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The elastic p- 12C scattering at low energies is studied by using a cluster effective field theory (EFT), where the
low-lying resonance states (s1/2, p3/2, d5/2) of 13N are treated as pertinent degrees of freedom. The low-energy
constants of the Lagrangian are expressed in terms of the Coulomb-modified effective range parameters, which
are determined to reproduce the experimental data for the differential cross sections. The resulting theoretical
predictions agree very well with the experimental data. The resulting theory is shown to give us almost identical
phase shifts as obtained from the R-matrix approach and predict the experimental analyzing power data. The role
of the ground state of 13N below the threshold and the next-to-leading order in the EFT power counting are also
discussed.
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I. INTRODUCTION

The cluster effective field theory (EFT) [1,2] provides a
powerful framework to describe low-energy nuclear dynam-
ics, and recent developments make it an alternative approach
to the R-matrix theory [3–6], which is widely used for the
description of nuclear reactions. By exploiting the scale sep-
aration of the system, the cluster EFT provides a systematic
expansion scheme of the theories, and thus allows improved
calculations with well-defined error estimates. The cluster
EFT has been used for the analysis of diverse nuclear systems,
including the one-neutron halo nucleus 19C [7], one-proton
halo nuclei 17F and 8B [8,9]. It has also been applied to
nonhalo systems with the existence of scale separation such
as the resonant α-α scattering [10], 12C -α scattering [11,12],
and low energy radiative capture reactions, for example,
3He(α, γ ) 7Li [13].

In the present work, we analyze the differential cross sec-
tion for the low-energy elastic p- 12C scattering in the cluster
EFT. The availability of accurate experimental data makes
the elastic scattering of p- 12C a good testing ground for the
cluster EFT and the R-matrix theory [6]. As we shall discuss
shortly, the system has rather a big expansion parameter,
which makes the convergence of the cluster EFT nontrivial.
Another intriguing feature of the system is the existence of a
subthreshold, i.e., the ground state of 13N lies 1.9 MeV below
the threshold. By performing a detailed study with and with-
out the state, we will address the relevance of the subthreshold
in the elastic scattering. As a test of our theory, the analyzing
powers Ay are calculated by using the low-energy constants
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fitted to the elastic scattering data, and the resulting theoretical
Ay is compared with the experimental data.

A study of the elastic scattering of p- 12C is also important
as the first step towards the calculation of the radiative pro-
ton capture of 12C, 12C(p, γ ) 13N, which plays an important
role in the CNO cycle [14]. 12C(p, γ ) 13N(β+) 13C increases
the 13C abundance and thus through the 13C(α, n) 16O reac-
tion would increase a neutron source in the asymptotic giant
branch (AGB) stars [15]. Direct measurement of the reaction
cross section at astrophysical energies is difficult due to the
Coulomb barrier, and employing a theoretical model is needed
to extrapolate the cross section at astrophysical energies. The
reaction has been studied in diverse theoretical approaches,
which include potential models like potential cluster model
(PCM) [16], single-particle model [17], distorted wave Born
approximation (DWBA) [18], and the phenomenological R-
matrix theory [19]. Thus, in this work, we determine the low
energy constants for the elastic scattering of p- 12C which are
necessary for the future study of the radiative capture reaction.

This paper is organized as follows. In Sec. II, the cluster
EFT formalisms for s-, p-, and d-wave interactions of elastic
p- 12C scattering and renormalization conditions are given. In
Sec. III, we present the renormalization procedure, the result-
ing phase shifts, and the analyzing powers, with discussions
on the power counting and the comparison with the R-matrix
results. In Sec. IV, we make conclusive remarks.

II. CLUSTER EFT FOR s-, p-, AND d-WAVE
INTERACTIONS

Most of the formalism which is necessary for the descrip-
tion of elastic p- 12C scattering in the framework of cluster
EFT can be found in Refs. [1,20]. In this section, we briefly
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FIG. 1. Level scheme of 13N (not to scale).

provide necessary expressions to facilitate presentation and
discussion.

A. Scale separation and Lagrangian

Figure 1 depicts the level scheme of the compound nu-
cleus 13N. The three low-lying resonance states with Jπ =
1/2+, 3/2−, and 5/2+ of 13N are taken as pertinent degrees
of freedom of the theory. Their respective excitation energies
are Er = 0.457, 1.686, and 1.734 MeV, with corresponding
momenta of

√
2mREr = 28, 54, 55 MeV, where mR is the

reduced mass of the p- 12C system. These momenta are char-
acterized by the scale denoted as klo, which is regarded as
small compared with the high momentum scale khi. The natu-
ral choice for khi is the momentum corresponding to the core
excitation

√
2mRE∗ ∼ 90 MeV, where E∗ = 4.44 MeV is the

first excitation energy of 12C. The EFT is then expanded with
increasing power of the ratio klo/khi = (0.3–0.6). The scale
associated with the Coulomb interaction, kC = ZCαEMmR ∼
38 MeV, is numerically comparable to klo, where ZC = 6 and
αEM � 1/137.036 is the fine structure constant. The ground
state of 13N with Jπ = 1/2− is a subthreshold state located
below the threshold, Er = −1.944 MeV, and its role will be
discussed later.

The effective Lagrangian for the system can be written as
[21–23]

L = ψ†
p

(
iDt + �D2

2mp

)
ψp + ψ†

c

(
iDt + �D2

2mc

)
ψc

+
∑

x

d†
x

[
�x +

Nx∑
n=1

νn,x

(
iDt + �D2

2mtot

)n]
dx

−
∑

x

gx[ d†
x [ψp i

←→∇ ψc ]x + h.c.] + · · · , (1)

where ψp, ψc, and dx are the proton, 12C and the dicluster
field, respectively, with the subscript dx denoting the to-
tal angular momentum and parity of the dicluster, x = Jπ .
Their masses are denoted as mp, mc, and mtot = mp + mc,
respectively, and the covariant derivatives are defined as

FIG. 2. Self-energy diagram of a dicluster. The solid line denotes
the core (12C) and the dashed line represents the proton field. The
shaded bubble denotes the Coulomb Green’s function.

Dμ = ∂μ + ieQ̂Aμ, where Q̂ is the charge operator. The pa-
rameters �x and gx represent the residual masses and coupling
constants of field dx, respectively. The index n is 1 for s and p
waves, and runs up to 2 for the d wave. ν1,x in the kinetic term
of the dicluster field is chosen as ±1 to denote the sign related
to the effective range [1], while the ν2,x in the second-order
kinetic term for the d wave is needed for renormalization. At
LO, we have therefore two low-energy constants (LECs) for s
and p waves, and three low-energy constants for the d wave.
As we shall show shortly, these LECs are to be related to the
effective range parameters.

The projection of the operator ψp i∇ψc = ψp(mci �∇ −
mpi �∇ )ψc/(mp + mc) to the x = 1/2+, 3/2−, 1/2−, and 5/2+
states are given as [24][

ψpi
←→∇ ψc

]m

1
2

+ =
∑
ms

C
1
2 m

00, 1
2 ms

ψpψc,

[
ψpi

←→∇ ψc

]m

3
2

−(
1
2

−) =
∑
α,ms

C
3
2 m( 1

2 m)
1α, 1

2 ms
ψpi

←→∇ αψc,

[
ψpi

←→∇ ψc

]m

5
2

+ =
∑

α,β,ml ,ms

C
5
2 m

2ml ,
1
2 ms

C2ml
1α,1βψp

× 1

2

(
i
←→∇ αi

←→∇ β + i
←→∇ β i

←→∇ α

)
ψc,

(2)

where ms is the spin projection of the proton and CJm
j1m1, j2m2

is a short notation for the Clebsch-Gordan coefficients
〈 j1m1, j2m2|( j1 j2) jm〉. Here and hereafter, we use the Greek
letters to denote spherical components that run from −1 to 1.
The conversion to Cartesian coordinates for convenience in
the calculation of the d wave can be found in Ref. [22].

B. The irreducible self-energy and renormalization conditions

The full dicluster propagator of the dicluster dx reads

iDx(E ) = i

�x + ∑Nx
n=1 νn,x(E + iε)n − �x(E )

, (3)

where �x(E ) is the irreducible self-energy shown in Fig. 2.
The Coulomb interaction plays a crucial role at low energy,
and is taken into account by the Coulomb Green’s function.
Because each dicluster of x in our consideration has a different
orbital angular momentum l , we will use l and x interchange-
ably hereafter.

The elastic scattering amplitude Tl for s, p, and d waves are
depicted in Fig. 3, and can be evaluated as [12]

Tl = g2
l Dl (E )e2iσl k2lĈ2

l (η), (4)
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FIG. 3. Scattering amplitude for elastic p- 12C scattering. The
notations are the same as in Fig. 2.

where σl = arg�(l + 1 + iη), and

Ĉl (η) = |�(l + 1 + iη)|e− 1
2 πη/�(l + 1), (5)

which is the Gamow-Sommerfeld factor Cl (η) [8,26] but nor-
malized to unity when η goes to zero.

The scattering amplitude in Eq. (4) can be matched with
the effective range function as [10]

Tl (E ) = −2π

mR

k2l e2iσl Ĉ2
l (η)

fl (k) − 2kChl (η)
. (6)

Here, fl (k) is the Coulomb-modified effective range function
(ERF) [27–29] defined as

fl (k) ≡ k2l+1Ĉl (η)2(cotδl (k) − i) + 2kChl (η) (7)

= − 1

al
+ 1

2
rlk

2 − 1

4
Plk

4 + · · · ,

where δl is the phase shifts relative to the regular Coulomb
function for angular momentum l , al , rl , and Pl are the effec-
tive range parameters (scattering length, effective range, and
shape parameter), and the function hl (η) is defined as [29,30]

hl (η) = k2l Ĉl (η)2

Ĉ0(η)2

(
ψ (iη) + 1

2iη
− log(iη)

)
, (8)

where ψ (z) = �′(z)/�(z) is the logarithmic derivative of the
� function. Comparison of Eq. (6) with Eq. (4) enables
us to renormalize the LECs in terms of the effective range
parameters.

1. S-wave interaction

The irreducible self-energy of s-wave dicluster can be
expressed as

�0(E ) = g2
0

∫
d3kd3k′

(2π )6
〈k|GC(E )|k′〉

= g2
0

∫
d3 p

(2π )3

ψp(0)ψ∗
p (0)

E − p2/2mR + iε
, (9)

where GC(E ) is the Coulomb Green’s function [29],

〈r|GC(E )|r′〉 =
∫

d3 p
(2π )3

ψp(r)ψ∗
p (r′)

E − p2

2mR
+ iε

, (10)

and ψp(r) is the Coulomb wave function

ψp(r) =
∞∑

l=0

(2l + 1)il eiσl
Fl (η, pr)

pr
Pl ( p̂ · r̂) (11)

with η = kC/p and Fl being the regular Coulomb functions
[31].

The integral in Eq. (9) can be evaluated by using the power
divergence subtraction (PDS) method [29,32,33],

�0(E ) = −g2
0

kCmR

π
h0(η) + �div

0 , (12)

and the divergent part �div
0 is energy-independent, whose

explicit form can be found in Refs. [32,33].
The s-wave ERF with l = 0 is then given as

f0(k) = − 2π

g2
0mR

(
�0 + �div

0

) − πν0

g2
0m2

R

k2. (13)

Comparison of Eq. (13) with Eq. (6) gives us the renormaliza-
tion conditions

1

a0
= 2π

g2
0mR

(
�0 + �div

)
,

r0 = − 2πν0

g2
0m2

R

. (14)

2. P-wave interaction

By using a similar procedure as for the s wave, the irre-
ducible self-energy of p-wave dicluster can be derived as [1]

�1(E ) = 1

3
g2

1

∫
d3 p

(2π )3

p2Ĉ1(ηp)2

E − p2

2mR
+ iε

= g2
1

mR

3π2

[
− L3 − (

k2 + k2
C

)
L1

+k2
(
k2 + k2

C

) ∫
d p

Ĉ0(η)2

k2 − p2 + iε

]

= g2
1mR

6π

[
− 2

π
L3 − 2

π

(
k2 + k2

C

)
L1 − 2kCh1(η)

]
, (15)

where

Ln =
∫

d pĈ0(ηp)2 pn−1. (16)

It is then a simple task to show that the resulting p-wave ERF
reads f1(k) = − 1

a1
+ 1

2 r1k2 with

1

a1
= − 6π

mR

(
�1

g2
1

− mR

3π2
L3 − mR

3π2
k2

CL1

)
,

r1 = 6πν1

g2
1m2

R

− 4

π
L1. (17)

3. D-wave interaction

By adopting the trick of using Cartesian representation of
the d-wave vertex function [23,34], the irreducible self-energy
of the d-wave dicluster can be evaluated as
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�2(E ) = g2
2

2

15

∫
d3 p

(2π )3

p4Ĉ2(ηp)2

E − p2

2mR
+ iε

= g2
2mR

15π

[(
− 8

π
L5 − 10

π
k2

CL3 − 2

π
k4

CL1

)

+
(

− 8

π
L3 − 10

π
k2

CL1

)
k2 − 8

π
L1k4 − 2kCh2(η)

]
. (18)

The corresponding d-wave ERF is then given as f2(k) =
− 1

a2
+ 1

2 r2k2 − 1
4 P2k4 with

1

a2
= 15π

g2
2mR

�2 + 8

π
L5 + 10

π
k2

CL3 + 2

π
k4

CL1,

r2 = −15πν1,2

g2
2m2

R

− 16

π
L3 − 20

π
k2

CL1,

P2 = 15πν2,2

m3
Rg2

2

+ 32

π
L1. (19)

III. NUMERICAL RESULTS AND DISCUSSION

A. Fitting to experimental data

In the previous section, we have shown that the clus-
ter EFT description with the LECs is equivalent to the
Coulomb-modified ERF with a finite number of effective
range parameters (ERPs), and the remaining task is to deter-
mine the values of the parameters. Although one could use the
existing R-matrix phase shift analysis, we attempted to deter-
mine the LECs directly from the experimental data to show the
effectiveness of EFT approach. We find that the fitting for the
ERPs is complicated due to the strong correlations between
the ERPs of the p and d waves, which is caused mainly by
the fact that their pole positions are very close to each other.
This problem can be avoided by rewriting the effective range
function as a series around the pole position,

fl (k) = − 1

al
+ 1

2
rlk

2 − 1

4
Pl k

4 + Qlk
6 + · · ·

= 1

2
r′

l

(
k2 − k2

r

) − 1

4
P′

l

(
k2 − k2

r

)2

+ Q′
l

(
k2 − k2

r

)3 + · · · , (20)

where k2
r ≡ 2mRE ′

r , and (E ′
r, r′

l , P′
l , Q′

l , . . .) are another rep-
resentation of the ERPs (al , rl , Pl , Ql , . . .). It is to be noted
that the values of E ′

r are shifted from the actual pole positions
(Er) due to the term −2kChl (η) in the denominator of the
scattering amplitude, Eq. (6), but as we will show below, this
reparametrization is sufficient to remove the aforementioned
correlation.

The parameters (E ′
r, r′

l , P′
l , Q′

l , . . .) are determined by
minimizing χ2

� defined as

χ2
� =

N∑
i

|yi,th − yi,exp|2
�y2

i,exp + �y2
i,th

, (21)

where yi,exp (yi,th) is the experimental (theoretical) differential
cross sections at a given angle, �yi,exp are error bars of the
data. Some of the data have very small �yi,exp, and the usual

FIG. 4. The differential cross sections for elastic p- 12C scatter-
ing as a function of the proton energy Ep < 0.7 MeV at two angles
(a) 89.1◦ and (b) 146.9◦. The red, blue, and green solid lines represent
the EFT results at LO, NLO, and LO+g.s. The black circles represent
the experimental data [35].

χ square is dominated by them. As a regulator that takes into
account the theoretical uncertainty, we introduce

�yi,th ≡ yi,exp × ki

�
, (22)

where � is a parameter. While constructed in an ad hoc man-
ner, this form is motivated by the fact that the EFT description
is less accurate at high momentum. �yi,th should not be bigger
than the uncertainty of the theory, and thus we choose � = 1
GeV. The resulting parameters are found to be stable and
insensitive to the values of �, while the value of χ2

� increases
with �.

So far, we have considered only the leading order (LO)
terms, and the resulting theory turns out to be identical to the
Coulomb-modified effective range expansion with the param-
eters (E ′

r, r′
l ) for s and p waves and (E ′

r, r′
l , P′

l ) for the d wave.
While we do not describe explicitly here, going to the next
order (or NLO) with including one higher-order terms in the
Lagrangian is also identical to the effective range expansion
with one more term, that is, (E ′

r, r′
l , P′

l ) for s and p waves and
(E ′

r, r′
l , P′

l , Q′
l ) for the d wave, which we denote as NLO. We

also perform the leading order calculation where the Jπ = 1
2

−

ground state of 13N is taken as a pertinent degree of freedom,
which we denote as LO+g.s. We thus have three sets of
parameters, LO, NLO, and LO+g.s.

The parameters of each set are then fitted to reproduce the
differential cross section data at three different angles, 89.1,
118.7, and 146.9 degrees [35]. Figures 4 and 5 show the result-
ing differential cross sections in the region Ep � 0.7 MeV and
Ep = (0.7–2) MeV, where Ep is the incident proton energy.
The calculated cross sections agree very well with the data,
which can also be seen in the obtained χ2

�/datum = 1.20 for
LO, and 1.03 for NLO.

The values of the fitted ERE parameters for the expansion
around the origin are summarized in Table I. In the NLO
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FIG. 5. The differential cross section for elastic p- 12C scattering
as a function of the proton energy Ep = (0.7–2) MeV at three angles
(a) 89.1◦, (b) 118.7◦, and (c) 146.9◦. The notation is the same as in
Fig. 4.

case, compared to LO, the added parameters, the P′
1 for the

p3/2 wave and the P′
2 and Q′

2 for the d5/2 wave, have large
uncertainties that are much bigger than the central values. This
might be due to a strong correlation between the parameters
of p3/2 and d5/2 waves, which is not surprising since the pole
positions at 1.686 and 1.734 MeV, respectively, are very close
to each other.

Considering the role of the ground state on the differential
cross sections, our results show that including the ground
state provides a more accurate description of differential cross

TABLE I. The ERE parameters for the expansion around the pole
positions. Q′

l = (−27 ± 99) fm for d5/2 at NLO, and 0 for other
cases.

E ′
r (MeV) r′

l (fm1−2l ) P′
l (fm3−2l )

(a) LO χ 2
�/N = 1.20

s1/2 −0.094 ± 0.001 1.521 ± 0.004
p3/2 1.743 ± 0.004 −1.828 ± 0.041
d5/2 1.764 ± 0.009 −0.194 ± 0.018 4.9 ± 2.7

(b)NLO χ 2
�/N = 1.03

s1/2 −0.109 ± 0.002 1.447 ± 0.006 −2.55 ± 0.11
p3/2 1.734 ± 0.019 −2.052 ± 0.419 30 ± 57
d5/2 1.765 ± 0.016 −0.192 ± 0.041 5.39 ± 9.75

(c) LO+gs χ 2
�/N = 1.01

s1/2 −0.094 ± 0.001 1.520 ± 0.004
p3/2 1.736 ± 0.004 −1.908 ± 0.040
d5/2 1.768 ± 0.011 −0.178 ± 0.021 2.1 ± 2.9
p1/2 −1.02 ± 12.97 −0.20 ± 0.98

FIG. 6. The phase shifts. The red, green, and blue lines are for
LO, NLO, and LO+g.s., respectively. The black short-dashed lines
are the results by using the R matrix taken from Ref. [19].

section in the higher energy region, particularly around 1.7
MeV. Our result is in line with the finding obtained from the
R-matrix study given in Ref. [19]. Figure 6 shows that the
ground state gives us a small and slowly varying repulsive
contribution. As can be seen in Table I, the pole position
parameter for this channel suffers from a very big uncertainty,
E ′

r = (−1 ± 13) MeV, which is not surprising recalling that
the ground state lies about 1.9 MeV below the threshold.

Let us now discuss the power counting of the obtained ERE
parameters. For the s-wave cases, the ERE parameters listed in
Table II suggest to count a0 ∼ �2

Q3 , r0 ∼ 1/�, and P0 ∼ 1/�3.
That is, while r0 (and P0 in NLO) is in natural size, the s-wave
scattering length a0 is unnaturally large. As can be seen in
Table I, this results in a very small E ′

0, E ′
0 � Q3

�2 , which could
be possible due to a strong cancellation between the effective

TABLE II. The unprimed ERE parameters (al , rl , Pl , Ql ). Q′
l =

(−27 ± 99) fm for d5/2 at NLO, and 0 for the other cases.

al (fm1+2l ) rl (fm1−2l ) Pl (fm3−2l )

(a) LO χ 2
�/N = 1.20

s1/2 −315 ± 3 1.521 ± 0.004
p3/2 −14.1 ± 0.3 −1.83 ± 0.04
d5/2 −26 ± 11 0.19 ± 0.21 4.9 ± 2.7

(b) NLO χ 2
�/N = 1.03

s1/2 −290 ± 6 1.46 ± 0.01 −2.55 ± 0.11
p3/2 −4 ± 5 0 ± 4 30 ± 57
d5/2 −19 ± 27 0 ± 4 −20 ± 94

(c) LO+gs χ 2
�/N = 1.01

s1/2 −315 ± 4 1.520 ± 0.004
p3/2 −13.6 ± 0.3 −1.91 ± 0.04
d5/2 −49 ± 43 0.00 ± 0.23 2.1 ± 2.9
p1/2 0.2 ± 3.0 −0.2 ± 1.0

(d) 1992NPA Baumann
s1/2 104 ± 8 2.5 ± 0.1 15.9 ± 0.7
p1/2 −464 ± 50 −0.10 ± 0.10 4.1 ± 1.8
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FIG. 7. Differential cross sections as a function of angles in the
c.m. system at three representative proton energies, Ep = 0.503, 1,
and 2 MeV are plotted by the filled circles. The results from our EFT
at these energies are represented by the blue, olive, and purple lines,
respectively. The solid, dashed, and dashed-dotted lines correspond
to the EFT results at LO, NLO, and LO+g.s., respectively. The
experimental data taken from Ref. [38] are represented by the filled
circles. For a discussion (see text), we also marked the experimental
data measured at Ep = 0.996 MeV given in Ref. [35] by the empty
red circles.

range term and the Coulomb term, 1
2 r0k2 − 2kCh0(η) ∼ Q3

�2

near the resonance energy. This is similar to the observation
for α- 3He scattering in Ref. [36]. On the other hand, p3/2

channel results correspond to a1 ∼ 1
�Q2 and r1 ∼ �. Note

that for the p wave, the Coulomb contribution is very small:
∼2kCh1(η) ∼ Q4

�
. Unfortunately, large uncertainties in the fit-

ted parameters in d5/2 and p1/2 channels make it difficult
to say any concrete discussion on power counting for those
channels.

The phase shifts are plotted and compared with the R-
matrix analysis in Fig. 6. As can be seen in Fig. 6, our results
are very close to those obtained by R-matrix calculations [19].
However, the obtained scattering length and effective range
parameter values in s1/2 channel show large discrepancies
from those in Ref. [37]. Considering a good description of the
cross section in our calculation and the fact that Ref. [37] only
used data in the range 1 < E < 2 MeV, those ERE parameters
might need to be updated.

As a test of our theory, we have calculated differential cross
sections and compared them with the experimental data [38]
at three representative proton energies, i.e., at Ep = 0.503, 1,
and 2 MeV. In Fig. 7, the experimental data [38] are plotted
by the filled circles. They are known to have uncertainties
up to ±4%, which is indicated by the shaded regions in
the figure. Our theoretical predictions are in good agreement
with the data at Ep = 0.503 and 2 MeV, while a slight over-
prediction is observed at Ep = 1 MeV. However, this gap
should be interpreted with caution, since our results are in

FIG. 8. The analyzing power Ay for the elastic p- 12C scattering
for energies at 1.618, 1.658, 1.708, 1.738, 1.758, and 1.779 MeV.
The red solid, blue dashed, and olive dashed-dotted lines correspond
to the EFT results at LO, NLO, and LO+g.s., respectively. The
experimental data taken from Ref. [37] are represented by the filled
circles.

excellent agreement with the experimental data given in
Ref. [19] at almost the same energy (Ep = 0.996 MeV) mea-
sured at θc.m. = 118.7 and 146.9 degrees, which are marked
by the empty red circles in Fig. 7.

We also apply our theory to the analyzing power Ay (see
Refs. [13,37] and the references therein for details),

Ay =
dσ
d� ↑ − dσ

d� ↓
dσ
d� ↑ + dσ

d� ↓
. (23)

As can be seen in Fig. 8, a very good agreement is achieved
with the experimental values [37]. We observe that the
“LO+g.s.” (dotted-dashed lines) again gives us better agree-
ment than LO (red solid lines) and NLO (blue dashed lines).
It is remarkable that the agreement in Ay is achieved without
introducing any additional parameter nor any refit.

IV. CONCLUSIONS

The elastic p- 12C scattering at energies below Ep �
2 MeV is studied in terms of a cluster EFT, the pertinent
degrees of freedom of which are the proton, the ground state
of 12C, and the three low-lying states (s1/2, p3/2, d5/2) of 13N.
The resulting scattering amplitudes of the theory are found
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to be consistent with the Coulomb-modified ERE, and the
low-energy constants are represented by the ERE parameters.
At the leading order, we have seven parameters, two for
each of the s and p waves, and three for the d wave. The
theory prediction turns out to be in a very good agreement
with the experimental data, achieving χ2

�/datum = 1.20 [see
Eqs. (21), (22) for the definition of χ2

�].
The fitting procedure for the ERE parameters can be sub-

stantially simplified by expanding the ERE around the pole
positions and defining the ERE parameters accordingly, which
strongly reduces correlations among the parameters. The ef-
fect of the higher-order terms has been studied by adding one
higher-order term for each partial wave, which is denoted as
NLO and scores χ2

�/datum = 1.03. To estimate the role of
the ground state of 13N that lies below the threshold, we have
also considered the cases where the ground state is promoted
to an explicit degree of freedom. The resulting “LO+g.s.”
theory results in χ2

�/datum = 1.01. These improvements of
NLO and LO+g.s. are, however, accompanied by large un-
certainties in the additionally introduced ERE parameters (see
Table I). It shows that the experimental data considered in this
work with Ep � 2 MeV are well described by the LO, and the
contributions from the higher-order terms and the subthresh-
old ground state are not essential. The resulting phase shifts
are in an excellent agreement with the R-matrix analysis [19].

The experimental values of the differential cross sec-
tions and the analyzing power Ay with respect to the angles
could be well reproduced by our theory as shown in Figs. 7
and 8 without introducing any additional parameters or
performing any further fitting of the parameters. Such a

prediction of not only the differential cross sections but also
the analyzing power with respect to the angles can be consid-
ered as an indirect validation of the theory.

The high momentum scale of a low-energy EFT is set
by the lowest-energy state that is not taken explicitly: 2+
state of 12C with Ex = 4.44 MeV and d5/2 state of 13N with
Ex = 6.36 MeV. This corresponds to rather a large expansion
parameter klo/khi = (0.3–0.6). The theory could be extended
to include these states as pertinent degrees of freedom as well,
which would give us a lower expansion parameter. However,
such an extension by limiting ourselves to a low-energy region
would give us only a marginal improvement. The main mech-
anism that makes our approach successful despite this rather
large ratio might be traced to the relevance of the ERE at low
energies. As discussed earlier, a natural extension of this work
would be the radiative capture 12C(p, γ )13N reaction.
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