion cross section

Following Step (i), we first investigate the fusion reaction
(1.1) by using the optical-potential model of Ref. [9]. The po-
tential parameters of the nuclear d-t potential are determined
by reproducing the cross section of the reaction. The total
angular-momentum and parity Jπ of the reaction (1.1) at low
energies is Iπ = 3/2+ with S wave and spin 3/2 in the d-t
channel while D wave and spin 1/2 in the α-n channel.

We present the d-t scattering wave function �
(opt)
dt, 3

2 M
(E , r)

at the c.m. energy E as

�
(opt)
dt, 3

2 M
(E , r) = φ

(opt)
dt,00(E , r) χ 3

2 M (dt ), (2.1)

where φ
(opt)
dt,00(E , r) is the spatial part of the S-wave function

and χ 3
2 M (dt ) is the d-t spin 3/2 function. Schrödinger equa-

tion for φ
(opt)
dt,00(E , r) is presented as

(Hdt − E ) φ
(opt)
dt,00(E , r) = 0, (2.2)

Hdt = Tr + V (N)
dt (r) + iW (N)

dt (r) + V (Coul)
dt (r), (2.3)
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FIG. 2. Calculated S factor S(E ) of the reaction d + t → α +
n + 17.6 MeV using five different d-t optical potentials A to E
listed in Table I. The black solid line (Exp.) is taken from a re-
view paper [10]; it fits the literature data using the function S(E ) =
(26 − 0.361E + 248E 2)/1 + [(E − 0.0479)/0.0392]2 MeV b (E in
MeV).

where the spin-independent d-t optical potential is given by

V (N)
dt (r) = V0/{1 + e(r−R0 )/a}, (2.4)

W (N)
dt (r) = W0/{1 + e(r−RI )/aI}, (2.5)

V (Coul)
dt (r) =

{
(e2/(2Rc))

(
3 − r2/R2

c

)
, r < Rc

e2/r, r � Rc
(2.6)

with taking the charge radius Rc = R0.
In the energy regions shown in Fig. 2, only the α-n chan-

nel is open, except for the incoming channel. Therefore, the
absorption cross section becomes the cross section of the
reaction (1.1) as

σdt→αn(E ) = 2I + 1

(2Id + 1)(2It + 1)

π

k2
(1 − |SJ (E )|2) (2.7)

with S-matrix SJ (E ). In Eq. (2.7), Id = 1, It = 1/2, and k =√
2μdt E/h̄. The astrophysical S factor S(E ) is derived from

the cross section as

σdt→αn(E ) = S(E ) e−2πη(E )/E , (2.8)

where η(E ) denotes the Sommerfeld parameter.
Owing to the lack of d-t elastic scattering information for

E � 300 keV demonstrating the nuclear-interaction effect, it is
impossible to determine a unique d-t optical potential based
on the observed S factor in Fig. 2 (black solid line). Therefore,
in Ref. [9], five sets of d-t optical potentials, denoted as
A–E, were selected to reproduce the observed data. In the
present study, the parameter W0 is changed slightly to improve
the agreement with the experimental S factor S(E ) for E �
10 keV. The calculated S(E ) values with optical potentials
A–E are shown in Fig. 2; within the experimental error range
[10], the observed S(E ) is reproduced well. The potential
parameters are listed in Table I.

TABLE I. Five sets (A to E) of the d-t optical-potential parameters.

V0 R0 a W0 RI aI

(MeV) (fm) (fm) (MeV) (fm) (fm)

A −58.52 2.5 0.3 −0.30 2.5 0.3
B −38.01 3.0 0.5 −0.30 3.0 0.5
C −28.27 3.0 1.0 −0.66 2.0 1.0
D −16.04 5.0 0.3 −0.22 2.5 0.3
E −13.19 5.0 1.0 −0.33 3.0 1.0

B. Fusion rate of muonic molecule

Following Step (ii), we calculate the fusion rate of the re-
action (1.2) by diagonalizing the dtμ three body Hamiltonian
including the Coulomb force and the d-t nuclear complex po-
tentials determined in the previous subsection. We perform a
nonadiabatic three-body calculation of the ground-state wave
function of the dtμ molecule, �J=v=0(dtμ), using the Gaus-
sian expansion method (GEM) for few-body systems [11–13]:

(Hdtμ − E00) �J=v=0(dtμ) = 0, (2.9)

Hdtμ = Trc + TRc + V (C)(r1) + V (C)(r2)

+V (N)
dt (r3) + iW (N)

dt (r3) + V (C)
dt (r3). (2.10)

�J=v=0(dtμ) is constructed as the sum of amplitudes of the
three rearrangement channels c = 1, 2, and 3 as shown in
Fig. 3:

�J=v=0(dtμ) = �
(1)
0 (r1, R1) + �

(2)
0 (r2, R2) + �

(3)
0 (r3, R3).

(2.11)
The amplitude of each channel c is expanded in terms of
Gaussian basis functions of the Jacobian coordinates rc and
Rc:

�
(c)
0 (rc, Rc) =

∑
nslc,NcLc

A(c)
nclc,NcLs

[
φnclc (rc)ψNcLc (Rc)

]
00,

(2.12)

FIG. 3. Three-body Jacobi coordinates used in this study.
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TABLE II. Nonlinear variational parameters of the Gaussian ba-
sis functions in Eqs. (2.13) and (2.14). r1(R1) and rmax(Rmax) are in
units of aμ where aμ = h̄2/mμe2 = 255.9 fm, mμ being the muon
mass.

c lc nmax

r1

[aμ]
rnmax

[aμ] Lc Nmax

R1

[aμ]
RNmax

[aμ]

1 0 25 0.1 10 0 15 0.05 10
2 0 25 0.1 10 0 15 0.05 10
3 0 25 0.1 10 0 15 0.05 10
1 1 15 0.2 10 1 15 0.3 15
2 1 15 0.2 10 1 15 0.3 15
3 1 15 0.2 10 1 15 0.3 15
3 0 25 0.001 0.05 0 15 0.05 10

where c = 1–3 and

φnlm(r) = φnl (r)Ylm(r̂),

φnl (r) = Nnl r
le−vnr2

, (n = 1 − nmax),

ψNLM (R) = ψNL(R)YLM (R̂),

ψNL(R) = NNLRLe−λN R2
, (N = 1 − Nmax) (2.13)

with normalization constants Nnl and NNL. The Gaus-
sian range parameters νn and λn are chosen in geometric
progression:

vn = 1/r2
n , rn = r1an−1, (n = 1 − nmax),

λN = 1/R2
N , RN = R1AN−1, (N = 1 − Nmax). (2.14)

Subsequently, the eigenenergy and wave function are obtained
using the Rayleigh-Ritz variational method. The advantages
of using the GEM basis functions are explained in detail in
Sec. III A in Ref. [14].

As the eigenenergy E00 is a complex number, we
write E00 = E (real)

00 + iE (imag)
00 . We introduce ε00 = E (real)

00 −
Eth, with Eth(= −2711.24 eV) being the (tμ)1s + d thresh-
old energy. The diagonalization in the cases of lmax = 4
and lmax = 1 yield, respectively, ε00 = −319.14 eV and
−319.12 eV. According to Ref. [5], the digits below 1 eV did
not affect the reaction calculation. Thus, we employ lmax = 1.
The input Gaussian basis is shown in Table II. We took seven
lines of Gaussian basis parameters where the final line is
effective to the d-t nuclear interaction.

The fusion rate λ
(0)
f of reaction (1.2) can be derived by

λ
(0)
f = −2E (imag)

00 /h̄ and is given as λ
(0)
f = (1.11 ± 0.04) ×

1012s−1 using five sets of the d-t potentials as presented in
Table III. It is consistent with the results 1.15 × 1012s−1 ob-
tained in Ref. [5].

TABLE III. Fusion rate of the reaction (1.2) using the five sets
(A to E) of the d-t optical-potential parameters in Table I.

A B C D E

λ
(0)
f (1012s−1) 1.14 1.15 1.12 1.07 1.07

FIG. 4. Absolute value of the d-t radial wave function
u(opt)

dt,00(E , r) in Eq. (2.15) at E = 10 keV with the use of optical
potentials A and E in black and red lines, respectively.

Here, we consider why the use of quite different sets of
potentials A to E that reproduce the observed S factor can
result in almost the same fusion rates of the dtμ molecule.
In Fig. 4, we illustrate the absolute value of the radial wave
function u(opt)

dt,00(E , r) defined using φ
(opt)
dt,00(E , r) in Eq. (2.1) as

φ
(opt)
dt,00(E , r) = 1

r
u(opt)

dt,00(E , r)Y00(r̂) (2.15)

in the case of using the potentials A and E at E = 10 keV.
The two lines are quite different in the interaction region, but
approach each other in the asymptotic region (the case of po-
tentials B–D are between the two lines); similarly for the real
and imaginary components of u(opt)

dt,00(E , r). This means that all
cases result in almost the same absorption cross section (2.7)
of the d-t scattering. The same behavior is observed for other
energies seen in Fig. 2. In the fusion time of the dtμ molecule,
the d and t approach each other with very low energies1 pass-
ing under the Coulomb barrier and cause the reaction (1.1)
with negligible influence from the third particle, the far-away
muon. Therefore, the fusion behavior in the asymptotic region
exhibits almost no difference among the cases of potentials A
to E. It will be shown that this consideration also works in the
following sections about various behaviors of the dtμ fusion
in the asymptotic region.

For the sake of the following calculations, we multiply
�J=v=0(dtμ) by the d-t spin function χ 3

2 M (dt ):

�
(J=v=0)
3
2 M

(dtμ) = �J=v=0(dtμ) χ 3
2 M (dt ), (2.16)

which will be used in Secs. IV and V as the ground-state wave
function the (dtμ) molecule.

1Dominant contribution to the fusion rate λ
(0)
f comes from the

resonance tail below E ≈ 10 keV in Fig. 2, not from the resonance
peak. This was presented in Fig. 5 of Ref. [14].
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III. T -MATIX MODEL FOR d + t → α + n + 17.6 MeV

In this section, following Step (iii), we propose tractable
T -matrix model for the reaction (1.1) to approximate the CC
model described in Ref. [5] [cf. Eqs. (2.1)–(2.10)] using the
results of the optical-potential model in the previous section.

At low energies, the d-t wave function has the total angular
momentum I = 3/2 with an S wave in the d-t channel and D
wave in the α-n channel. The authors of Ref. [5] solved the
following dt-αn CC Schrödinger equation (Q = 17.6 MeV)
using the coordinates r3 and r4 for the d-t and α-n motion,
respectively (cf. Fig. 3):

(Hdt − E ) �dt, 3
2 M (r3) = −V (T)

dt,αn(r3, r4) �
(+)
αn, 3

2 M
(r4),

(Hαn − (E + Q))�(+)
αn, 3

2 M
(r4) = −V (T)

αn,dt (r4, r3) �dt, 3
2 M (r3)

(3.1)

with trivial notations. The channel-coupling potential V (T)
αn,dt

(V (T)
dt,αn) is of the tensor type. The reaction cross section is

presented as

σdt→αn(E ) = 2I + 1

(2Id + 1)(2It + 1)

π

k2
|S(dt,αn)

2 |2, (3.2)

where the S matrix S(dt,αn)
2 appears in the asymptotic form of

the outgoing wave, �
(+)
αn, 3

2 M
[5].

According to the Lippmann-Schwinger theory, the cross
section is alternatively expressed exactly as follows using the
solution �dt, 3

2 M and �
(+)
αn, 3

2 M
of Eq. (3.1) (cf. Sec. IV A of

Ref. [5]):

σdt→αn(E ) = v4

v3

(
μr4

2π h̄2

)2 ∑
ms

∫ ∣∣T (1)
ms

+ T (2)
ms

∣∣2
dK̂, (3.3)

T (1)
ms

= 〈
eiK·r4 χ 1

2 ms
(n)

∣∣V (T)
αn,dt

∣∣ �dt, 3
2 M

〉
, (3.4)

T (2)
ms

= 〈
eiK·r4 χ 1

2 ms
(n)

∣∣Vαn

∣∣�(+)
αn, 3

2 M

〉
, (3.5)

where χ 1
2 ms

(n) is the neutron spin function, Vαn is the α-n po-
tential, v3 (v4) is the velocity of the d-t (α-n) relative motion
along r3 (r4), μr4 is the reduced mass associated with r4, and
K is the wave number vector.

The coupling potential V (T)
αn,dt between the αn-dt channels

are taken in the following form [5]:

V (T)
αn,dt (r4, r3) = v

(T)
0 r2

34e−μ r2
34−μ′R2

34 [Y2 (̂r34)S2(dt, αn)]00,

(3.6)

where r34 = r3 − r4 and R34 = r3 + r4. In Eq. (3.6),
S2(dt, αn) is a spin-tensor operator comprising the spins of dt
and αn pairs. However, the explicit form of S2(dt, αn) needs
not to be determined as explained below [cf. Eq. (3.4)].

In our model, we perform another T -matrix calculation
for σdt→αn(E ) by using Eq. (3.3) considering the following
approximation. We replace �dt, 3

2 M in T (1)
ms

with �
(opt)
dt, 3

2 M
in

Eq. (2.1) and neglect T (2)
ms

because �
(opt)
dt, 3

2 M
does not include

the α-n component explicitly. However, �
(opt)
dt, 3

2 M
is considered

to reflect the effect of the α-n channel using the imaginary

potential iW (N)
dt (r3) in Eq. (2.2). Thus, Eqs. (3.3)–(3.5) are

approximated as

σ
(our)
dt→αn(E ) = v4

v3

(
μr4

2π h̄2

)2 ∑
ms

∫ ∣∣T (1′ )
ms

∣∣2
dK̂, (3.7)

T (1′ )
ms

= 〈
eiK·r4 χ 1

2 ms
(n)

∣∣V (T)
αn,dt (r4, r3)

∣∣�(opt)
dt, 3

2 M
(E , r3)

〉
.

(3.8)

Instead of Eq. (3.6), we employ the following separable non-
local form:

V (T)
αn,dt (r4, r3) = v

(T)
0 r2

4 e−μ4 r2
4 −μ3r2

3 [Y2 (̂r4)S2(dt, αn)]00,

(3.9)

which is easier to handle than Eq. (3.6). Consequently, the
cross section (3.7) can be explicitly expressed as

σ
(our)
dt→αn(E ) = v4

v3

(
μr4

2π h̄2

)2∣∣ v(T )
0 S(T )

0 F0 J2

∣∣2
(3.10)

with

F0 =
∫

φ
(opt)
dt,00(E , r3) e−μ3r2

3 dr3, (3.11)

J2 = 4π

∫
j2(Kr4) r2

4 e−μ4r2
4 r2

4 dr4

= 1

4

(
π

μ4

) 3
2
(

K

μ4

)2

e− μ4K2

4 , (3.12)

where φ
(opt)
dt,00(E , r3) is normalized asymptotically as

φ
(opt)
dt,00(E , r3)

r3→∞−→ eiσ0
F0(k, r3)

kr3
+ (outgoing wave) (3.13)

with the S-wave Coulomb function F0(k, r) and phase shift
σ0. j2(kr4) is the spherical Bessel function of order 2. In
Eq. (3.10), the constant S(T)

0 is presented, independently of ms,
as (cf. Eq. (2.12) of Ref. [5])

S(T)
0 = 1√

10
〈χ 1

2 ms
(αn)

∣∣ [S2(dt, αn) χ 3
2
(dt )

]
1
2 ms

〉
. (3.14)

Therefore, the explicit form of S2(dt, αn) needs not to be
known, and v

(T)
0 S(T)

0 can be considered as an adjustable pa-
rameter for the T -matrix calculations.

We determined the parameter sets for the dt-αn cou-
pling potential V (T)

αn,dt (r4, r3) in Eq. (3.9) so as to reproduce
the observed S factor S(E ). We employed, in Eq. (3.8),
�

(opt)
dt, 3

2 M
(E , r3) obtained in Sec. II A using the optical poten-

tials A–E in Table I. The resulting parameters are listed in
Table IV. Sets A1–A4 were obtained using the optical poten-
tial of Set A, and similarly for others.

In Fig. 5, the calculated S(E ) factors using Sets A1–E1 are
illustrated. The experimental data are well reproduced with
the same quality of fitting as in Fig. 4 by the CC calculation
in of Ref. [5]. The use of the other sets yielded a similar
agreement. Subsequently, we employ all dt-αn tensor cou-
pling potentials in Secs. IV and V. The cross section of the
strong coupling rearrangement reaction (1.1) is expressed in a
simple closed form (3.10)–(3.12) that can reproduce observed
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TABLE IV. Parameters of the dt-αn coupling potential
V (T)

αn,dt (r4, r3) in Eq. (3.9). Sets A1–A4 were determined using the
optical potential Set A in Table I; similarly for the others.

v(T)
0 S(T)

0 μ
−1/2
3 μ

−1/2
4

Potential set (MeV fm−5) (fm) (fm)

Set A1 2.307 1.6 1.6
Set A2 0.138 2.0 5.2
Set A3 0.245 3.2 1.6
Set A4 0.402 2.0 2.8
Set B1 1.001 2.8 1.6
Set B2 0.016 4.0 2.4
Set B3 0.065 3.6 2.0
Set B4 0.003 4.0 5.6
Set C1 0.122 2.4 2.4
Set C2 0.052 1.6 6.4
Set C3 0.029 3.2 4.8
Set C4 0.191 4.4 1.6
Set D1 1.291 3.6 1.6
Set D2 0.151 3.2 2.0
Set D3 0.405 4.4 1.6
Set D4 0.032 4.0 5.6
Set E1 0.054 5.2 2.0
Set E2 0.166 2.0 2.0
Set E3 0.054 4.4 2.8
Set E4 0.019 4.4 5.2

data by tuning the parameters of V (T)
αn,dt (r4, r3). This is a key

finding of this study.
Here, we highlight the consistency of our model in terms

of its potentials. In the process of tuning the potential param-
eter sets, we considered the plane wave (D wave) of the α-n
relative motion in the T matrix (3.8) where the α-n potential

FIG. 5. Calculated S factor S(E ) of the reaction d + t → α +
n + 17.6 MeV. Five lines A1–E1 denote the cases using the dt-αn
coupling potentials with the parameter Sets A1–E1, respectively, in
Table IV. The black solid line indicating the experimental data is
from a review paper [10].

FIG. 6. Schematic illustration of Eq. (4.1) to construct the
continuum-discretized wave function φ̃ilm(r) by averaging the con-
tinuum wave functions φlm(k, r) in each momentum bin �ki = ki −
ki−1.

Vαn(r4) did not appear explicitly. We consider that the effect of
the α-n potential is effectively renormalized into the coupling
potential V (T)

αn,dt which is tuned to reproduce the observed S(E )
without Vαn(r4). In Secs. IV and V, we consistently use the
same potentials without Vαn(r4) in the T -matrix calculations
of the three-body dtμ-αnμ system. As shown later, most of
the results of Ref. [5] are well reproduced by our model.

IV. α-μ STICKING PROBABILITY

After fusion occurs in the dtμ molecule, the emitted muon
can be captured by the α particle or freely emitted, as shown
in Eq. (1.2). In this section, according to Step (iv) of the
Introduction, we calculate the fusion rate of the reaction (1.2)
and the α-μ sticking probability by referring to the T -matrix
calculation of those quantities in Sec. IV of Ref. [5] with the
outgoing waves in channel c = 5 (Fig. 3).

The authors of Ref. [5] solved the CC Schrödinger equa-
tion (3.7) for the reaction (1.2) and generated the wave
function �

(+)
3
2 M

(E ) expressed as Eq. (3.3). They constructed the

T -matrix elements (5.2)–(5.3) for use in another fusion calcu-
lation by substituting their �

(+)
3
2 M

(E ) into the exact wave func-

tion � (+)
α (Eα ) in the definition of T matrix (4.1) in Ref. [5].

Because the functions φβ (ξβ ) in the outgoing channel β in
the T matrix are orthonormalized functions of discrete states,
they discretized and orthonormalized the α-μ wave function
of the k-continuum state, for example, φlm(k, r5), to generate
φ̃ilm(r5) and energy ε̃i. This discretization was performed by
employing the procedure (Fig. 6)

φ̃ilm(r5) = 1√
Δki

∫ ki

ki−1

φlm(k, r5) dk, i = 1 − N, (4.1)

ε̃i = h̄2

2μr5

k̃ 2
i , k̃ 2

i =
(

ki + ki−1

2

)2

+ Δk2
i

12
.

(4.2)
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This has often been used in the continuum-discretized couple-
channels (CDCC) method for studying the projectile-breakup
reactions (for example, see review papers [15–17]). On the
other hand, φnlm(r5) stands for the bound states (αμ)nlm.
Then, it can be said that Ref. [5] investigated the reaction

(dtμ)J=v=0 → (αμ)il + n + 17.6 MeV (4.3)

↘ (αμ)nl + n + 17.6 MeV, (4.4)

considering a precise discretization of the α-μ continuum.
In our model, we replace �

(+)
3
2 M

(E ) with �
(J=v=0)
3
2 M

(dtμ) in

the T -matrix elements (5.2)–(5.3) in Ref. [5]. This is a key
point of the proposed model. �

(J=v=0)
3
2 M

(dtμ) is the ground-

state wave function of the (dtμ) molecule with the total
angular momentum spin 3/2 and was obtained in Eqs. (2.9)
and (2.15) with the d-t optical potential. As �

(J=v=0)
3
2 M

(dtμ)

does not explicitly include the αnμ amplitude, the third lines
of Eqs. (5.2) and (5.3) in Ref. [5] were excluded. �̊ (C)

3
2 M

(dtμ) +
�

(N)
3
2 M

(dtμ) that is the dominant component of �
(+)
3
2 M

(E ) is

replaced with �
(J=v=0)
3
2 M

(dtμ). Consequently, we obtain our T -

matrix elements with the outgoing wave functions in channel
c = 5:

T̃ (5)
il,mms

= 〈
eiK̃i ·R5 φ̃ilm(r5)χ 1

2 ms
(n)

∣∣V (T)
αn,dt

∣∣ �(J=v=0)
3
2 M

(dtμ)
〉

(4.5)

for the transition to discretized states (αμ)ilm, and

T (5)
nl,mms

= 〈
eiKn·R5 φnlm(r5)χ 1

2 ms
(n)

∣∣V (T)
αn,dt

∣∣ �(J=v=0)
3
2 M

(dtμ)
〉

(4.6)

for the transition to bound states (αμ)nlm. Here, we take
R4 = R3 [5] (cf. Fig. 3). The (αμ)-n plane waves along R5

are denoted by eiK̃i ·R5 and eiKn·R5 in which the momentum K̃i

and Kn are derived from energy conservation as follows (cf.
Fig. 2 and Sec. V of Ref. [5]):

Ẽi + ε̃i = E00 + Q, Ẽi = h̄2

2μR5

K̃2
i , (4.7)

En + εn = E00 + Q, En = h̄2

2μR5

K2
n , (4.8)

where ε̃i (εn) is the energy of φ̃ilm(r5) [φnlm(r5)] and E00 

3.030 keV which is negligible in the present scattering prob-
lem compared with Q = 17.6 MeV.

For the above discretization of the α-μ continuum states
φlm(k, r5), we considered N = 200 for l = 0 to 25, and max-
imum momentum h̄kN = 10MeV/c (̃εN = 487 keV) with the
constant �ki, which is the same as those used in Ref. [5].

Reaction rates of the reactions (4.3) and (4.4) are expressed
as follows:

rnl = vnl

(
μR5

2π h̄2

)2

×
∑
m,ms

∫ ∣∣T (5)
nl,mms

∣∣2
dK̂n, (4.9)

r̃il = vil

(
μR5

2π h̄2

)2

×
∑
m,ms

∫ ∣∣T̃ (5)
il,mms

∣∣2
d̂̃Ki, (4.10)

FIG. 7. Calculated reaction rate rbound
l (black closed circle) for

the bound state and rcont
l (red closed circle) for the continuum states

with respect to the angular momentum l . The black and red open
circles are the results of Kamimura et al. in Ref. [5] for comparison.
The potential Set B1 is used.

which is derived, respectively, by approximating Eqs. (5.6)
and (5.7) in Ref. [5] according to our proposed model. Here,
vil = h̄K̃i/μR5 is the velocity of the (αμ)il -n relative motion
associated with R5, and similarly for vnl = h̄Kn/μR5 . The
sum of the quantum number n for rnl and i for r̃il yields the
total reaction rate rbound

l for the bound states and rcont
l for the

continuum states:

rbound
l =

∑
n

rnl , rcont
l =

N∑
i=1

r̃il . (4.11)

In Fig. 7, we show the calculated rbound
l and rcont

l with l up
to 20 under the potential Set B1 in Table IV. For comparison,
we presented the rbound

l and rcont
l obtained in Ref. [5]. Both

results have similar tendency with respect to l .
The total reaction rates to the α-μ bound states and contin-

uum states are defined as follows:

λbound
f =

5∑
l=0

rbound
l , λcont.

f =
20∑

l=0

rcont.
l . (4.12)

Consequently, their sum

λ
(5)
f = λbound

f + λcont.
f (4.13)

is the fusion rate of the (dtμ)J=v=0 molecule calculated on
channel c = 5.

Table V lists the fusion rates λ
(5)
f for all 20 different poten-

tial Sets in Table IV. All the fusion rates λ
(5)
f are within a small

range of 1.1–1.2 × 1012s−1. This proves that the choice of
the potentials does not influence the fusion rate significantly.
This fusion rate is consistent with λ

(0)
f , which was derived in

Sec. II B from the imaginary part of the complex eigenenergy
of the (dtμ)J=v=0 molecule. Notably, in the proposed model,
the fusion rates λ

(5)
f have been calculated based on the ampli-

tude of the outgoing αnμ wave.
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TABLE V. Fusion rates λ
(5)
f calculated on the channel c = 5

with Eq. (4.13). ω0
S is the α-μ sticking probability calculated with

Eq. (4.14). See Table IV for the potential sets. Another type of
the fusion rate λ

(4)
f is discussed in Sec. V on the channel c = 4.

λ
(5)
f = (1.15 ± 0.05) × 1012s−1 and λ

(4)
f = (1.15 ± 0.04) × 1012s−1,

on average.

λ(5) ω0
S λ(4)

Potential set (1012 s−1) (%) (1012 s−1)

Set A1 1.12 0.942 1.11
Set A2 1.15 0.943 1.15
Set A3 1.11 0.942 1.11
Set A4 1.13 0.944 1.12

Set B1 1.14 0.942 1.13
Set B2 1.14 0.940 1.12
Set B3 1.13 0.940 1.12
Set B4 1.14 0.939 1.15

Set C1 1.14 0.928 1.14
Set C2 1.18 0.931 1.19
Set C3 1.18 0.945 1.18
Set C4 1.20 0.936 1.19

Set D1 1.13 0.943 1.13
Set D2 1.13 0.941 1.14
Set D3 1.15 0.937 1.13
Set D4 1.17 0.930 1.18

Set E1 1.16 0.935 1.15
Set E2 1.15 0.933 1.14
Set E3 1.16 0.938 1.15
Set E4 1.17 0.937 1.17

The initial α-μ sticking probability ω0
S is the probability

of the muon being captured by an α particle after the fusion
happens. This is expressed by the following formula in the
same manner as in Eq. (5.3) in Ref. [5]:

ω0
S = λbound

f

λbound
f + λcont.

f

. (4.14)

The second column of Table V presents the initial stick-
ing probabilities ω0

s for different potential sets. The ω0
s (=

0.938 ± 0.07%) are consistent and are close to the results
(0.91%–0.93%) obtained by using optical-potential models
[9,18] and by the R-matrix methods [19–24] considering the
d-t nuclear interaction; note that our calculation is based on
the absolute values of λbound

f and λcont.
f .

However, the values of ω0
s in Table V are ≈9% larger than

ω0
s (= 0.857%) given by Ref. [5] in which the coupling to

the αnμ channel is included explicitly. This may be attributed
to the following reason. In the CC work [5], strong coupling
between the αnμ outgoing amplitude �

(+)
3
2 M

(αnμ) and the nu-

clear dtμ amplitude �
(N)
3
2 M

(dtμ) is expected to enhance the

contribution of the transition to the α-μ continuum states in
Eqs. (5.2)–(5.3) of Ref. [5] more than that to the α-μ bound
states, which enhances the λcont.

f , and then reduces ω0
S . How-

ever, the present model does not exhibit such a CC effect.

V. MOMENTUM AND ENERGY SPECTRA OF MUON
EMITTED BY μCF

In this section, according to Step (v), we calculate the
momentum and energy spectra of the muons emitted by re-
action (1.2) and derive another type of fusion rate of the
(dtμ)J=v=0 molecule. We perform a T -matrix calculation by
referring to Sec. VI of Ref. [5] with (αn)-μ outgoing waves
in channel c = 4 (Fig. 3). We discretize and orthonormalize
the wave functions of the α-n continuum states; for example,
φlm(k, r4) with l = 2, generating φ̃ilm(r4) in the same manner
as described in Sec. IV.

We begin with the T matrix expressed as Eq. (6.2) in
Ref. [5], where �

(+)
3
2 M

(E ) is the total wave function obtained

using the CC Schrödinger equation (3.7) in Ref. [5]. In the
proposed model, we replace �

(+)
3
2 M

(E ) with �
(J=v=0)
3
2 M

(dtμ)

which is the ground-state wave function of the (dtμ) molecule
obtained from Eqs. (2.9) and (2.15) including the d-t optical
potential. This is the same key point of our model as men-
tioned in Sec. IV. Thus, in the three T -matrix elements in
Eq. (6.2) of Ref. [5], we exclude the third line because the
wave function �

(J=v=0)
3
2 M

(dtμ) does not have an αnμ scat-

tering amplitude, and replace �̊
(C)
3
2 M

(dtμ) + �
(N)
3
2 M

(dtμ) with

�
(J=v=0)
3
2 M

(dtμ).

We obtain T -matrix elements as follows [cf. Eq. (4.5)]:

T (4)
il,mms

= 〈
eiK̃i ·R4 φ̃ilm(r4) χ 1

2 ms
(n)

∣∣V (T)
αn,dt

∣∣�(J=v=0)
3
2 M

(dtμ)
〉
.

(5.1)

The outgoing wave is located in channel c = 4 and composed
of the plane wave eiK̃i ·R4 and discretized orthonormalized α-n
continuum states φ̃ilm(r4), which is constructed in the same
manner as that in Eq. (4.1) in Sec. IV.

φ̃ilm(r4) = 1√
Δki

∫ ki

ki−1

φlm(k, r4) dk, (i = 1 − N ). (5.2)

The average energy ε̃i and momentum k̃i of φ̃ilm(r4) are
given, similarly to Eq. (4.2). Therefore, the momentum K̃i of
the plane wave eiK̃i ·R4 is derived from the following energy
conservation (Q = 17.6 MeV):

Ẽi + ε̃i = E00 + Q, Ẽi = h̄2

2μR4

K̃2
i . (5.3)

A new problem in Sec. V is that we aim to generate the
set {K̃i; i = 1 − N} with equal intervals and obtain the mo-
mentum spectrum as a smooth function of K to determine
its peak easily. Figure 8 illustrates the manner in which k
space is discretized. Following Ref. [5], we first assume the
maximum value KN of K space [K0, KN ] with K0 = 0 at the
left side of the figure. We then divide the K space into N bins
(Ki, i = 0 − N) with equal intervals ΔK . Correspondingly, we
divide the k space [kN , k0] on the right side of the figure to N
bins (ki, i = 0 − N) with the energy conservation kept as

Ei + εi = E00 + Q, Ei = h̄2

2μR4

K2
i , εi = h̄2

2μr4

k2
i , (5.4)
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FIG. 8. Schematic illustration for discretization of the momen-
tum space [K0, KN ] of the (αn)-μ relative motion along R4 (left
half) and that of the α-n relative motion [kN , k0] along r4 (right half)
while maintaining Ei + εi = E00 + Q. The resulting discretized α-n
continuum states φ̃ilm(r4)(i = 1 − N ) are indicated by the red lines.
The associated muon plane waves eiK̃i ·R4 are indicated by the blue
lines in the left half. This illustration is taken from Ref. [5].

where Ki increases (ki decreases) with an increase in i. The bin
width Δki = |ki − ki−1| depends on i. Subsequently, φ̃ilm(r4)
is generated by using Eq. (5.2) with energy ε̃i. Finally, Ẽi is
expressed as Eq. (5.3) as shown in Fig. 8.

Similar to Ref. [5], we consider N = 200 setting h̄KN =
6.0 MeV/c (EN = 175 keV) in Fig. 8. This is sufficient
for deriving the muon momentum spectrum with a smooth
function.

A. Fusion rate of the dtμ molecule

In our model, instead of Eq. (6.4) in Ref. [5], we can write
the reaction rate to a continuum discretized state (αn)il ,

(dtμ)J=v=0 → (αn)il + μ + 17.6 MeV, (5.5)

as follows:

ril = vil

(
μR4

2π h̄2

)2 ∑
m,ms

∫ ∣∣T (4)
il,mms

∣∣2
d̂̃Ki, (5.6)

where vil = h̄K̃i/μR4 is the (αn)il -μ relative velocity.
The sum of the transition rates

λ
(4)
f =

∑
il

ril (5.7)

is the fusion rate of the (dtμ)J=v=0 molecule using the T
matrix based on channel c = 4 (cf. Eq. (6.5) in Ref. [5]). The
contribution to λ

(4)
f from the final states φ̃ilm(r4) with l �= 2 is

negligible under the present dt-αn tensor coupling interaction.
The calculated fusion rates λ

(4)
f are presented in the final

column of Table V for 20 sets of potentials listed in Table IV.
λ

(4)
f = 1.1–1.2 × 1012s−1 exhibits minimal dependence on the

potential sets and agrees with the result (1.15 × 1012s−1) pre-
sented in Ref. [5]. Moreover, the fusion rates λ

(4)
f and λ

(5)
f

under the same potential set yield almost the same values.

FIG. 9. Momentum spectrum r(K ) of the muon emitted by the
μCF reaction (1.2), which are calculated with Eq. (5.8) using the
potential Sets A1, B1, C1, D1, and E1 listed in Table IV.

B. Momentum and energy spectrum of the ejected muon

This subsection presents the muon momentum and energy
spectra derived as continuous functions of K and the kinetic
energy E , respectively, following Sec. VI B of Ref. [5]. The
momentum spectra, r(K ), is obtained by smoothing ril of
Eq. (5.6) as

λ
(4)
f =

∑
il

( ril

ΔK

)
ΔK

ΔK→0−→
∫ KN

0
r(K ) dK, (5.8)

FIG. 10. Energy spectrum r̄(E ) of the muon emitted by the μCF
reaction (1.2), which is calculated with Eq. (5.9) using potential Sets
A1, B1, C1, D1, and E1 listed in Table IV.
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FIG. 11. Momentum spectrum r(K ) of the ejected muon (red
line) calculated with the potential Set B1 in Fig. 9 in comparison
to r(K ) given by Kamimura et al. in Fig. 14 of Ref. [5].

where the present case ΔK = 0.03 MeV is sufficiently small.
The energy distribution, r̄(E ), is derived as follows:

r̄(E ) dE = r(K ) dK, E = h̄2K2/2μR4 . (5.9)

Figures 9 and 10 illustrate the muon momentum spectrum
r(K ) and the energy spectrum r̄(E ) calculated using the poten-
tial Sets A1, B1, C1, D1, and E1 (Table IV). The five lines are
close to each other in both the figures. This demonstrates that
our results are potentially independent of each other. Further,
we verified that the figures obtained using potentials A3–E3
are similar to Figs. 9 and 10.

In Figs. 11 and 12, we compare our results for r(K ) and
r̄(E ) (red lines using Set B1) with the results in Ref. [5] (black
lines) taken from Figs. 14 and 15 using Eqs. (6.9) and (6.11),
respectively. Our results agree well with those reported in Ref.
[5]. The use of any other potential set also reproduces the
result of Ref. [5] as is understood from Figs. 9 and 11.

In Table VI, the peak and average energies of the muon
energy spectrum r̄(E ) and those reported in Ref. [5] are
compared. The peak energy is located at E ≈ 1.1 keV both
in our T -matrix model and in Ref. [5]. The average energy

TABLE VI. Property of the muon energy spectrum r̄(E ) by the
present result with the use of potential Set B1 (Fig. 12). The case of
r̄(E ) given by Ref. [5] is also listed for comparison.

Peak Average Peak
energy energy strength

Muon energy spectrum (keV) (keV) (s keV)−1

Present, r̄(E ) with B1 1.1 8.9 1.54 × 1011

r̄(E ) (Ref. [5]) 1.1 9.5 1.60 × 1011

FIG. 12. Energy spectrum r̄(E ) of the ejected muon (red line)
calculated with the potential Set B1 in Fig. 10 in comparison to r̄(E )
given by Kamimura et al. in Fig. 15 of Ref. [5].

of 8.9 keV (Set B1) is also consistent with the result (9.5
keV) from Ref. [5]. This large average energy is caused by
the long high-energy tail of the energy spectrum as evident in
Fig. 12. Therefore, it can be concluded that muons with peak
energy of ≈1 keV and the average energy of ≈10 keV are
emitted by dtμ fusion, which is the same as in Ref. [5]. These
results will be helpful to the ongoing experimental project
for generate an ultraslow negative muon beam using μCF for
various applications.

VI. CONCLUSION

Recently, a comprehensive study of the μCF reaction (1.2)
was performed in Ref. [5] by solving two coupled channel
(CC) Schrödinger equations for the reactions (1.1) and (1.2).
In the present study, we have proposed a considerably more
tractable T -matrix model to simulate the CC model [5] by
considering scenarios (i) –(v):

(i) We reproduced the low-energy cross sections of reac-
tion (1.1) by using an optical-potential (OP) model (Fig. 2
and Table I). The effect of the α-n channel is consid-
ered to be included using the imaginary part of the optical
potential.

(ii) The exact T matrix for the reaction (1.1) was approx-
imated by replacing the exact CC wave function with the
OP-model wave function obtained in i). The cross section of
the reaction (1.1) was expressed by the simple closed form
(3.10) based on our model and reproduced the observed cross
section by properly selecting the dt-αn coupling potential
(Fig. 5 and Table IV).

(iii) We calculated the (dtμ)J=v=0 molecular wave func-
tion including the OP-model d-t potential determined in (i).

054625-10



TRACTABLE T -MATRIX MODEL FOR REACTION … PHYSICAL REVIEW C 109, 054625 (2024)

(iv) We approximated the full T matrix in Ref. [5] for the
reaction (1.2) as follows: We replaced the CC wave function
for this reaction with the muonic (dtμ)J=v=0 wave function
obtained in (iii).

(v) Using the approximated T matrix in (iv), we calculated
the reaction rates to the α-μ continuum and the bound states,
fusion rates of reaction (1.2), α-μ sticking probability, and
momentum and energy spectra of muons emitted by reaction
(1.2). Most of the results obtained in Ref. [5] were well
reproduced.

All the calculated results were insensitive to 20 sets of d-t
potential and dt-αn coupling potential. In practical calcula-
tions, the use of only a few sets is sufficient.

Thus, the proposed tractable T -matrix model was con-
structed, such that it reproduced most of the results obtained

in Ref. [5]. This model is applicable to other μCF systems
such as (ddμ), (ttμ), (dtμ)∗, and (ddμ)∗.
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