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Extended Skyrme momentum-dependent potential in asymmetric nuclear
matter and transport models
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Based on an extended Skyrme momentum-dependent interaction (MDI), we derive an isospin asymmetric
equation of state, isospin-dependent single-particle potential and the Hamiltonian which can be used in the
Boltzmann-Uehling-Uhlenbeck model and the quantum molecular dynamics (QMD) model at the beam energy
less than 1 GeV/u. As an example of the applications of extended Skyrme MDI, we also present the results
obtained with the extended Skyrme momentum-dependent interaction in the improved quantum molecular
dynamics model (ImQMD), and the influence of the effective-mass splitting on the isospin sensitive observables,
i.e., the single and double neutron-to-proton ratios, is discussed again.
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I. INTRODUCTION

The isospin asymmetric nuclear equation of state (EOS)
plays a crucial role in understanding various properties of
neutron stars, including the mass-radius relationship [1,2],
tidal deformability [3], neutron-star mergers [3–5] and core-
collapse of supernovae [6–8]. Numerous efforts have been
made to constrain the isospin asymmetric nuclear EOS, par-
ticularly the symmetry energy at densities below 3ρ0 [9–16].
However, our understanding of the dependence of the neutron-
star EOS on temperature and constituents such as neutrons,
protons and baryons, is limited when relying solely on the
properties of neutron stars.

The dependence of the symmetry energy on temperature
and constituents can be extracted from heavy ion collisions
(HICs) [17,18]. Up to now, some important progresses on the
constraints of the density dependence of the symmetry energy
via HICs have been obtained [12,15,19–23], but the discrep-
ancy between the constraints from HICs and from the neutron
stars was also observed [23,24]. One of the possibilities is
the momentum-dependent symmetry potential. The different
forms of the momentum-dependent symmetry potential can
lead to the same density dependence of symmetry energy,
which results in the same properties of neutron stars but dif-
ferent effects on the isospin sensitive observables [25–30].

The momentum-dependent symmetry potential is cal-
culated from the difference between the single-particle
potential of the neutron Vn and the proton Vp over the
isospin asymmetry of the system δ, i.e., Vsym = (Vn −
Vp)/2δ [31]. In general, the single-particle potential Vq=n,p

is composed of the momentum-independent potential and
the momentum-dependent potential. Especially, the isospin-
dependent momentum-dependent potential is not clearly
known. Thus, constraining the isospin-dependent momentum-
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dependent potential becomes one of the important topics in
heavy ion collisions, and it heavily rely on the transport
models. The strategy of constraining the form of neutron and
proton single-particle potential with HICs need to assume the
form of isospin-dependent MDI in advance, and then simulate
the HICs with different isospin-dependent MDI in the trans-
port model. By comparing the calculations to the data, one can
constrain the isospin-dependent MDI indirectly.

The isospin-dependent momentum-dependent potential
used in the transport models can be generally divided into
three types. The first one is the square-type [26,27,32,33]

Vq(p) ∝
∫

d3 p′ fq(r, p′)(p − p′)2, (1)

where fq(r, p′) is the phase space distribution function
[26,27,32,33] and had been used to study the effective
mass splitting in HICs. This form is suitable for the HICs
at the beam energy approximately less than 300 MeV/u
[34] since it violates the optical potential extrapolated from
the nucleon-nucleus reaction data. To fix this problem, the
logarithm-type and Lorentzian-type momentum-dependent
potential were proposed and used in the transport models.
The isospin-dependent logarithm-type momentum-dependent
single-particle potential is

Vq(p) ∝
∫

d3 p′ fq(r, p′)t4[ln(t5(p − p′)2 + 1)]2 (2)

and was mainly used in QMD models [28,35–38]. The third
one is the Lorentzian-type, and its single-particle potential is

Vq(p) ∝
∫

d3 p′ fq(r, p′)
1 + (p − p′)2/μ2

. (3)

Its isospin-dependent form was proposed in Ref. [39] and
was widely used in QMD-type [40–43] and BUU-type models
[39,44,45].

Theoretically, Eqs. (2) and (3) can only be calculated nu-
merically in the framework of the QMD-type models, but it
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will cost huge CPU time. To use the momentum-dependent
interaction (MDI) conveniently, one approximate the results
from Eqs. (2) and (3) by reformulating it with |pi − p j | [46],
where pi and p j are the average momentum of the ith and
jth nucleons, respectively. The effect of the width of the
wave packet was not explicitly involved. Therefore, modeling
the isospin-dependent momentum-dependent potential with
an appropriate shape over a wide beam energy region and
explicitly considering the effect of the width of wave packet
in the QMD type models is necessary. An extended Skyrme
MDI [47,48] can meet this requirement since both the single-
particle potential and the Hamiltonian with the Gaussian wave
packet can be calculated analytically. Furthermore, it will also
be useful in the BUU-type models and a pioneer work has
been done in Ref. [48] for giving the nuclear equation of state
and single-particle potential in nuclear matter.

This paper is organized as follows: In Sec. II, the form of
the extended Skyrme MDI, the single-particle potential, the
equation of state and the corresponding Hamiltonian used in
the ImQMD model are given. In Sec. III, we present the nu-
merical results on the equation of state, the symmetry energy
and the single-particle potential in nuclear matter obtained
with the extended Skyrme interactions. Then, we used the
extended Skyrme MDI in the ImQMD and the effects of
effective mass splitting on the neutron to proton yield ra-
tios are simply rediscussed. Section IV is the summary and
outlook.

II. FORMULAS

In the ImQMD model (-Sky version) [27], the Skyrme
potential energy density without the spin-orbit term is used:

usky = uloc + umd. (4)

The local potential energy density is

uloc = α

2

ρ2

ρ0
+ β

γ + 1

ργ+1

ρ
γ

0

+ gsur

2ρ0
(∇ρ)2 + gsur,iso

ρ0
[∇(ρn − ρp)]2

+ Asym
ρ2

ρ0
δ2 + Bsym

ργ+1

ρ
γ

0

δ2. (5)

ρ = ρn + ρp is the nucleon density and δ = (ρn − ρp)/ρ is
the isospin asymmetry. The α is the parameter related to the
two-body term, β and γ are related to the three-body term,
gsur and gsur,iso are related to the surface terms, Asym and Bsym

are the coefficients in the symmetry potential and come from
the two- and three-body terms [36,49]. The nonlocal potential
energy density is

umd = C0

∑
i j

∫
d3 pd3 p′ fi(r, p) f j (r, p′)(p − p′)2

+ D0

∑
i j∈n

∫
d3 pd3 p′ fi(r, p) f j (r, p′)(p − p′)2 (6)

+ D0

∑
i j∈p

∫
d3 pd3 p′ fi(r, p) f j (r, p′)(p − p′)2.

FIG. 1. Single-particle potentials obtained from the standard
Skyrme MDI (gray lines and blue lines) and the extended Skyrme
MDI (red line). The points are the data of single-particle potential
obtained from Hama’s data [51].

Here, fi(r, p) is the phase space density distribution of particle
i, i.e.,

fi(r, p) = 1

(π h̄)3
e
− (r−ri )2

2σ2
r

− (p−pi )2

2σ2
p .

The parameters in Eqs. (5) and (6) can be calculated directly
from the standard Skyrme interaction [15,49], and we name it
the standard Skyrme interaction or the standard Skyrme-type
MDI in the following discussions.

The treatments of the collision term and isospin-dependent
Pauli blocking effects are the same as those in Refs. [36,50].
The isospin-dependent in-medium nucleon-nucleon scatter-
ing cross sections in the collision term are assumed to be
of the form σ ∗

nn,pp/np = (1 − ηρ/ρ0)σ free
nn,pp/np, with η being a

parameter that depends on the beam energy. The influence of
extended MDI on the η is not discussed in this work.

In Fig. 1, we present the single-particle potentials in the
nuclear matter obtained with the standard Skyrme interac-
tions. The 123 Skyrme parameter sets (gray lines) are selected
according to the current knowledge on the nuclear matter
parameters [15], i.e., K0 = [200, 280] MeV, S0 = [25, 35]
MeV, L = [30, 120] MeV, m∗

s /m = [0.6, 1.0], fI = m/m∗
s −

m/m∗
v = [−0.5, 0.4]. At a momentum less than 0.8 GeV/c

(the kinetic energy is less than 300 MeV), there are 25
Skyrme parameter sets (blue lines): BSk14, BSk15, BSk16,
BSk17, BSk9, Gs, MSL0, Rs, Sefm081, SGII, SkM, SKMs,
SV-mas08, SkRA, QMC650, QMC700, QMC750, KDE,
KDE0v1, SkT7, SkT7a, SkT8, SkT8a, SkT9, and SkT9a can
describe the Hama data with a reduced χ2 is less than 0.7.
Most have m∗

n > m∗
p except for BSk9, KDE, KDE0v1. These

single-particle potentials go infinity as the relative momentum
increases, which violates the experimental data of the optical
potential (solid points) [51]. This condition limits the utility
of the standard Skyrme potential energy density in HICs at a
beam energy below 300 MeV/u. Furthermore, the research
of the scientific collaboration UNEDF-SciDAC [52,53] has
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shown that there is no more room to improve the standard
Skyrme functional to describe the nuclear and neutron stars
by simply acting on the optimization procedure.

To overcome the above deficiency of the standard Skyrme
interaction, an extended Skyrme effective interaction that in-
cludes the terms in relative momenta up to sixth order was
proposed in Ref. [47]. The extended Skyrme interaction was
stimulated by the idea that it is possible to expand a finite-
range interaction in terms of a zero range like and such an
expansion converges [54], and the central term can be written
order by order as

vC = t (0)
0

(
1 + x(0)

0 Pσ

)
δ(r)

+ 1

2
t (2)
1

(
1 + x(2)

1 Pσ

)
δ(r)[k′2 + k2]

+ t (2)
2

(
1 + x(2)

2 Pσ

)
δ(r)k′ · k

+ 1

4
t (4)
1

(
1 + x(4)

1 Pσ

)
δ(r)[(k′2 + k2)2 + 4(k′ · k)2]

+ t (4)
2

(
1 + x(4)

2 Pσ

)
δ(r)(k′ · k)(k′2 + k2)

+ t (6)
1

2

(
1 + x(6)

1 Pσ

)
δ(r)(k′2 + k2)[(k′2 + k2)2

+ 12(k′ · k)2]

+ t (6)
2

(
1+ x(6)

2 Pσ

)
δ(r)(k′ · k)[3(k′2+ k2)2+ 4(k′ · k)2].

(7)

The first term in Eq. (7) is the local two-body interaction;
the remaining terms are the nonlocal interaction with the
power of the relative momentum up to six, i.e., k6. Pσ is the
spin-exchange operator and k in Eq. (7) denotes the operator
(∇1 − ∇2)/2i acting on the right, whereas, k′ is the operator
−(∇1 − ∇2)/2i acting on the left. They are related to the
relative momentum between two nucleons.

Inspired by this idea, we assume a phenomenological
momentum-dependent interaction such as

g(p − p′) =
N∑

I=0

bI (p − p′)2I (8)

in the transport models. The parameter bI is used to determine
the shape of the MDI, and its dimension is GeV2−2I for keep-
ing the dimension of g(p − p′) in GeV2. Consequently, the
energy density umd in Eq. (6) is replaced by

umd = C̃0

∑
i j

∫
d3 pd3 p′ fi(r, p) f j (r, p′)g(p − p′)

+ D̃0

∑
i j∈n

∫
d3 pd3 p′ fi(r, p) f j (r, p′)g(p − p′) (9)

+ D̃0

∑
i j∈p

∫
d3 pd3 p′ fi(r, p) f j (r, p′)g(p − p′).

The number of N , the interaction parameters bI , C̃0, and D̃0

in Eqs. (8) and (9) can be determined by fitting the optical
potential data or calculations from microscopic model, such
as Dirac-Brueckner-Hartree-Fock [55].

At the given shape of MDI, i.e., given N and bI , one can
vary the form of symmetry potential, isoscalar effective mass,
and the isovector effective mass through C̃0 and D̃0, which
have a dimension in fm3/MeV. Their values are used to adjust
the strength and form of the momentum-dependent symmetry
potential for studying the uncertainty of the single-particle
potential of neutron and proton in isospin asymmetric nuclear
matter.

In the following part, we present the formulas for the
single-particle potential and the equation of state, the nuclear
matter parameters and their relations to the interaction pa-
rameters in transport models and the Hamiltonian used in the
QMD-type models as well.

A. Single-particle potential and equation of state

The single-particle potential Vq in isospin asymmetric
nuclear matter can be calculated by taking the functional
derivative of the energy density with respect to the single-body
phase space distribution of protons or neutrons fq(r, p),

Vq(ρ, δ, p) = δuloc

δ fq
+ δumd

δ fq

= V loc
q (ρ, δ) + V md

q (ρ, δ, p), (10)

where q = n or p. V loc
q is

V loc
q (ρ, δ) = δuloc

δ fq
= α

ρ

ρ0
+ β

ργ

ρ
γ

0

+ (γ − 1)Bsym
ργ

ρ
γ

0

δ2

± 2

[
Asym

ρ

ρ0
+ Bsym

(
ρ

ρ0

)γ ]
δ. (11)

The sign “+” is for neutrons, and “−” is for protons.
V md

q is

V md
q (ρ, δ, p) = δumd

δ fq
= 2C̃0

∫
d3 p′ f (r, p′)g(p − p′)

+ 2D̃0

∫
d3 p′ fq(r, p′)g(p − p′).

(12)

The form of Eqs. (11) and (12) can be directly used in trans-
port models for simulating heavy ion collisions by using the
phase space density fq(r, p) obtained in solving the transport
equation. Then, the environment of the nucleons changes,
such as the density, isospin asymmetry, and temperature of the
environment, from the initial to the final stage in the heavy-ion
collision will be automatically involved.

To quantitatively understand the properties of the extended
Skyrme MDI, the single-particle potential and equation of
state in the cold nuclear matter are analyzed and compared
with that obtained with standard Skyrme interaction. In cold
nuclear matter,

fq(r, p′) =
(

4π

3
p3

Fq

)−1

ρq�(pFq − |p′|)

= 2

(2π h̄)3 �(pFq − |p′|), (13)
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and pFq = h̄(3π2ρq)1/3. Thus, the corresponding V md
q can also

be written in an analytical form:

V md
q (ρ, δ, p) = 2C̃0

⎡
⎣ N∑

I=1

bI

2I∑
l=0,l∈even

ÃIl

∑
q=n,p

ρ (2I−l+3)/3
q pl

⎤
⎦

+ 2D̃0

⎡
⎣ N∑

I=1

bI

2I∑
l=0,l∈even

ÃIlρ
(2I−l+3)/3
q pl

⎤
⎦,

(14)

and

ÃIl = 2

(2π h̄)3 4π

{
[h̄(3π2)1/3](2I−l+3)

(
2I

l

)
1

(2I − l + 3)

}
.

Here,
(2I

l

)
represents the number of combinations of l ele-

ments selected from 2I elements. One should note that the
summation of bI in Eq. (14) starts from b1. The value of b0

will be related to the strength of the local potential when we
use the extended Skyrme energy density functional.

Furthermore, the single-particle potential Vq as in Eq. (10)
can be expanded as a power series of isospin asymmetry δ, by
using the ρq = ρ

2 (1 + τqδ), with τq = 1 or −1 for neutrons
and protons. The so-called Lane potential [31] means one
neglects the higher-order terms (δ2, δ3, . . . ), i.e.,

Vq = V0 ± Vsymδ + · · · . (15)

V0 is

V0 = α
ρ

ρ0
+ β

ργ

ρ
γ

0

+ 4

(
C̃0 + D̃0

2

)

×
⎡
⎣ N∑

I=1

bI

2I∑
l=0,l∈even

ÃIl

(ρ

2

)(2I−l+3)/3
pl

⎤
⎦. (16)

Vsym is,

Vsym = 2Asym
ρ

ρ0
+ 2Bsym

(
ρ

ρ0

)γ

+ 2D̃0

[
N∑

I=1

bI

2I∑
l=0,l∈even

ÃIl
2I − l + 3

3

×
(ρ

2

)(2I−l+3)/3
pl

]
. (17)

The first and second terms in Eq. (17) are the momentum-
independent parts of the symmetry potential, and the last term
is the momentum-dependent part of the symmetry potential.

The isospin asymmetric equation of state for cold nuclear
matter reads

E/A(ρ, δ) = 3h̄2

10m

(
3π2

2
ρ

)2/3

+ α

2

ρ

ρ0
+ β

γ + 1

ργ

ρ
γ

0

+
(

C̃0 + D̃0

2

) N∑
I=1

g̃(I )
mdρ

2I/3+1 + S(ρ)δ2 + · · · .

(18)

The coefficient of g̃(I )
md is

g̃(I )
md = 4bI

2(2I+6)/3

2I∑
l=0,l∈even

GIl , (19)

with GIl being

GIl =
(

2

(2π h̄)3

)2

(4π )2

{
[h̄(3π2)1/3](2I+6)

(
2I

l

)

× 1

(l + 3)

1

(2I − l + 3)

}
,

which has a constant value at a given I , and l and is indepen-
dent of bI .

The density dependence of the symmetry energy S(ρ) be-
comes

S(ρ) = h̄2

6m

(
3π2ρ

2

)2/3

+ Asym
ρ

ρ0
+ Bsym

(
ρ

ρ0

)γ

+
N∑

I=1

C̃(I )
symρ2I/3+1. (20)

Here C̃(I )
sym is

C̃(I )
sym = 2C̃0

[
bI

2(2I+6)/3

2I∑
l=0,l∈even

GIl

×
(

l + 3

3

l

3
+ 2I − l + 3

3

2I − l

3

)]

+ D̃0

⎡
⎣ bI

2(2I+6)/3

2I + 6

3

2I + 3

3

2I∑
l=0,l∈even

GIl

⎤
⎦. (21)

which is the ith coefficient of the extended Skyrme-type MDI
term in the symmetry energy. The derivations of the en-
ergy density and the single-particle potential can be found in
Appendixes A and B.

The single-particle potential, EOS, and symmetry energy
at finite temperature can be obtained by using Eqs. (11),
(12), and (9) by replacing f with the Fermi distribution at a
certain temperature and solving these equations with the same
method as in Ref. [56]. Our calculations show that the differ-
ence of single-particle potential between T = 0 and T = 20
MeV is less than 9% at the momentum less than 500 MeV/c,
and similar at momenta greater than 500 MeV/c.

B. Nuclear matter parameters and its relation
to the interaction parameters

To investigate the uncertainty of the neutron and proton
single-particle potential in isospin asymmetric nuclear matter,
one may vary it by adjusting the effective nuclear interac-
tion parameters in the transport models. However, directly
adjusting the effective nuclear interaction parameters always
mixes the contributions from the isoscalar and isovector part
of single-particle potential. To isolate the contributions from
the isoscalar and isovector part of the effective interaction, one
can set the nuclear matter parameters as an input variable in
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the transport models. The advantages of using nuclear matter
parameters as input are as similar as in Refs. [15,57,58].
First, the nuclear matter parameters have a precise physical
meaning. Second, the Bayesian analysis in transport model
simulations in the nuclear matter parameter space can be
easily performed, and the uncertainty of the theoretical pre-
dictions for all bulk properties can be directly obtained.

In this work, the parameters used in the extended Skyrme
interaction as in Eq. (18), i.e., α, β, γ , Asym, Bsym, C̃0, and D̃0,
can be obtained from the nuclear matter parameters by the
same standard protocol as in the standard Skyrme interaction
[15]. They are realized by solving the seven equations for
the determination of the saturation density ρ0, the energy per
nucleon at saturation density E0, the incompressibility K0, the
isoscalar effective mass m∗

s , the isovector effective mass m∗
v ,

the symmetry energy coefficient S(ρ0) and the slope of the
symmetry energy L.

The first equation is related to the value of the saturation
density ρ0 which is obtained by seeking the root of the fol-
lowing equation:

P = ρ2
0

d

dρ

E

A
(ρ0, δ = 0) = 0, (22)

i.e.,

2

5
ε0

F ρ0 + α

2
ρ0 + β

γ + 1
γ ρ0

+
(

C̃0 + D̃0

2

) N∑
I=1

g̃(I )
md

(
2I

3
+ 1

)
ρ

2I/3+2
0 = 0, (23)

where

ε0
F = h̄2

2m

(
3π2ρ0

2

)2/3

.

The second equation is the binding energy E0. It reads

E0 = E/A(ρ0)

= 3

5
ε0

F + α

2
+ β

γ + 1
+

(
C̃0 + D̃0

2

) N∑
I=1

g̃(I )
mdρ

2I/3+1
0 .

(24)

The third equation is the incompressibility K0, i.e.,

K0 = 9ρ2
0
∂2E/A

∂ρ2

∣∣∣∣
ρ0

= −6

5
ε0

F + 9
β

γ + 1
γ (γ − 1)

+ 6

(
C̃0 + D̃0

2

) N∑
I=1

g̃(I )
md

(
2I

3
+ 1

)
Iρ2I/3+1

0 . (25)

The fourth and fifth equations are related to the neutron and
proton effective mass or the isoscalar and isovector effective
mass. The neutron and proton effective mass are obtained
from the neutron and proton potential according to

m

m∗
q

= 1 + m

p

∂Vq

∂ p
, q = n, p. (26)

The neutron and proton effective mass will be

m

m∗
q

= 1 + 2C̃0m

[
N∑

I=1

bI

2I∑
l=0,l∈even

ÃIl

∑
q

ρ (2I−l+3)/3
q l pl−2

]

+ 2D̃0m

[
N∑

I=1

bI

2I∑
l=0,l∈even

ÃIlρ
(2I−l+3)/3
q l pl−2

]
. (27)

Then, we can find the relationship between �m∗
np = (m∗

n −
m∗

p)/m and Vsym as

�m∗
np ≈ −

(
m∗

m

)2

4mδ
∂Vsym

∂ p2
, (28)

The derivation can be found in Appendix C. It means that the
strength of the effective mass splitting �m∗

np depends on the
momentum-dependent part of the symmetry potential when
the m∗/m is fixed.

The isoscalar effective mass m∗
s can be obtained at ρq =

ρ/2 from Eq. (27), and the isovector effective mass m∗
v can

be obtained at ρq = 0 which represents the neutron (pro-
ton) effective mass in pure proton (neutron) matter as in
Refs. [59,60]. They are

m

m∗
s

(ρ, p) = 1 + 4

(
C̃0 + D̃0

2

)
m

×
[

N∑
I=1

bI

2I∑
l=0,l∈even

ÃIl

(ρ

2

)(2I−l+3)/3
l pl−2

]
,

m

m∗
v

(ρ, p) = 1 + 4C̃0m

×
[

N∑
I=1

bI

2I∑
l=0,l∈even

ÃIl

(ρ

2

)(2I−l+3)/3
l pl−2

]
.

(29)

As same as in Ref. [27], we define a quantity fI ,

fI (ρ, p) = m

m∗
s

− m

m∗
v

= 2D̃0m

[
N∑

I=1

bI

2I∑
l=0,l∈even

ÃIl

(ρ

2

)(2I−l+3)/3
l pl−2

]
,

(30)

to describe the isospin effective mass splitting, which has
the opposite sign with �m∗

np. In practical transport model
calculations, �m∗

np depends on the power expansion of isospin
asymmetry and cannot be used to calculate the D̃0 accurately.
Thus, in the determination of interaction parameters in the
transport models, we use the values of m∗

s /m and fI .
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The sixth and seventh equations are the symmetry energy
coefficient S0,

S0 = S(ρ0) = 1

3
ε0

F + Asym + Bsym +
N∑

I=1

C̃(I )
symρ

2I/3+1
0 , (31)

and the slope of the symmetry energy L is

L = 3ρ0
∂S(ρ)

∂ρ

∣∣∣∣
ρ0

= 2

3
ε0

F + 3Asym + 3Bsymγ

+ 3
N∑

I=1

C̃(I )
sym

(
2I

3
+ 1

)
ρ

2I/3+1
0 . (32)

Given the values S0, L, K0, E0, and ρ0, f 0
I = fI (ρ0, pF ) and

m/m∗
s0 = m

m∗
s
(ρ0, pF ), the coefficients α, β, γ , Asym, Bsym, C̃0,

and D̃0 can be obtained according to the following formulas:

D̃0 = f 0
I /

[
2m

N∑
I=1

bI

2I∑
l=0,l∈even

ÃIl

(ρ0

2

)(2I−l+3)/3
l pl−2

F

]
.

(33)

C̃0 =
(

m

m∗
s0

− 1

)/[
4m

N∑
I=1

bI

×
2I∑

l=0,l∈even

ÃIl

(ρ0

2

)(2I−l+3)/3
l pl−2

F

]
− D̃0

2
. (34)

γ = K0 + 6
5ε0

F − 6
(
C̃0 + D̃0

2

) ∑N
I=1

(
2I
3 + 1

)
Iρ

2I
3 +1

0 g̃(I )
md

9
5ε0

F − 6
(
C̃0 + D̃0

2

) ∑N
I=0 Iρ

2I
3 +1

0 g̃(I )
md − 9E0

,

β =
[

1
5ε0

F − 2
3

(
C̃0 + D̃0

2

) ∑N
I=1 Iρ

2I
3 +1

0 g̃(I )
md − E0

]
(γ + 1)

γ − 1
,

α = 2E0 − 2

(
C̃0 + D̃0

2

) N∑
I=1

ρ
2I
3 +1

0 g̃(I )
md − 6

5
ε0

F − 2β

γ + 1
,

Bsym = 3S0 − L − 1
3ε0

F + 2
∑N

I=1 IC̃(I )
symρ

2I
3 +1

0

−3(γ − 1)
,

Asym = S0 − 1

3
ε0

F − Bsym −
N∑

I=1

C̃(I )
symρ

2I
3 +1

0 . (35)

C. Hamiltonian from extended Skyrme momentum-dependent
interaction in the quantum molecular dynamics type models

Here, we give an example of the Hamiltonian of the extend
Skyrme MDI in the QMD-type models. The energy density
of the extended Skyrme MDI can be obtained by folding the
interaction with the wave function or with the phase space
density as in Eq. (9).

In the framework of the ImQMD model, the result of the
integration term Ii j = ∫

d3 pd3 p′ fi(r, p) f j (r, p′)g(p − p′) in

Eq. (9) is

Ii j =
∫

d3 pd3 p′ fi(r, p) f j (r, p′)g(p − p′)

= 1(
2πσ 2

r

)3

1(
πσ 2

p

)1/2 exp

[
− (r − ri )2

2σ 2
r

− (r − r j )2

2σ 2
r

]

×
N∑

I=1

bI

2I+1∑
l=0,l∈even

(
2I + 1

l

)
(pi − p j )

2I−lW (l, σp).

(36)

Here, W (l, σp) are the contributions from the width of the
wave packet and they are

W
(
0, α = 1/4σ 2

p

) =
√

π

2α1/2
= √

πσp,

W
(
1, α = 1/4σ 2

p

) = 1

2α
= 2σ 2

p ,

...

W
(
l, α = 1/4σ 2

p

) = − ∂

∂α
W (l − 2, σp). (37)

The integration of Ii j over the coordinate space is

∫
Ii jd

3r = ρi j

N∑
I=1

bI

2I+1∑
l=0,l∈even

(
2I + 1

l

)
(pi − p j )

2I−l

× W
(
l, σp

)
(
πσ 2

p

)1/2 , (38)

and thus the corresponding part of Hamiltonian is

H = 2C̃0

∑
i j

ρi j

N∑
I=1

bI

2I+1∑
l=0,l∈even

(
2I + 1

l

)
(pi − p j )

2I−l

× W (l, σp)(
πσ 2

p

)1/2 + (C̃0 + D̃0)
∑
i j∈q

ρi j

N∑
I=1

bI

×
2I+1∑

l=0,l∈even

(
2I + 1

l

)
(pi − p j )

2I−l W (l, σp)

(πσ 2
p )1/2

, (39)

where

ρi j = 1(
4πσ 2

r

)3/2 exp

[
− (ri − rj)2

4σ 2
r

]
. (40)

III. RESULTS AND DISCUSSIONS

A. Determination of the expansion number N and coefficient bI

The values of N , bI , C̃0, and D̃0 are obtained by fitting the
V0(ρ0, p) in Eq. (16) to Hama’s optical potential data [51],
which gives the isoscalar effective mass m∗

s /m = 0.77. One
should note that the data can be well described when N � 4.
As an example, we present the fitting results with extended
Skyrme MDI in Fig. 1 as the red line. The values of bI , C̃0, and
D̃0 for N = 4, 5, and 6 are listed in Table I. Our calculations
show that the results of the EOS, single-particle potential, and
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TABLE I. The parameters of bI used in extended Skyrme MDI are in GeV2−2I and C̃0, D̃0 are fm3/GeV.

N b0 b1 b2 b3 b4 b5 b6 C̃0 D̃0

4 −1.105 3.649 −2.608 0.826 −0.093 − − 0.182 0.00
5 −1.135 4.137 −3.821 1.837 −0.428 0.038 − 0.182 0.00
6 −1.149 4.434 −4.828 3.048 −1.070 0.193 −0.014 0.182 0.00

HIC observables are independent of the N we used, since they
are used to fit the same data. In the following calculations, we
keep N = 4 and the values of b1 to b4 are fixed. Nevertheless,
the extrapolated strength of the single-particle potential above
1 GeV is different for different N , and which should be inves-
tigated by using the HICs at high beam energies [61] and will
not be discussed in this paper.

B. Single-particle potential, equation of state,
and symmetry energy

Now let us check the neutron and proton single-particle
potentials and the isospin asymmetric nuclear equation of
state obtained with the extended Skyrme MDI. For compar-
ison, we also plot the corresponding results obtained with the
standard Skyrme MDI. In the calculations, we fix the values
of K0 = 230 MeV, m∗

s /m = 0.77, S0 = 32 MeV, and vary the
L and the fI . In Table II, we list the corresponding interaction
parameters, such as α, β, γ , Asym, Bsym, C̃0, and D̃0, that will
be used in the transport models. The values in brackets from
the second to the eighth rows represent the values obtained
with the standard Skyrme MDI as in Ref. [15].

Since the isospin asymmetric nuclear equation of state can
be written as,

E (ρ, δ)/A = E0(ρ, δ = 0)/A + S(ρ)δ2 + · · · , (41)

with a parabolic approximation, the isospin symmetric part
of EOS E (ρ, δ = 0)/A is presented in Fig. 2(a) and the den-
sity dependence of symmetry energy S(ρ) is presented in
Fig. 2(b). The gray lines in Fig. 2(a) are the EOS obtained
by the 123 standard Skyrme interaction sets. It shows that
the extended Skyrme interaction can reasonably reproduce the
EOS for symmetric nuclear matter, and avoid the defect of de-
scribing EOS by only using the Taylor expansion parameters
as described in Ref. [62].

Figure 2(b) is the density dependence of the symmetry en-
ergy obtained with the extended Skyrme MDI (colored lines)

and the standard Skyrme MDI (gray lines). As expected, the
results obtained with different L exhibit different density de-
pendence of the symmetry energy. However, the influence of
different fI on the density dependence of the symmetry energy
is weak. For the standard Skyrme MDI (gray lines), the influ-
ence of different fI mainly appears at the density above 1.5ρ0.
At ρ = 2ρ0, the difference between the symmetry energy
obtained with two fI is less than 7% for L = 100 MeV, and
is less than 13% for L = 46 MeV. For extended Skyrme MDI,
the density dependence of the symmetry energy obtained with
fI = 0.3 (solid lines) and fI = −0.3 (dashed lines) are close
to each other at both L = 46 or 100 MeV at ρ < 3ρ0. The
reason is that the different effective mass splitting obtained by
the extended Skyrme MDI have a smaller impact on the Asym,
Bsym, and C(I )

sym terms in the density dependent of the symmetry
energy compared with the standard Skyrme MDI according to
Eqs. (33)–(35).

Based on the above discussions, one can expect the sym-
metry energy constraints from the properties of the neutron
stars, such as the mass-radius relationship and the tidal de-
formability, cannot well distinguish fI (or effective-mass
splitting �m∗

np), because the Tolman-Oppenheimer-Volkov
(TOV) equation of neutron stars only depends on the pres-
sure vs density [63]. However, the similar density-dependent
symmetry energy from different fI could lead to different
effects on the HICs observables via the momentum-dependent
symmetry potential, and thus the constraints of the symmetry
energy from HICs may be different from the constraints from
neutron stars.

To see the neutron and proton single-particle potentials (Vn

and Vp) in isospin asymmetric nuclear matter obtained with
different fI (or effective mass splitting), we present the Vn and
Vp as functions of kinetic energies in nuclear matter with δ =
0.2 in Fig. 3. The upper panels, middle panels, and bottom
panels are the results obtained at the densities ρ = 0.3ρ0, ρ0,
and 1.5ρ0, respectively. Figures 3(a)–3(c) present the neutron
potential Vn (black lines) with fI = +0.3, and Figs. 3(d)–3(f)

TABLE II. The parameters used in the calculations corresponding to K0 = 230 MeV, m∗
s /m = 0.77, S0 = 32 MeV, and different values of

L and fI . The parameters α, β, Asym, Bsym are in MeV. C̃0 and D̃0 are fm3/GeV.

Para. (L = 46, fI = 0.3) (L = 46, fI = −0.3) (L = 100, fI = 0.3) (L = 100, fI = −0.3)

α −236.58 (−265.78)
β 163.95 (194.93)
γ 1.26 (1.22)
Asym 83.65 (108.44) 58.57 (62.73) 14.41 (25.32) −10.67 (−20.40)
Bsym −79.48 (−103.69) −30.52 (−35.38) −10.25 (−20.34) 38.72 (47.96)

C̃0 −7.92 × 10−4 (−2.08 × 10−3) 0.37 (1.00) −7.92 × 10−4 (−2.08 × 10−3) 0.37 (1.00)

D̃0 0.37 (1.00) −0.37 (−1.00) 0.37 (1.00) −0.37 (−1.00)
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FIG. 2. (a) The equation of state obtained with the extended
Skyrme MDI and the standard Skyrme MDI. (b) The density
dependence of the symmetry energy obtained with the extended
Skyrme MDI and the standard Skyrme MDI at fI = ±0.3 and
L = 46, 100 MeV.

are the proton potential Vp (red lines) with fI = −0.3. All
these results are obtained according to the Eqs. (15)–(17). The
dashed lines are obtained with the standard Skyrme MDI, and
the solid lines are obtained with the extended Skyrme MDI.

As expected, the values of Vn and Vp obtained from the
extended Skyrme MDI reach an asymptotic value with an in-
crease of Ek at densities we presented. Generally, the strength
of single-particle potential increases with the density increas-
ing, and similar trends are for the strength of symmetry
potential. There is a cross point of symmetry potential ob-
tained with fI = 0.3 and fI = −0.3, and this point moves to
a high kinetic energy region with the density increasing. This
behavior can be observed by the energy spectral of neutron-
to-proton yield ratios, i.e., Rn/p, as discussed in our previous
published results [27].

FIG. 3. Left panels and middle panels are the single-particle
potential for fI = 0.3 and fI = −0.3, respectively. Right panels
are the symmetry potential. The upper, middle, and bottom panels
are the results at ρ = 0.3ρ0, ρ = ρ0 and ρ = 1.5ρ0. Solid lines are
the results obtained with extended MDI, and dashed lines are for
standard Skyrme MDI.

FIG. 4. Rn/p and DR(n/p) as a function of Ek/A at the beam
energy Ebeam = 120 MeV/u in the transverse direction 700 � θc.m. �
1100.

Focusing on the impact of fI , one can observe that the Vn is
greater than Vp when fI = 0.3 (m∗

n < m∗
p). In more detail, neu-

trons will feel a stronger repulsive force than protons at high
kinetic energy where Vq > 0, and neutrons feel a weaker at-
tractive force than protons at low kinetic energy where Vq < 0.
For fI = −0.3 (m∗

n > m∗
p), Vn is less than Vp at Ek > 150 MeV

and a contradictory behavior is observed at Ek < 150 MeV. To
single out the contributions from the isoscalar single-particle
potential, the symmetry potentials Vsym as functions of kinetic
energy Ek are plotted in Figs. 3(g)–3(i). The convention of
the line styles is as same as in Figs. 3(a)–3(f). The green and
blue lines represent fI = −0.3 and fI = +0.3, respectively.
The Vsym increases (decreases) with the kinetic energy increas-
ing for fI = +0.3 ( fI = −0.3). Different than the standard
Skyrme MDI, the values of Vsym obtained from the extended
Skyrme MDI tend to flatten out as Ek increases. Thus, one
may expect the difference of the neutron to proton yield ratios
in HICs, i.e., Y (n)/Y (p), obtained from two different fI will
become smaller for the extended Skyrme MDI than that for
standard Skyrme interaction.

C. The effects of extended Skyrme momentum-dependent
interaction on the neutron-to-proton ratios

To see the influence by using the extended Skyrme MDI
and the standard Skyrme MDI on the HICs observables, the
central collisions of the systems A = 124Sn + 124Sn and B =
112Sn + 112Sn are simulated at the beam energy of 120 MeV/u
and b = 2 fm. The HIC observables, i.e., the single ratio of
the coalescence invariant (CI) neutron and proton Rn/p =
YCI (n)/YCI (p) and the double ratio of the coalescence invari-
ant (CI) neutron and proton DR(n/p) = Rn/p(A)/Rn/p(B), are
analyzed under different L and fI . The YCI (n) and YCI (p) are
obtained by combining the free nucleons with those bound in
light isotopes with 1 < A < 5 [58,64].

In Fig. 4, we present the Rn/p and DR(n/p) as a func-
tion of Ek/A, i.e., the kinetic energy per nucleon of emitted
particles in the center of mass frame at the beam energy
Ebeam = 120 MeV/u. The left and middle panels are Rn/p for
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FIG. 5. Panel (a) is time evolution of average density in center
of system. Panel (b) is the symmetry potential for fI = 0.3 and fI =
−0.3 at different densities.

112Sn + 112Sn and 124Sn + 124Sn, respectively. The right pan-
els are for the DR(n/p). Our calculations show that the values
of Rn/p and DR(n/p) obtained with fI = 0.3 are greater than
that with fI = −0.3 at high kinetic energy region for both
MDIs (shaded regions) and both L (the results for L = 46
MeV are in the upper panels and the results for L = 100
MeV are in the bottom panels). It can be understood from the
symmetry potential presented in Fig. 3.

Another, to understand the difference of the Rn/p [or
DR(n/p)] obtained with two MDIs, we also present the re-
sults obtained with standard Skyrme MDI in the dashed
shaded regions. The values of Rn/p obtained with the extended
Skyrme-type MDI are almost the same as those obtained with
the standard Skyrme MDI in the low kinetic energy region
where the symmetry potential of the two MDI forms is ba-
sically the same. At the high kinetic energy region, the Rn/p

obtained with the extended Skyrme MDI is different than
that with standard Skyrme MDI, but the difference depends
on the fI . In the case of fI = −0.3, the Rn/p obtained with
extended Skyrme MDI are obviously larger than that with
standard Skyrme MDI. But for fI = 0.3, the Rn/p obtained
with extended Skyrme MDI are close to that with standard
Skyrme MDI. It seems contradictory with the symmetry po-
tential presented in Fig. 3 but can be understood from the
reaction dynamics.

In the simulations of HICs, the maximum compressed den-
sity depends on the form of MDI, as shown in Fig. 5(a). For
fI = −0.3, our calculations show that the maximum com-
pressed density reaches about 1.94ρ0 for extended Skyrme
MDI and reaches about 1.84ρ0 for standard Skyrme MDI.
The difference of the maximum compressed density obtained
with two MDIs is less than 6%. Thus, the difference of Rn/p

obtained with two MDIs will be similar with the difference
of symmetry potential at a certain density. However, for
fI = 0.3, the difference of the maximum compressed density
obtained with two MDIs reaches about 18%, where the max-
imum compressed density reaches about 1.9ρ0 for extended
Skyrme MDI and reaches about 1.56ρ0 for standard Skyrme
MDI. Consequently, the difference of Rn/p obtained with two
MDIs will not be similar with the difference of symmetry

potential at a certain density. It will be like a difference of
the symmetry potential at two densities for two MDIs. For
example, as shown in Fig. 5(b), the difference of the sym-
metry potential obtained with the extended Skyrme MDI at
1.5ρ0 and the symmetry potential obtained with the standard
Skyrme MDI at 1.0ρ0 is small, and thus the difference of Rn/p

between two MDIs becomes smaller for fI = 0.3.
The differences of the single-particle potential between the

extended Skyrme MDI and standard MDI become obvious at
higher beam energies. Therefore, the Rn/p and DR(n/p) at the
beam energies of 270 and 400 MeV/u, which is in the ca-
pability of ImQMD model, are also analyzed. The calculated
results are presented in Fig. 6. Similar to the results at 120
MeV/u, the Rn/p and DR(n/p) obtained with fI = 0.3 are
greater than that with fI = −0.3 in the high kinetic energy
region. To quantitatively describe the isospin effective-mass
splitting effects on Rn/p, we construct the difference of Rn/p

between two kinds of fI , i.e.,

�Rn/p = Rn/p( fI = +0.3) − Rn/p( fI = −0.3). (42)

Our calculations reveal that �Rn/p obtained with the extended
Skyrme MDI is smaller than that with standard Skyrme MDI,
and this difference increases with the beam energy. For ex-
ample, for 124Sn + 124Sn, the difference of �Rn/p between the
extended Skyrme MDI and standard Skyrme MDI increases
from 15% to 45% at Ek/Ebeam = 0.75 as the beam energy
increases from 120 to 400 MeV/u.

D. Discussions on the constraints of the effective mass splitting

Furthermore, we also compare the calculation to the cor-
rected data of Rn/p and DR(n/p) (green symbols) that were
published in Ref. [58]. In general, the calculated Rn/p and
DRn/p obtained with fI = −0.3(�m∗

np ≈ 0.311δ) are close
to the data points for L = 46 MeV. In the case of L =
100 MeV, the data fall into the middle between the re-
sults obtained with fI = −0.3(�m∗

np ≈ 0.311δ) and fI =
0.3(�m∗

np ≈ −0.311δ). It implies that the �m∗
np is negatively

correlated with L, which is consistent with the results obtained
with Hugenholtz-Van Hove (HVH) theorem [65]. This con-
clusion is consistent with the previous results in Ref. [58].
However, one should note that the DR(n/p) suppresses the
sensitivity to effective mass splitting, and the curves of Rn/p

as a function of Ek are different from the data for both reac-
tion systems if we carefully check its shape. Therefore, it is
important to further quantitatively analyze the shapes of Rn/p

as a function of Ek .
To probe the strength of the effective-mass splitting which

only depends on the momentum-dependent part of the sym-
metry potential [as mentioned in Eq. (28)], one has to single
out the contributions from the momentum-dependent part of
the symmetry potential. The slope of ln Rn/p as a function of
Ek/A, i.e.,

Sn/p = ∂ ln Rn/p

∂Ek/A
, (43)

can be used as mentioned in Ref. [33]. According to the sta-
tistical and dynamical model [66–71], the neutron-to-proton
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FIG. 6. The Rn/p and DR(n/p) as a function of Ek/A at the beam energy Ebeam = 270 MeV/u, 400 MeV/u in transverse direction 700 �
θc.m. � 1100.

yield ratios Rn/p can be written as

Rn/p = Y(n)

Y(p)
∝ exp

(
μn − μp

T

)
= exp

(
2Vsymδ

T

)
. (44)

T is the temperature of the emitting source, μn and μp are
the chemical potentials of neutrons and protons, respectively.
If we expand the symmetry potential with respect to p2, i.e.,
Vsym = V 0

sym + ∂Vsym

∂ p2 p2 + · · · , then Rn/p can be written as

Rn/p ∝ exp

⎡
⎢⎣2

(
V 0

sym + ∂Vsym

∂ p2 p2 + · · ·
)
δ

T

⎤
⎥⎦

≈ exp

[
2V 0

symδ

T

]
exp

⎡
⎣−

(
m
m∗

)2
�m∗

np

T
E ′

k

⎤
⎦. (45)

E ′
k = p2

rel/2m is the relative kinetic energy between colliding
nucleon pairs during the collisions, which should positively
correlate to the kinetic energy of emitted nucleons. If we
simply assume E ′

k = λEk/A, then we have

Sn/p = − λ

T

( m

m∗
)2

�m∗
np, (46)

which is directly related to the �m∗
np. If one assumes λ = 1

and T = 5 MeV, the estimated values of Sn/p are in the range
from ±0.02 for the parameters we used, i.e., m∗

s /m = 0.77
and fI = ±0.3. In the HICs, the λ is related to the friction of
the system and the value should be smaller than one. Thus,
one can expect |Sn/p| < 0.02 if T = 5 MeV.

In Fig. 7, we present the Sn/p obtained in the simulation and
data. Two kinetic regions, i.e., the kinetic energy per nucleon
of the emitted particles in the range of 35 MeV � �E1 �
55 MeV and 55 MeV � �E2 � 95 MeV, are used to calcu-
late Sn/p. The systems of 112Sn + 112Sn and 124Sn + 124Sn at
the beam energy of 120 MeV/u are presented in the left
and right panels, respectively. The red circles represent the
results obtained with fI = 0.3, the blue circles represent the
results with fI = −0.3. The green squares are the data points
of Sn/p which are extracted from the published experimental

data [58]. One can find that the calculations tend to favor
different effective mass splitting at different kinetic energy
regions. In quality, the calculated values of Sn/p tend to favor
fI < 0 (m∗

n > m∗
p) at the kinetic energy less than 55 MeV. At

the kinetic energy greater than 55 MeV, the calculated values
of Sn/p tend to favor fI > 0 (m∗

n < m∗
p). It implies the m∗

n > m∗
p

at low kinetic energy and m∗
n < m∗

p at high kinetic energy,
which is consistent with the theoretical calculations from the
relativistic Hartree-Fock calculations [72]. In quantity, the
calculations cannot exactly describe the shape of Rn/p by the
parameter sets we used. The possible reasons may be a reason-
able parameter set is not used or the cluster formation for light
particles is not well described. To rule out the first reason, a
systematic analysis of Rn/p on the multidimensional parame-
ter space is certainly needed before going to understand the
cluster formation mechanism and draw a firm conclusion on
the effective mass splitting.

In addition, the uncertainties of the transport models
should also be investigated in future studies. Generally, the

FIG. 7. Sn/p at two kinetic regions and at beam energy Ebeam =
120 MeV/u in the transverse direction 700 � θc.m. � 1100. Data
points are extracted from the published Rn/p in Ref. [58].
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uncertainty of the transport models arises from three aspects.
One is from the numerical techniques, and another is from
the uncertainty of the physical quantities. The third one is
from the systematic uncertainties due to the missed physics.
The first point has stimulated the transport model evaluation
project (TMEP) to improve the transport model. There are
some important progresses have been made in the mean-field
part [73], nucleon-nucleon collision part [74,75], and recent
progress is available in Ref. [17]. The second point has led
to the application of the Bayesian analysis on the heavy ion
collision observables in multidimensional parameter space, as
in Refs. [15,58]. One should notice that the new form of the
extended MDI may influence the in-medium nucleon-nucleon
cross sections from the point view of both mean-field and
the in-medium nucleon-nucleon cross sections in the transport
equation have the same origin. When the in-medium nucleon-
nucleon cross sections are modified in the transport model,
the values of Rn/p may be further modified except for the im-
pacts from the mean-field potential. Nonetheless, the results in
Ref. [76] suggest that the medium correction on the nucleon-
nucleon cross sections weakly influences the Rn/p since it is
mainly determined by the strength of symmetry energy. To
quantitatively estimate the uncertainty of this medium correc-
tion of the nucleon-nucleon cross sections on Rn/p, a Bayesian
analysis of the heavy ion collisions observables in multidi-
mensional parameter space, which includes the degree of the
medium corrections on the nucleon-nucleon cross sections, is
needed. The third one comes from the philosophy of solving
the many-body transport equations and missed physics, which
will be an important point to develop an advanced model for
describing the complex collisions as wished in the long-range
plan of nuclear science [77].

IV. SUMMARY

The main goal of this work is to obtain an extended Skyrme
momentum-dependent interaction, and its related mean-field
potential and Hamiltonian. The forms we provided have the
following properties: First, the extended Skryme MDI extends
the utility of the effective Skyrme interaction to a wider energy
region in the transport models. For instance, this form can
be used to calculate the vector potential and scalar potential
for studying the effects of the effective mass splitting and the
isospin-dependent threshold of the pion production for HICs
below 1 GeV/u, as in Ref. [32]. Second, the effect of the width
of the wave packet can be explicitly involved in the MDI part
of the QMD-type Hamiltonian. Third, this form can be easily
used in both the BUU and QMD-type models for simulating

the heavy ion collisions at intermediate to high energies. In
another, the relationship between the nuclear matter param-
eters and the interaction parameters used in the transport
models are provided, which makes the transport model in-
vestigate the nuclear matter parameter in multidimensional
parameter space easily.

As an example of the application of the extended Skyrme
MDI, we incorporate the extended Skyrme MDI into the
ImQMD model. The isospin sensitive observables, such as
the single and double ratios of the coalescence neutron to
proton yields [Rn/p and DR(n/p)] for 112,124Sn + 112,124Sn at
the beam energy of 120, 270, and 400 MeV/u are analyzed to
understand the influence of effective mass splitting. Our cal-
culations show that the difference of the Rn/p ratios obtained
with two different strengths of the effective mass splitting, i.e.,
fI = +0.3 and fI = −0.3, becomes weaker for the extended
Skyrme MDI than that for the standard Skyrme MDI.

Finally, we also propose a probe for constraining the
strength of the effective mass splitting, i.e., the slope of ln Rn/p

as a function of Ek/A,

Sn/p = ∂ ln Rn/p

∂Ek/A
.

Our calculations show that Sn/p is directly related to the
effective mass splitting �m∗

np. By comparing Sn/p with the
experimental data, in quality, one can find that the calcula-
tions favor different effective mass splitting at different kinetic
energy regions. The calculated values of Sn/p tend to favor
m∗

n > m∗
p at the kinetic energy less than 55 MeV and tend to

favor m∗
n < m∗

p at the kinetic energy greater than 55 MeV. In
quantity, the calculations cannot accurately describe the shape
of Rn/p by the parameter sets we used. Thus, further analysis
on the Rn/p in multidimensional parameter space is certainly
needed to understand the discrepancy and to reliably constrain
the effective mass splitting.
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APPENDIX A: ENERGY DENSITY OF THE EXTENDED SKYRME-TYPE MOMENTUM-DEPENDENT INTERACTION

The extended Skyrme-type MDI energy density is

umd = C̃0

∫
d3 pd3 p′ f (r, p) f (r, p′)g(p − p′) + D̃0

∫
d3 pd3 p′ fn(r, p) fn(r, p′)g(p − p′)

+ D̃0

∫
d3 pd3 p′ fp(r, p) fp(r, p′)g(p − p′).
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= C̃0

∫
d3 pd3 p′( fn(r, p) fn(r, p′) + fn(r, p) fp(r, p′) + fp(r, p) fn(r, p′) + fp(r, p) fp(r, p′))g(p − p′)

+ D̃0

∫
d3 pd3 p′ fn(r, p) fn(r, p′)g(p − p′) + D̃0

∫
d3 pd3 p′ fp(r, p) fp(r, p′)g(p − p′). (A1)

g(p − p′) is taken as

g(p − p′) = b0 + b1(p − p′)2 + b2(p − p′)4 + b3(p − p′)6 + b4(p − p′)8

=
N=4∑
I=0

bI

[
2I∑

l=0,∈even

(
2I

l

)
pl (−p′)2I−l −

2I∑
l=1,∈ odd

(
2I

l

)
pl−1(−p′)2I−l−1p · p′

]
. (A2)

For cold uniform nuclear matter, fq = 2
(2π h̄)3 �(pFq − p), q = n/p, and an analytical expression of umd can be obtained.

For the C̃0 term,

C̃0

∫
d3 pd3 p′[ fn(r, p) fn(r, p′) + fn(r, p) fp(r, p′) + fp(r, p) fn(r, p′) + fp(r, p) fp(r, p′)]g(p − p′)

= C̃0

(
2

(2π h̄)3

)2
( ∫ pFn

0
dp

∫ pFn

0
dp′ +

∫ pFn

0
dp

∫ pFp

0
dp′ +

∫ pFp

0
dp

∫ pFn

0
dp′ +

∫ pFp

0
dp

∫ pFp

0
dp′

)

×
4∑

I=0

bI

[
2I∑

l=0,∈even

(
2I

l

)
pl (−p′)2I−l −

2I∑
l=1,∈ odd

(
2I

l

)
pl−1(−p′)2I−l−1p · p′

]
. (A3)

Since the terms with l equal to an odd number are zero, the C̃0 term will be

= C̃0

(
2

(2π h̄)3

)2

(4π )2

[
N∑

I=0

bI

2I∑
l=0,l∈even

(
2I

l

)( ∫ pFn

0
p2+l d p

∫ pFn

0
p′2+2I−l d p′ +

∫ pFn

0
p2+l d p

×
∫ pFp

0
p′2+2I−l d p′ +

∫ pFp

0
p2+l d p

∫ pFn

0
p′2+2I−l d p′ +

∫ pFp

0
p2+l d p

∫ pFp

0
p′2+2I−l d p′

)]

= C̃0

(
2

(2π h̄)3

)2

(4π )2

[
N∑

I=0

bI

2I∑
l=0,l∈even

(
2I

l

)
1

(l + 3)

1

(2I − l + 3)

× (
pl+3

Fn
p2I−l+3

Fn
+ pl+3

Fn
p2I−l+3

Fp
+ pl+3

Fp
p2I−l+3

Fn
+ pl+3

Fp
p2I−l+3

Fp

)]

= C̃0

⎡
⎣ N∑

I=0

bI

2I∑
l=0,l∈even

GIl

∑
q,q′

ρ (l+3)/3
q ρ

(2I−l+3)/3
q′

⎤
⎦. (A4)

Here

GIk =
(

2

(2π h̄)3

)2

(4π )2

{
[h̄(3π2)1/3](2I+6)

(
2I

l

)
1

(l + 3)

1

(2I − l + 3)

}
,

and pFq = h̄(3π2ρq)1/3.
Similarly, the D̃0 terms

D̃0

∫
d3 pd3 p′ fq(r, p) fq(r, p′)g(p − p′) = D̃0

(
2

(2π h̄)3

)2

(4π )2
∫ pFq

0
p2d p

∫ pFq

0
p′2d p′

⎡
⎣ N∑

I=0

bI

2I∑
l=0,l∈even

(
2I

l

)
pl (−p′)2I−l

⎤
⎦

= D̃0

(
2

(2π h̄)3

)2

(4π )2

[
N∑

I=0

bI

2I∑
l=0,l∈even

(
2I

l

)
1

(l + 3)

1

(2I − l + 3)
p2I+6

Fq

]

= D̃0

⎡
⎣ N∑

I=0

bI

2I∑
l=0,l∈even

GIlρ
(2I+6)/3
q

⎤
⎦. (A5)
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umd will be

umd = C̃0

⎡
⎣ N∑

I=0

bI

2I∑
l=0,l∈even

GIl

∑
q,q′

ρ (l+3)/3
q ρ

(2I−l+3)/3
q′

⎤
⎦ + D̃0

⎡
⎣ N∑

I=0

bI

2I∑
l=0,l∈even

GIl

∑
q

ρ (2I+6)/3
q

⎤
⎦. (A6)

By using the relation ρq = ρ

2 (1 + τqδ), with τq = 1 (−1) for neutrons (protons), the above equation can be rewritten as
follows:

umd = C̃0

[
N∑

I=0

bI

2I∑
l=0,l∈even

GIl

(ρ

2

)(2I+6)/3 ∑
q,q′

(1 + τqδ)(l+3)/3(1 + τq′δ)(2I−l+3)/3

]

+ D̃0

[
N∑

I=0

bI

2I∑
l=0,l∈even

GIl

(ρ

2

)(2I+6)/3 ∑
q

(
1 + τqδ

)(2I+6)/3

]

≈ C̃0

[
N∑

I=0

bI

2I∑
l=0,l∈even

GIl

(ρ

2

)(2I+6)/3 ∑
q,q′

(
1 + l + 3

3
τqδ + 1

2

l + 3

3

l

3
δ2

)
(A7)

×
(

1 + (2I − l + 3)

3
τq′δ + 1

2

(2I − l + 3)

3

(2I − l )

3
δ2

)]

+ D̃0

[
N∑

I=0

bI

2I∑
l=0,l∈even

GIl

(ρ

2

)(2I+6)/3 ∑
q

(
1 + 2I + 6

3
τqδ + 1

2

2I + 6

3

2I + 3

3
δ2

)]
.

With the parabolic approximation, the umd can be rewritten as

umd = u0
md + uasy

md δ2 + · · · , (A8)

Thus, u0
md is

u0
md = 4

(
C̃0 + D̃0

2

)⎡
⎣ N∑

I=0

bI

2I∑
l=0,l∈even

GIl

(ρ

2

)(2I+6)/3

⎤
⎦. (A9)

The asymmetry term uasy
md is

uasy
md = 2C̃0

[
N∑

I=0

bI

2I∑
l=0,l∈even

GIl

(ρ

2

)(2I+6)/3
(

l + 3

3

l

3
+ 2I − l + 3

3

2I − l

3

)]

+ D̃0

⎡
⎣ N∑

I=0

bI
2I + 6

3

2I + 3

3

2I∑
l=0,l∈even

GIl

(ρ

2

)(2I+6)/3

⎤
⎦. (A10)

APPENDIX B: SINGLE-PARTICLE POTENTIAL

The nonlocal part of single-particle potential of nucleon in cold uniform nuclear matter is

V md
q (ρ, δ, p) = δumd

δ fq
= 2C̃0

∫
d3 p′ f (r, p′)g(p − p′) + 2D̃0

∫
p′<pFq

d3 p′ fq(r, p′)g(p − p′)

= 2C̃0

∑
τ=n,p

∫
p′<pFτ

d3 p′ fτ (r, p′)g(p − p′) + 2D̃0

∫
p′<pFq

d3 p′ fq(r, p′)g(p − p′). (B1)

For the C̃0 term,

2C̃0

∫
d3 p′ f (r, p′)g(p − p′) = 2C̃0

(
2

(2π h̄)3

)
4π

[
N∑

I=0

bI

2I∑
l=0,l∈even

(
2I

l

)
1

(2I − l + 3)

(
p2I−l+3

Fn
+ p2I−l+3

Fp

)
pl

]

= 2C̃0

⎡
⎣ N∑

I=0

bI

2I∑
l=0,l∈even

ÃIl

∑
q

ρ (2I−l+3)/3
q pl

⎤
⎦, (B2)

054624-13



YANG, CHEN, CUI, LIU, LI, AND ZHANG PHYSICAL REVIEW C 109, 054624 (2024)

where

ÃIl = 2

(2π h̄)3 4π

{
[h̄(3π2)1/3](2I−l+3)

(
2I

l

)
1

(2I − l + 3)

}
.

Similarly, the D̃0 terms are

2D̃0

∫
d3 p′ fq(r, p′)g(p − p′) = 2D̃0

(
2

(2π h̄)3

)
4π

[
N∑

I=0

bI

2I∑
l=0,l∈even

(
2I

l

)
1

(2I − l + 3)
p2I−l+3

Fq
pl

]

= 2D̃0

⎡
⎣ N∑

I=0

bI

2I∑
l=0,l∈even

ÃIlρ
(2I−l+3)/3
q pl

⎤
⎦. (B3)

V md
q will be

V md
q (ρ, δ, p) = 2C̃0

⎡
⎣ N∑

I=0

bI

2I∑
l=0,l∈even

ÃIl

∑
q

ρ (2I−l+3)/3
q pl

⎤
⎦ + 2D̃0

⎡
⎣ N∑

I=0

bI

2I∑
l=0,l∈even

ÃIlρ
(2I−l+3)/3
q pl

⎤
⎦. (B4)

By using the relation ρq = ρ

2 (1 + τqδ), with τq = 1 or −1 for neutrons and protons, the above equation can be rewritten as
follows:

V md
q (ρ, δ, p) = 2C̃0

[
N∑

I=0

bI

2I∑
l=0,l∈even

ÃIl

(ρ

2

)(2I−l+3)/3 ∑
q

(1 + τqδ)(2I−l+3)/3 pl

]

+ 2D̃0

[
N∑

I=0

bI

2I∑
l=0,l∈even

ÃIl

(ρ

2

)(2I−l+3)/3
(1 + τqδ)(2I−l+3)/3 pl

]

≈ 2C̃0

[
N∑

I=0

bI

2I∑
l=0,l∈even

ÃIl

(ρ

2

)(2I−l+3)/3 ∑
q

(
1 + 2I − l + 3

3
τqδ + · · ·

)
pl

]
(B5)

+ 2D̃0

[
N∑

I=0

bI

2I∑
l=0,l∈even

ÃIl

(ρ

2

)(2I−l+3)/3
(

1 + 2I − l + 3

3
τqδ + · · ·

)
pl

]
.

Vmd can be rewritten as

Vmd = V 0
md ± V sym

md δ + · · · . (B6)

Thus, V 0
md is

V 0
md = 4

(
C̃0 + D̃0

2

)⎡
⎣ N∑

I=0

bI

2I∑
l=0,l∈even

ÃIl

(ρ

2

)(2I−l+3)/3
pl

⎤
⎦. (B7)

The asymmetry term V sym
md is

V sym
md = 2D̃0

[
N∑

I=0

bI

2I∑
l=0,l∈even

ÃIl

(ρ

2

)(2I−l+3)/3 2I − l + 3

3
pl

]
. (B8)

APPENDIX C: RELATION BETWEEN THE EFFECTIVE MASS SPLITTING AND SYMMETRY POTENTIAL

According to Eq. (26),

m

m∗
n

− m

m∗
p

= 2m

(
∂Vn

∂ p2
− ∂Vp

∂ p2

)
= 4mδ

∂Vsym

∂ p2
. (C1)

In addition,

m

m∗
n

− m

m∗
p

= −m(m∗
n − m∗

p)

m∗
nm∗

p

≈ −
( m

m∗
)2

�m∗
np. (C2)
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The approximation comes from m∗
q/m = m∗/m ± δm∗/m, and the product

m∗
nm∗

p

m2
=

(
m∗

m

)2

−
(

δm∗

m

)2

≈
(

m∗

m

)2

.

.

APPENDIX D: HIGH-ORDER EXPANSION COEFFICIENTS OF NUCLEAR MATTER EQUATION OF STATE

Around the nuclear matter saturation density ρ0, the binding energy per nucleon in symmetric nuclear matter can be expanded
(e.g., up to fourth order in density) as

E/A(ρ) = E0(ρ0) + K0

2!
x2 + Q0

3!
x3 + Z0

4!
x4 + O(x5), (D1)

where x is a dimensionless variable, x = (ρ − ρ0)/3ρ0.
The incompressibility K0 is

K0 = 9ρ2
0
∂2E/A

∂ρ2

∣∣∣∣
ρ0

= −6

5
ε0

F + 9
β

γ + 1
γ (γ − 1) + 6

(
C̃0 + D̃0

2

) N∑
I=1

g̃(I )
md

(
2I

3
+ 1

)
Iρ2I/3+1

0 . (D2)

The skewness coefficient Q0 is

Q0 = 27ρ3
0
∂3E/A

∂ρ3

∣∣∣∣
ρ0

= 24

5
ε0

F + 27
β

γ + 1
γ (γ − 1)(γ − 2) + 27

(
C̃0 + D̃0

2

) N∑
I=1

g̃(I )
md

(
2I

3
+ 1

)
2I

3

2I − 3

3
ρ

2I/3+1
0 . (D3)

The fourth derivative of the energy per nucleon Z0 is

Z0 = 81ρ4
0
∂4E/A

∂ρ4

∣∣∣∣
ρ0

= −168

5
ε0

F + 81
β

γ + 1
γ (γ − 1)(γ − 2)(γ − 3)

+ 81

(
C̃0 + D̃0

2

) N∑
I=1

g̃(I )
md

(
2I

3
+ 1

)
2I

3

2I − 3

3

2I − 6

3
ρ

2I/3+1
0 . (D4)

Around the normal nuclear density ρ0, the nuclear symmetry energy S(ρ) can be similarly expanded (e.g., up to fourth order
in x) as

S(ρ) = S(ρ0) + Lx + Ksym

2!
x2 + Qsym

3!
x3 + Zsym

4!
x4 + O

(
x5

)
. (D5)

The slope of the symmetry energy L is

L = 3ρ0
∂S(ρ)

∂ρ

∣∣∣∣
ρ0

= 2

3
ε0

F + 3Asym + 3Bsymγ + 3
N∑

I=1

C̃(I )
sym

(
2I

3
+ 1

)
ρ

2I/3+1
0 . (D6)

The curvature of the symmetry energy Ksym is

Ksym = 9ρ2
0
∂2S(ρ)

∂ρ2

∣∣∣∣
ρ0

= −2

3
ε0

F + 9Bsymγ (γ − 1) + 9
N∑

I=1

C̃(I )
sym

(
2I

3
+ 1

)
2I

3
ρ

2I/3+1
0 . (D7)

The third derivative of the symmetry energy Qsym is

Qsym = 27ρ3
0
∂3S(ρ)

∂ρ3

∣∣∣∣
ρ0

= 8

3
ε0

F + 27Bsymγ (γ − 1)(γ − 2) + 27
N∑

I=1

C̃(I )
sym

(
2I

3
+ 1

)
2I

3

2I − 3

3
ρ

2I/3+1
0 . (D8)

The fourth derivative of the symmetry energy Zsym is

Zsym = 81ρ4
0
∂4S(ρ)

∂ρ4

∣∣∣∣
ρ0

= −56

3
ε0

F + 81Bsymγ (γ − 1)(γ − 2)(γ − 3) + 81
N∑

I=1

C̃(I )
sym

(
2I

3
+ 1

)
2I

3

2I − 3

3

2I − 6

3
ρ

2I/3+1
0 . (D9)
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TABLE III. The parameters K0, Q0, Z0, Ksym, Qsym, Zsym are in MeV.

Parameter (0.3, 46) (−0.3, 46) (0.3, 100) (−0.3, 100)

K0 230 (230)
Q0 −406.07 (−376.62)
Z0 1651.85 (1629.82)
Ksym −162.21 (−122.96) −174.23 (−182.36) 41.72 (74.56) 29.70 (15.16)
Qsym 363.94 (526.53) 422.23 (368.67) −89.49 (63.90) −31.20 (−93.97)
Zsym −2403.24(−3173.67) −2203.28(−2033.33) −34.78 (−702.16) 165.19(438.18)

In Table III, we list the values of these higher-order expansion coefficients of the nuclear matter equation that we used in this
work. The values in brackets from the second to the seventh rows represent the values obtained with the standard Skyrme MDI.
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