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“Soft” interaction parameter sets in the extended quantum molecular dynamics model
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The extended quantum molecular dynamics (EQMD) model is one of the few quantum molecular dynamics
(QMD)-like transport approaches that can be used to study the effective clustering structure as well as heavily
deformed nuclei in both ground state nuclei and nuclear reactions. However, there are only two parameter sets
that lead to hard incompressibility for long times. The aim of the present work is to obtain a soft equation of state
(EoS) in the EQMD model. In this context, we take the isoscalar giant monopole resonance (ISGMR), which
is sensitive to the EoS, as an example to check our work. By introducing a kind of standard Skyrme energy
density functional with different parameter sets, such as SkP, SkT1, and SKXce, whose incompressibility value
ranges from 200 to 268 MeV, the ISGMR of 208Pb and other nuclei are studied. When the SkP parameter sets are
adopted, our new soft interaction in the EQMD model gives reasonable agreement with the experimental data in
the heavy ion regime.
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I. INTRODUCTION

The low- to medium-energy heavy-ion reaction has served
as a well-known tool to probe the structures of the atomic
nucleus. Recently, the interest has been extended to much
higher energies, the potential for probing nuclear deforma-
tion [1–3] and cluster configurations [4–11] has been widely
discussed, and several experimental evidences of nuclear de-
formation have been observed [12–14]. In terms of transport
models, the extended quantum molecular dynamics (EQMD)
model [15] is one of the models used to study the nuclear
cluster structures [16–19] and the heavily deformed nucleus
[20]. Compared with most quantum molecular dynamics
(QMD)-like models [21–24], the EQMD model developed
by Maruyama et al. has been improved in the following as-
pects [15]. A phenomenological Pauli potential is adopted,
a frictional cooling method is used to initialize the nucleus,
the dynamical treatment of the wave packet width and the
subtraction of the spurious zero-point kinetic energy of the
fragment center of mass have been taken into account. These
improvements allow the EQMD model to study heavy ion col-
lisions (HICs) near the Fermi energy region. In particular, for
the currently concerned α-clustering structure in light nuclei
[17,25–27] and deformed nucleus [20], EQMD can pro-
vide an opportunity to study the internal structure, the
effects of α clustering and the deformation parameters in
the nucleus-nucleus collision. With reasonable computational
performance, the EQMD model becomes one of the impor-
tant transport models to study the exotic effects in low and

*Corresponding author: mayugang@fudan.edu.cn

medium energy nuclear reactions [1,10]. Recently, the EQMD
model has been used to study collective flow [28], giant dipole
resonance [16,17], bremsstrahlung [29,30], photon-nuclear
reaction [31], shear viscosity [32–34], short-range correlation
[35], and the electromagnetic field effect [36] in nuclear re-
actions. However, in the following context it can be seen that
both sets of effective interaction parameters used in EQMD
[15] only lead to hard infinite nuclear incompressibility coef-
ficients (K∞). This confuses with a current consensus, i.e. the
K∞ is in the range of 230 ± 40 MeV [37]. The incompress-
ibility coefficient is a key parameter in the nuclear equation of
state [38–48] and in the astrophysics of the core-collapse su-
pernova and the neutron star. It could also affect the treatment
of nuclear reactions such as bremsstrahlung [49], collective
flow [50,51], the positively charged kaon yields [52], and so
on. This is crucial to the accuracy of our studies of exotic
structure in low to medium energy nuclear reactions. In this
context the situation where K∞ is too large in the original
EQMD model is worth addressing.

As a sensitive observable for extracting valuable infor-
mation about the incompressibility coefficient, the isoscalar
giant monopole resonance (ISGMR), known as the breathing
mode, has been extensively studied in the last few decades
[38,41,53–57]. For example, 208Pb as a double closed shell
nucleus, its ISGMR behavior has been studied in detail to
extract the nuclear incompressibility value [41,58]. The se-
ries of Sn [39] or Cd [59] isotopes has provided the value
for the asymmetry term of the nuclear incompressibility. Al-
though the theory has been well established to successfully
reproduce the K∞ of 208Pb, it does not seem to work to
treat the other open shell nuclei directly. For example, the-
oretical calculations overestimate the peak energy in the Sn
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isotopes (A = 112–124) above 1 MeV [39,40] compared to
the experimental data. This is the famous question: “Why
are Tins so soft?” [60], which remains unanswered. Nowa-
days, the development of new theories covering the open
shell nucleus based on experimental data is one of the current
directions in ISGMR research [41]. Besides, the identification
of ISGMR in neutron-rich nucleus, eventually weakly bound
isotopes, is another hot topic [41], which can be accessed to
extract the nuclear equation of state (EoS) of neutron matter
at subsaturation density.

In this paper we have adjusted the effective interaction and
introduced three different sets of Skyrme parameters, resulting
in softer incompressibility coefficients. The verification of the
potential parameters was focused on the ISGMR calculation.
The paper is structured as follows. A brief review of the
original EQMD model and the improvements are given in
Sec. II. The results and discussion are presented in Sec. III,
and a summary is given in Sec. IV.

II. MODEL AND METHOD

A. The original EQMD model

The EQMD model was developed to simulate low-
energy nuclear reactions involving heavy systems with good
computational performance. Like most QMD-like transport
approaches [21,61–67], the nucleons in EQMD, i.e., protons
and neutrons, are also assumed to be Gaussian wave packets.
However, unlike most QMD-like models, the widths of the
wave packets are propagated using the time-dependent vari-
ation principle (TDVP) [68] rather than a constant as used
in most QMD-like models. As mentioned in Ref. [68], this
treatment in the trial state as a semiclassical, semiquantum
mechanics involves more quantum effects than the fixed-
width situation. In the actual numerical calculation it makes
the nuclear ground state much more stable [69], which is
advantageous for the description of giant resonance.

The wave function of the total system can be expressed as
follows:

� =
∏

i

ϕi(ri )

=
∏

i

(
vi + v∗

i

2π

)3/4

exp

[
−vi

2
(ri − Ri )

2 + i

h̄
Pi · ri

]
,

(1)

where Ri and Pi are the centers of the wave packet in coordi-
nate and momentum spaces, and vi = 1

λi
+ iδi is the complex

wave packet width corresponding to the ith nucleon. Follow-
ing the TDVP, the propagation of phase space is expressed as
four equations of motion as follows:

Ṙi = ∂H

∂Pi
+ μR

∂H

∂Ri
, Ṗi = − ∂H

∂Ri
+ μP

∂H

∂Pi
,

3h̄

4
λ̇i = −∂H

∂δi
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∂H

∂λi
,

3h̄

4
δ̇i = ∂H

∂λi
+ μδ

∂H

∂δi
.

(2)

Here, μR, μP, μλ, and μδ are the friction coefficients. In
the initialization phase, they are negative values to cool the
system down to its (local) minimum point [15] through energy

TABLE I. Parameters of QMD (soft), QMD (hard), and two sets
of original EQMD model.

QMD (soft) QMD (hard) EQMD 1 EQMD 2

α (MeV) −356.0 −124.0 −116.6 −124.3
β (MeV) 303.0 71.0 70.8 70.5
γ 7/6 2 2 2
cs (MeV) − − 25.0 25.0

dissipation. On the other hand, they remain strictly zero during
the heavy ion reaction to satisfy the conservation of energy.
Here, H is the Hamiltonian variable, expressed as

H = 〈�|
∑

i

− h̄2

2m
∇2

i − T̂zero + Ĥint |�〉

=
∑

i

[
P2

i

2m
+ 3h̄2

(
1 + λ2

i δ
2
i

)
4mλi

− t c.m.
i

Mi

]
+ Hint,

(3)

where the first three terms in brackets are the total kinetic
energy of the ith particle, t c.m.

i is the zero-point kinetic energy
belonging to the ith particle, which can be written as

t c.m.
i = 〈φi|p̂2|φi〉

2m
− 〈φi|p̂|φi〉2

2m
. (4)

Mi is the so-called “mass number” which can be expressed as
follows: Mi = ∑

j Fi j [15] where

Fi j =
{

1 (|Ri − R j | < a)

e−(|Ri−R j |−a)2/b (|Ri − R j | � a)
, (5)

where the parameters a = 1.7 fm and b = 4 fm2 in the original
EQMD model. The last Hint is the total interaction energy for
the whole system. In the original version given by Maruyama
et al. a very simple formula for the energy density function
was proposed. The mean field potential is written as

Hint. = HSky. + HCoul. + HSym. + HPauli . (6)

Here, HSky., HCoul., HSym., and HPauli represent the Skyrme,
Coulomb, symmetry, and Pauli interaction, respectively. The
forms of Skyrme interaction adopt the simplest one as follows:

HSky. = α

2ρ0

∫
ρ2(r)dr + β

(γ + 1)ργ

0

∫
ργ+1(r)dr, (7)

where α, β, γ are the potential parameters which are listed in
Table I. The symmetry term is written as

HSym. = cs

2ρ0

∑
i, j �=i

∫
[2δ(Ti, Tj ) − 1]ρi(r)ρ j (r)dr, (8)

where cs is the coefficient of symmetry energy, Ti and Tj

represent the isospin corresponding to ith and jth nucleons,
respectively. The Pauli potential [15] is written as

HPauli = cP

2

∑
i

( fi − f0)μθ ( fi − f0), (9)

where cp and μ are the strength and power of the Pauli poten-
tial, θ is the unit step function, fi is the overlap of a nucleon
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with the same spin and isospin nucleons including itself, i.e.,
fi ≡ ∑

j δ(Si, S j )δ(Ti, Tj )|〈φi | φ j〉|2, and f0 is the threshold
parameter, which takes a value close to 1. When the f0 = 1,
the step function in Eq. (9) can be ignored, since the fi − f0

always greater than 0. The Pauli term can be understood as
a repulsive force forbidding the nearby identical particle too
close in the phase space. It makes the EQMD capability to
describe α clustering structure in a nucleus. Only the direct
part of Coulomb interaction utilized in the EQMD written as

HCoul. = ac

2

∫
drdr′ ρp(r)ρp(r′)

|r − r′| . (10)

Here, ac = 1
137 is the fine structure constant.

In one of the earliest references to the QMD model [70],
there are two sets of parameters with different values of
incompressibility. The softer set, called QMD (soft), is asso-
ciated with an incompressibility value of 200 MeV, and the
harder one, called QMD (hard), is associated with a value of
380 MeV. Table I gives the parameter settings of the QMD
(soft), the QMD (hard), and the EQMD model. Obviously,
the two sets of parameters proposed by Maruyama et al.
are very different from the QMD (soft) parameters, but very
close to the hard one, which is much larger than the cur-
rent consensus range of 230 ± 40 MeV. Unfortunately, a soft
incompressibility coefficient used in the EQMD model has
been missing for a long time. Another important aspect in
the transport model is the binary collisions between nucleons.
Some recent studies [71,72] have shown that the NN collision
process seriously affects the magnitude of the damping of
giant resonance (GR), but does not significantly affect the
position of the peak energy. In principle, both the mean-field
nucleon propagation and the NN binary collisions should be
considered simultaneously. In this article, we aim to resolve
the discrepancy in the incompressibility coefficient between
the EQMD model and the experimental data. For this reason,
only the mean-field aspect is considered in this work to avoid
further complications.

B. Modified mean-field potential

Since the introduction of the Skyrme interaction, a large
number of parameter sets have been developed that are con-
sistent with the macroscopic constraints, such as the ground
state properties of nuclei, the properties of nuclear matter, and
so on. It allows us to adopt the large number of Skyrme pa-
rameter sets already available, whose incompressibility values
K∞ are well known. Thus, the adoption of a standard Skyrme
interaction can greatly simplify the adjustment of the potential
parameters for our EQMD model. Nowadays, a standard form
of the Skyrme energy density functional is widely used by
various QMD-like models, e.g., ImQMD [73], LQMD [74],
IQMD-BNU [75], etc.

The effective interactions used in the EQMD model are
quite simple according to current knowledge. Compared to
the original EQMD model, we have adopted a more complete
Skyrme type energy density potential functional [76] for our
new version. It includes bulk, Coulomb, gradient terms, and
their symmetry part. However, the momentum-dependent and
spin-orbit terms are temporarily ignored due to their com-

plicated forms. In this case the energy density functional is
written as

U (r) = 1
2 t0

[(
1 + 1

2 x0
)
ρ2 − (

x0 + 1
2

)(
ρ2

n + ρ2
p

)]
+ 1

12 t3ρ
α
[(

1 + 1
2 x3

)
ρ2 − (

x3 + 1
2

)(
ρ2

n + ρ2
p

)]
+ 1

16

[
3t1

(
1 + 1

2 x1
) − t2

(
1 + 1

2 x2
)]

(∇ρ)2

− 1
16

[
3t1

(
x1 + 1

2

) + t2
(
x2 + 1

2

)]
× [(∇ρn)2 + (∇ρp)2] + UCoul. + UPauli. (11)

Here, t0, t3, and x0, x3 are parameters of bulk term, t1, t2 and
x1, x2 are the parameters of gradient term. UCoul. and UPauli

are the energy density functional of Coulomb interaction and
Pauli potential. The Coulomb term consisting of the direct and
exchange terms [77] is written as

UCoul.(r) = ac

2

∫
dr′ ρp(r)ρp(r′)

|r − r′| − 3

4
e2

(
3

π

)1/3

ρ4/3
p (r).

(12)

Here, ac is the fine structure constant, the second term repre-
sents the exchange part. We keep the formulation of the Pauli
potential as in Eq. (9), but with an adjustment of the strength
coefficient cp.

There are two ways to define the interaction parameters
introduced in Ref. [15]. One is to retain the saturation state
of nuclear matter with the Pauli potential, while adjusting the
Skyrme interaction parameters to give 16 MeV binding energy
at the saturation point. Another is to fix the original value of
the Skyrme parameters with the adjustment of Pauli potential
and zero point kinetic energy to satisfy the condition of the
ground state of the nucleus, i.e., binding energy and nuclear
charge radius. We use the second method to define the interac-
tion parameters in this article. In addition, the effective mass
of the Skyrme parameters should be as close as possible to
1.0 at saturation density, since the momentum-dependent and
spin-orbit interactions are not taken into account here. These
effects will be taken into account in the near future. According
to the above rules, three different parameter sets are given with
K∞ from 200 to 268 MeV. The detailed parameter settings are
given in Table II. Some variables correlated with the symme-
try energy, such as the slope (L), the curvature (KSym.), and the
third derivative (QSym.) are also listed. In addition, the density
dependent term is calculated exactly using the Monte Carlo
integral. A similar method was first reported in [78].

C. Giant monopole resonance

There are basically two groups of microscopic models that
have been used for giant resonance calculations [82], i.e.,
a purely quantum mechanical approach and a semiclassical
quantum microscopic transport model. The random phase ap-
proximation (RPA) method is a representative of the former
approach [83], while quantum molecular dynamics (QMD)
(-like), Boltzmann-Uehling-Ulenbeck (BUU) (-like), or
Vlasov (-like) are the representatives of the other. And they
have been successfully applied to analyze the GR related top-
ics. For example, the isospin-dependent quantum molecular
dynamics model (IQMD) [84] has been used to extract the
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TABLE II. Skyrme parameters used in this work and the corre-
sponding physics quantities. The KSym. is the curvature of symmetry
energy, and while the K∞ is incompressibility.

SkP [79] SkT1 [80] SkXce [81]

K∞ (MeV) 200 236 268
m0/m 1.00 1.00 0.99
L (MeV) 19.6 56.18 33.48
KSym. (MeV) −266.6 −134.83 −238.4
QSym. (MeV) 508.4 319.0 356.9
t0 (MeV fm5) −2931.7 −1794.0 −1438.0
t1 (MeV fm5) 320.6 298.0 244.3
t2 (MeV fm5) −337.4 −298.0 −133.7
t3 (MeV fm3+3α) 18709.0 12812.0 12116.3
x0 0.292 0.154 0.288
x1 0.653 −0.500 0.611
x2 −0.537 −0.500 0.145
x3 0.181 0.089 −0.056
α 1/6 1/3 1/2
cp (MeV) 18.6 16.8 17.6
f0 1.0 1.0 1.0
μ 1.3 1.3 1.3
a (fm) 0.5 0.5 0.5
b (fm2) 4.0 4.0 4.0

isotopic dependence of the GMR peak energy, and the BUU
has discussed the in-medium nucleon-nucleon (NN) cross
section [71] as well as the effective mass effects in the GDR
or GQR, etc. [72].

In a classical picture, GMR is understood as a radial collec-
tive vibration of an excited nucleus qualitatively, it is therefore
called a breathing oscillation mode. To excite a ground state
nucleus to breathing oscillation, a perturbation can be added to
the Hamiltonian of the nucleus at zero time, i.e., λQ̂δ(t − 0).
Here, Q̂ = 1

A

∑A
i r̂2

i is a suitable excitation operator [85] and
λ is a perturbation parameter.

In linear response theory, the response of excitation of �Q̂
is a function of time which can be expressed as [85]

�〈Q̂〉(t ) = 〈 f |Q̂| f 〉 − 〈0|Q̂|0〉

= −2λθ (t )

h̄

∑
F

|〈F |Q̂|0〉|2 sin
(EF − E0)t

h̄
, (13)

where |0 > and | f > are the nuclear states before and after
perturbing at zero time, |F > is the energy eigenstate of
the excited nucleus with eigenenergy EF , respectively. The
strength function can be extracted as a Fourier integral of
�〈Q̂(t )〉 as

S(E ) = − 1

πμ

∫ ∞

0
dt�〈Q̂(t )〉 sin

Et

h̄
, (14)

where μ is a scaling parameter. Actually, when calculating the
strength function with Eq. (14), a damping factor [71,86] of
e−γ t/h̄ with γ = 1 MeV is multiplied by the �〈Q̂〉(t ), which
is a common practice to avoid oscillations in the Fourier
transformation due to the finite time span. To overcome this
drawback, another method is to extract the periodic oscillation

20 40 60 80
t (fm/c)

1−

0

1

2

)2
(t

)>
 (

fm
Q<Δ

Exp.

original EQMD

FIG. 1. The �〈Q̂(t )〉 plotted as a function of time. The red solid
line is the result from the original EQMD model. And the blue line
is derived from RCNP experiments.

with the following form [72,82]:

Q(t ) = −a sin

(
Eγ

h̄
t

)
exp

(
− �

2h̄
t

)
+ d, (15)

and the corresponding strength function can be integrated
according to Eq. (14). Here, Eγ and � are the GMR peak
energy and width, respectively.

By analyzing the time evolution of the �〈Q̂〉(t ) within the
transport model, we can obtain the strength function and other
quantities such as peak energy, width, and energy weighted
sum rules. In general, the value of the scaling parameter μ

in Eq. (14) is equal to the value of the perturbed parameter.
This will affect the magnitude of the GMR strength. However,
in this work we focus on the energy peak, so the scaling
parameter can be set to any value.

III. RESULTS AND DISCUSSION

To verify the newly embedded potential, we use the GMR
to demonstrate its applicability. To realize the giant monopole
mode excitation at t = 0 fm/c, the collective coordinate as-
sociated with the monopole vibration, a normalized scaled
version of the nuclear density is given by the scaling relation
[87]. It is easy to obtain the new coordinates of the phase space
after perturbing the ith nucleon as

Ri → cRi, λi → c2λi. (16)

Here, c = 1.03 is a scaling parameter taken from Ref. [82].
For this excitation the phase of 〈Q̂〉(t ) is different from
Eq. (15) with π/2. So the collective oscillation should be
written as a cosine formation, i.e.,

Q(t ) = a cos

(
Eγ

h̄
t

)
exp

(
− �

2h̄
t

)
+ d, (17)

and the corresponding strength function can be extracted as

S(E ) = 1

πη

∫ ∞

0
dt�〈Q̂(t )〉 cos

Et

h̄
. (18)

First, we plot the �〈Q̂(t )〉 of the giant monopole for 208Pb
as a function of time as calculated by the original EQMD
model in Fig. 1. The solid line is the result from the original
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FIG. 2. The deviation of the calculated binding energies and radii
of the nucleus from the experimental data as a function of mass
number. Five sets of parameter are compared.

EQMD model and the dashed line is derived from RCNP
experiments [88] with Eγ = 13.7 MeV and � = 3.3 MeV
according to Eq. (17). We artificially make these two curves
equivalent at t = 0 fm/c, which would not affect the position
of the peak energy. In Fig. 1, a period of oscillation of the
�〈Q̂(t )〉 derived from the experiments is plotted, which is
about 90 fm/c. In contrast, the frequency of the GMR os-
cillation in 208Pb calculated by the original EQMD model is
about 1.5 times the experimental value, which means that Eγ

is about 20.55 MeV. This indicates that the incompressibility
in the original EQMD model is indeed overestimated.

Before starting to calculate the GMR oscillation, we also
check the energy minimum states as initial ground states ob-
tained by the frictional cooling method [15] in the framework
of our EQMD model. The deviation of the binding energies
and radii of 3He, 4He, 6Li, 8Be, 12C, 24Mg, 40Ca, 90Zr, 144Sm,
208Pb, and 232Th with five different parameter sets is shown
in Fig. 2. The open circle, open block, and open triangle are
the results simulated by the SkP, SkT1, and SkXce Skyrme
parameters after frictional cooling, respectively. The detailed
parameter settings and corresponding incompressibility val-
ues can be found in Table II. For comparison, the same things
derived from the original EQMD model with parameter sets 1
and 2 are plotted as stars and crosses in Fig. 7. As described
in Maruyama’s article [15], the original EQMD can reproduce
the binding energy per nucleon reasonably well with param-
eter set 1 and almost perfectly with set 2 for most nuclei.

In our EQMD model, the deviations of binding energy per
nucleon and radii are reasonably close to the experimental
data for heavy ions with SkP, SkT1, and SKXce. However, the
situation becomes complicated for nuclei lighter than 24Mg.
Especially for 4He the difference can reach about 2 MeV. If
one looks carefully, one can find a certain overestimation of
the binding energies of 3He and 6Li in the case of EQMD
parameter set 2. However, the deviations become very small
in our EQMD model with SkP, SkT1, and SKXce. On the
other hand, with the exception of 4He, the binding energies
for most nuclei can also be reasonably reproduced with the
SKXce setting in this work. Roughly speaking, based on the
computational results, the SKXce and EQMD set 2 parameter
settings can provide relatively reasonable reproductions of the
nuclear ground state properties.

For the light nucleus, it shows a strong parameter depen-
dence on the ground state reproduction. In fact, this is not
an uncommon problem for QMD-like models, and there have
been some solutions to overcome this problem. In the case
of the ImQMD model [73], the constant width of the wave
packet is treated as a mass-number-dependent free parameter
for fitting the ground state properties. However, this treatment
cannot be adopted in our work because of the dynamic treat-
ment of the wave packet width adopted in the EQMD model.
In the case of the constrained molecular dynamics (CoMD)
model [89], the introduction of the Heisenberg principle can
help to reasonably reproduce the binding energies and radii
of light nuclei, which is a feasible solution for our EQMD
model. Despite this weakness for light nuclei, the correction
for incompressibility within the EQMD model still represents
a valuable step forward. Based on the results, it may be more
appropriate to focus initially on collisions involving heavy de-
formed nuclei, which has been a hot frontier in nuclear physics
research recently. The absence of momentum-dependent in-
teractions prevents a large number of Skyrme-type parameter
sets from being used in our model. We expect that the addition
of momentum-dependent interactions and a large number of
corresponding parameter sets will overcome this problem in
the near future.

The stability of the ground state of the nucleus has a re-
markable influence on the signal of the giant resonance [82],
so it is necessary to initialize the neutron and proton densities
according to a specific method, which can well improve the
stability of the ground state [82]. For this reason, we also study
the stability of the ground state evolution of the nucleus. The
time evolution of the binding energy and charge radii of 208Pb
obtained by the SkP parameter setting during a thousand of
fm/c span is shown in Fig. 3. And the time evolution of the
radial density distribution in 208Pb with the same parameter
setting as in Fig. 4. Both values of the binding energy, the
charge radii, and the radial density distribution remain almost
stable over a long time, with only very small fluctuations that
could be ignored. The good stability of the ground states in
the framework of our EQMD model is of great benefit for
obtaining a clear signal of the ISGMR mode according to the
previous research results [82].

The ISGMR in 208Pb has been used to investigate the
value of the nuclear incompressibility in various theories and
experiments because 208Pb is a double magic nucleus. For this
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FIG. 3. The time evolution of the binding energy (a) and rms
charge radii (b) of the ground state 208Pb nucleus during 1000 fm/c.

reason, we analyze the peak energy of the lead nucleus using
the SkP, SkT1, and SkXce parameter sets, whose K∞ ranges
from 200 to 268 MeV, to determine the appropriate setting for
our model. In Fig. 5, the time evolution of the periodic oscil-
lation at �rms(t ) = rms(t ) − rms(g.s.) of 208Pb is plotted in
panel (a), and the corresponding strength function extracted
according to Eqs. (17) and (18) is plotted in panel (b). Here,
rms(g.s.) denotes the root mean square radius at the ground
state. The solid line, dotted line, and dashed line represent the
results using the SkP, SkT1, and SKXce parameter settings,
respectively, and the blue block represents the experimental
data in 208Pb for 386-MeV inelastic scattering data from the
RCNP [41,88]. According to Eq. (16), a same oscillation c =
1.03 on the radial density of 208Pb with different parameter
setting is added at zero time, the periodic oscillation emerges
three different frequencies. We extract the strength function
from three different situations with a uniformly normalized
amplitude, the peak energy position of three different setting
sorts from small to large corresponding to the incompress-
ibility from weak to strong as expected. In comparison with
the experimental data, both the SkT1 and SKXce settings
overestimate the peak energy for 208Pb to varying degrees,
and the SkP parameter setting whose K∞ is close to 200 MeV
shows the best agreement with the data.

The fermion properties of nucleons are very important
for low energy nuclear reactions. However, only the AMD
and FMD models treat the Pauli principle strictly with an-
tisymmetrization of the phase space. The method of strict
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FIG. 4. The time evolution of the radial density distribution of
the ground state for 208Pb over 1000 fm/c time span.
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FIG. 5. (a) Time evolution of the �rms(t ) = rms(t ) − rms(g.s.)
for 208Pb using different sets of Skyrme parameters as indicated.
(b) Excitation energy extracted from panel (a). The blue block repre-
sents the experimental data from RCNP [41,88].

antisymmetrization will seriously affect the computational
efficiency. So it takes a considerable amount of time to cal-
culate the heavy nuclear system. To mimic the effects of the
Pauli principle with good performance, a phenomenological
repulsive potential that prevents identical particles from com-
ing close to each other in the phase space is adopted by
Maruyama [15], which is called Pauli potential. In order to
evaluate the effect of the Pauli potential during the GMR
oscillation, we plot the kinetic energy, the total interaction
energy excluding the Pauli potential, and the individual Pauli
potential as a function of time for the GMR oscillation of
208Pb with the SkP setting in Fig. 6. Obviously, the absolute
value of the Pauli potential is about 4 MeV/u, which is smaller
than the total interaction energy, which is about 27 MeV/u.
Moreover, the main energy exchange between the kinetic en-
ergy and the total interaction and the Pauli potential remains
almost unchanged during the GMR oscillation. In fact, the
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FIG. 6. The kinetic energy, the total interaction energy excluding
the Pauli potential, and the Pauli potential alone as a function of time
with the SkP parameter setting for 208Pb.
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approach of the Pauli potential can not completely recover
the Fermi properties for the nuclear matter [68]. How to deal
strictly with the Fermi properties of nucleons while taking into
account the efficiency is still a difficult task.

According to the above conclusions, the SkP parameter
setting is reasonable to reproduce the breathing mode of 208Pb
within the framework of our EQMD model. We adopted this
parametrization to study the mass dependence of the GMR
peak energy. The rms radii of 40Ca, 90Zr, 112Sn, 124Sn, 144Sm,
and 232Th are shown as a function of time in Fig. 7. Again
there is a clear oscillation signal over a long time. The cor-
responding peak energy of the GMR as a function of mass
number is plotted in Fig. 8. The full circles are the results of
our model, the open blocks are the experimental data [88],
and the solid line is the liquid-drop formulation calculation
using Eγ = ηA−1/3 with η = 79.3 MeV. Here, Eγ and A are
the peak energy and mass number, respectively. To understand
the dependence of the ISGMR peak energy (Eγ ) on the mass,
we use a formula like this [90]

Eγ = h̄

√
KA

m〈r2〉 , (19)

where m is the nucleon mass, 〈r2〉 is the mean square radius at
the ground state which is proportional to A2/3, and KA is the
finite nucleus incompressibility. In the case of scaling model
[82], it is roughly assumed that KA ≈ K∞, consequently the
energy peak of the GMR follows the A−1/3 law. The present
EQMD model can give a reasonable mass dependence of peak
energy consistent with the experiment data in the region of
heavy ion. However, it overestimates about 1 MeV for the
nuclei with mass number smaller than 100. A weakness of our
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FIG. 8. Peak energies of the GMR are plotted as a function of the
mass number of nuclei. Our calculation results are marked as the full
circles with the liquid drop formulation fit. The open blocks represent
the experimental data from Ref. [88].

EQMD model is the lack of momentum dependent interaction
due to its complex form, which currently prevents us from
exploring the role of effective mass in this work. In fact, in
previous researches of our group [84], it was observed that the
peak energy of GMR tends to increase when the momentum-
dependent interaction is taken into account. However, upon
careful examination of the parameter settings, it is found
that the bulk term parameters also undergo some changes,
which also affect the GMR behavior, when the momentum-
dependent interaction is included. We believe that using the
GMR to constrain the effective mass behavior will be a poten-
tial topic, and we are also considering adding this effect in the
near future.

IV. CONCLUSION

The EQMD model, as one of the few transport approaches,
can be used to study cluster effects and heavily deformed
nuclei in nuclear reactions with efficient computational per-
formance. However, for a long time only two sets of hard
incompressibility parameters existed in EQMD. To address
this issue, we introduce a standard Skyrme energy density
function, such as the bulk, gradient term, and the correspond-
ing symmetry part, and the exchange term of the Coulomb
interaction to replace the original mean-field form of the
EQMD model in the present work. In addition, we give three
sets of Skyrme parameters, corresponding to the K∞ from
200 to 268 MeV, according to the ground state properties.
In the framework of our EQMD model, the SkP parameter
setting can reproduce the GMR peak energy of 208Pb as the
experimental data. Based on the success of 208Pb, the GMR
peak energies of 40Ca to 232Th have also been studied using
the SkP parameter setting. Overall, the results for the heavy
nucleus are in good agreement with the experimental data, but
overestimate the light nucleus by about 1 MeV. The updated
model can give a more reasonable EoS of nuclear matter, but
the momentum-dependent interaction is still missing. We will
address this issue in our next work and study the effect of the
momentum-dependent interaction for the giant resonance.
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