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Extended Skyrme effective interactions for transport models and neutron stars
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Interpreting the data of nuclear experiments and astrophysical observations requires advanced theoretical
models. At this point, it is of particular importance to develop a unified theoretical framework to describe
these experiments and observations based on same effective nuclear interactions. Based on the so-called
Skyrme pseudopotential up to next-to-next-to-next-to-leading order, we construct a series of extended Skyrme
interactions by modifying the density-dependent term and fitting the empirical nucleon optical potential up to
above 1 GeV, the empirical properties of isospin symmetric nuclear matter, the microscopic calculations of
pure neutron matter and the properties of neutron stars from astrophysical observations. The modification of the
density-dependent term in the extended Skyrme interactions follows the idea of Fermi momentum expansion and
this leads to a highly flexible density behavior of the symmetry energy. In particular, the values of the density
slope parameter L of the symmetry energy for the new extended Skyrme interactions range from L = −5 MeV
to L = 125 MeV by construction, to cover the large uncertainty of the density dependence of the symmetry
energy. Furthermore, to consider the effects of isoscalar and isovector nucleon effective masses, we adjust the
momentum dependence of the single-nucleon optical potential and the symmetry potential of these new extended
Skyrme interactions and construct a parameter set family, by which we systematically study the impacts of the
symmetry energy and the nucleon effective masses on the properties of nuclear matter and neutron stars. The new
extended Skyrme interactions constructed in the present work will be useful to determine the equation of state of
isospin asymmetric nuclear matter, especially the symmetry energy, as well as the nucleon effective masses and
their isospin splitting, in transport model simulations for heavy-ion collisions, nuclear structure calculations and
neutron star studies.

DOI: 10.1103/PhysRevC.109.054623

I. INTRODUCTION

Understanding the in-medium effective nuclear interac-
tions is one of the fundamental questions in nuclear physics.
The equation of state (EOS) of isospin asymmetric nuclear
matter is an intuitive manifestation of the effective interac-
tions and is strongly connected to many important issues in
various systems and processes in nuclear physics and astro-
physics [1–21], e.g., the properties of the nuclei close to the
drip lines, the r-process nucleosynthesis in different astro-
physical sites, the heavy-ion collisions (HICs) induced by
neutron-rich nuclei, the structure of neutron stars, the evo-
lution in binaries and binary mergers, and the core-collapse
supernovae dynamics. For symmetric nuclear matter (SNM)
with same fraction of neutrons and protons, its EOS around
the saturation density ρ0 has been well constrained from the
isoscalar giant monopole resonance of finite nuclei [22–25],
and its EOS at suprasaturation densities up to approximately
5ρ0 has also been relatively well constrained by the ex-
perimental data on collective flows and kaon production in
HICs [2,26–29].

*Corresponding author: lwchen@sjtu.edu.cn

While the EOS of SNM has been relatively well con-
strained, the isospin-dependent part of the EOS of isospin
asymmetric nuclear matter, essentially described by the sym-
metry energy Esym(ρ), is still largely uncertain, especially
at suprasaturation densities. Theoretically, based on ab initio
chiral nuclear forces or realistic nuclear forces, microscopic
many-body calculations, such as many-body perturbation the-
ory [30–32], the quantum Monte Carlo methods [33–36], the
variational many-body calculations [37], the Bethe-Bruckner-
Goldstone calculations [38], and the self-consistent Green’s
function approach [39], have put relatively precise constraints
on the EOS of pure neutron matter (PNM) [EPNM(ρ)] up to
density ρ ≈ 0.2 fm−3 (see, e.g., Ref. [40]). The combined
constraint on the EPNM(ρ) from these various microscopic
calculations gives strong constraints on the symmetry energy
below and around saturation density. Experimentally, signif-
icant progress on the determination of the symmetry energy
at subsaturation densities has been made, mainly by analyz-
ing the experimental data of finite nuclei (where the average
density is around 2ρ0/3), e.g., the binding energy, charge
radius, neutron skin thickness and isovector modes of reso-
nances [41–45]. However, it should be mentioned that strong
tension between the data recently reported by PREX-II [46]
and CREX [47] is observed for the extraction of neutron skin
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thickness and the symmetry energy within the nonrelativistic
and relativistic nuclear energy density functionals [40,48–50].
In particular, a large neutron skin in 208Pb obtained from
PREX-II [46] suggests a very stiff symmetry energy with
a very large value for the density slope parameter L of the
symmetry energy, while the relatively small neutron skin in
48Ca obtained from CREX [47] suggests a soft symmetry
energy with a much smaller value of L. This tension makes
the determination of the symmetry energy around saturation
density remain elusive since the PREX-II and CREX are free
from the strong interaction uncertainties and thus they are
believed to allow us to determine with minimal model depen-
dence the neutron skin thickness and the density dependence
of the symmetry energy.

Although the nuclear structure data and microscopic theo-
retical calculations can relatively well constrain the symmetry
energy at subsaturation densities, they can hardly constrain
the high-density behavior of the symmetry energy. How-
ever, the HICs experiments induced by neutron-rich nuclei
at intermediate and high energies provide a possible way to
extract information of the symmetry energy at high densities.
HICs experiments perhaps are the only way in terrestrial
laboratories to produce high-density nuclear matter. Many
radioactive beam facilities around the world, e.g., CSR/HIAF
in China, SPIRAL2/GANIL in France, FAIR/GSI in Ger-
many, RIBF/RIKEN in Japan, SPES/LNL in Italy, RAON in
Korea, and FRIB/NSCL in USA, provide a unique exper-
imental tool to produce the neutron-rich radioactive nuclei
and study the density dependence of the symmetry en-
ergy [1,2,4,7,8,10,16]. To describe the dynamics of HICs and
to extract the EOS of the hot and dense nuclear matter pro-
duced during the collisions, the microscopic transport models,
e.g., the Boltzmann-Uehling-Uhlenbeck (BUU) equation [51]
and the quantum molecular dynamics (QMD) model [52],
have been developed and extensively used. In particular, in
recent years, the Transport Model Evaluation Project (TMEP)
has been pursued to test the robustness of transport mod-
els and then try to narrow down the uncertainties of their
predictions [53–58]. It should be noted that besides the ap-
plications in HICs, the transport models also provide an
important approach to study the collective dynamics of fi-
nite nuclei such as giant or pygmy resonances [59–69]. In
the transport model (e.g., the BUU equation) simulations for
the dynamics of nonequilibrium system, a direct and basic
input is the single-nucleon potential (nuclear mean-field po-
tential). In the mean-field approximation, the single-nucleon
potential is connected to the EOS through the corresponding
energy-density functional (EDF). In previous works [70,71],
a Skyrme-like quasilocal EDF up to next-to-next-to-next-to-
leading order (N3LO) has been constructed, by including
additional higher-order derivative terms (higher-power mo-
mentum dependence) in the conventional Skyrme interactions
which is notorious with the incorrect high energy behavior of
the nucleon optical potential when nucleon kinetic energy is
above about 200 MeV/nucleon. Based on the N3LO Skyrme
pseudopotential, the extended Skyrme interactions have been
built within the mean-field approximation in Ref. [72] to re-
produce the empirical results on the nucleon optical potential
up to 1 GeV obtained by Hama et al. from analyzing the

proton-nucleus elastic scattering data [73,74], and very re-
cently the extended Skyrme interactions have been applied
in the lattice BUU transport model [75] to successfully de-
scribe the FOPI data [76] on the light-nuclei production in
intermediate-energy HICs.

Besides nuclear experiments with finite nuclei and HICs
in terrestrial labs, astrophysical observations of neutron stars
and their mergers provide another way to extract informa-
tion of the symmetry energy at high densities. Neutron stars
represent one kind of the densest objects in the universe,
and they are regarded as an ideal site to explore the dense
matter at high isospin asymmetry. Indeed, the multimessen-
ger data on the gravitational wave signal GW170817 of the
binary neutron-star merger detected by the LIGO-Virgo de-
tectors [77], the discovery of heavy neutron stars with mass
larger than two times solar mass by relativistic Shapiro de-
lay measurements [78,79] as well as the x ray emitted from
hot millisecond pulsar detected by the Neutron Star Inte-
rior Composition Explorer (NICER) and x-ray multimirror
(XMM-Newton) [80–83], have put crucial constraints on the
maximum mass (MTOV), the mass-radius relation (M-R), and
the tidal deformability (�) of neutron stars, and thus further
on the high-density behavior of the symmetry energy. At this
point, we would like to mention that a series of works have
been conducted to constrain the symmetry energy simultane-
ously by using the data of ground-state properties and giant
monopole resonances (GMR) of finite nuclei, the flow data
in HICs as well as the multimessenger data on neutron stars
and gravitational wave from the binary neutron-star merger
[84–86] based on a single unified framework of the extended
Skyrme-Hartree-Fock (eSHF) model [87]. Recently, the cen-
tral compact object (CCO) within the supernova remnant
HESS J1731-347 is estimated to have an unusually low mass
M = 0.77+0.20

−0.17 M� and small radius R = 10.4+0.86
−0.78 km from

Gaia observations [88]. Assuming that this object is a neutron
star, its mass-radius relation implies a relatively small value
of L and predicts a soft symmetry energy up to 2ρ0 (ap-
proximately corresponding to the center density of 0.77 M�
neutron star). The mass-radius relation of the CCO in HESS
J1731-347 [88] together with the existence of the large mass
neutron star PSR J0740+6620 [78,79] suggest the presence
of a soft symmetry energy at low to intermediate densities but
a very stiff symmetry energy at high densities. Relying solely
on the magnitude Esym(ρ0) and the slope L of the symmetry
energy at saturation density seems to be insufficient to provide
such a density dependence of the symmetry energy. Therefore,
higher-order coefficients of the symmetry energy, e.g., the
curvature parameter Ksym and skewness parameter Jsym which
characterize the high-density behaviors of the symmetry en-
ergy, should also be considered.

The above constraints/data obtained from various sources
cover a wide range of densities as well as isospin asymme-
tries. To probe the nuclear EOS using these constraints/data,
it would be important to construct a single unified effective
nuclear interaction that can be used to simultaneously describe
the finite nuclei, neutron stars and HICs. The N3LO Skyrme
pseudopotential can be used to describe finite nuclei [70,71]
and HICs at energy up to about 1 GeV/nucleon [72,75], but it
is hard to describe the properties of neutron stars, especially
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the small mass and radius of the CCO in HESS J1731-347.
In the present work, we demonstrate that a modification of
the density-dependent (DD) term of the N3LO Skyrme pseu-
dopotential in Refs. [70–72] will enable the pseudopotential to
flexibly describe the finite nuclei, neutron stars and HICs si-
multaneously. The DD term is usually introduced to mimic the
effects of many-body forces in the nonrelativistic models, e.g.,
the original Skyrme interaction [89], the Skyrme-Hartree-
Fock calculations [90] as well as the Gogny-Hartree-Fock
calculations [91]. A lot of efforts have been made to improve
the conventional Skyrme interaction by extending the DD
term, such as the eSHF model [87,92] and the so-called KIDS
model [93], to better describe the finite nuclei and neutron
stars. In the present work, instead of considering the DD term
as in Ref. [72] (i.e., ρα) with an adjustable parameter α, we
express it as three terms: ρ1/3, ρ3/3 and ρ5/3. Therefore, the
resulting EOS can be exactly expressed as a power series
in ρ1/3 (equivalently the Fermi momentum pF ), from ρ2/3

(kinetic energy contribution) to ρ9/3, while the contributions
from DD terms and momentum-dependent (MD) terms can be
clearly distinguished. Actually, expressing the EOS as a power
series in pF is physically well motivated in the Brueckner
theory for the nuclear matter with a realistic nuclear force
as well as in the interacting hard-sphere Fermi system and
the Galitskii equation [94]. Sometimes, it is also considered
to be a model-independent parametrization of the nuclear
matter EOS [95]. In such a way, compared to the N3LO
Skyrme pseudopotential in Ref. [72], an additional parameter
related to the EOS of SNM and two more parameters related
to the density dependence of the symmetry energy can be
introduced. Namely, three higher-order coefficients, i.e., J0,
Ksym, and Jsym, which are associated with the bulk properties
of nuclear matter at high densities, can then be adjusted ac-
cordingly to more accurately describe neutron stars. Based on
the Skyrme pseudopotential with the new extended DD terms,
we construct eight Skyrme interaction parameter sets with L
values of 5, 15, 25, 35, 45, 55, 65, and 75 MeV, respectively.
These eight parameter sets are obtained by fitting the nucleon
optical potential up to energy of 1 GeV, a few selected empir-
ical properties of nuclear matter, the microscopic many-body
calculation results for PNM as well as the neutron-star obser-
vations. In addition, considering the significant uncertainties
in the extraction of L, we provide four more parameter sets,
for comparison, which give very soft or very stiff symmetry
energy around the saturation density, with L values of −5, 85,
105, and 125 MeV, respectively.

Furthermore, we also explore several particularly inter-
esting quantities, i.e., the isoscalar and isovector nucleon
effective mass (m∗

s and m∗
v) as well as the neutron-proton

effective mass splitting (m∗
n-p), which characterize the mo-

mentum dependence of the single-nucleon potential and the
symmetry potential. These nucleon effective masses are fun-
damentally connected to many interesting issues in both
nuclear physics and astrophysics (see Ref. [17] and the ref-
erences therein). Based on the constructed extended Skyrme
interactions, we investigate the effects of nucleon effective
masses on the properties of nuclear matter and neutron stars.
As a result, we construct a family of parameter sets that can
be used to simultaneously describe the properties of finite

nuclei, neutron stars and HICs. This framework can be ap-
plied to study the effects of the symmetry energy and nucleon
effective masses with more transparent ways. Utilizing these
new extended Skyrme interactions, we demonstrate the fol-
lowing points: (i) To simultaneously satisfy constraints from
microscopic calculations on EPNM(ρ) and astrophysical obser-
vations of neutron stars with masses of 1.4 M� and 2.0 M�,
L must lie within the range of 5 MeV � L � 75 MeV; (ii) A
range of −5 MeV � L � 35 MeV is necessary to describe the
CCO in HESS J1731-347; (iii) A peak structure of the squared
sound speed for neutron star matter arises for interactions with
the soft symmetry energy around saturation density, especially
when −5 MeV � L � 25 MeV.

This paper is organized as follow: In Sec. II, we introduce
the Skyrme pseudopotential up to N3LO with the extended
DD terms, and display the corresponding Hamiltonian density
and single-nucleon potential. In Sec. III, we present the fitting
strategy as well as the experimental data and constraints used
in our fitting, and we give the eight new parameter sets of
the extended Skyrme interactions. The bulk properties of cold
nuclear matter, the single-nucleon potential behaviors and
neutron-star structures of the eight interactions are presented
in Sec. IV. The interactions with supersoft and superstiff
symmetry energy around saturation density are introduced in
Sec. V. In Sec. VI, the extended Skyrme interactions with dif-
ferent symmetry energy behaviors are combined with different
momentum dependencies (i.e., different nucleon effective
masses), and we obtain a parameter set family consisting of
144 parameter sets. Based on the parameter set family, we
systematically explore the impacts of the symmetry energy
and nucleon effective masses on the properties of nuclear
matter and neutron stars. Finally, we summarize this work and
make a brief outlook in Sec. VII.

For completeness, we include several Appendices. In Ap-
pendix A, we present the macroscopic quantities at arbitrary
density as linear combinations of the model parameters and
give the representation matrix and its inverse. In Appendix B,
we provide the representation matrix and its inverse at the
saturation density. Using these matrices, readers can conve-
niently obtain the corresponding set of parameters based on
the values of macroscopic quantities at saturation density, or
vice versa. Expressions for the fourth-order symmetry energy,
the kurtosis coefficients (corresponding to the fourth-order
density derivative of the SNM EOS and the symmetry energy),
the linear isospin splitting coefficient of the nucleon effective
mass as well as the isoscalar and isovector nucleon effective
masses are detailed in Appendix C, where we also establish
the relations between the fourth-order symmetry energy as
well as the linear isospin splitting coefficient and the isoscalar
and isovector nucleon effective masses.

II. THEORETICAL FRAMEWORK

A. New extended Skyrme interaction
based on N3LO pseudopotential

Conventionally, we refer to the effective interactions with
quasilocal operators depending on spatial derivatives as
pseudopotential, and the standard Skyrme inter-
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action could be recognized as pseudopotential
up to the next-to-leading order. In the previous
works [70,71], nuclear EDFs in terms of derivatives of
densities up to sixth order have been constructed and
mapped to Skyrme interaction with additional fourth and
sixth-order derivative terms. The expressions of Hamiltonian
density and single-nucleon potential of the N3LO Skyrme
inteaction have been derived within the Hartree-Fock
approximation [72].

The full Skyrme pseudopotential generally contains spin-
independent, spin-orbit, and tensor components (see, e.g.,
Refs. [70,71,96,97]). Since we are focusing only on the
spin-averaged quantities, we ignore the spin-orbit and ten-
sor components, which have no contribution in our present
case for transport model simulations and the study of nuclear
matter and neutron stars [72]. The central term of the N3LO
Skyrme pseudopotential is written as

V C
N3LO = t0(1 + x0P̂σ ) + t [2]

1

(
1 + x[2]

1 P̂σ

)
1
2 (�̂k′2 + �̂k2) + t [2]

2

(
1 + x[2]

2 P̂σ

)�̂k′ · �̂k + t [4]
1

(
1 + x[4]

1 P̂σ

)[
1
4 (�̂k′2 + �̂k2)2 + (�̂k′ · �̂k)2]

+ t [4]
2

(
1 + x[4]

2 P̂σ

)
(�̂k′ · �̂k)(�̂k′2 + �̂k2) + t [6]

1

(
1 + x[6]

1 P̂σ

)
(�̂k′2 + �̂k2)

[
1
2 (�̂k′2 + �̂k2)2 + 6(�̂k′ · �̂k)2

]
+ t [6]

2

(
1 + x[6]

2 P̂σ

)
(�̂k′ · �̂k)[3(�̂k′2 + �̂k2)2 + 4(�̂k′ · �̂k)2], (1)

where P̂σ is the spin-exchange operator; �̂k = −i( �̂∇1 − �̂∇2)/2

is the relative momentum operator and �̂k′ is the conjugate

operator of �̂k acting on the left.
Usually, the contribution from many-body force is effec-

tively replaced by a DD term 1
6 t3(1 + x3P̂σ )ρα ( �R) [98,99],

where t3, x3 and the power index α are determined through
a fitting process. In the present work, to impart greater flexi-
bility to the symmetry energy at varying densities, we rewrite
the density-dependent term into three terms as follows:

V DD
N1LO =

∑
n=1,3,5

1

6
t [n]
3

(
1 + x[n]

3 P̂σ

)
ρn/3( �R), (2)

where �R = (�r1 + �r2)/2.
For brevity, the factor δ̂( �r1 − �r1) is omitted from Eqs. (1)

and (2). In Eq. (2), we introduce two additional t3-parameters
and two additional x3-parameters, while eliminating the α.
The three extra parameters in Eq. (2) can be used to freely
adjust J0, Ksym, and Jsym of nuclear matter, in contrast to those
in Ref. [72]. Here, three indices of density are set to 1/3, 3/3,
and 5/3. As a result, the nuclear matter EOS can be exactly
expressed as a power series in pF [see Eq. (20)].

The t0, x0; t [n]
i , x[n]

i (n = 2, 4, 6 and i = 1, 2); t [n]
3 , x[n]

3 (n =
1, 3, 5) are Skyrme parameters, and the total number of these
parameters is 20 for the new Skyrme effective interaction. The
Skyrme interaction used in this work is then written as

vsk = V C
N3LO + V DD

N1LO. (3)

B. Hamiltonian density and single-nucleon potential
in one-body transport model

During the heavy-ion collision process, the nucleons are
generally far from thermal equilibrium. In transport models,
these nucleons are described by the phase-space distribution
function (Wigner function) fτ (�r, �p), with τ = 1 [or n] for neu-
trons and −1 [or p] for protons. Therefore, we need to express
the single-nucleon potentials Uτ (�r, �p) in terms of fτ (�r, �p), and
then the Hamiltonian density H(�r) of the collision system can
also be expressed in terms of fτ (�r, �p). With the Hartree-Fock
method, the expression of Uτ (�r, �p) and H(�r) of the N3LO
Skyrme pseudopotential have been derived in Ref. [72]. The

Hamiltonian density takes the following form:

H(�r) = Hkin(�r) + Hloc(�r) + HMD(�r) + Hgrad(�r) + HDD(�r),
(4)

where Hkin(�r), Hloc(�r), HMD(�r), Hgrad(�r), and HDD(�r) are
the kinetic, local, momentum-dependent (MD), gradient, and
density-dependent (DD) terms, respectively. The kinetic term
and the local term are the same as those in standard Skyrme
interaction (see, e.g., Refs. [98,99]), where they are expressed
as

Hkin(�r) =
∑

τ=n,p

∫
d3 p

p2

2mτ

fτ (�r, �p) (5)

and

Hloc(�r) = 1

4
t0

[
(2 + x0)ρ2 − (2x0 + 1)

∑
τ=n,p

ρ2
τ

]
, (6)

respectively. The ρτ (�r) = ∫ fτ (�r, �p)d3 p is the nucleon density
and the ρ(�r) = ρn(�r) + ρp(�r) is the total nucleon density.

The MD and gradient term include the contributions from
additional derivative terms in Eq. (1). Their expressions have
been derived in Ref. [72], and we include them here for
completeness. The MD term can be expressed as

HMD(�r) = C[2]

16h̄2 Hmd[2](�r) + D[2]

16h̄2

∑
τ=n,p

Hmd[2]
τ (�r)

+ C[4]

32h̄4 Hmd[4](�r) + D[4]

32h̄4

∑
τ=n,p

Hmd[4]
τ (�r)

+ C[6]

16h̄6 Hmd[6](�r) + D[6]

16h̄6

∑
τ=n,p

Hmd[6]
τ (�r), (7)

where Hmd[n](�r) and Hmd[n]
τ (�r) are defined as

Hmd[n](�r) =
∫

d3 pd3 p′( �p − �p ′)n f (�r, �p) f (�r, �p ′), (8)

Hmd[n]
τ (�r) =

∫
d3 pd3 p′( �p − �p ′)n fτ (�r, �p) fτ (�r, �p ′), (9)

054623-4



EXTENDED SKYRME EFFECTIVE INTERACTIONS FOR … PHYSICAL REVIEW C 109, 054623 (2024)

with f (�r, �p) = fn(�r, �p) + fp(�r, �p). The gradient term takes the form as follows:

Hgrad(�r) = 1

16
E [2]{2ρ(�r)∇2ρ(�r) − 2[∇ρ(�r)]2} + 1

16
F [2]

∑
τ=n,p

{2ρτ (�r)∇2ρτ (�r) − 2[∇ρτ (�r)]2}

+ 1

32
E [4]{2ρ(�r)∇4ρ(�r) − 8∇ρ(�r)∇3ρ(�r) + 6[∇2ρ(�r)]2}

+ 1

32
F [4]

∑
τ=n,p

{2ρτ (�r)∇4ρτ (�r) − 8∇ρτ (�r)∇3ρτ (�r) + 6[∇2ρτ (�r)]2}

+ 1

16
E [6]{2ρ(�r)∇6ρ(�r) − 12∇ρ(�r)∇5ρ(�r) + 30∇2ρ(�r)∇4ρ(�r) − 20[∇3ρ(�r)]2}

+ 1

16
F [6]

∑
τ=n,p

{2ρτ (�r)∇6ρτ (�r) − 12∇ρτ (�r)∇5ρτ (�r) + 30∇2ρτ (�r)∇4ρτ (�r) − 20[∇3ρτ (�r)]2}. (10)

In the above expressions, for convenience, we have recombined the Skryme parameters as follows:

C[n] = t [n]
1

(
2 + x[n]

1

)+ t [n]
2

(
2 + x[n]

2

)
, (11)

D[n] = −t [n]
1

(
2x[n]

1 + 1
)+ t [n]

2

(
2x[n]

2 + 1
)
, (12)

E [n] = in

2n

[
t [n]
1

(
2 + x[n]

1

)− t [n]
2

(
2 + x[n]

2

)]
, (13)

F [n] = − in

2n

[
t [n]
1

(
2x[n]

1 + 1
)+ t [n]

2

(
2x[n]

2 + 1
)]

, (14)

with i being the imaginary unit. Based on Eq. (2), the DD term can be expressed as

HDD(�r) =
∑

n=1,3,5

1

24
t [n]
3

[(
2 + x[n]

3

)
ρ2 − (2x[n]

3 + 1
)(

ρ2
n + ρ2

p

)]
ρn/3. (15)

Within the framework of Landau Fermi liquid theory, the single-nucleon potential can be obtained by taking the variation
of H(�r) with respect to fτ (�r, �p). Due to the presence of the gradient operators in H(�r), the single-nucleon potential can be
calculated as described in Ref. [100]:

Uτ (�r, �p) = δHpot

δnτ (�r, �p)
= ∂[Hloc(�r) + HDD(�r) + Hgrad(�r)]

∂ρτ (�r)
+
∑

n

(−1)n∇n ∂Hgrad(�r)

∂[∇nρτ (�r)]
+ δHMD

δnτ (�r, �p)
, (16)

where Hpot = ∫ d�r[Hloc(�r) + HDD(�r) + HMD(�r) + Hgrad(�r)] is the potential part of the Hamiltonian with HMD = ∫ d�rHMD(�r)

being the MD part and nτ (�r, �p) = (2π h̄)3

2 fτ (�r, �p) being the occupation probability function. Substitute Eq. (4) into Eq. (16), and
this yields

Uτ (�r, �p) = 1

2
t0[(2 + x0)ρ(�r) − (2x0 + 1)ρτ (�r)] +

∑
n=1,3,5

⎧⎨
⎩ t [n]

3

24

n

3

⎡
⎣(2 + x[n]

3

)
ρ(�r)2 − (2x[n]

3 + 1
) ∑

τ=n,p

ρτ (�r)2

⎤
⎦ρ(�r)

n
3 −1

⎫⎬
⎭

+
∑

n=1,3,5

{
1

12
t [n]
3

[(
2 + x[n]

3

)
ρ(�r) − (2x[n]

3 + 1
)
ρτ (�r)

]
ρ(�r)

n
3

}
+ 1

8h̄2 C[2]U md[2](�r, �p) + 1

8h̄2 D[2]U md[2]
τ (�r, �p)

+ 1

16h̄4 C[4]U md[4](�r, �p) + 1

16h̄4 D[4]U md[4]
τ (�r, �p) + 1

8h̄6 C[6]U md[6](�r, �p) + 1

8h̄6 D[6]U md[6]
τ (�r, �p)

+ 1

2
E [2]∇2ρ(�r) + 1

2
F [2]∇2ρτ (�r) + E [4]∇4ρ(�r) + F [4]∇4ρτ (�r) + 8E [6]∇6ρ(�r) + 8F [6]∇6ρτ (�r), (17)

where the MD terms U md[n](�r, �p) and U md[n]
τ (�r, �p) are defined as

U md[n](�r, �p) =
∫

d3 p′( �p − �p ′)n f (�r, �p ′), (18)

U md[n]
τ (�r, �p) =

∫
d3 p′( �p − �p ′)n fτ (�r, �p ′). (19)

Based on the above expressions, one can see that the Hamiltonian density H(�r) depends explicitly on fτ (�r, �p), ρτ (�r) and the
derivatives of ρτ (�r), while the single-nucleon potentials additionally depend on the nucleon momentum.
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C. Equation of state of nuclear matter

The EOS of isospin asymmetric nuclear matter with total nucleon density ρ = ρn + ρp and isospin asymmetry δ = (ρn −
ρp)/ρ are defined as its binding energy per nucleon. In uniform infinite system, all the gradient terms in the Hamiltonian
density [Eq. (4)] vanish. At zero temperature, fτ (�r, �p) becomes a step function, i.e., fτ (�r, �p) = 2

(2π h̄)3 θ (pFτ
− | �p|), with pFτ

=
h̄(3π2ρτ )1/3 being the Fermi momentum of nucleons with isospin τ . In this case, the EOS of isospin asymmetric nuclear can be
analytically expressed as

E (ρ, δ) = 3

5

h̄2a2

2m
F5/3 ρ2/3 + 1

8
t [0]
0

[
2
(
x[0]

0 + 2
)− (2x[0]

0 + 1
)
F2
]
ρ3/3 + 1

48
t [1]
3

[
2
(
x[1]

3 + 2
)− (2x[1]

3 + 1
)
F2
]
ρ4/3

+ 9a2

64

[
8

15
C[2]F5/3 + 4

15
D[2]F8/3

]
ρ5/3 + 1

48
t [3]
3

[
2
(
x[3]

3 + 2
)− (2x[3]

3 + 1
)
F2
]
ρ6/3

+ 9a4

128

[
C[4]

(
68

105
F7/3 + 4

15
δG7/3 + 4

15
H5/3

)
+16

35
D[4]F10/3

]
ρ7/3 + 1

48
t [5]
3

[
2
(
x[5]

3 + 2
)− (2x[5]

3 + 1
)
F2
]
ρ8/3

+ 9a6

64

[
C[6]

(
148

135
F3 + 4

5
δG3 + 4

5
H5/3F2/3

)
+128

135
D[6]F4

]
ρ9/3, (20)

where a = (3π2/2)1/3, and m is nucleon rest mass in vacuum.
In Eq. (20), Fx, Gx, and Hx are defined as

Fx = [(1 + δ)x + (1 − δ)x]/2,

Gx = [(1 + δ)x − (1 − δ)x]/2,

Hx = [(1 + δ)(1 − δ)]x.

The EOS can be expanded as a power series in δ, i.e.,

E (ρ, δ) = E0(ρ) + Esym(ρ)δ2 + Esym,4(ρ)δ4 + O(δ6), (21)

where E0(ρ) is the EOS of the SNM. The symmetry energy
Esym(ρ) and the fourth-order symmetry energy Esym,4(ρ) are
defined as

Esym(ρ) = 1

2!

∂2E (ρ, δ)

∂δ2

∣∣∣∣
δ=0

, (22)

and

Esym,4(ρ) = 1

4!

∂4E (ρ, δ)

∂δ4

∣∣∣∣
δ=0

. (23)

The expression of Esym,4(ρ) is shown in Appendix C. The
value of Esym,4(ρ0) is usually very small, as indicated by
microscopic many-body approaches and predictions from
phenomenological models (Esym,4(ρ0) � 2 MeV) [101,102].
Specially, for nonrelativistic mean-field models, estimates for
Esym,4(ρ0) are around 1.02 ± 0.49 MeV, 1.02 ± 0.50 MeV,
0.70 ± 0.60 MeV, and 0.74 ± 0.63 MeV in the SHF, eSHF,
Gogny-Hartree-Fock, and momentum-dependent interaction
models, respectively [103]. However, Esym,4(ρ) could signif-
icantly impact the properties of nuclear matter with large
isospin asymmetry at suprasaturation densities, i.e., the
cooling mechanism [104,105] and the core-crust transition
density [106,107] of neutron stars.

The pressure of the isospin asymmetric nuclear matter can
be expressed as

P(ρ, δ) = ρ2 ∂E (ρ, δ)

∂ρ
. (24)

The saturation density ρ0 is defined where the pressure of the
SNM is zero (except for ρ = 0), i.e.,

P(ρ0, δ = 0) = ρ2
0

dE (ρ, 0)

dρ

∣∣∣∣
ρ=ρ0

= 0. (25)

Around the saturation density ρ0, both E0(ρ) and Esym(ρ)
can be expanded as power series in a dimensionless variable
χ ≡ ρ−ρ0

3ρ0
, i.e.,

E0(ρ) = E0(ρ0) + L0χ + K0

2!
χ2 + J0

3!
χ3 + I0

4!
χ4 + O(χ5),

(26)
and

Esym(ρ) = Esym(ρ0) + Lχ + Ksym

2!
χ2

+ Jsym

3!
χ3 + Isym

4!
χ4 + O(χ5). (27)

The first four coefficients of χn in the two expansions are

L0 = 3ρ0
dE0(ρ)

dρ

∣∣∣∣
ρ=ρ0

, L = 3ρ0
dEsym(ρ)

dρ

∣∣∣∣
ρ=ρ0

,

K0 = 9ρ2
0

d2E0(ρ)

dρ2

∣∣∣∣
ρ=ρ0

, Ksym = 9ρ2
0

d2Esym(ρ)

dρ2

∣∣∣∣
ρ=ρ0

,

J0 = 27ρ3
0

d3E0(ρ)

dρ3

∣∣∣∣
ρ=ρ0

, Jsym = 27ρ3
0

d3Esym(ρ)

dρ3

∣∣∣∣
ρ=ρ0

,

I0 = 81ρ4
0

d4E0(ρ)

dρ4

∣∣∣∣
ρ=ρ0

, Isym = 81ρ4
0

d4Esym(ρ)

dρ4

∣∣∣∣
ρ=ρ0

,

respectively. Obviously, we have L0 = 0 by the definition of
ρ0 in Eq. (25). K0 is the incompressibility coefficient of SNM
which characterizes the curvature of E0(ρ) at ρ0. J0 and I0 rep-
resent higher-order contributions and are commonly referred
to as the skewness and kurtosis coefficients of SNM. L, Ksym,
Jsym, and Isym are the slope coefficient, curvature coefficient,
skewness coefficient, and kurtosis coefficient of the symmetry
energy at ρ0.
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The quantities E0(ρ0), K0, J0, as well as L, Ksym, and Jsym are utilized in the following fitting procedure, with their expressions
provided in Appendix A. In addition, we also present the expressions of I0 and Isym in Appendix C for completeness.

D. Single-nucleon potential, symmetry potential, and nucleon effective masses in cold nuclear matter

In the case of zero-temperature and uniform nuclear matter, the single-nucleon potential [Eq. (17)] reduces to an analytical
function of ρ, δ and the magnitude of nucleon momentum p = | �p|:

Uτ (ρ, δ, p) = 1

4
t0[2(x0 + 2) − (2x0 + 1)(1 + τδ)]ρ

+
∑

n=1,3,5

1

24
t [n]
3

[(
n

3
+ 2

)(
x[n]

3 + 2
)− (2x[n]

3 + 1
)(1

2

n

3
F2 + 1 + τδ

)]
ρ

n
3 +1

+ 1

4
C[2]

[
1

3

k3
F

π2

( p

h̄

)2
+ 1

5

k5
F

π2
F5/3

]
+ 1

8
D[2]

[
1

3

k3
F

π2

( p

h̄

)2
(1 + τδ) + 1

5

k5
F

π2
(1 + τδ)5/3

]

+ 1

8
C[4]

[
1

3

k3
F

π2

( p

h̄

)4
+ 2

3

k5
F

π2

( p

h̄

)2
F5/3 + 1

7

k7
F

π2
F7/3

]

+ 1

16
D[4]

[
1

3

k3
F

π2

( p

h̄

)4
(1 + τδ) + 2

3

k5
F

π2

( p

h̄

)2
(1 + τδ)5/3 + 1

7

k7
F

π2
(1 + τδ)7/3

]

+ 1

4
C[6]

[
1

3

k3
F

π2

( p

h̄

)6
+ 7

5

k5
F

π2

( p

h̄

)4
F5/3 + k7

F

π2

( p

h̄

)2
F7/3 + 1

9

k9
F

π2
F3

]

+ 1

8
D[6]

[
1

3

k3
F

π2

( p

h̄

)6
(1 + τδ) + 7

5

k5
F

π2

( p

h̄

)4
(1 + τδ)5/3 + k7

F

π2

( p

h̄

)2
(1 + τδ)7/3 + 1

9

k9
F

π2
(1 + τδ)3

]
, (28)

where τ equals 1 [−1] for neutrons [proton] and kF = (3π2ρ/2)1/3 is the Fermi wave number of nucleons in the SNM.
Expanding Uτ (ρ, δ, p) as a power series in τδ, we obtain

Uτ (ρ, δ, p) = U0(ρ, p) +
∑

i=1,2,···
Usym,i(ρ, p)(τδ)i = U0(ρ, p) + Usym,1(ρ, p)(τδ) + Usym,2(ρ, p)(τδ)2 + · · · , (29)

where

U0(ρ, p) ≡ Uτ (ρ, 0, p)

= 3

4
t0ρ +

∑
n=1,3,5

t [n]
3

16

(n

3
+ 2
)
ρ

n
3 +1 + 1

8
(2C[2] + D[2] )

[
1

3

k3
F

π2

( p

h̄

)2
+ 1

5

k5
F

π2

]

+ 1

16
(2C[4] + D[4] )

[
1

3

k3
F

π2

( p

h̄

)4
+ 2

3

k5
F

π2

( p

h̄

)2
+ 1

7

k7
F

π2

]

+ 1

8
(2C[6] + D[6] )

[
1

3

k3
F

π2

( p

h̄

)6
+ 7

5

k5
F

π2

( p

h̄

)4
+ k7

F

π2

( p

h̄

)2
+ 1

9

k9
F

π2

]
(30)

is the single-nucleon potential in SNM and Usym,i can be expressed as

Usym,i(ρ, p)≡ 1

i!

∂ iUn(ρ, δ, p)

∂δi

∣∣∣∣
δ=0

= (−1)i

i!

∂ iUp(ρ, δ, p)

∂δi

∣∣∣∣
δ=0

. (31)

The Usym,1(ρ, p) is the well-known first-order symmetry potential [7]. And Usym,2(ρ, p) represents the second-order symmetry
potential, the contribution of which to L(ρ) could be significant based on the single-nucleon potential decomposition of
L(ρ) [108]. However, there is currently no experimental or empirical information available regarding Usym,2. Neglecting
higher-order terms (δ2, δ3, · · · ) in Eq. (29) leads to the well-known Lane potential [109]:

Uτ (ρ, δ, p) ≈ U0(ρ, p) + Usym(ρ, p)(τδ). (32)

In the following, we abbreviate the first-order symmetry potential Usym,1 as Usym. For the new Skyrme pseudopotential interaction
in Eq. (3), the symmetry potential can be expressed as

Usym(ρ, p) = −1

4
t0(2x0 + 1)ρ −

∑
n=1,3,5

1

24
t [n]
3

(
2x[n]

3 + 1
)
ρ

n
3 +1 + D[2]

8

[
1

3

k3
F

π2

( p

h̄

)2
+ 1

3

k5
F

π2

]

+ D[4]

16

[
1

3

k3
F

π2

( p

h̄

)4
+ 10

9

k5
F

π2

( p

h̄

)2
+ 1

3

k7
F

π2

]
+ D[6]

8

[
1

3

k3
F

π2

( p

h̄

)6
+ 7

3

k5
F

π2

( p

h̄

)4
+ 7

3

k7
F

π2

( p

h̄

)2
+ 1

3

k9
F

π2

]
. (33)
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One important quantity related to the single-nucleon po-
tential is the nucleon effective mass. From Eq. (16), it is
seen that the single-nucleon potential represents the net ef-
fect of the nuclear medium, defined as the single-nucleon
energy subtracting the kinetic energy part, i.e., Uτ ≡ Eτ −
p2/2m in nonrelativistic models. Thus, the single-nucleon
potential is generally dependent on single-particle energy and
momentum, which is also evident from the observed en-
ergy/momentum dependence of nucleon optical potential. The
nucleon effective mass obtained from the momentum depen-
dence of the single-nucleon potential, i.e., the p-mass m∗,p

τ , is
different from the E-mass m∗,E

τ derived from the energy de-
pendence, by their definitions (see Eq. (1) in Ref. [17]). They
respectively reflect the spatial and the time nonlocality of the
underlying nuclear interactions [110]. Once the nonrelativistic
on-shell single-nucleon spectrum Eτ = p2/2m + Uτ is given,
the E-mass and p-mass are connected to the (total) nucleon

effective mass m∗
τ by the well-known relation m∗

τ

m = m∗,E
τ

m · m∗,p
τ

m .
Thus the total nucleon effective mass m∗

τ , which is considered
in the present work, can be expressed as [17]

m∗
τ (ρ, δ)

m
=
[

1 + m

p

dUτ (ρ, δ, p)

d p

∣∣∣∣
p=pFτ

]−1

. (34)

The isoscalar nucleon effective mass m∗
s is the nucleon effec-

tive mass in SNM, and the isovector nucleon effective mass
m∗

v is the effective mass of proton (neutron) in pure neutron
(proton) matter. Additionally, a subscript “0” denotes that the
nucleon effective mass is defined at the saturation density
ρ0, e.g., m∗

s,0 and m∗
v,0, and their expressions are shown in

Appendix C. The nucleon effective mass splitting, denoted as
m∗

n-p(ρ, δ) ≡ [m∗
n (ρ, δ) − m∗

p(ρ, δ)]/m, is extensively used in
nuclear physics. m∗

n-p(ρ, δ) can be expanded as a power series
in δ, i.e.,

m∗
n-p(ρ, δ) =

∞∑
n=1

�m∗
2n−1(ρ)δ2n−1, (35)

where �m∗
2n−1(ρ) are the isospin splitting coefficients (of

the nucleon effective mass), and the first coefficient �m∗
1 (ρ)

is usually referred to as the linear isospin splitting coeffi-
cient. By analyzing experimental data, significant progress
has been made in determining the linear isospin splitting
coefficient in recent years [17,111], including m∗

n-p(ρ0, δ) =
(0.41 ± 0.15)δ from the optical model analysis of nucleon-
nucleus scatterings [112], m∗

n-p(ρ0, δ) = (0.27 ± 0.15)δ from
the SHF+RPA calculations of the isovector giant dipole reso-
nance (IVGDR) and the electric dipole polarizability (αD) in
208Pb [113] as well as m∗

n-p(ρ0, δ) = (0.216 ± 0.114)δ from
the IBUU transport model simulations of the IVGDR and αD

in 208Pb [65]. It should be noted that a linear isospin splitting
of m∗

n-p(ρ0, δ) = 0.187δ is predicted very recently with the
relativistic Brueckner-Hartree-Fock (RBHF) theory in the full
Dirac space [114].

The very interesting and simple relations between the
isoscalar and isovector nucleon effective masses m∗

s , m∗
v , and

the fourth-order symmetry energy Esym,4(ρ) as well as the
isospin splitting coefficients �m∗

2n−1(ρ) have been discov-
ered (see Eq. (33) in Ref. [103] and Eq. (8) in Ref. [113],

respectively), and these relations hold true in both standard
SHF and eSHF models. Given that the single-nucleon poten-
tial in N3LO Skyrme pseudopotential contains higher-order
momentum terms, m∗

s and m∗
v are momentum dependent.

Consequently, the connections between Esym,4(ρ) as well as
�m∗

2n−1(ρ) and m∗
s , m∗

v explicitly involve the derivatives of
m∗

s and m∗
v with respect to momentum, and we demonstrate

this in Appendix C.

III. FITTING STRATEGY AND NEW INTERACTIONS

Since the gradient operator makes no contribution toward
the uniform nuclear matter, the gradient terms of the Hamito-
nian density in Eq. (10) vanish. As a result, the six coefficients
E [n] and F [n] (n = 2, 4, 6) are irrelevant to the properties of
the nuclear matter, but they are important for transport models
and nuclear structure calculations. E [n] and F [n] (n = 2, 4, 6)
could be obtained by the properties of finite nuclei, and thus
the 12 Skyrme parameters t [n]

1 , x[n]
1 , t [n]

2 , x[n]
2 (n = 2, 4, 6) can

be totally determined together with C[n] and D[n] (n = 2, 4, 6)
from Eqs. (11)–(14). To determine E [n] and F [n] (n = 2, 4, 6)
from finite nuclei calculations is beyond the scope of this work
and will be pursued in future research. In this context, the total
number of the present extended Skyrme parameters is reduced
from 20 to 14, i.e., t0, t [1]

3 , t [3]
3 , t [5]

3 , x0, x[1]
3 , x[3]

3 , x[5]
3 , C[2], C[4],

C[6], D[2], D[4], and D[6].
One of our main goals in developing this new extended

Skyrme interaction in the recent work is its application
in two areas: the one-body transport model for HICs, and
its future applications in the EOS of warm nuclear matter
for protoneutron stars, as well as in the numerical simula-
tions of supernovae and neutron-star mergers. In transport
equations (such as BUU equation or Vlasov equation), the
single-nucleon potential is a basic input. At finite tempera-
ture, even in thermal equilibrium, the single-nucleon potential
is necessary to determine the nucleons distribution. The
new extended Skyrme interaction is therefore necessary to
accurately describe the well-known empirical momentum de-
pendence of single-nucleon potential in SNM at saturation
density U0(ρ0, p), with nucleon momentum up to 1.5 GeV/c
(approximately corresponding to nucleon kinetic energy of
1 GeV). We use the data of the real part of the nucleon
optical potential (Schrödinger equivalent potential) obtained
by Hama et al. [73,74] in the model parameter optimization.
Furthermore, the momentum dependence of the symmetry
potential at saturation density Usym(ρ0, p), derived from the
new extended Skyrme interaction should be comparable to
that from microscopic calculations, such as the Brueckner-
Hartree-Fock (BHF) calculation [115] and relativistic impulse
approximation [116,117] (still for nucleon momentum up to
1.5 GeV/c).

First, we rewrite U0(ρ0, p) and Usym(ρ0, p) in the forms we
employ frequently in the subsequent discussion, i.e.,

U0(ρ0, p) = a0 + a2

( p

h̄

)2
+ a4

( p

h̄

)4
+ a6

( p

h̄

)6
, (36)

Usym(ρ0, p) = b0 + b2

( p

h̄

)2
+ b4

( p

h̄

)4
+ b6

( p

h̄

)6
, (37)
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where a0, a2, a4, a6 and b0, b2, b4, b6 take the following
following forms:

a0 = 3

4
t0ρ0 +

∑
n=1,3,5

t [n]
3

16

(n

3
+ 2
)
ρ

n
3 +1

0

+ k5
F0

40π2
(2C[2] + D[2] ) + k7

F0

112π2
(2C[4] + D[4] )

+ k9
F0

72π2
(2C[6] + D[6] ), (38)

a2 = k3
F0

24π2
(2C[2] + D[2] ) + k5

F0

24π2
(2C[4] + D[4] )

+ k7
F0

8π2
(2C[6] + D[6] ), (39)

a4 = k3
F0

48π2
(2C[4] + D[4] ) + 7k5

F0

40π2
(2C[6] + D[6] ), (40)

a6 = k3
F0

24π2
(2C[6] + D[6] ), (41)

and

b0 = −1

4
t0(2x0 + 1)ρ0 −

∑
n=1,3,5

1

24
t [n]
3

(
2x[n]

3 + 1
)
ρ

n
3 +1

0

+ k5
F0

24π2
D[2] + k7

F0

48π2
D[4] + k9

F0

24π2
D[6], (42)

b2 = k3
F0

24π2
D[2] + 5k5

F0

72π2
D[4] + 7k7

F0

24π2
D[6], (43)

b4 = k3
F0

48π2
D[4] + 7k5

F0

24π2
D[6], (44)

b6 = k3
F0

24π2
D[6]. (45)

Second, we take the values of ρ0, E0(ρ0) and K0 to be
0.16 fm−3, −16 MeV, and 230 MeV, respectively. The ther-
modynamic relationship gives

ρE (ρ, δ) + P(ρ, δ) =
∑

τ=n,p

μτρτ , (46)

where μτ is the chemical potentials of nucleons with isospin
τ . According to the Hugenholtz-Van Hove (HVH) theorem
[118,119], μτ can be expressed as

μτ = p2
Fτ

2m
+ Uτ (ρ, δ, pFτ

), (47)

where pFτ
= h̄(3π2ρτ )1/3 is the Fermi momentum of nucleons

with isospin τ . Substituting Eq. (47) into Eq. (46) at saturation
density in SNM, we obtain

E0(ρ0) = p2
F0

2m
+ U0(ρ0, pF0 ), (48)

where pF0 = h̄(3π2ρ0/2)1/3 is the Fermi momentum of nucle-
ons in the SNM at saturation density.

Third, we use the GEKKO optimization suite [120] to
minimize the weighted sum of squared difference between U0

in Eq. (36) and the nucleon optical potential data Uopt [73,74],

χ2 =
Nd∑
i=1

(
U0,i − Uopt,i

σi

)2

, (49)

with the constraint of Eq. (48), where Nd is the number
of the experimental data points. Since there are actually
no practical errors σi here, we assign equal weights to
each data point within the range of the nucleon momen-
tum up to 1.5 GeV/c. We obtain a0 = −64.03448 MeV, a2 =
6.517778 MeV fm2, a4 = −0.1259551 MeV fm4, and a6 =
8.133124 × 10−4 MeV fm6. The last independent quantity in
the new extended Skyrme interactions related to SNM, J0, is
constrained by the flow data in HICs [2]. We set J0 to its maxi-
mum allowed value by the flow data, which is −383 MeV. The
values of the seven macroscopic quantities of SNM, namely,
ρ0, E0(ρ0), K0, J0, a2, a4, and a6 [due to the constraint of
Eq. (48), a0 is redundant], uniquely determine the values
of the parameters t0, t [1]

3 , t [3]
3 , t [5]

3 as well as the parame-
ters combinations 2C[2] + D[2], 2C[4] + D[4], and 2C[6] + D[6].
The isoscalar nucleon effective mass at ρ0, denoted by m∗

s,0,
can be obtained as 0.773m.

Furthermore, we set the values of b2, b4, and b6 in
Eq. (37) to be −3 MeV fm2, 0.078 MeV fm4, and −7 ×
10−4 MeV fm6, respectively. This choice ensures that the mo-
mentum dependence of the symmetry potential at saturation
density, Usym(ρ0, p), is consistent with the microscopic cal-
culations [115–117,121]. The values of parameters D[2], D[4],
and D[6] are solely determined by b2, b4, and b6, which can be
seen by comparing Eq. (33) with Eq. (37). Combined with the
parameters of the SNM that have been previously determined,
the values of t0, t [1]

3 , t [3]
3 , t [5]

3 , C[2], C[4], C[6], D[2], D[4], and D[6]

can then be obtained. The isovector nucleon effective mass at
ρ0, denoted by m∗

v,0, can be obtained as 0.691m. The values
of b0 can be obtained through the widely used theorem of the
symmetry energy decomposition [108,122–126]:

Esym(ρ0) = 1

3

p2
F0

2m∗
s,0

+ 1

2
Usym(ρ0, pF0 ), (50)

once the value of Esym(ρ0) is given.
Finally, we construct eight interaction parameter sets with

L values of 5, 15, 25, 35, 45, 55, 65, and 75 MeV, respectively,
combined with three additional parameters of the symme-
try energy: Esym(ρ0), Ksym, and Jsym, and they are required
to strictly satisfy the following constraints: (1) the EOS of
PNM predicted by combined results from various microscopic
calculations [40]; (2) the largest mass of neutron stars re-
ported so far from PSR J0740+6620 [78,79]; (3) the limit
of �1.4 � 580 for the dimensionless tidal deformability of
canonical 1.4 M� neutron star from the gravitational wave sig-
nal GW170817 [77]; (4) the mass-radius determinations from
NICER for PSR J0030+0451 [80,81] with a mass around
1.4 M� as well as for PSR J0740+6620 [82,83] with a mass
around 2.0 M�. The details on the calculations of neutron stars
can be found in Sec. IV C. Therefore, based on the preceding
discussion, in the present work, the 14 parameters of the new
extended Skyrme interactions—namely, t0, t [1]

3 , t [3]
3 , t [5]

3 , x0,
x[1]

3 , x[3]
3 , x[5]

3 , C[2], C[4], C[6], D[2], D[4], and D[6]—are uniquely
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TABLE I. Parameters of the Skyrme interactions SP6X. Here the recombination of Skyrme parameters defined in Eqs. (11) and (12) are
used. The units of parameters: t0: MeV fm3; t [n]

3 (n = 1, 3, 5), C[n] and D[n] (n = 2, 4, 6): MeV fmn+3; x0 and x[n]
3 (n = 1, 3, 5) are dimensionless.

X Lm5 L5 L15 L25 L35 L45 L55 L65 L75 L85 L105 L125

t0 −1840.45 −1840.45 −1840.45 −1840.45 −1840.45 −1840.45 −1840.45 −1840.45 −1840.45 −1840.45 −1840.45 −1840.45

x0 −0.530286 −0.378151 −0.0684472 0.0420416 0.150705 0.241260 0.128971 0.239451 0.284729 0.333631 0.480330 0.565458

t [1]
3 13010.2 13010.2 13010.2 13010.2 13010.2 13010.2 13010.2 13010.2 13010.2 13010.2 13010.2 13010.2

x[1]
3 −3.00102 −2.13561 −1.08968 −0.680843 −0.123375 0.221724 −0.224254 0.184563 0.450028 0.577453 1.09245 1.48535

t [3]
3 −4036.41 −4036.41 −4036.41 −4036.41 −4036.41 −4036.41 −4036.41 −4036.41 −4036.41 −4036.41 −4036.41 −4036.41

x[3]
3 −38.8861 −23.9051 −14.4988 −10.5117 −4.12450 −1.60843 −4.93746 −0.950337 1.75934 3.15290 6.75277 11.2433

t [5]
3 2386.36 2386.36 2386.36 2386.36 2386.36 2386.36 2386.36 2386.36 2386.36 2386.36 2386.36 2386.36

x[5]
3 −84.9734 −43.7168 −26.3216 −19.5904 −7.26000 −5.59387 −11.7256 −4.99398 −1.66162 0.471173 1.87073 8.66907

C[2] 523.869 523.869 523.869 523.869 523.869 523.869 523.869 523.869 523.869 523.869 523.869 523.869

D[2] −349.811 −349.811 −349.811 −349.811 −349.811 −349.811 −349.811 −349.811 −349.811 −349.811 −349.811 −349.811

C[4] −21.8732 −21.8732 −21.8732 −21.8732 −21.8732 −21.8732 −21.8732 −21.8732 −21.8732 −21.8732 −21.8732 −21.8732

D[4] 17.3414 17.3414 17.3414 17.3414 17.3414 17.3414 17.3414 17.3414 17.3414 17.3414 17.3414 17.3414

C[6] 0.07567 0.07567 0.07567 0.07567 0.07567 0.07567 0.07567 0.07567 0.07567 0.07567 0.07567 0.07567

D[6] −0.07000 −0.07000 −0.07000 −0.07000 −0.07000 −0.07000 −0.07000 −0.07000 −0.07000 −0.07000 −0.07000 −0.07000

determined by 14 macroscopic quantities: ρ0, E0(ρ0), K0, J0,
a2, a4, a6, b2, b4, b6, Esym(ρ0), L, Ksym, and Jsym.

We name these parameter sets as SP6X, where “SP6”
indicates the framework of the Skyrme pseudopotential with
momentum up to the sixth order and X denotes their L values,
i.e., SP6L5, SP6L15, SP6L25, SP6L35, SP6L45, SP6L55,
SP6L65, and SP6L75. In addition to these eight parameter
sets, referred to as the default-SP6X interactions, we also
develop four interactions: SP6Lm5, SP6L85, SP6L105, and
SP6L125, representing supersoft and superstiff symmetry en-
ergies around saturation density, and we will discuss them in
detail in Sec. V. It should be noted that all the interactions
predict exactly the same properties of SNM, including the
pressure PSNM(ρ) and the single-nucleon potential U0(ρ, p).
In Table I, we list the 14 Skyrme parameters for these new
interactions.

IV. THE PROPERTIES OF COLD NUCLEAR MATTER
WITH THE NEW EXTENDED SKYRME INTERACTIONS

A. Bulk properties of cold nuclear matter

Table II summarizes the macroscopic characteristic quan-
tities of nuclear matter obtained with these new extended
Skyrme interactions SP6X. We would like to mention that the
subsaturation cross density ρsc = 2/3ρ0 is approximately the
average density of heavy nuclei. Esym(ρsc) and L(ρsc) have
been commonly used to describe the subsaturation properties
of the symmetry energy, and they are strongly correlated
with many properties of finite nuclei [41–44]. One can see
from Table II that for the default-SP6X interactions (with
5 MeV � L � 75 MeV), the values of Esym(2ρ0) vary from
about 28 to 61 MeV, which is consistent with the Esym(2ρ0) =
47+23

−22 MeV [127], obtained by averaging essentially all the
existing constraints. For SP6X interactions with the superstiff
symmetry energies, i.e., with X being L85, L105 and L125,
we may have much larger Esym(2ρ0) values, i.e., Esym(2ρ0) =
66.87 MeV, 82.70 MeV, and 93.57 MeV, respectively.

Shown in Fig. 1 is the pressure of the SNM, PSNM(ρ), as
a function of density of these new interactions, as well as the
constraint on the PSNM(ρ) in the density region from 2ρ0 to
4.6ρ0 obtained from analyzing the flow data in HICs [2]. The
PSNM(ρ) predicted by these new interactions are identical and
it is seen that they all conform to the flow data as required in
the construction of the model parameters.

Figure 2 displays the EOS of PNM as a function of
density determined by these new interactions SP6X and the
results from combined microscopic calculations [40], in-
cluding many-body perturbation theory using N3LO chiral
interactions by Tews et al. [30], Wellenhofer et al. [31],
and Drischler et al. [32], the quantum Monte Carlo meth-
ods by Gandolfi et al. [33], Wlazłowski et al. [34], Roggero
et al. [35], and Tews et al. [36], the variational calcula-
tions by Akmal-Pandharipande-Ravenhall (APR) [37], the
Bethe-Bruckner-Goldstone calculations (BBG-QM 3h-gap
and BBG-QM 3h-con) [38], and the self-consistent Green’s
function approach (SCGF-N3LO+N2LOdd) [39]. It is seen
that the EPNM predicted by the default-SP6X interactions (with
5 MeV � L � 75 MeV) are in perfect agreement with the
microscopic calculations. However, for the superstiff SP6X
interactions, with X = L85, L105 and L125, they predict
too large EPNM above 0.12 ≈ 0.14 fm−3, while the supersoft
interaction SP6X, with X = Lm5, predicts too small EPNM

above 0.12 fm−3.
Shown in Fig. 3 is the density dependence of the symme-

try energy predicted by these new interactions SP6X, with
X = Lm5, . . ., L125. These interactions with smaller val-
ues of L also have smaller values of Esym(ρ0), and this is
a consequence of the constraints on EPNM from microscopic
calculations [40]. Although the higher-order characteristic pa-
rameters of the symmetry energy, Ksym and Jsym, may have
effects on EPNM at subsaturation densities, their values mainly
influence the high-density behaviors of the symmetry energy,
and thus determined by the properties of neutron stars. It
is seen from Fig. 3 that all of these new interactions SP6X
have relatively stiff symmetry energy at suprasaturation den-
sities, especially for those with smaller values of L, which
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TABLE II. Macroscopic characteristic quantities of nuclear matter with these new extended Skyrme interactions SP6X. Note: ρsc = 2/3ρ0.

X Lm5 L5 L15 L25 L35 L45 L55 L65 L75 L85 L105 L125

ρ0 (fm−3) 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160
E0(ρ0) (MeV) −16.0 −16.0 −16.0 −16.0 −16.0 −16.0 −16.0 −16.0 −16.0 −16.0 −16.0 −16.0
K0 (MeV) 230.0 230.0 230.0 230.0 230.0 230.0 230.0 230.0 230.0 230.0 230.0 230.0
J0 (MeV) −383.0 −383.0 −383.0 −383.0 −383.0 −383.0 −383.0 −383.0 −383.0 −383.0 −383.0 −383.0
I0 (MeV) 1819 1819 1819 1819 1819 1819 1819 1819 1819 1819 1819 1819
m∗

s,0/m 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773
m∗

v,0/m 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691
Esym(ρsc ) (MeV) 23.51 25.42 25.51 25.64 24.77 24.14 26.05 26.18 25.46 26.49 26.09 26.36
L(ρsc ) (MeV) 15.01 30.50 33.96 37.45 40.54 41.51 48.16 51.66 53.53 58.41 62.01 69.16
Esym(ρ0) (MeV) 24.00 28.00 29.00 30.00 30.00 30.00 33.00 34.00 34.00 36.00 37.00 39.00
L (MeV) −5.000 5.000 15.00 25.00 35.00 45.00 55.00 65.00 75.00 85.00 105.0 125.0
Esym(1.5ρ0) (MeV) 26.26 26.97 29.25 32.13 33.66 36.45 41.42 44.30 46.72 50.60 56.94 63.04
L(1.5ρ0) (MeV) 76.94 −11.80 −8.534 8.503 17.28 52.44 74.47 91.50 119.2 137.4 204.0 245.8
Esym(2ρ0) (MeV) 47.27 28.47 29.10 33.47 34.59 42.37 50.63 54.99 60.95 66.87 82.70 93.57
L(2ρ0) (MeV) 437.6 69.87 19.22 29.61 3.155 75.87 127.6 137.8 184.9 208.7 347.8 403.8
Ksym (MeV) −10.00 −250.0 −240.0 −210.0 −190.0 −110.0 −100.0 −70.00 −10.00 10.00 150.0 220.0
Jsym (MeV) 4250 2100 1450 1200 670.0 700.0 900.0 650.0 550.0 470.0 580.0 320.0
Isym (MeV) −1140 −293.9 −1220 −1586 −1896 −2446 −1974 −2340 −2640 −2752 −3638 −3970
Esym,4(ρ0) (MeV) 0.7471 0.7471 0.7471 0.7471 0.7471 0.7471 0.7471 0.7471 0.7471 0.7471 0.7471 0.7471
�m∗

1 (ρ0) 0.1740 0.1740 0.1740 0.1740 0.1740 0.1740 0.1740 0.1740 0.1740 0.1740 0.1740 0.1740

are necessary to predict the maximum mass of neutron stars
that matching the astrophysical observations on the mass of
heaviest neutron stars discovered so far [78,79].

B. Single-nucleon potential and symmetry potential

Shown in Fig. 4 is the single-nucleon potential U0(ρ, p)
in cold SNM, predicted by these new interactions, as a
function of nucleon kinetic energy E − m =

√
p2 + m2 +

U0(ρ, p) − m, at ρ = 0.5ρ0, ρ0 and 2ρ0, respectively. Also
shown in Fig. 4(a) is the real part of nucleon optical poten-
tial (Schrödinger equivalent potential) in SNM at saturation
density ρ0 obtained by Hama et al. [73,74], from Dirac phe-
nomenology of nucleon-nucleus scattering data. As a result of
the model parameter optimization process we have performed
in Sec. III, U0(ρ0, p) conforms very well to the empirical

FIG. 1. The pressure of SNM [PSNM(ρ )] as a function of nucleon
density given by the new interactions SP6X. Also included are the
constraints from flow data in HICs [2].

nucleon optical potential obtained by Hama et al. [73,74] for
nucleon kinetic energy up to 1 GeV.

Shown in Fig. 5 is the symmetry potential Usym(ρ, p)
of cold nuclear matter, predicted by these new interactions
SP6X, with X = Lm5, . . ., L125, as function of nucleon
momentum p, at ρ = 0.5ρ0, ρ0 and 2ρ0, respectively. Also
shown in Fig. 5 are the corresponding results from sev-
eral microscopic calculations: the nonrelativistic BHF theory
with and without rearrangement contribution from the three-
body force [121]; the relativistic Dirac-BHF theory [115];
the relativistic impulse approximation [116,117] using the
empirical nucleon-nucleon scattering amplitude determined
in Refs. [128,129]. Since the parameters D[2], D[4] and D[6]

are the same in these new interactions, the momentum de-
pendence of Usym(ρ, p) is identical for all interactions, as
shown in Fig. 5. The momentum dependence of the symmetry

FIG. 2. The EOS of the PNM (EPNM) predicted by the new in-
teractions SP6X, with X = Lm5, . . ., L125. The band represents the
results from microscopic calculations [40] (see text for the details).
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FIG. 3. The density dependence of the symmetry energy pre-
dicted by the new interactions SP6X, with X = Lm5, . . ., L125.

potential at ρ0, Usym(ρ0, p), predicted by these new interac-
tions, is in good agreement with the microscopic calculations,
as shown in Fig. 5(b). The upward and downward translation
of Usym(ρ, p) is determined by the value of Esym(ρ) through
Eq. (50). The difference in the values of Esym(0.5ρ0) among
these new interactions are very small, resulting in nearly
identical Usym(0.5ρ0, p). However, there are substantial dif-
ferences in the values of Esym(2ρ0), resulting in a significant
variation in Usym(2ρ0, p), as shown in Fig. 5(c), which may
influence the isospin dynamic in HICs at intermediate and
high energies.

C. Neutron star properties

It is generally believed that neutron stars consist of three
parts from the inside out: the core, the inner crust, and the
outer crust. In the present work, we assume the core consists
of free neutrons, protons, electrons and possible muons (npeμ
matter) without phase transition and other degrees of freedom
at high densities. The β-equilibrium between neutrons, pro-
tons, electrons, and muons requires

μn − μp = μe = μμ, (51)

FIG. 4. The energy dependence of the single-nucleon potential
in cold SNM predicted by the new interactions SP6X. The nucleon
optical potential (Schrödinger equivalent potential, Usep) in SNM at
ρ0 obtained by Hama et al. [73,74] is also shown.

and the appearance of muons requires μe > mμ. Equation (51)
together with the charge neutral condition,

ρp = ρe + ρμ, (52)

are sufficient to determine the fraction of every component
as a function of nucleon density, as well as the EOS of the
β-equilibrium npeμ matter in neutron star core.

Shown in Fig. 6 is the particle fraction Yx ≡ ρx/ρ (ρ is the
nucleon density and x = n, p, e, μ) as functions of nucleon
density in β-equilibrium npeμ matter predicted by these new
interactions SP6X, with X = Lm5, . . ., L125. Also shown
in Fig. 6 is the core-crust transition density ρt , which sep-
arates the liquid core from the nonuniform inner crust, and
is obtained self-consistently through the so-called dynami-
cal method of Ref. [107]. In the present work, the critical
density between the inner and the outer crust is taken to be
ρout = 2.46 × 10−4 fm−3 [106,107,130]. For the outer crust,
where ρ < ρout, we use the EOS of BPS (FMT) [131]; for the
inner crust, where ρout < ρ < ρt , we construct the EOS by
interpolation with the form [106,107,130]

P = a + bε4/3. (53)

Figure 6 also displays the center densities of neutron stars cor-
responding to different masses, namely, ρ0.77

cen , ρ1.4
cen, ρ2.0

cen and
ρTOV

cen . One can see that the proton fraction in β-equilibrium
nuclear matter is strongly correlated with the value of Esym(ρ).
For example, considering SP6Lm5, which possesses the
smallest Esym(ρ0) among the SP6X interactions, it predicts
the lowest proton fraction at ρ0. Nevertheless, at high nucleon
densities, SP6Lm5 predicts the stiffest symmetry energy, lead-
ing to the most isospin symmetric nuclear matter at ρTOV

cen .
Additionally, it is worth noting that SP6Lm5, SP6L5, SP6L15,
SP6L25, and SP6L35 predict a bump structure of proton frac-
tion, which roughly spans between ρt and ρ0.77

cen .
In Table III, we present various properties of neutron

stars obtained with interactions SP6X, with X = Lm5, . . .,
L125. These properties include the core-crust transition den-
sity ρt , the transition pressure Pt , the transition energy density
εt , the center density ρ0.77

cen and radius R0.77 of 0.77M�
neutron star, the center density ρ1.4

cen and radius R1.4 of 1.4M�
neutron star, the center density ρ2.0

cen and radius R2.0 of 2.0M�
neutron star, the center density ρTOV

cen and radius RTOV of the
maximum mass neutron star configuration, the dimensionless
tidal deformability of 1.4M� neutron star �1.4 and the maxi-
mum mass MTOV. One can see from Table III, there is a strong
correlation between ρt and L. For the default-SP6X interac-
tions, with 5MeV � L � 75MeV, ρt exhibits a nearly linear
decrease with increasing L [107,132,133]. R0.77 increases as
L increases, and the same trend is observed for R1.4, except
for SP6Lm5 and SP6L35. It is seen from Table III that all the
default-SP6X interactions satisfy the constraint of �1.4 � 580
as required in the construction of them. MTOV, RTOV and ρTOV

cen
are mainly affected by the high-density behaviors of the sym-
metry energy, and thus correlated with Ksym and Jsym. Greater
values of Ksym and Jsym indicate a stiffer symmetry energy at
high densities, leading to larger MTOV, RTOV and smaller ρTOV

cen .
Shown in Fig. 7 are the mass-radius relations of neutron

stars obtained using interactions SP6X, with X = Lm5, . . .,
L125. For comparison, we also show in Fig. 7 the
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FIG. 5. The momentum dependence of the symmetry potential in cold nuclear matter predicted by the interactions SP6X, with X =
Lm5, . . ., L125. The microscopic calculations from BHF method [121], relativistic Dirac-BHF method [115] and relativistic impulse
approximation [116,117] are also included for comparison.

simultaneous mass-radius determinations for PSR J0030+
0451 [80,81] with a mass around 1.4 M� and PSR J0740+
6620 [82,83] with a mass around 2.0 M� obtained from
NICER (XMM-Newton). We also present in Fig. 7 the mass-
radius determinations for the CCO within HESS J1731-347
from Gaia [88] and all contours are plotted for 68.3% credible
intervals (CI). As shown in Fig. 7, all of these SP6X interac-
tions, with X = Lm5, . . ., L125, align with the astrophysical
observations and measurements for both PSR J0030+0451
and PSR J0740+6620, falling within the 68.3% CI. In ad-
dition, SP6Lm5, SP6L5, SP6L15, SP6L25, and SP6L35 are
compatible with the constraint for the CCO in HESS J1731-
347 within 68.3% CI. It is interesting to note from Fig. 7
that the interactions SP6L5, SP6L15, and SP6L25 predict a
“Z”-shaped mass-radius relation of neutron stars, and these
interactions predict large radii for heavy neutron stars with

masses around 2.0 M�, while exhibiting smaller radii for light
neutron stars with masses around 0.5 M�.

The sound speed is an important quantity to characterize
the EOS of dense matter. A peak structure of the squared
sound speed C2

s ≡ dP/dε for neutron star matter, with the
peak value being around 0.5c2 (c is the speed of light in
vacuum) at density around 3.5ρ0, has been observed in recent
studies by utilizing Bayesian model-agnostic analyses of mul-
timessenger observations combined with ab initio theoretical
calculations based on chiral effective field and perturbative
QCD [134–136]. This peak structure could be considered
as a possible indication for the existence of the quarkyonic
matter [137]. Or alternatively, it might be associated with the
density dependence of the symmetry energy, particularly its
high-density behavior [138]. In Fig. 8, we display the C2

s as
function of nucleon density for the SP6X interactions, with X

FIG. 6. Particle fractions as function of nucleon density in β-equilibrium matter predicted by the interactions SP6X, with X = Lm5, . . .,
L125. The vertical lines indicate the core-crust transition density, as well as the center densities of neutron stars with masses of 0.77M�,
1.4M�, 2.0M�, and the maximum mass, respectively. For interaction SP6Lm5, the density at the zero-pressure point is also shown.
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TABLE III. Core-crust transition density (ρt ), the transition pressure (Pt ), the transition energy density (εt ), the center densitiy (ρ0.77
cen ) and

radius (R0.77) of 0.77M� neutron star, the center densitiy (ρ1.4
cen) and radius (R1.4) of 1.4M� neutron star, the center densitiy (ρ2.0

cen) and radius
(R2.0) of 2.0M� neutron star, the center density (ρTOV

cen ) and radius (RTOV) of the maximum mass neutron star configuration, the dimensionless
tidal deformability of 1.4M� neutron star (�1.4) and the maximum mass of neutron star (MTOV) for the interactions SP6X, with X = Lm5, . . .,
L125.

X Lm5 L5 L15 L25 L35 L45 L55 L65 L75 L85 L105 L125

ρt (fm−3) 0.136 0.139 0.115 0.100 0.0874 0.0804 0.0797 0.0741 0.0691 0.0667 0.0618 0.0568
Pt (MeV fm−3) −0.244 0.423 0.551 0.548 0.464 0.372 0.476 0.423 0.344 0.353 0.267 0.217
εt (MeV fm−3) 129.1 132.0 109.2 95.40 82.83 76.11 75.54 70.20 65.39 63.14 58.45 53.69
ρ0.77

cen (fm−3) 0.265 0.331 0.356 0.354 0.389 0.327 0.303 0.293 0.273 0.263 0.232 0.215
R0.77 (km) 9.929 10.66 11.08 11.61 11.72 12.35 13.19 13.52 13.71 14.13 14.32 14.70
ρ1.4

cen (fm−3) 0.310 0.391 0.433 0.446 0.531 0.461 0.426 0.436 0.419 0.418 0.376 0.370
R1.4 (km) 11.70 11.67 11.67 11.88 11.54 12.23 12.80 12.91 13.15 13.36 13.80 14.06
ρ2.0

cen (fm−3) 0.400 0.482 0.544 0.580 0.721 0.671 0.629 0.676 0.683 0.703 0.674 0.700
R2.0 (km) 12.68 12.22 11.96 11.95 11.22 12.80 12.28 12.11 12.20 12.20 12.53 12.49
ρTOV

cen (fm−3) 0.80 0.85 0.91 0.95 1.08 1.04 1.00 1.04 1.05 1.06 1.05 1.06
RTOV (km) 11.87 11.63 11.30 11.14 10.38 10.73 11.06 10.86 10.87 10.83 11.00 11.00
�1.4 714.0 433.9 359.5 355.7 264.5 390.2 468.9 475.9 546.7 571.7 751.4 837.6
MTOV/M� 2.26 2.32 2.31 2.28 2.24 2.22 2.21 2.19 2.17 2.16 2.15 2.13

= Lm5, . . ., L125. The causality condition C2
s � c2 is satisfied

by all the interactions used in neutron star calculations. It is
worth noting that the interactions SP6Lm5, SP6L5, SP6L15,
and SP6L25 predict a clear peak in C2

s between 2ρ0 and
3.5ρ0, with peak values approximately ranging from 0.5c2

to 0.7c2. The interactions SP6Lm5, SP6L5, SP6L15, and
SP6L25 exhibit relatively softer symmetry energies around
saturation density, resulting in lower C2

s around ρ0. However,
for the most massive neutron star observed to date [78,79],
the symmetry energy at high densities must be sufficiently
stiff to support its existence, leading to a rapid rise in C2

s for
these interactions. Yet, this upsurge is not sustainable due to
the causality condition. Consequently, we observe a sharp rise

FIG. 7. M-R relation for static neutron stars from the interactions
SP6X, with X = Lm5, . . ., L125. The NICER (XMM-Newton)
constraints for PSR J0030+0451 [80,81], PSR J0740+6620 [82,83],
and Gaia constraint for the CCO in HESS J1731-347 [88] are also
included for comparison. All contours are plotted for 68.3% CI.

followed by a decline in C2
s for SP6Lm5, SP6L5, SP6L15, and

SP6L25.

V. INTERACTIONS WITH SUPERSOFT AND SUPERSTIFF
SYMMETRY ENERGY AROUND SATURATION DENSITY

The density dependence of the symmetry energy is still
largely uncertain, even around the nuclear saturation density.
The charge-weak form factor differences in 48Ca and 208Pb,
extracted through parity-violating electron scattering mea-
surements by PREX-2 [46] and CREX [47] collaborations,
are considered to be model-independent probes for neutron
skin thickness and further used to constrain the density de-
pendence of the symmetry energy. The rather thick neutron
skin in 208Pb, as observed in the PREX experiment [46],
leads to a significantly large value of L, e.g., a prediction of
L = 106 ± 37 MeV from a relativistic EDF [48]. However,

FIG. 8. The squared sound speed (C2
s ≡ dP/dε) of neutron star

matter as a function of nucleon density predicted by the interactions
SP6X, with X = Lm5, . . ., L125.
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the CREX experiment [47] indicates a rather thin neutron
skin in 48Ca. The data from PREX and CREX result in sig-
nificant tension for constraining the value of L [40,49,50]
within nuclear EDFs. In Ref. [40], a Bayesian analysis is
performed on the charge-weak form factor differences in 48Ca
and 208Pb by PREX-2 [46] and CREX [47] collaborations, to-
gether with some well-determined properties of doubly magic
nuclei, and it is shown that the standard Skyrme EDF can
be consistent with both the PREX and CREX data for 90%
CI, which suggests the symmetry energy could be super-
soft with negative vaule of L, i.e., L = 17.1+23.8(39.3)

−22.3(36.0) MeV at
68.3% (90%) CI. To establish more rigorous constraints on
L, further experimental data and theoretical investigations are
necessary.

In this paper, based on the significant uncertainty of L, we
construct four additional parameter sets with L values of −5,
85, 105, and 125 MeV for comparison, and they are denoted
as SP6Lm5, SP6L85, SP6L105, and SP6L125, respectively.
These interactions with supersoft and superstiff symmetry
energies could be applied in transport models and tested
against experimental data from HICs at intermediate and high
energies. We present the corresponding Skyrme parameters
in Table I and the macroscopic characteristic quantities of
nuclear matter in Table II with these four interactions. The
properties of the SNM, including the pressure of the SNM
and the single-nucleon potential, predicted by these four in-
teractions are identical to those given by the default-SP6X
interactions, which can be seen from Figs. 1 and 4. The den-
sity dependence of the symmetry energy and the momentum
dependence of the symmetry potential with these four inter-
actions are shown in Figs. 3 and 5, respectively. The EOS of
the PNM predicted by these four interactions are presented
in Fig. 2, and it can be seen that they hardly fit the mi-
croscopic calculations results at ρ > 0.12 fm−3. It should be
mentioned that SP6Lm5 predicts that the EPNM will decrease
with increasing density at 0.10 fm−3 to 0.17 fm−3. This leads
to negative pressure in PNM at these densities, as seen in
Eq. (24), suggesting the potential existence of a quasibound
state for PNM [139]. The small values of L and Esym(ρsc) of
SP6Lm5 may have substantial impact on the neutron drip line
location as well as the r-process paths in the nuclear land-
scape [11,139]. Moreover, the core-crust transition pressure
of a neutron star could be negative in this scenario, suggesting
the neutron star may have no crust structure, which could
significantly affect the structure of neutron stars.

Shown in Fig. 9 is the energy density and the pressure
as functions of nucleon density of the β-equilibrium npeμ
matter predicted by the SP6Lm5 interaction. Also shown
in Fig. 9 is the transition density ρt = 0.136 fm−3 obtained
through the dynamical method. One can see SP6Lm5 predicts
a negative transition pressure, implying that the pressure of the
β-equilibrium nuclear matter in the uniform core decreases to
zero before becoming dynamically unstable. This interesting
feature means that the neutron star matter would be against
clusterization and the neutron stars could be composed of
only uniform liquid core without crust. The nucleon density
ρz and energy density εz at the zero-pressure point, which
corresponds to the surface of the neutron star, are 0.160 fm−3

and 151.6 MeV fm−3, respectively.

FIG. 9. The energy density and the pressure of the β-equilibrium
npeμ matter with the SP6Lm5 interaction. The vertical lines indicate
the transition density ρt = 0.136 fm−3 obtained through the dynam-
ical method [107] and the zero-pressure density ρz = 0.160 fm−3,
respectively. ρz corresponds to the density at neutron star surface,
where the energy density εz is 151.6 MeV fm−3.

The particle fractions as functions of nucleon density in the
β-equilibrium matter given by SP6Lm5, SP6L85, SP6L105,
and SP6L125 are presented in Fig. 6. These four interactions
are also applied in the neutron stars calculations, and all of
them satisfy the causality condition. We list the properties
of the neutron stars obtained with these four interactions in
Table III, and the corresponding mass-radius relations are
shown in Fig. 7. All of these four interactions meet the
mass-radius determinations from astrophysical observations
within the 68.3%CI for both PSR J0030+0451 [80,81] and
PSR J0740+6620 [82,83]. Additionally, SP6Lm5 is consis-
tent with the observations within the 68.3% CI for the CCO
in HESS J1731-347 [88]. The squared sound speed C2

s as a
function of nucleon density for the four interactions are shown
in Fig. 8, and the interaction SP6Lm5 also predicts a peak
in C2

s .

VI. INTERACTIONS WITH DIFFERENT
MOMENTUM DEPENDENCIES

A. Interactions with different isoscalar single-nucleon potentials
and isoscalar nucleon effective masses

Above we have constructed a total of 12 interaction pa-
rameter sets, namely SP6X, with X = Lm5, . . ., L125, which
have different density dependencies of the symmetry energy
whereas their descriptions of the properties of SNM, includ-
ing the single-nucleon potential U0 shown in Fig. 4, are
identical. The momentum dependence of U0 is determined
by fitting the empirical nucleon optical potential data de-
rived from Hama et al.’s analysis of proton-nucleus elastic
scattering data spanning energies approximately from 0 to
1 GeV [73,74]. In addition, a saturated asymptotic behavior
of U0 seems to be anticipated for kinetic energies exceeding
1 GeV, based on an extrapolation from Hama’s data. The
single-nucleon potential of the aforementioned 12 interac-
tions, denoted as Ms77 series, corresponding to the isoscalar
nucleon effective mass m∗

s,0 = 0.773m, is shown in Fig. 10.
Hama’s data [73,74] and the extrapolation are also included in
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FIG. 10. The energy dependence of the single-nucleon potential
in cold SNM predicted by Ms77 and Ms83. Also shown is the
nucleon optical potential (Schrödinger equivalent potential) in SNM
at ρ0 obtained by Hama et al. [73,74] and the Dirac-Brueckner
calculation [141].

Fig. 10 for comparison. As can be seen in Fig. 10(a), when
nucleon kinetic energy exceeds 1 GeV, U0 exhibits a rapid
deviation from the saturated behavior. This behavior can be
attributed to the polynomial structure of the U0 in our model,
and the apparent deviation could significantly impact the use
of the one-body transport model, such as the BUU equation,
in studying the HICs with incident energies beyond 1 GeV.
For instance, this impact might be evident in studying the
fixed-target Au+Au collision at Ebeam = 1.23 AGeV [140]
(corresponding to

√
sNN = 2.4 GeV) conducted by HADES

Collaboration.
To maintain the U0(ρ0, p) saturated over a broader

range, we repeat the model parameter optimization proce-
dure in Sec. III. In this procedure, we keep the values
of ρ0, E0(ρ0), K0 and J0 unchanged but assign a 20-
fold weight to data with kinetic energies between 0.7 GeV
and 1.5 GeV (approximately corresponding to momenta be-
tween 1.3 GeV/c and 2 GeV/c), and the extrapolation data
are also used in the optimization. Now the coefficients in
Eq. (36) are determined to be a0 = −60.27496 MeV, a2 =
4.273110 MeV fm2, a4 = −0.0523079 MeV fm4, and a6 =
2.0429408 × 10−4 MeV fm6, and m∗

s,0 is obtained to be
0.835m. We label this new single-nucleon potential as
Ms83, whose momentum dependence is shown in Fig. 10.
Additionally, the theoretical calculation results using the
Dirac-Brueckner approach [141] is also shown in Fig. 10(a).
One can see Ms83 displays a rather saturated behavior within

the energy range of 1 to 1.5 GeV. However, within low-
energy range, Ms83 predicts a weaker energy dependence
than Hama’s data and Ms77, while aligning with the Dirac-
Brueckner calculations. Nevertheless, we would like to point
out that future comparative study using Ms77 and Ms88 in-
teractions in transport model simulations for HICs will give
valuable information on the isoscalar nucleon effective mass
and the high energy behavior of the isoscalar nucleon optical
potential.

The three parameters a2, a4, a6 together with ρ0, E0(ρ0),
K0, J0 are necessary and sufficient to determine all the Skyrme
parameters (and parameter combinations) related to SNM,
i.e., t0, t [1]

3 , t [3]
3 , t [5]

3 , 2C[2] + D[2], 2C[4] + D[4], and 2C[6] +
D[6]. Table IV summarizes the parameters (combinations) of
SNM with Ms77 and Ms83, as well as the quantities of SNM
given by them. In Fig. 11, we present the pressure of SNM,
PSNM(ρ), as a function of nucleon density given by Ms77 and
Ms83. Additionally, we include the constraints on PSNM(ρ)
obtained from collective flow data [2]. Both Ms77 and Ms83
are compatible with the constraints given by the flow data.

We also notice that phenomenologically introducing
higher-order momentum terms (e.g., p8) into the momentum-
dependent terms could enhance the flexibility of the single-
nucleon potential [142], which can maintain the saturated
behavior over a broader energy range. However, higher-order
density gradient terms (e.g., ∇8ρ) will appear in the Skyrme
pseudopotential EDF form, which could pose additional chal-
lenges in the calculations of finite nuclei.

B. Interactions with different symmetry potentials
and isovector nucleon effective masses

The symmetry potential Usym as well as the isovector
nucleon effective mass m∗

v are closely related to many essen-
tial questions in both nuclear physics and astrophysics [17],
but they still suffer from significant uncertainties. Thus,
we construct two other sets of b2, b4 and b6 in Eq. (37),
in addition to the one we have constructed in Sec. III.
Furthermore, we change the sign of the values of b2, b4,
and b6, which will reverse the momentum dependence
of the symmetry potential and lead to m∗

v > m∗
s , as well

as negative nucleon effective mass splitting (m∗
n-p < 0) in

TABLE IV. Quantities and parameters related to the SNM for Ms77 and Ms83 interaction series.

Quantities Ms77 Ms83 Parameters (combinations) Ms77 Ms83

ρ0 (fm−3) 0.160 0.160 t0 (MeV fm3) −1840.45 −1850.36

E0(ρ0) (MeV) −16.0 −16.0 t [1]
3 (MeV fm4) 13010.2 13407.3

K0 (MeV) 230.0 230.0 t [3]
3 (MeV fm6) −4036.41 −3367.90

J0 (MeV) −383.0 −383.0 t [5]
3 (MeV fm8) 2386.36 1974.96

I0 (MeV) 1819 1799 2C[2] + D[2] (MeV fm5) 697.928 446.249

m∗
s,0/m 0.773 0.835 2C[4] + D[4] (MeV fm7) −26.4050 −10.7665

a0 (MeV) −64.0345 −60.2750 2C[6] + D[6] (MeV fm9) 0.0813312 0.0204294

a2 (MeV fm2) 6.51778 4.27311

a4 (MeV fm4) −0.125955 −0.0523079
a6 (MeV fm6) 8.13312 × 10−4 2.04294 × 10−4
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FIG. 11. The pressure of SNM [PSNM(ρ )] as a function of nu-
cleon density given by Ms77 and Ms83. Also included are the
constraints from flow data in HICs [2].

neutron-rich matter. In the present work, we have constructed
two different types of momentum dependencies for U0 and
six different types of momentum dependencies for Usym,
resulting in a total of 12 different momentum dependence
types, i.e., 12 different sets of C[n] and D[n] (n = 2, 4, 6).
We label these sets with corresponding values of their m∗

s,0
and m∗

v,0, namely Ms77Mv69, Ms77Mv86, Ms77Mv67,
Ms77Mv89, Ms77Mv64, Ms77Mv94, Ms83Mv74,
Ms83Mv94, Ms83Mv72, Ms83Mv98, Ms83Mv69, and
Ms83Mv104. We present in Table V the isovector nucleon
effective mass at saturation density m∗

v,0, the nucleon effective
mass splitting at ρ0 with isospin asymmetry being 0.5
[m∗

n-p(ρ0, 0.5)] and 1 [m∗
n-p(ρ0, 1)], as well as the values of

b2, b4 and b6 for these 12 momentum dependencies. The
fourth-order symmetry energy and the linear isospin splitting
coefficient are only relevant to C[n] and D[n] (n = 2, 4, 6),
and the values of Esym,4(ρ0) and �m∗

1(ρ0) are also shown
in Table V. It is seen that the values of Esym,4(ρ0) predicted
by these 12 momentum dependencies are in good agreement
with the estimated values obtained from other commonly used
nonrelativistic models [103]. Additionally, it is observed that
all positive values of �m∗

1 (ρ0) (predicted by the momentum

dependencies with m∗
n-p > 0 in neutron-rich matter) are

consistent with the values extracted using different theoretical
methods [65,112–114]. It is worth noting that despite
m∗

n-p > 0 being valid around the saturation density and the
corresponding Fermi momentum, as predicted by analyzing
the symmetry potential Usym(ρ0, p) using nuclear optical
potential data [7,17,125,143], m∗

n-p < 0 is theoretically
possible at high momentum [108]. These predictions can
be tested in the transport models for HICs by investigating
the light particle emission [144,145]. In Table VI, we
list the values of C[n], D[n] for these 12 momentum
dependencies.

Shown in Fig. 12 is the different momentum dependencies
of the symmetry potential at saturation density. Note that
the momentum dependence of Usym depends solely on b2,
b4 and b6. As can be seen from Eqs. (37) and (50), fixing
b2, b4, b6 and changing m∗

s,0 or Esym(ρ0) results in a vertical
shift of Usym. In Fig. 12, we take Esym(ρ0) = 30 MeV as an
example for plotting. One sees that very different high-energy
behaviors can be obtained from the 12 interaction series with
different momentum dependencies of the symmetry poten-
tials. This will be very useful for the determination of the
isovector nucleon effective mass and the isospin splitting co-
efficient of nucleon effective mass in HICs.

C. Interaction parameter family with various symmetry
energies and nucleon effective masses

In the following, we will combine the 12 momentum de-
pendencies, featured by m∗

s,0 and m∗
v,0, with different density

dependencies of the symmetry energy, which are character-
ized by L [and Esym(ρ0), Ksym, Jsym]. We have obtained 12
different symmetry energy behaviors in previous sections, and
the corresponding values of Esym(ρ0), L, Ksym and Jsym are
presented in Table II. The combination of the 12 different
momentum dependencies and 12 different symmetry energies
forms a parameter set family consisting of 12 × 12 = 144 pa-
rameter sets, and we denote them by the corresponding values
of their L, m∗

s,0 and m∗
v,0. For example, the parameter sets we

have obtained in Secs. III and V are now SP6Lm5Ms77Mv69,

TABLE V. Isovector nucleon effective mass at saturation density (m∗
v,0), nucleon effective mass splitting at saturation density with isospin

asymmetry being 0.5 [m∗
n-p(ρ0, 0.5)] and 1 [m∗

n-p(ρ0, 1)], the values of b2, b4 and b6 as well as values of the fourth-order symmetry energy
Esym,4(ρ0) and the linear isospin splitting coefficient �m∗

1 (ρ0) at saturation density for the interaction series with 12 momentum dependencies
(i.e., 12 different combinations of m∗

s,0 and m∗
v,0).

Ms77 Ms83

Quantities Mv69 Mv86 Mv67 Mv89 Mv64 Mv94 Mv74 Mv94 Mv72 Mv98 Mv69 Mv104

m∗
v,0/m 0.691 0.865 0.673 0.895 0.648 0.943 0.743 0.948 0.722 0.984 0.693 1.043

m∗
n-p(ρ0, 0.5)/m 0.0794 −0.0794 0.101 −0.101 0.142 −0.142 0.0925 −0.0925 0.117 −0.117 0.166 −0.166

m∗
n-p(ρ0, 1)/m 0.164 −0.164 0.208 −0.208 0.297 −0.297 0.189 −0.189 0.241 −0.241 0.345 −0.345

b2 (MeV fm2) −3.0 3.0 −3.8 3.8 −5.0 5.0 −3.0 3.0 −3.8 3.8 −5.0 5.0
b4 (MeV fm4) 0.078 −0.078 0.10 −0.10 0.035 −0.035 0.078 −0.078 0.10 −0.10 0.035 −0.035
b6 (MeV fm6) −0.0007 0.0007 −0.001 0.001 −1 × 10−7 1 × 10−7 −0.0007 0.0007 −0.001 0.001 −1 × 10−7 1 × 10−7

Esym,4(ρ0) (MeV) 0.7471 0.3183 0.8043 0.2611 0.8699 0.1954 0.7353 0.3066 0.7926 0.2494 0.8582 0.1837
�m∗

1 (ρ0) 0.1740 −0.1408 0.2158 −0.1826 0.2978 −0.2646 0.1918 −0.1755 0.2406 −0.2247 0.3362 −0.3199

054623-17



WANG, WANG, YE, AND CHEN PHYSICAL REVIEW C 109, 054623 (2024)

TABLE VI. Values of C[n], D[n] for the interaction series with 12 momentum dependencies (i.e., 12 different combinations of m∗
s,0 and m∗

v,0).

Ms77 Ms83

Parametersa Mv69 Mv86 Mv67 Mv89 Mv64 Mv94 Mv74 Mv94 Mv72 Mv98 Mv69 Mv104

C[2] 523.869 174.058 571.158 126.769 609.330 88.5980 398.030 48.2192 445.319 0.930128 483.490 −37.2413
D[2] −349.811 349.811 −444.389 444.389 −520.732 520.732 −349.811 349.811 −444.389 444.389 −520.732 520.732
C[4] −21.8732 −4.53180 −24.4464 −1.95864 −16.7026 −9.70238 −14.0540 3.28744 −16.6271 5.86060 −8.88339 −1.88314
D[4] 17.3414 −17.3414 22.4877 −22.4877 7.00025 −7.00025 17.3414 −17.3414 22.4877 −22.4877 7.00025 −7.00025
C[6] 0.07567 0.00567 0.09067 −0.00933 0.04067 0.04066 0.04521 −0.02479 0.06021 −0.03979 0.01022 0.01021
D[6] −0.07000 0.07000 −0.10000 0.10000 −0.00001 0.00001 −0.07000 0.07000 −0.10000 0.10000 −0.00001 0.00001

aThe unit of C[n] (D[n]) is MeV fmn+3.

SP6L15Ms77Mv69, . . . and SP6L125Ms77Mv69 under the
new notation system, respectively. Our parameter set family
provides abundant options for conducting control experi-
ments: using parameter sets with the same a2, a4, a6 and
b2, b4, b6 to study the effects of the symmetry energy; using
parameter sets with the same a2, a4, a6 and L to study the the
effects of nucleon effective mass splitting and the symmetry
potential (isovector nucleon effective mass); using parameter
sets with the same b2, b4, b6 and L to study the the effects
of the single-nucleon potential (isoscalar nucleon effective
mass). For a certain interaction, one can find the values of
t0, t [1]

3 , t [3]
3 , and t [5]

3 in Table IV, the values of C[n] and D[n]

(n = 2, 4, 6) in Table VI, and the values of x0, x[1]
3 , x[3]

3 , and
x[5]

3 in Table VII. It is worth emphasizing again that these 14
parameters are relevant to the properties of uniform nuclear
matter. Only when the values of E [n] and F [n] (n = 2, 4, 6) are
determined through finite nuclei calculations can all the 20
Skyrme parameters of the new extended Skyrme interaction
[Eq. (3)] be completely obtained.

The EOS of the PNM as a function of nucleon density are
exhibited in Fig. 13, and we categorize the parameter sets
according to the slope parameter L of the symmetry energy,
for the sake of clarity (same in the following figures). The
results from microscopic calculations [40] are also shown in

FIG. 12. Momentum dependence of the symmetry potential at
saturation density with various interactions (see text for the details).
Here Esym(ρ0) = 30 MeV has been assumed.

Fig. 13 for comparison. Except for the parameter sets with
L = −5, 85, 105, and 125 MeV, all other parameter sets in
the parameter set family are in line with the microscopic
calculations for EPNM. Shown in Fig. 14 is the density de-
pendence of the symmetry energy given by the parameter
set family. Figures 13 and 14 demonstrate that the momen-
tum dependencies of U0 and Usym, represented by m∗

s,0 and
m∗

v,0, have little impact on EPNM(ρ) and Esym(ρ). However,
EPNM(ρ) and Esym(ρ) exhibit a bifurcation caused by the
isospin splitting of the nucleon effective mass, resulting in
two distinct branches in their curves. Parameter sets with
m∗

n-p < 0 (in neutron-rich matter), i.e., m∗
s,0 < m∗

v,0, predict
smaller EPNM(ρ) compared to those with m∗

n-p > 0 around the
saturation density as can be seen from Fig. 13. Figure 14
illustrates that parameter sets with m∗

n-p < 0 predict larger
Esym(ρ) at suprasaturation densities (and larger values of the
high-order symmetry energy kurtosis parameter, Isym). The
values of Isym with the parameter set family are listed in
Table VIII.

We also calculate the properties of neutron stars using the
parameter set family. Shown in Fig. 15 is the mass-radius
relation of neutron stars predicted by the parameter set family.
The determinations from astrophysical observations of the
mass-radius relation of neutron stars [80–83,88] within 68.3%
CI are also plotted in Fig. 15 for comparison.

One sees that all the interactions predict that the maximum
masses of neutron star exceed 2.1 M�, and the mass-radius
relations align with the astrophysical measurements of both
PSR J0030+0451 and PSR J0740+6620 within the 68.3%
CI. In addition, parameter sets with L = −5, 5, 15, 25, and
35 MeV are compatible with the constraint for the CCO in
HESS J1731-347 within 68.3% CI. Moreover, it is seen from
Fig. 15 that the mass-radius curves split into two branches,
especially for the parameter sets with L = 5, 15, 25, 35 and
45 MeV, and those with m∗

n-p < 0 (in neutron-rich matter)
predict smaller radii.

In Fig. 16, we display the squared sound speed C2
s ≡

dP/dε of neutron star matter given by the parameter set fam-
ily, and the causality condition is satisfied in the calculations.
It is seen that parameter sets with L = −5, 5, 15, 25 MeV
predict distinct peak structures in C2

s between 2ρ0 and 3.5ρ0,
with peak values approximately ranging from 0.5c2 to 0.7c2.
Additionally, as shown in Fig. 16, the C2

s curves exhibit a
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TABLE VII. The values of x0, x[1]
3 , x[3]

3 , and x[5]
3 corresponding to different symmetry energies in different momentum dependencies. The

values of t0, t [1]
3 , t [3]

3 , and t [5]
3 corresponding to different m∗

s,0 values (different single-nucleon potentials) are shown in Table IV, and the values
of C[n] and D[n] corresponding to different m∗

s,0 and m∗
v,0 values combinations (different single-nucleon potentials and symmetry potentials) are

shown in Table VI.

Ms77 Ms83

Mv69 Mv86 Mv67 Mv89 Mv64 Mv94 Mv74 Mv94 Mv72 Mv98 Mv69 Mv104

Lm5 L = −5 MeV Esym (ρ0 ) = 24 MeV Ksym = −10 MeV Jsym = 4250 MeV

x0 −0.530282 −0.491696 −0.535620 −0.486349 −0.536927 −0.485049 −0.535259 −0.496875 −0.540578 −0.491567 −0.541875 −0.490266

x[1]
3 −3.00100 −2.78452 −3.03074 −2.75479 −3.04328 −2.74225 −2.95415 −2.74403 −2.98297 −2.71519 −2.99516 −2.70304

x[3]
3 −38.8852 −39.9549 −38.7497 −40.0924 −38.4149 −40.4270 −46.4020 −47.6805 −46.2346 −47.8440 −45.8349 −48.2480

x[5]
3 −84.9707 −86.1993 −84.8169 −86.3592 −84.8532 −86.3220 −102.350 −103.825 −102.150 −104.014 −102.198 −103.978

L5 L = 5 MeV Esym (ρ0 ) = 28 MeV Ksym = −250 MeV Jsym = 2100 MeV

x0 −0.378151 −0.339556 −0.383487 −0.334220 −0.384793 −0.332911 −0.383947 −0.345554 −0.389249 −0.340241 −0.390545 −0.338951

x[1]
3 −2.13560 −1.91909 −2.16532 −1.88938 −2.17787 −1.87683 −2.11437 −1.90425 −2.14317 −1.87540 −2.15535 −1.86325

x[3]
3 −23.9051 −24.9739 −23.7686 −25.1113 −23.4340 −25.4460 −28.4469 −29.7269 −28.2813 −29.8904 −27.8808 −30.2926

x[5]
3 −43.7167 −44.9425 −43.5597 −45.1016 −43.5966 −45.0651 −52.4995 −53.9783 −52.3052 −54.1680 −52.3507 −54.1263

L15 L = 15 MeV Esym (ρ0 ) = 29 MeV Ksym = −240 MeV Jsym = 1450 MeV

x0 −0.0684472 −0.0298492 −0.0737822 −0.0245124 −0.0750818 −0.0232057 −0.0758945 −0.0375044 −0.0812067 −0.0321990 −0.0825030 −0.0308997

x[1]
3 −1.08967 −0.873154 −1.11938 −0.843443 −1.13192 −0.830897 −1.09940 −0.889288 −1.12823 −0.860458 −1.14040 −0.848292

x[3]
3 −14.4987 −15.5673 −14.3619 −15.7045 −14.0271 −16.0393 −17.1731 −18.4532 −17.0080 −18.6168 −16.6071 −19.0192

x[5]
3 −26.3216 −27.5469 −26.1639 −27.7056 −26.2003 −27.6693 −31.4807 −32.9596 −31.2873 −33.1494 −31.3320 −33.1082

L25 L = 25 MeV Esym (ρ0 ) = 30 MeV Ksym = −210 MeV Jsym = 1200 MeV

x0 0.0420416 0.0806320 0.0366990 0.0859689 0.0353932 0.0872735 0.0340008 0.0723822 0.0286826 0.0776876 0.0273863 0.0789890

x[1]
3 −0.680842 −0.464331 −0.710567 −0.434621 −0.723112 −0.422079 −0.702677 −0.492581 −0.731523 −0.463752 −0.743691 −0.451579

x[3]
3 −10.5117 −11.5800 −10.3747 −11.7173 −10.0399 −12.0521 −12.3944 −13.6747 −12.2296 −13.8384 −11.8283 −14.2404

x[5]
3 −19.5903 −20.8148 −19.4322 −20.9736 −19.4684 −20.9374 −23.3467 −24.8259 −23.1538 −25.0160 −23.1977 −24.9739

L35 L = 35 MeV Esym (ρ0 ) = 30 MeV Ksym = −190 MeV Jsym = 670 MeV

x0 0.150705 0.189301 0.145368 0.194639 0.144061 0.195939 0.142082 0.180467 0.136758 0.185776 0.135485 0.187075

x[1]
3 −0.123375 0.0931500 −0.153086 0.122866 −0.165636 0.135392 −0.161721 0.0483831 −0.190582 0.0772171 −0.202700 0.0893879

x[3]
3 −4.12449 −5.19276 −3.98754 −5.32981 −3.65274 −5.66486 −4.73965 −6.01970 −4.57531 −6.18371 −4.17370 −6.58550

x[5]
3 −7.26000 −8.48441 −7.10190 −8.64273 −7.13818 −8.60696 −8.44867 −9.92749 −8.25699 −10.1182 −8.30033 −10.0756

L45 L = 45 MeV Esym (ρ0 ) = 30 MeV Ksym = −110 MeV Jsym = 700 MeV

x0 0.241259 0.279857 0.235926 0.285195 0.234622 0.286499 0.232158 0.270542 0.226842 0.275844 0.225544 0.277147

x[1]
3 0.221723 0.438254 0.192019 0.467970 0.179481 0.480506 0.173172 0.383274 0.144323 0.412092 0.132156 0.424271

x[3]
3 −1.60841 −2.67657 −1.47141 −2.81363 −1.13635 −3.14858 −1.72396 −3.00408 −1.55972 −3.16831 −1.15824 −3.56985

x[5]
3 −5.59382 −6.81815 −5.43577 −6.97655 −5.47144 −6.94052 −6.43530 −7.91419 −6.24363 −8.10525 −6.28707 −8.06222

L55 L = 55 MeV Esym (ρ0 ) = 33 MeV Ksym = −100 MeV Jsym = 900 MeV

x0 0.128971 0.171249 0.123626 0.173254 0.122331 0.173679 0.120462 0.158850 0.115152 0.164158 0.113855 0.169259

x[1]
3 −0.224252 0.0009036 −0.253982 0.0228114 −0.266501 0.0332829 −0.259614 −0.0495037 −0.288447 −0.0206733 −0.300614 0.0004193

x[3]
3 −4.93739 −5.96366 −4.80058 −6.13873 −4.46552 −6.48348 −5.71383 −6.99388 −5.54935 −7.15814 −5.14793 −7.50646

x[5]
3 −11.7254 −12.8957 −11.5676 −13.1034 −11.6035 −13.0798 −13.8440 −15.3228 −13.6519 −15.5141 −13.6954 −15.4045

L65 L = 65 MeV Esym (ρ0 ) = 34 MeV Ksym = −70 MeV Jsym = 650 MeV

x0 0.239451 0.278048 0.234112 0.283385 0.232809 0.284689 0.230352 0.268739 0.225042 0.274045 0.223744 0.275345

x[1]
3 0.184564 0.401093 0.154847 0.430807 0.142311 0.443344 0.137098 0.347205 0.108262 0.376033 0.0960940 0.388207

x[3]
3 −0.950334 −2.01846 −0.813351 −2.15552 −0.478294 −2.49054 −0.935327 −2.21537 −0.771047 −2.37962 −0.369550 −2.78117

x[5]
3 −4.99398 −6.21824 −4.83589 −6.37665 −4.87161 −6.34079 −5.71064 −7.18927 −5.51886 −7.38050 −5.56230 −7.33747

L75 L = 75 MeV Esym (ρ0 ) = 34 MeV Ksym = −10 MeV Jsym = 550 MeV

x0 0.284729 0.323327 0.279395 0.328664 0.278087 0.329975 0.275389 0.313777 0.270075 0.319078 0.268783 0.320386

x[1]
3 0.450028 0.666561 0.420324 0.696273 0.407777 0.708827 0.394703 0.604815 0.365859 0.633629 0.353703 0.645821

x[3]
3 1.75934 0.691306 1.89642 0.554268 2.23145 0.219304 2.31229 1.03217 2.47629 0.867835 2.87804 0.466438

x[5]
3 −1.66162 −2.88572 −1.50332 −3.04396 −1.53912 −3.00806 −1.68388 −3.16285 −1.49256 −3.35410 −1.53579 −3.31093

L85 L = 85 MeV Esym (ρ0 ) = 36 MeV Ksym = 10 MeV Jsym = 470 MeV

x0 0.333630 0.372234 0.328298 0.377563 0.326990 0.378867 0.324027 0.362415 0.318716 0.367721 0.317421 0.369023

x[1]
3 0.577452 0.793999 0.547753 0.823693 0.535205 0.836229 0.518351 0.728460 0.489512 0.757287 0.477352 0.769467

x[3]
3 3.15289 2.08496 3.29006 1.94784 3.62502 1.61277 3.98244 2.70229 4.14634 2.53801 4.54816 2.13660

x[5]
3 0.471173 −0.752748 0.629521 −0.911146 0.593745 −0.875421 0.893138 −0.585807 1.08426 −0.777069 1.04129 −0.733884
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TABLE VII. (Continued.)

Ms77 Ms83

Mv69 Mv86 Mv67 Mv89 Mv64 Mv94 Mv74 Mv94 Mv72 Mv98 Mv69 Mv104

L105 L = 105 MeV Esym (ρ0 ) = 37 MeV Ksym = 150 MeV Jsym = 220 MeV

x0 0.480330 0.518930 0.475000 0.524273 0.473695 0.525571 0.469945 0.508333 0.464634 0.513644 0.463342 0.514938

x[1]
3 1.09245 1.30899 1.06275 1.33871 1.05021 1.35123 1.01810 1.22821 0.989261 1.25705 0.977110 1.26921

x[3]
3 6.75277 5.68495 6.89019 5.54809 7.22529 5.21290 8.29703 7.01691 8.46072 6.85264 8.86278 6.45120

x[5]
3 1.87073 0.646814 2.02919 0.488642 1.99348 0.524268 2.58429 1.10535 2.77530 0.914144 2.73240 0.957265

L125 L = 125 MeV Esym (ρ0 ) = 39 MeV Ksym = 220 MeV Jsym = 320 MeV

x0 0.565458 0.604056 0.560125 0.609397 0.558819 0.610691 0.554611 0.592996 0.549301 0.598309 0.548007 0.599607

x[1]
3 1.48534 1.70188 1.45564 1.73160 1.44311 1.74411 1.39935 1.60945 1.37051 1.63829 1.35835 1.65047

x[3]
3 11.2433 10.1753 11.3805 10.0386 11.7158 9.70317 13.6788 12.3982 13.8423 12.2341 14.2445 11.8330

x[5]
3 8.66906 7.44521 8.82760 7.28724 8.79203 7.32251 10.7986 9.31922 10.9890 9.12807 10.9466 9.17170

distinction into two branches at high densities, where pa-
rameter sets with m∗

s,0 = 0.773m predict larger values of C2
s

compared to those with m∗
s,0 = 0.835m.

Also presented in Table VIII are the properties of neu-
tron stars predicted by the parameter set family, including
the core-crust transition density ρt (the zero-pressure den-
sity ρz for interactions with L = −5 MeV), the radius R1.4

and dimensionless tidal deformability �1.4 of 1.4M� neutron
star and the maximum mass MTOV. The parameter sets with
5 MeV � L � 85 MeV satisfy the constraint of �1.4 � 580.

VII. SUMMARY AND OUTLOOK

Based on the N3LO Skyrme pseudopotential, we have ob-
tained new extended Skyrme interactions by modifying the
density-dependent term in the spirit of the Fermi momentum
expansion. The Hamiltonian density and single-nucleon po-
tential of the new extended Skyrme effective interactions are
derived in the Hartree-Fock approximation. The momentum
dependence of the single-nucleon potential is regulated to fit
the empirical nucleon optical potential (and its extrapolation),
and so the new Skyrme interactions can be used in transport

FIG. 13. The EOS of PNM (EPNM) predicted by the parameter set family, categorized according to the slope parameter L of the symmetry
energy. The band represents the microscopic calculation results [40].
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FIG. 14. The density dependence of the symmetry energy given by the parameter set family, categorized according to the slope parameter
L of the symmetry energy.

model simulations for HICs up to 1.5 GeV/nucleon. At the
same time, the extension of the density-dependent term can
provide very flexible freedom to adjust the density depen-

dence of the symmetry energy as well as the high-density
behavior of symmetric nuclear matter, and thus can essen-
tially satisfy all the constraints on the neutron stars from the

TABLE VIII. Values of Isym and properties of neutron stars, including core-crust transition density ρt (the zero-pressure density ρz for
interactions with L = −5 MeV), the radius R1.4, and dimensionless tidal deformability �1.4 of 1.4M� neutron star as well as the maximum
mass MTOV, predicted by the parameter set family.

Ms77 Ms83

Mv69 Mv86 Mv67 Mv89 Mv64 Mv94 Mv74 Mv94 Mv72 Mv98 Mv69 Mv104

Lm5 L = −5 MeV Esym (ρ0 ) = 24 MeV Ksym = −10 MeV Jsym = 4250 MeV

Isym (MeV) −1140 −1042 −1154 −1028 −1150 −1032 −1154 −1056 −1168 −1042 −1164 −1046

ρz (fm−3 ) 0.160 0.165 0.159 0.166 0.158 0.166 0.160 0.165 0.159 0.166 0.159 0.167

R1.4 (km) 11.70 11.68 11.71 11.68 11.71 11.68 11.71 11.69 11.71 11.68 11.71 11.68

�1.4 714.0 714.3 714.8 713.3 715.0 712.9 716.4 714.9 714.5 713.8 714.7 713.3

MTOV/M� 2.26 2.26 2.25 2.26 2.25 2.26 2.25 2.25 2.25 2.25 2.25 2.25

L5 L = 5 MeV Esym (ρ0 ) = 28 MeV Ksym = −250 MeV Jsym = 2100 MeV

Isym (MeV) −293.9 −196.1 −307.8 −182.2 −304.0 −185.9 −308.2 −210.5 −322.1 −196.6 −318.4 −200.3

ρt (fm−3 ) 0.139 0.143 0.138 0.144 0.138 0.145 0.139 0.143 0.138 0.144 0.138 0.145

R1.4 (km) 11.67 11.57 11.68 11.55 11.70 11.53 11.66 11.56 11.68 11.55 11.70 11.53

�1.4 433.8 431.7 434.1 431.4 435.0 430.2 433.8 431.6 434.0 431.4 435.0 430.2

MTOV/M� 2.32 2.33 2.32 2.33 2.32 2.33 2.31 2.32 2.31 2.32 2.31 2.32

L15 L = 15 MeV Esym (ρ0 ) = 29 MeV Ksym = −240 MeV Jsym = 1450 MeV

Isym (MeV) −1220 −1122 −1233 −1108 −1230 −1112 −1234 −1136 −1248 −1123 −1244 −1126

ρt (fm−3 ) 0.115 0.117 0.115 0.117 0.114 0.117 0.115 0.117 0.115 0.117 0.114 0.118

R1.4 (km) 11.67 11.59 11.69 11.58 11.70 11.56 11.67 11.59 11.68 11.57 11.70 11.56

�1.4 359.3 356.3 359.6 355.9 361.0 354.3 359.0 356.0 359.4 355.6 360.7 354.0

MTOV/M� 2.31 2.32 2.31 2.32 2.31 2.32 2.30 2.31 2.30 2.31 2.30 2.31

L25 L = 25 MeV Esym (ρ0 ) = 30 MeV Ksym = −210 MeV Jsym = 1200 MeV

Isym (MeV) −1586 −1488 −1600 −1474 −1596 −1478 −1600 −1503 −1614 −1489 −1610 −1492

ρt (fm−3 ) 0.100 0.101 0.100 0.102 0.100 0.102 0.101 0.102 0.100 0.102 0.100 0.102
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TABLE VIII. (Continued.)

Ms77 Ms83

Mv69 Mv86 Mv67 Mv89 Mv64 Mv94 Mv74 Mv94 Mv72 Mv98 Mv69 Mv104

R1.4 (km) 11.88 11.81 11.89 11.80 11.90 11.78 11.88 11.81 11.89 11.80 11.90 11.78

�1.4 355.7 352.7 356.0 352.3 357.4 350.6 355.3 352.3 355.6 351.9 357.0 350.3

MTOV/M� 2.28 2.29 2.28 2.29 2.28 2.29 2.28 2.28 2.27 2.28 2.27 2.28

L35 L = 35 MeV Esym (ρ0 ) = 30 MeV Ksym = −190 MeV Jsym = 670 MeV

Isym (MeV) −1896 −1798 −1910 −1784 −1906 −1788 −1910 −1812 −1924 −1799 −1920 −1802

ρt (fm−3 ) 0.0874 0.0881 0.0873 0.0882 0.0871 0.0884 0.0875 0.0883 0.0874 0.0884 0.0873 0.0886

R1.4 (km) 11.54 11.47 11.55 11.46 11.58 11.43 11.54 11.46 11.55 11.45 11.57 11.43

�1.4 264.5 259.8 264.9 259.2 267.6 256.1 263.4 258.8 263.9 258.2 266.5 255.1

MTOV/M� 2.24 2.25 2.23 2.25 2.23 2.25 2.23 2.24 2.22 2.24 2.22 2.24

L45 L = 45 MeV Esym (ρ0 ) = 30 MeV Ksym = −110 MeV Jsym = 700 MeV

Isym (MeV) −2446 −2348 −2460 −2334 −2456 −2338 −2460 −2363 −2474 −2349 −2470 −2352

ρt (fm−3 ) 0.0804 0.0810 0.0803 0.0811 0.0802 0.0812 0.0806 0.0812 0.0805 0.0813 0.0804 0.0814

R1.4 (km) 12.23 12.18 12.23 12.17 12.24 12.16 12.23 12.18 12.23 12.17 12.24 12.16

�1.4 390.2 388.1 390.4 387.8 391.8 386.1 389.5 387.5 389.7 387.2 391.2 385.5

MTOV/M� 2.22 2.22 2.21 2.22 2.21 2.22 2.21 2.21 2.21 2.21 2.21 2.21

L55 L = 55 MeV Esym (ρ0 ) = 33 MeV Ksym = −100 MeV Jsym = 900 MeV

Isym (MeV) −1974 −1889 −1988 −1863 −1984 −1864 −1988 −1891 −2002 −1877 −1998 −1894

ρt (fm−3 ) 0.0797 0.0804 0.0796 0.0804 0.0795 0.0805 0.0799 0.0806 0.0798 0.0806 0.0797 0.0808

R1.4 (km) 12.80 12.76 12.81 12.76 12.81 12.75 12.80 12.77 12.80 12.76 12.81 12.75

�1.4 468.9 468.2 468.9 468.5 469.7 467.7 468.5 468.2 468.5 468.1 469.3 466.9

MTOV/M� 2.21 2.22 2.21 2.22 2.21 2.22 2.20 2.21 2.20 2.21 2.20 2.21

L65 L = 65 MeV Esym (ρ0 ) = 34 MeV Ksym = −70 MeV Jsym = 650 MeV

Isym (MeV) −2340 −2242 −2354 −2228 −2350 −2232 −2354 −2257 −2368 −2243 −2364 −2246

ρt (fm−3 ) 0.0741 0.0746 0.0740 0.0747 0.0739 0.0748 0.0743 0.0749 0.0742 0.0749 0.0741 0.0751

R1.4 (km) 12.91 12.88 12.92 12.88 12.93 12.87 12.91 12.88 12.91 12.87 12.92 12.87

�1.4 475.9 475.8 475.9 475.8 476.7 474.9 475.2 475.2 475.2 475.2 476.1 474.3

MTOV/M� 2.19 2.19 2.19 2.19 2.19 2.19 2.18 2.18 2.18 2.18 2.18 2.18

L75 L = 75 MeV Esym (ρ0 ) = 34 MeV Ksym = −10 MeV Jsym = 550 MeV

Isym (MeV) −2640 −2542 −2654 −2528 −2650 −2532 −2654 −2557 −2668 −2543 −2664 −2546

ρt (fm−3 ) 0.0691 0.0696 0.0690 0.0697 0.0689 0.0698 0.0693 0.0699 0.0692 0.0699 0.0691 0.0701

R1.4 (km) 13.15 13.12 13.15 13.12 13.16 13.11 13.15 13.12 13.15 13.12 13.16 13.12

�1.4 546.7 547.8 546.5 548.0 547.1 547.4 546.2 547.4 546.1 547.5 546.5 574.0

MTOV/M� 2.17 2.17 2.17 2.18 2.17 2.18 2.16 2.17 2.16 2.17 2.16 2.17

L85 L = 85 MeV Esym (ρ0 ) = 36 MeV Ksym = 10 MeV Jsym = 470 MeV

Isym (MeV) −2752 −2654 −2766 −2640 −2762 −2644 −2766 −2669 −2780 −2655 −2776 −2658

ρt (fm−3 ) 0.0667 0.0673 0.0666 0.0673 0.0665 0.0674 0.0669 0.0675 0.0668 0.0675 0.0667 0.0677

R1.4 (km) 13.36 13.33 13.35 13.33 13.36 13.33 13.35 13.33 13.36 13.33 13.36 13.33

�1.4 571.7 573.4 571.4 573.6 571.8 573.3 571.2 572.9 570.9 573.1 571.2 572.8

MTOV/M� 2.16 2.16 2.15 2.16 2.16 2.16 2.15 2.15 2.15 2.15 2.15 2.15

L105 L = 105 MeV Esym (ρ0 ) = 37 MeV Ksym = 150 MeV Jsym = 220 MeV

Isym (MeV) −3638 −3540 −3652 −3526 −3648 −3530 −3652 −3555 −3666 −3541 −3662 −3544

ρt (fm−3 ) 0.0618 0.0622 0.0617 0.0623 0.0619 0.0624 0.0619 0.0624 0.0619 0.0625 0.0618 0.0625

R1.4 (km) 13.80 13.79 13.80 13.79 13.80 13.79 13.81 13.80 13.81 13.79 13.81 13.79

�1.4 751.4 757.4 750.0 758.1 748.6 758.4 752.6 757.7 752.2 758.4 751.0 758.5

MTOV/M� 2.15 2.15 2.15 2.15 2.15 2.16 2.14 2.14 2.14 2.14 2.14 2.14

L125 L = 125 MeV Esym (ρ0 ) = 39 MeV Ksym = 220 MeV Jsym = 320 MeV

Isym (MeV) −3970 −3872 −3984 −3858 −3980 −3862 −3984 −3886 −3998 −3873 −3994 −3876

ρt (fm−3 ) 0.0568 0.0572 0.0568 0.0573 0.0567 0.0574 0.0570 0.0574 0.0569 0.0574 0.0568 0.0575

R1.4 (km) 14.06 14.06 14.07 14.05 14.07 14.05 14.07 14.06 14.07 14.05 14.07 14.05

�1.4 837.6 842.7 837.0 843.4 836.6 844.0 837.5 842.5 836.8 843.2 836.4 843.7

MTOV/M� 2.13 2.13 2.13 2.13 2.13 2.13 2.12 2.13 2.12 2.13 2.12 2.13
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FIG. 15. M-R relation for static neutron stars from the parameter set family, categorized according to the slope parameter L of the symmetry
energy. The NICER (XMM-Newton) constraints for PSR J0030+0451 [80,81], PSR J0740+6620 [82,83], and Gaia constraint for the CCO in
HESS J1731-347 [88] are also included for comparison. All contours are plotted for 68.3% CI.

multimessenger astrophysical observations. We have con-
structed a series of interactions, denoted as SP6X, with the
density slope parameter L of the symmetry energy ranging
from −5 to 125 MeV, and we find the following results: (i)

To simultaneously satisfy constraints from microscopic cal-
culations on the EOS of pure neutron matter EPNM(ρ) and
astrophysical observations of neutron-star mass-radius rela-
tions of both PSR J0030+0451 and PSR J0740+6620, L

FIG. 16. The squared sound speed (C2
s ≡ dP/dε) of neutron star matter as a function of nucleon density given by the parameter set family,

categorized according to the slope parameter L of the symmetry energy.
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should fall within the range of 5 MeV � L � 75 MeV; (ii)
To further additionally describe the neutron star with small
mass and radius in CCO of HESS J1731-347, a range of
−5 MeV � L � 35 MeV is necessary; (iii) A distinct peak
structure in the squared sound speed for neutron-star matter
emerges for interactions with a soft symmetry energy around
saturation density, especially when −5 MeV � L � 25 MeV.

In addition, we have constructed a versatile parameter
set family consisting of parameter sets with different den-
sity dependencies of the symmetry energy as well as various
momentum dependencies of the single-nucleon potential and
the symmetry potential (i.e., various isoscalar and isovector
nucleon effective masses). This parameter set family will be
useful for investigating in a more transparent way the effects
of the symmetry energy and nucleon effective masses, and
it serves as a useful theoretical tool to extract the density
dependence of the symmetry energy and the nucleon effective
masses by analyzing the data from different nuclear experi-
ments and astrophysical observations.

Besides the neutron stars on which we have focused in
this work, the nuclear energy density functional constructed
in the present work will next be applied in the large-scale

transport model simulations for HICs as well as nuclear struc-
ture calculations. In addition, we will also extend our model
to finite temperature to explore the thermal effects on the nu-
clear matter EOS and construct the corresponding EOS tables.
These EOS tables can be used to study the liquid-gas phase
transition as well as to simulate core-collapse supernovae and
binary neutron-star mergers. Our work will be useful for the
determination of the high-density behavior of the symmetry
energy and in-medium nucleon effective masses by analyzing
various data from nuclear experiments and multimessenger
observations of neutron stars in a single unified nuclear energy
density functional.
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APPENDIX A: EXPRESSIONS OF MACROSCOPIC QUANTITIES

The values of E0(ρ), PSNM(ρ), K0(ρ), J0(ρ), a2(ρ), a4(ρ), a6(ρ), b2(ρ), b4(ρ), b6(ρ), Esym(ρ), L(ρ), Ksym(ρ), and Jsym(ρ)
at arbitrary density, can be expressed as a sum of powers of kF (kF = aρ1/3 with a = (3π2/2)1/3), where the coefficients can be
expressed in terms of linear combinations of 14 parameters: t0, t [1]

3 , t [3]
3 , t [5]

3 , C[2], D[2], C[4], D[4], C[6], D[6], t0x0, t [1]
3 x[1]

3 , t [3]
3 x[3]

3 ,
and t [5]

3 x[5]
3 . Note that x0 (x[1]

3 , x[3]
3 , and x[5]

3 ) are coupled with t0 (t [1]
3 , t [3]

3 , and t [5]
3 ).

At arbitrary density ρ, the 14 macroscopic quantities can be expressed as linear combinations of the 14 parameters, i.e.,

Q(ρ) = M(ρ) · P + C(ρ), (A1)

with

Q(ρ) = [E0(ρ), PSNM(ρ), K0(ρ), J0(ρ), a2(ρ), a4(ρ), a6(ρ), b2(ρ), b4(ρ), b6(ρ), Esym(ρ), L(ρ), Ksym(ρ), Jsym(ρ)]T (A2)

being the vector of the 14 quantities at ρ,

P = [t0, t [1]
3 , t [3]

3 , t [5]
3 ,C[2], D[2],C[4], D[4],C[6], D[6], t0x0, t [1]

3 x[1]
3 , t [3]

3 x[3]
3 , t [5]

3 x[5]
3

]T
(A3)

being the vector of the 14 parameters,

C(ρ) =
[

3h̄2k2
F

10m
,

2h̄2k5
F

15mπ2
,−3h̄2k2

F

5m
,

12h̄2k2
F

5m
, 0, 0, 0, 0, 0, 0,

h̄2k2
F

6m
,

h̄2k2
F

3m
,− h̄2k2

F

3m
,

4h̄2k2
F

3m

]T

(A4)
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being the parameter-irrelevant term, and

M(ρ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3ρ

8
ρ4/3

16
ρ2

16
ρ8/3

16
k5

F
20π2

k5
F

40π2
3k7

F
70π2

3k7
F

140π2
8k9

F
45π2

4k9
F

45π2 0 0 0 0
3ρ2

8
ρ7/3

12
ρ3

8
ρ11/3

6
k8

F
18π4

k8
F

36π4
k10

F
15π4

k10
F

30π4
16k12

F
45π4

8k12
F

45π4 0 0 0 0

0 ρ4/3

4
9ρ2

8
5ρ8/3

2
k5

F
2π2

k5
F

4π2
6k7

F
5π2

3k7
F

5π2
48k9

F
5π2

24k9
F

5π2 0 0 0 0

0 − ρ4/3

2 0 5ρ8/3 − k5
F

2π2 − k5
F

4π2
6k7

F
5π2

3k7
F

5π2
144k9

F
5π2

72k9
F

5π2 0 0 0 0

0 0 0 0 k3
F

12π2
k3

F
24π2

k5
F

12π2
k5

F
24π2

k7
F

4π2
k7

F
8π2 0 0 0 0

0 0 0 0 0 0 k3
F

24π2
k3

F
48π2

7k5
F

20π2
7k5

F
40π2 0 0 0 0

0 0 0 0 0 0 0 0 k3
F

12π2
k3

F
24π2 0 0 0 0

0 0 0 0 0 k3
F

24π2 0 5k5
F

72π2 0 7k7
F

24π2 0 0 0 0

0 0 0 0 0 0 0 k3
F

48π2 0 7k5
F

24π2 0 0 0 0

0 0 0 0 0 0 0 0 0 k3
F

24π2 0 0 0 0

− ρ

8 − ρ4/3

48 − ρ2

48 − ρ8/3

48
k5

F
36π2

k5
F

18π2
k7

F
18π2

k7
F

12π2
2k9

F
5π2

8k9
F

15π2 − ρ

4 − ρ4/3

24 − ρ2

24 − ρ8/3

24

− 3ρ

8 − ρ4/3

12 − ρ2

8 − ρ8/3

6
5k5

F
36π2

5k5
F

18π2
7k7

F
18π2

7k7
F

12π2
18k9

F
5π2

24k9
F

5π2 − 3ρ

4 − ρ4/3

6 − ρ2

4 − ρ8/3

3

0 − ρ4/3

12 − 3ρ2

8 − 5ρ8/3

6
5k5

F
18π2

5k5
F

9π2
14k7

F
9π2

7k7
F

3π2
108k9

F
5π2

144k9
F

5π2 0 − ρ4/3

6 − 3ρ2

4 − 5ρ8/3

3

0 ρ4/3

6 0 − 5ρ8/3

3 − 5k5
F

18π2 − 5k5
F

9π2
14k7

F
9π2

7k7
F

3π2
324k9

F
5π2

432k9
F

5π2 0 ρ4/3

3 0 − 10ρ8/3

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A5)

being the representation matrix.
In practice, we usually encounter the macroscopic quantities, and subsequently employ them to inversely infer the values of

parameters. From Eq. (A1), we obtain

P = M−1(ρ) · Q(ρ) − C′(ρ), (A6)

where

C′(ρ) = M−1(ρ) · C(ρ)

=
[

64a2 h̄2

25mρ1/3
,− 72a2 h̄2

5mρ2/3
,

24a2 h̄2

5mρ4/3
,−24a2 h̄2

25mρ2
, 0, 0, 0, 0, 0, 0,− 256a2 h̄2

75mρ1/3
,

96a2 h̄2

5mρ2/3
,− 32a2 h̄2

5mρ4/3
,

32a2 h̄2

25mρ2

]T

, (A7)

and

M−1(ρ)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

512
15ρ

− 472
15ρ2

8
5ρ

− 8
45ρ

8a2

25ρ1/3 − 208a3kF
175

10936a6ρ

1125 0 0 0 0 0 0 0

− 288
ρ4/3

288
ρ7/3 − 16

ρ4/3
2

ρ4/3 − 36a2

5ρ2/3
792a4

35 − 3756a4k2
F

25 0 0 0 0 0 0 0

128
ρ2 − 128

ρ3
8

ρ2 − 4
3ρ2 − 24a2

5ρ4/3 − 48a4

7ρ2/3
1928a6

15 0 0 0 0 0 0 0

− 144
5ρ8/3

144
5ρ11/3 − 8

5ρ8/3
2

5ρ8/3
12a2

25ρ2 − 1032a4

175ρ4/3 − 6684a6

125ρ2/3 0 0 0 0 0 0 0

0 0 0 0 8
ρ

− 16a2

ρ1/3
216a3kF

5 − 8
ρ

80a2

3ρ1/3 − 392a3kF
3 0 0 0 0

0 0 0 0 0 0 0 16
ρ

− 160a2

3ρ1/3
784a3kF

3 0 0 0 0

0 0 0 0 0 16
ρ

− 336a2

5ρ1/3 0 − 16
ρ

112a2

ρ1/3 0 0 0 0

0 0 0 0 0 0 0 0 32
ρ

− 224a2

ρ1/3 0 0 0 0

0 0 0 0 0 0 8
ρ

0 0 − 8
ρ

0 0 0 0

0 0 0 0 0 0 0 0 0 16
ρ

0 0 0 0

− 256
15ρ

236
15ρ2 − 4

5ρ
4

45ρ
− 32a2

75ρ1/3
384a3kF

175 − 33728a6ρ

1125 − 4a2

5ρ1/3
24a3kF

5 −60a6ρ − 256
5ρ

236
15ρ

− 12
5ρ

4
15ρ

144
ρ4/3 − 144

ρ7/3
8

ρ4/3 − 1
ρ4/3

48a2

5ρ2/3 − 1376a4

35

10848a4k2
F

25
18a2

ρ2/3 −92a4 950a6ρ2/3 432
ρ4/3 − 144

ρ4/3
24

ρ4/3 − 3
ρ4/3

− 64
ρ2

64
ρ3 − 4

ρ2
2

3ρ2
32a2

5ρ4/3
192a4

7ρ2/3 − 6976a6

15
12a2

ρ4/3
24a4

ρ2/3 −732a6 − 192
ρ2

64
ρ2 − 12

ρ2
2

ρ2

72
5ρ8/3 − 72

5ρ11/3
4

5ρ8/3 − 1
5ρ8/3 − 16a2

25ρ2
2336a4

175ρ4/3
30432a6

125ρ2/3 − 6a2

5ρ2
116a4

5ρ4/3
278a6

ρ2/3
216

5ρ8/3 − 72
5ρ8/3

12
5ρ8/3 − 3

5ρ8/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A8)
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APPENDIX B: MACROSCOPIC QUANTITIES AT SATURATION DENSITY

The values of the macroscopic quantities at saturation density ρ0 = 0.16 fm−3 are used in the fitting procedure. Here we
provide the values of the elements in M(ρ0), C(ρ0), M−1(ρ0), and C′(ρ0).

M(ρ0) and C(ρ0) can be calculated as

M(ρ0)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0600 0.00543 0.00160 0.000472 0.0213 0.0107 0.0325 0.0162 0.239 0.120 0.0 0.0 0.0 0.0

0.00960 0.00116 0.000512 0.000201 0.00569 0.00284 0.0121 0.00606 0.115 0.0575 0.0 0.0 0.0 0.0

0.0 0.0217 0.0288 0.0189 0.213 0.107 0.909 0.455 12.9 6.46 0.0 0.0 0.0 0.0

0.0 −0.0434 0.0 0.0377 −0.213 −0.107 0.909 0.455 38.8 19.4 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0200 0.0100 0.0355 0.0178 0.189 0.0947 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0100 0.00500 0.149 0.0746 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0200 0.0100 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0100 0.0 0.0296 0.0 0.221 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00500 0.0 0.124 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0100 0.0 0.0 0.0 0.0

−0.0200 −0.00181 −0.000533 −0.000157 0.0118 0.0237 0.0421 0.0632 0.539 0.718 −0.0400 −0.00362 −0.00107 −0.000314

−0.0600 −0.00724 −0.00320 −0.00126 0.0592 0.118 0.295 0.442 4.85 6.46 −0.120 −0.0145 −0.00640 −0.00251

0.0 −0.00724 −0.00960 −0.00629 0.118 0.237 1.18 1.77 29.1 38.8 0.0 −0.0145 −0.0192 −0.0126

0.0 0.0145 0.0 −0.0126 −0.118 −0.237 1.18 1.77 87.3 116 0.0 0.0290 0.0 −0.0251

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B1)

and

C(ρ0) = [22.1, 2.36, −44.2, 177, 0, 0, 0, 0, 0, 0, 12.3, 24.6, −24.6, 98.3]T. (B2)

M−1(ρ0) and C′(ρ0) can be obtained as

M−1(ρ0)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

213 −1230 10.0 −1.11 3.55 −23.5 341 0.0 0.0 0.0 0.0 0.0 0.0 0.0

−3320 20 700 −184 23.0 −147 823 −9700 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5000 −31 200 313 −52.1 −333 −846 28 200 0.0 0.0 0.0 0.0 0.0 0.0 0.0

−3820 23 900 −212 53.0 113 −2470 −39 800 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 50.0 −178 853 −50.0 296 −2580 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 −592 5160 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 100 −746 0.0 −100 1240 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200 −2490 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 50.0 0.0 0.0 −50.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0

−107 615 −5.00 0.556 −4.74 43.3 −1050 −8.88 94.7 −2100 −320 98.3 −15.0 1.67

1660 −10 400 92.1 −11.5 196 −1430 28 000 368 −3340 61 400 4970 −1660 276 −34.5

−2500 15 600 −156 26.0 444 3380 −102 000 833 2960 −160 000 −7500 2500 −469 78.1

1910 −11 900 106 −26.5 −151 5590 181 000 −283 9710 207 000 5730 −1910 318 −79.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B3)

and

C′(ρ0) = [1180, −12200, 13800, −9380, 0, 0, 0, 0, 0, 0,−1570, 16300,−18400, 12500]T. (B4)

Readers can solve for the corresponding set of parameter values based on a given set of macroscopic quantities through Eq. (A6),
and vice versa through Eq. (A1). The units of the parameters and macroscopic quantities are presented in Tables I and II.

APPENDIX C: THE FOURTH-ORDER SYMMETRY ENERGY, KURTOSIS COEFFICIENTS,
LINEAR ISOSPIN SPLITTING COEFFICIENT, AND THE NUCLEON EFFECTIVE MASSES

In addition to the quantities used in the fitting procedure, for completeness, we hereby present the expressions of Esym,4(ρ),
I0, Isym, �m∗

1(ρ), ms, and mv . Furthermore, we discuss the relationship between Esym,4(ρ), �m∗
1 (ρ), and ms, mv .

The fourth-order symmetry energy defined in Eq. (23) can be expressed as

Esym,4(ρ) ≡ 1

4!

∂4E (ρ, δ)

∂δ4

∣∣∣∣
δ=0

= h̄2

162m
a2ρ2/3 + 1

648
a2ρ5/3(C[2] − D[2] ) + 1

648
a4ρ7/3(8C[4] + 3D[4] ) + 2

135
a6ρ3(13C[6] + 9D[6] ). (C1)
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The kurtosis coefficients of E0(ρ) and Esym(ρ) are expressed as

I0(ρ) ≡ 81ρ4 d4E0(ρ)

dρ4

= −84h̄2

5m
a2ρ2/3 +

∑
n=1,3,5

[
t [n]
3

16
(n − 6)(n − 3)n(n + 3)ρ

n
3 +1

]

+ 3

2
a2ρ5/3(2C[2] + D[2] ) − 9

5
a4ρ7/3(2C[4] + D[4] ), (C2)

and

Isym(ρ) ≡ 81ρ4 d4Esym(ρ)

dρ4

= −28h̄2

3m
a2ρ2/3 −

∑
n=1,3,5

[
t [n]
3

48

(
2x[n]

3 + 1
)
(n − 6)(n − 3)n(n + 3)ρ

n
3 +1

]

+ 5

3
a2ρ5/3(C[2] + 2D[2] ) − 7

3
a4ρ7/3(2C[4] + 3D[4] ), (C3)

respectively. The isospin splitting coefficients �m∗
2n−1(ρ) are defined in Eq. (35), while the linear coefficient can be expressed

as

�m∗
1(ρ) ≡ ∂m∗

n-p(ρ, δ)

∂δ

∣∣∣∣
δ=0

= − 80mh̄2[15ρD[2] + 10a2ρ5/3(2C[4] + 5D[4] ) + 72a4ρ7/3(4C[6] + 7D[6] )]

3[40h̄2 + 5mρ(2C[2] + D[2] ) + 10ma2ρ5/3(2C[4] + D[4] ) + 72ma4ρ7/3(2C[6] + D[6] )]2
.

(C4)

The isoscalar nucleon effective mass m∗
s and isovector nucleon effective mass m∗

v are momentum dependent in the N3LO
Skyrme pseudopotential interactions. We define M̃s ≡ m/ms and M̃v ≡ m/mv . Thus, we have

M̃s(ρ, p) = 1 + m

p

dU0(ρ, p)

d p

= 1 + m

8h̄2 ρ(2C[2] + D[2] ) + m

8h̄2 a2ρ5/3(2C[4] + D[4] ) + 3m

8h̄2 a4ρ7/3(2C[6] + D[6] )

+ p2

h̄2

[
m

8h̄2 ρ(2C[4] + D[4] ) + 21m

20h̄2 a2ρ5/3(2C[6] + D[6] )

]
+ p4

h̄4

[
3m

8h̄2 ρ(2C[6] + D[6] )

]
, (C5)

and

M̃v (ρ, p) = 1 + m

p

dUτ (ρ,−τ, p)

d p

= 1 + m

4h̄2 ρC[2] + m

4h̄2 22/3a2ρ5/3C[4] + m

4h̄2 24/3a4ρ7/3C[6]

+ p2

h̄2

[
m

4h̄2 ρC[4] + 21m

20h̄2 22/3a2ρ5/3C[6]

]
+ p4

h̄4

[
3m

4h̄2 ρC[6]

]
, (C6)

with τ = 1 [−1] for neutron [proton]. The derivatives of M̃s and M̃v with respect to momentum are expressed as

d2M̃s(ρ, p)

d p2
= 2!

h̄2

[
m

8h̄2 ρ(2C[4] + D[4] ) + 21m

20h̄2 a2ρ5/3(2C[6] + D[6] )

]
+ 12p2

h̄4

[
3m

8h̄2 ρ
(
2C[6] + D[6]

)]
, (C7)

d4M̃s(ρ, p)

d p4
= 4!

h̄4

[
3m

8h̄2 ρ(2C[6] + D[6] )

]
, (C8)

d2M̃v (ρ, p)

d p2
= 2!

h̄2

[
m

4h̄2 ρC[4] + 21m

20h̄2 22/3a2ρ5/3C[6]

]
+ 12p2

h̄4

[
3m

4h̄2 ρC[6]

]
, (C9)

and

d4M̃v (ρ, p)

d p4
= 4!

h̄4

[
3m

4h̄2 ρC[6]

]
. (C10)
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Comparing Eqs. (C5)–(C10) with Eqs. (C1) and (C4), we can obtain

Esym,4(ρ) = h̄2

162m
a2ρ2/3[3M̃v (ρ, p = 0) − 2M̃s(ρ, p = pF )]

+ h̄4

324m
a4ρ4/3

[
(2 − 3 · 22/3)

d2M̃v (ρ, p)

d p2

∣∣∣∣
p=0

+ 10
d2M̃s(ρ, p)

d p2

∣∣∣∣
p=pF

]

+ h̄6

2430m
a6ρ2

[
27 · 21/3 − 14 · 22/3 − 40

4

d4M̃v (ρ, p)

d p4
− 13

d4M̃s(ρ, p)

d p4

]
, (C11)

and

�m∗
1 (ρ) = 1

3[M̃s(ρ, p = pF )]2

{
6[M̃v (ρ, p = 0) − M̃s(ρ, p = pF )]

+ h̄2a2ρ2/3

[
(8 − 3 · 22/3)

d2M̃v (ρ, p)

d p2

∣∣∣∣
p=0

− 4
d2M̃s(ρ, p)

d p2

∣∣∣∣
p=pF

]

+ h̄4a4ρ4/3

[
27 · 21/3 − 56 · 22/3 + 60

30

d4M̃v (ρ, p)

d p4
+ 4

3

d4M̃s(ρ, p)

d p4

]}
, (C12)

where pF = h̄(3π2ρ/2)1/3.
In standard SHF and eSHF models, where C[4], C[6], D[4], and D[6] all equal zero, m∗

s and m∗
v are independent of momentum.

Consequently, Eq. (C11) and Eq. (C12) reduce to the very straightforward forms (i.e., Eq. (33) in Ref. [103] and Eq. (8) in
Ref. [113], respectively):

Esym,4(ρ) = h̄2

162m
a2ρ2/3

[
3m

mv (ρ)
− 2m

ms(ρ)

]
(C13)

and

�m∗
1 (ρ) = 2

ms(ρ)

m

[
ms(ρ)

mv (ρ)
− 1

]
. (C14)
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