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Pauli resonance states in light nuclei: How they appear and how they can be eliminated
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A systematic analysis of parameters and properties of the Pauli resonance states is performed for light nuclei
6Li, 7Li, 8Be, 9Be, and 10B, which are treated as two-cluster systems. The Pauli resonance states are redundant
solutions of the resonating group method. They appear when one tries to use a more advanced description of the
internal structure of interacting clusters. Our calculations are performed in the standard and advanced versions
of the resonating group method. The standard version employs wave functions of the many-particle oscillator
shell model to describe the internal motion of nucleons within each cluster. The advanced version is based on a
three-cluster resonating group method. As in the standard version, the internal wave functions of three clusters are
approximated by wave functions of the many-particle oscillator shell model. However, in the advanced version,
a pair of clusters can form a bound state and then the third cluster is considered to interact with such two
clusters, being in such the bound state. It is found that the Pauli resonance states in nuclei under consideration
are observed at energies between 11 and 46 MeV, and their widths vary from 8 keV to 6.7 MeV. The analysis of
the wave functions of Pauli resonance states and matrix elements of the norm kernel allowed us to formulate an
effective method for eliminating Pauli resonance states. It is demonstrated that this method effectively eliminates
all determined the Pauli resonance states.
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I. INTRODUCTION

We study properties of the so-called Pauli resonance states
which have been numerously observed in Refs. [1–12] and
many others. These resonance states appear within the res-
onating group method (RGM) when one tries to use a more
realistic description of interacting nuclei (clusters). They
have been considered as redundant solutions of the equa-
tions of the resonating group method. As the Pauli resonance
states appear not in all realizations (versions) of the res-
onating group method, we start with a short classification
of main versions of the RGM, which are relevant to the
subject of the present paper. The main difference of these
methods is in the form of the wave function, which is
used to approximate the cluster structure of a compound
nucleus. The standard version of the RGM suggests the fol-
lowing form of the wave function of a two-cluster system of
A nucleons for the partition A = A1 + A2:

�(A) = Â{�1(A1, b)�2(A2, b)ψ (x)}, (1)

where x is a distance between centers of mass of clusters,
ψ (x) is the wave function of the relative motion of clusters,
and �1(A1, b) and �2(A2, b) are the wave functions of the
many-particle oscillator shell model describing the motion
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of nucleons within the first and second clusters, respectively.
They are antisymmetric and translationally invariant. The os-
cillator length b determines the effective sizes of clusters.
An important component of Eq. (1) is the antisymmetrization
operator Â which makes the antisymmetric wave function
of a compound system. For the sake of brevity, we omit all
quantum numbers. They will be explicitly indicated in Sec. II.

In the second version, which we call the improved one, the
wave function is chosen in the form

�(A) = Â{�1(A1, b1)�2(A2, b2)ψ (x)}, (2)

where different oscillator lengths b1 and b2 are used to im-
prove the description of the internal structure of each cluster.
This version is suitable for clusters with large difference of
masses, i.e., for example, when A1 � A2.

The third version is called the advanced version of the
RGM and related to the advanced description of the internal
structure of one cluster,

�(A) = Â{�1(A1, b1)�2(A2, b)ψ (x)}. (3)

Contrary to the wave function �α (Aα, b) (α = 1, 2), the
wave function �α (Aα, b) is a solution of the two-cluster
Schrödinger equation with clusterization Aα = Aα1 + Aα2 and
is presented in the form similar to (1). This version of the
RGM suggests a more correct description of the compound
system and is appropriate when one or both clusters A1 and
A2 have an evident two-cluster structure, or, in other words,
they have weakly bound state(s) and thus can be easily split
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into two fragments. Many light nuclei such as d , 6Li, 7Li, and
7Be have such properties as their separation energies are less
than 3 MeV.

The Pauli resonance states have not seen in the stan-
dard version of the RGM. Only the shape resonance states
were detected within this version in the single-channel ap-
proximation. As is well known, the shape resonances are
created by the centrifugal and/or Coulomb barriers. Thus,
they lie relatively close to the threshold of the corresponding
channel.

The Pauli resonance states have been detected in the
improved and advanced versions of the RGM. The most
spectacular demonstration of the Pauli resonance states was
presented in Refs. [9,10], where the elastic scattering of α

particles on 16O has been calculated within the standard and
improved versions. A set of narrow and wide resonance states
emerged when different oscillator lengths (frequencies) were
used for the wave functions describing the internal structure of
16O and 4He nuclei. They spread over a wide energy interval
from small to relatively high energies above the 16O + 4He
threshold. For example, in Ref. [9], in the 0+ state, the
improved version generates four resonance states with the
energy less than 30 MeV, while the standard version creates
no resonance states. These results have been obtained with the
delta-shape nucleon-nucleon potential. In Ref. [10], the same
models were used for the resonance structure in the 16O + 4He
scattering, but with a semirealistic nucleon-nucleon poten-
tials. It was found that, in this case, the Pauli resonances are
shifted to the high-energy region (E > 30 MeV).

In light nuclei, within the advanced version of the RGM
[1–4,6–8,11], the Pauli resonance states have been observed
in a relatively high-energy region E > 15 MeV. It was also
noticed in Ref. [2] that the Pauli resonance states manifest
themselves in the states with small values of the total orbital
momentum L.

Despite that the different authors have used different names
for such type of resonances, such as “positive energy bound
states” [1], “redundant” [5], or “spurious states” [7], it was
widely recognized that the correctly treated Pauli principle is
the origin of those states.

Why are the Pauli resonances considered as spurious
states? There are two reasons for treating such resonance
states. First, there are no physical justifications for the ap-
pearance of Pauli resonances. Second, such resonances are not
observed experimentally.

To clarify the first reason, let us recall the main types of
resonance states that are observed in many-particle and par-
ticular in nuclear systems (see, for example, Refs. [13–15]).
The first type is shape resonance states which are created
by centrifugal or/and Coulomb barriers. The second type is
represented by the Feshbach resonance states [14,15]. These
resonance states appear due to a weak coupling between open
and closed channels. There are two necessary conditions for
creating the Feshbach resonances. A compound system should
have at least two channels with different threshold energies,
and there should be at least one bound state in the channel
with the larger threshold energy provided that this channel
is considered separately from the channel with the lowest
threshold energy.

The phenomenon which is called the Pauli resonance state
cannot be explained by two main factors creating resonance
states and, thus, cannot be attributed to the first or second
type of resonances. It cannot be the Feshbach resonance as
such resonance states observed in single-channel cases. It is
impossible to relate the Pauli resonances to centrifugal or
Coulomb barrier, since they appear in states with zero or very
small angular momenta, or they require a very huge barrier.

To understand the phenomenon of Pauli resonance states,
it is worth to recall some properties of the antisymmetrization
operator Â. First, this operator been applied to a many-particle
function that makes this function totally antisymmetric with
respect to a permutation of any pair of particles or annihi-
lates it. The latter means that such wave function cannot be
antisymmetric. It is said that the Pauli principle prohibits
such function or makes it forbidden. Usually, such type of
functions describes many-particle systems, when more than
four nucleons occupy the same single-particle orbital. Second,
the antisymmetrization operator may significantly affect the
normalization properties of many-particle functions. If the
operator Â is applied to a wave function, which is normalized
to unity, then the overlap of the resulting antisymmetric wave
function can be smaller than unity, larger than unity, or even
very small.

Both properties of the antisymmetrization operator Â have
a great impact on the structure of equations for many-cluster
systems and on the explicit form and the interpretation of
obtained solutions. These properties are discussed in more
detail in the following sections of the paper.

The Pauli resonance states have been considered as redun-
dant solutions of the RGM equations. Thus, one needs to use
an algorithm to eliminate these states. They distort real physi-
cal quantities such as the phase shifts, cross sections of various
processes, and so on. To the best of our knowledge, there is
only one algorithm for eliminating the Pauli resonance states.
It was formulated in Ref. [12] and applied to the 4He + 16O
system. We refer to this method as the REV method, which
removes the eigenvalues of the norm kernel that cause the
Pauli resonances. It was suggested in Ref. [12] to omit the
so-called almost forbidden Pauli states. The criterion how to
distinguish such states from allowed ones was formulated.
This algorithm has eliminated all Pauli resonance states from
the elastic scattering of α particles on 16O.

In the present paper, we are going to examine the
continuous-spectrum states of a set of light nuclei such as 6Li,
7Li, 7Be, 8Be, 9Be, and 10B. All these nuclei are considered as
a three-cluster configuration and treated within a three-cluster
model formulated in Ref. [16]. The three-cluster configuration
is then reduced to three (if all three clusters are different) or
two (if two of three clusters are identical) binary channels.
When such reduction causes a pair of clusters to form a bound
state, this state is described by the two-cluster approximation
in our method.

To study the Pauli resonance states, we first analyze the
overlap matrix and its eigenvalues for several light nuclei.
Based on this analysis, we suggest an alternative method
for eliminating the Pauli resonance states. We call this new
method of removing of the oscillator functions the ROF
method. We will demonstrate that both methods of REV and
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ROF give close results and completely eliminate all Pauli
resonance states.

The structure of the present paper is as follows. In Sec. II,
we give a brief introduction of the methods applied to study
properties of the Pauli resonances in light nuclei. In Sec. III,
the choice of input parameters and the details of calculations
are discussed. The manifestations of the Pauli resonance states
in various two-cluster systems are demonstrated in Sec. III A.
The analysis of the parameters of Pauli resonance states and
their wave functions is carried out in this section. Then in the
Sec. III E, we analyze the matrix elements and the eigenvalues
of a norm kernel. In Sec. IV, we briefly explain the main
idea of eliminating the Pauli resonance states suggested in
Ref. [12]. Here we also demonstrate its efficiency. In Sec. V,
we formulate an alternative method for eliminating the Pauli
resonance states and demonstrate how it works in a two-
cluster systems under consideration. Concluding remarks are
presented in Sec. VI.

II. METHOD

In this paper we will use two types of two-cluster functions
and, thus, two realizations of the RGM. The first type of
functions represents the standard form of the resonating group
method, and the second type realizes the advanced form of
the RGM. The wave function of the first type for a partition
A = A1 + A2 reads

�E ,J (A) = Â{{[�1(A1, L1, S1, b)�2(A2, L2, S2, b)]S

× ψE ,l,L,J (x)Yl (̂x)}L}J , (4)

and the wave functions of the second type for the partition
A = A1 + A2 = A1 + (A21 + A22) are

�E ,J (A) = Â{{[�1(A1, L1, S1, b)�2(A2, L2, S2, b)]S

× ψE ,l,J (x)Yl (̂x)}L}J , (5)

where �2(A2, S2, L2, b) is the wave function of a bound state
of the two-cluster subsystem with the partition (A21 + A22)

�2(A2, L2, S2, b) = Â{
[�1(A21, S21, b)�2(A22, S22, b)]S2

× gE,λ,J (y)Yλ (̂y)
}

J . (6)

Recall that we use the capital letter � to denote the wave func-
tions that are not solutions of the corresponding Schrödinger
equation, they are the wave functions of the many-particle
oscillator shell model. These functions can be constructed
as Slater determinants from single-particle oscillator orbitals.
The capital and small letters � and ψ represent solutions
of the many-particle Schrödinger equation or corresponding
integrodifferential Wheeler equation [17,18].

It is necessary to note that the many-particle shell model,
employing the harmonic oscillator potential as a nucleon-
nucleon interaction, provides an analytical and simple form
of many-particle wave functions. These functions fairly well
describe the low-energy spectra of light nuclei and many
important parameters, such as charge root-mean-square radii,
quadrupole momenta, and so on. They are widely used in
different versions of the RGM. The coordinate part of these
wave functions for s-shell nuclei (d , 3H, 3He, and 4He) has

simple form

�α (Aα ) ≈ exp

⎧⎨⎩− 1

2b2

Aα∑
1�i< j

(ri − r j )
2

⎫⎬⎭,

where ri is a coordinate of ith particle. This form of cluster
wave functions �α (Aα ) allows one to obtain matrix elements
of nucleon-nucleon interaction in a simple analytical form,
provided that the nucleon-nucleon potential has a Gaussian
form.

Here we use the LS coupling scheme, when the total spin
S is a vector sum of spins of clusters, and the total orbital
momentum L is a vector sum of the orbital momenta of both
clusters L1 and L2 and the orbital moment of the relative
motion of clusters l .

In the present paper, we consider the special case of the
advanced version of the RGM. The usage of the special case
is justified by employing the three-cluster model for inves-
tigating the cluster-cluster scattering and the structure of a
compound nucleus. In this special case, only one of two
functions �1 and �2 of the internal motion of nucleons is
a solution of the two-cluster Schrödinger equation, and an-
other function is the many-body oscillator shell-model wave
function. A four-cluster model will allow one to consider
the general case with two wave functions �1 and �2 to be
solutions of the two-cluster Schrödinger equations.

To realize the advanced model, we employ the three-cluster
model which was proposed in Refs. [16,19]. Within this
model, a three-cluster configuration is transformed into a set
of binary channels, i.e., in several pairs of interacting nuclei,
and one of the interacting nuclei is considered as a two-
cluster system. In Refs. [16,19], the model has been applied
to study nuclei 7Be and 7Li with three-cluster configurations
4He +d + n and 4He +d + p, respectively. The structure of
the 10B nucleus has been investigated in Ref. [20] by employ-
ing the three-cluster configuration 4He + 4He +d . Recently,
the model which involves two three-cluster configurations
4He +p + n and 3H +d + p was used in Ref. [21] to study
the resonance states of 6Li in a wide energy range.

The model involves the Gaussian basis functions to deter-
mine bound-state wave functions of two-cluster subsystems
and the oscillator basis functions to describe the scattering of
the third cluster on a bound state of the two-cluster subsystem.
The abbreviation AMGOB is used to distinguish this model.
In the AMGOB, two-cluster (6) and three-cluster (5) wave
functions are represented as

�2(A2, S2, L2, b) =
NG∑
ν=1

DE ,L2,J
ν Â{

[�1(A21, S21, b)

× �2(A22, S22, b)]S2 GL2 (x, bν )YL2 (̂x)
}

J ,

(7)

�E ,J (A) =
NO∑

n=0

CE ,J
nL Â{

[�1(A1, S1, b)�2(A2, S2, L2, b)]S,L2

× �n,L(y, b)YL (̂y)
}

J , (8)
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where

GL(x, bν ) = 1

b3/2
ν

√
2

�(L + 3/2)
ρL exp

{
−1

2
ρ2

}
,

(
ρ = x

bν

)
,

(9)

is the Gaussian function and

�n,L(y, b) = (−1)nNnL b−3/2ρLe− 1
2 ρ2

LL+1/2
n (ρ2),

ρ = y

b
, NnL =

√
2�(n + 1)

�(n + L + 3/2)
, (10)

is the oscillator function. In Eqs. (9) and (10), bν and b denote
oscillator lengths. The motivation to use these functions can
be found in Ref. [16]. The expansion coefficients DE ,L2,J

ν and
CE ,J

nL are solutions of a set of linear equations originated from
the corresponding Schrödinger equations. This is a system of
equations for the expansion coefficients DE ,L2,J

ν ,∑
ν̃=0

[G〈ν, L2|Ĥ (2) |̃ν, L2〉G − E G〈ν, L2 |̃ν, L2〉G]DE ,L2,J
ν̃ = 0,

(11)

and we have a system of equations for the expansion
coefficients CE ,J

nL :∑
ñ=0

[〈n, L|Ĥ |̃n, L〉 − E〈n, L|̃n, L〉]CE ,J
ñL = 0. (12)

The system of Eqs. (11) involves matrix elements of the two-
cluster Hamiltonian

G〈ν, L2|Ĥ (2) |̃ν, L2〉G

and the unit operator (norm kernel) G〈ν, L2 |̃ν, L2〉G between
cluster Gaussian functions

|ν, L2〉G = Â{
[�1(A21, S21, b)�2(A22, S22, b)]S2

× GL2 (x, bν )YL2 (̂y)
}

J . (13)

while the system of Eqs. (12) involves matrix elements of the
three-cluster Hamiltonian 〈n, L|Ĥ |̃n, L〉 and the unit operator
〈n, L|̃n, L〉 between cluster oscillator functions,

|n, L〉 = Â{
[�1(A1, S1, b)�2(A2, S2, L2, b)]S,L2

× �n,L(y, b)YL (̂y)
}

J . (14)

We will also use another basis of cluster oscillator functions

|n, L〉0 = Â{
[�1(A1, S1, b)�2(A2, S2, L2, b)]S,L2

× �n,L(y, b)YL (̂y)
}

J
(15)

to expand the wave functions of two-cluster systems in the
standard version of the RGM (4). It is obvious that the wave
functions |n, L〉0 are a partial case of wave functions |n, L〉,
when the second cluster has the most compact shape.

As was pointed out in Introduction, the Pauli principle
plays the paramount role in nuclear systems. The Pauli prin-
ciple is realized through the antisymmetrization operator Â.
Two main properties of the operator were mentioned in Intro-
duction. Now, we consider the second property—the action of
the antisymmetrization operator on the normalization prop-
erties of wave functions. Consider, for example, the wave

functions (14) and (15). Each function in (14) and (15) to
the right of the antisymmetrization operator is normalized to
unity. However, the antisymmetric functions in the general
case are not normalized to unity, as we shall see below. The
overlap 〈n, L|n, L〉 deviates from unity, when the quantum
number n is small or, in other words, when the distance
between clusters is small. The antisymmetrization operator
makes the overlap 〈n, L|n, L〉 larger than unity or smaller. In
some cases, it makes 〈n, L|n, L〉 very close to zero. Undoubt-
edly, these properties of the antisymmetrization operator have
to be taken into account, when we are solving Eq. (12).

The appearance of the matrix ‖〈n, L|̃n, L〉‖ in Eq. (12) in-
dicates that the cluster oscillator basis (14) is not orthonormal,
despite that all functions to the right of the antisymmetrization
operator in Eq. (14) are normalized to unity on the corre-
sponding part of the coordinate space. This matrix plays an
important role in cluster models. It reflects effects of the
Pauli principle. If one neglects the total antisymmetrization by
putting Â = 1, then one obtains the unit matrix ‖〈n, L|̃n, L〉‖.
When the effects of the Pauli principle are small, then the di-
agonal matrix elements are close to unity, and the off-diagonal
matrix elements tend to zero. Such behavior of the matrix
elements 〈n, L|̃n, L〉 is observed for large values of n and ñ.
This region of quantum numbers n and ñ corresponds to large
distances between clusters and, thus, is called the asymptotic
region.

In the standard version of the RGM, the matrix
‖〈n, L|̃n, L〉‖ is diagonal for two s clusters, as the orbital
momenta of the first and second clusters L1 = L2 = 0. Within
the advanced version of the RGM, as will be demonstrated
below, the matrix ‖〈n, L|̃n, L〉‖ is not diagonal. However, the
largest matrix elements are situated on the main diagonal of
the matrix.

It is worthwhile noticing that the wave functions {CE ,J
nL } ob-

tained by solving the system of equations (12) are normalized
by the conditions∑

n,n=0

CEα,J
nL 〈n, L|̃n, L〉CEα,J

ñL = δαβ (16)

for states of the discrete spectrum and∑
n,n=0

CE ,J
nL 〈n, L|̃n, L〉CẼ ,J

ñL = δ(E − Ẽ ) (17)

for the continuous-spectrum states. An important conse-
quence of Eqs. (16) and (17) is that the value |CE ,J

nL |2 does not
determine the contribution of the oscillator functions |n, L〉 to
the norm of a bound state or continuous-spectrum state.

To solve Eq. (12) for a finite number of basis functions
(n = 0, 1, 2, ..., NO − 1), one needs to analyze the NO × NO

matrix ‖〈n, L|̃n, L〉‖, whether this matrix contains redundant
states which are called the Pauli forbidden states. For this aim,
the diagonalization procedure is usually employed. It yields
the eigenvalues �α (α = 1, 2, ..., NO) and corresponding
eigenfunctions ‖U α

n ‖ of the matrix ‖〈n, L|̃n, L〉‖. Eigenstates
with �α = 0 are called the Pauli forbidden states and have to
be removed from the space. Eigenstates with small values of
�α are called the partially or almost forbidden states. Usually,
there are a large number of eigenstates with �α = 1. These
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states are not affected by the antisymmetrization. Besides, the
matrix ‖〈n, L|̃n, L〉‖ can have eigenvalues with �α > 1. They
are called the super allowed states.

Note that the construction of the Pauli allowed states is
a key problem for many-cluster systems. Many algorithms
have been formulated (see, for example, Refs. [22–24],) to
construct and to select Pauli allowed states.

Actually, we have two different discrete representations
of the Schrödinger equation. The first representation is the
oscillator basis representation and will be referred as the n
representation. The second representation is formed by eigen-
values of the norm kernel matrix and will be referred as the α

representation. We recall that both representations are related
by the orthogonal matrix ‖U α

n ‖.
In the α representation, the set of Eq. (12) is transformed

to the form

NO∑
α̃=1

[〈α, L|Ĥ |̃α, L〉 − E�αδα,̃α]CE ,J
α̃L = 0, (18)

where

〈α, L|Ĥ |̃α, L〉 =
NO∑

n,̃n=0

U α
n 〈n, L|Ĥ |̃n, L〉U α̃

ñ . (19)

If the cluster system under consideration contains no the Pauli
forbidden states, then one may use the set of Eqs. (12) or (18),
both sets give the same spectrum, but different wave functions.
One has to use the set of equations (18), when there are one
or more the Pauli forbidden states.

To study effects of the Pauli principle, we will analyze
the overlap matrix ‖〈n, L|̃n, L〉‖. We will also analyze the
eigenvalues and eigenfunctions of the matrix.

Few words about stages of solving the three-cluster prob-
lem. Before solving the three-body or three-cluster equations,
one has to solve the two-body or two-cluster problem(s). The
energies of bound states of a two-cluster subsystem determine
threshold energies which are of great importance for imple-
menting the proper boundary conditions for the three-cluster
system. Thus, at the first stage, we have to find the spectrum
and wave functions of the two-cluster subsystem by solving
the generalized eigenvalue problem represented by Eq. (11).
To optimize calculations with the Gaussian wave functions,
we parametrize a set of widths bν with parameters b0 and q as

bν = b0qν−1, ν = 1, . . . , NG. (20)

The parameters a0 and q are used as variational parameters
to minimize the ground-state energy of the two-cluster sub-
system. Such parametrization of the Gaussian functions has
been used in Refs. [25,26] for calculations of the structure of
light nuclei in many-cluster models. If we involve NG Gaus-
sian functions to describe the two-cluster subsystem, then we
obtain NG solutions of the system of equations (11). One of
them is the ground state for the lowest orbital momentum
or the lowest bound state for larger orbital momenta, and
other solutions are excited pseudobound states of the nucleus
represented by two-cluster configurations. In our analysis of
the Pauli resonance states, we neglect all pseudobound states
and account for only the ground state. Such restriction is

TABLE I. List of nuclei to be considered, their three-cluster
configurations (3C), binary channels (BC), and input parameters of
calculations: oscillator length b and exchange parameter u of the
Minnesota potential [28].

Nucleus 3C BC b, fm u Source

6Li 4He +p + n 4He +d 1.285 0.863 [21]
3H +d + p 3H + 3He

7Li 4He +d + n 4He + 3H, 6Li +n 1.311 0.956 [19]
7Be 4He +d + p 4He + 3He, 6Li +p 1.311 0.956 [16]
8Be 4He +d + d 6Li +d 1.311 0.956
9Be 4He + 3H +d 6Li + 3H 1.285 0.950 [27]
10B 4He + 4He +d 8Be +d , 6Li + 4He 1.298 0.900 [20]

relevant to the physical reality for selected nuclei and makes
our analysis more transparent.

At the second stage, we find the phase shift δJ of the
scattering of the third cluster on the two-cluster subsystem by
solving the system of linear equations (12) or (18).

Having determined the phase shifts δJ as functions of the
energy E , we can determine the energy Er and the total width
� for an isolated resonance state from the equations

d2δJ

d2E

∣∣∣∣
E=Er

= 0, � =
(

dδJ

dE

)−1
∣∣∣∣∣
E=Er

, (21)

which utilize the well-known Breit-Wigner formula.

III. RESULTS AND DISCUSSIONS

As was indicated above, we consider a set of light nuclei. In
Table I, we list these nuclei and present details of the model
and calculations. Here 3C denotes a three-cluster configura-
tion which is taken into consideration, BC indicates binary
channels which are studied. The Minnesota potential (MP)
[28] is used as a nucleon-nucleon potential. The oscillator
length b is chosen to minimize the energy of the three-cluster
threshold. The exchange parameter u of the MP is usually
selected to reproduce the ground-state energy of a com-
pound system accounted from the lowest two- or three-body
threshold.

For all nuclei (but not for 6Li) listed in Table I, we em-
ploy only one three-cluster configuration. For 6Li, we employ
two three-cluster configurations 4He +p + n and 3H +d + p.
The first three-cluster configuration allows us to consider the
dominant binary channel 4He +d and describe a deuteron as
the p + n two-body system. The second three-cluster configu-
ration is used to study the second binary channel 3H + 3He
and to describe the nucleus 3He which is less bound than
3H, as the two-cluster structure d + p. We do not consider
the alternative three-cluster configuration 3He +d + n, as the
configuration 3H +d + p suggests a more realistic description
of the 3H + 3He channel.

In the present paper, as was mentioned above, we employ
the three-cluster model, which was designed to study the
interaction of three s clusters. This allows us to study the
scattering of s-shell clusters (such as n, d , 3H, 3He, 4He)
on s-shell clusters, and the scattering of s-shell clusters on
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p-shell clusters, such as 6Li, 8Be. One can see from Table I, we
selected clusters of s-shell and those p-shell clusters, which
have zero value of the internal orbital momenta L1 = L2 = 0
[see Eqs. (4) and (5)]. This selection substantially simplifies
calculations and allows us to use the single-channel approxi-
mation. As the results, the total orbital momentum L coincides
with the orbital momentum of relative motions of clusters.
Besides, the spins S1 and S2 of the first and second clusters
are good quantum numbers, even if the spin-orbit components
of a nucleon-nucleon potential are involved.

We employ four Gaussian functions to obtain the energy
and wave functions of two-cluster subsystems, and 100 oscil-
lator functions to describe the scattering of the third cluster
on the two-cluster subsystem. It was checked numerously that
such number of oscillator functions is sufficient to obtain the
bound-state energies of a compound nucleus and the scatter-
ing parameters with acceptable precision.

To consider properties of the Pauli resonances in more
details, we restrict ourselves to the single-channel approxi-
mation. Moreover, we do not consider mixture of states with
different values of the total orbital momentum L and total
spin S, thus in our present model L and S are additional
quantum numbers to the angular momentum J and parity π of
a compound system. In this paper we will not consider many-
channel cases. This is a subject for our next investigation.

A. Manifestation of the Pauli resonance states

In this subsection, we show how the Pauli resonance
states manifest themselves in the continuous spectrum in the
standard, improved and advanced versions of the RGM cal-
culations. For this aim, we consider phase shifts. The most
typical picture is shown in Fig. 1, where the phase shifts are
displayed for two different Jπ states of the elastic 4He +d
and 3He + 3H scattering obtained with the 4He +p + n and
3H +d + p configurations, respectively. In Fig. 1 we display
the phase shifts obtained in the advanced (A) and standard
(S) versions of the RGM. As we can see, the phase shifts,
obtained in the standard versions of the RGM, are monotonic
functions of the energy, they do not exhibit the resonance
behavior. Meanwhile, the phase shifts, in the advanced ver-
sions of the RGM, exhibit resonance states in the 1+ (L = 0,
S = 1) and 2− (L = 1, S = 1) states of 6Li. Note that at the
low-energy region, the phase shifts obtained in the advanced
(A) and standard (S) versions of the RGM are close one
another. However, that is not the case for the phase shifts of the
4He +d scattering in the 1+ states (i.e., in the state with L = 0,
and S = 1). Such a difference of the phase-shift behavior is
determined by the position of the 6Li ground state in these two
models. With the input parameters selected, the ground state
is slightly bound in the advanced version, and in the standard
version it is a pseudobound state. We recall that the wave
functions of a deuteron and 3He are obtained in the two-cluster
(two-body) approximations as p + n and d + p, respectively.
Such advanced description of a deuteron and a triton stipulate
the appearance of the Pauli resonance states shown in Fig. 1.
Only one Pauli resonance state is found in each channel. The
energies and widths of these resonances depend on the total
orbital momentum J . One notices that there are two resonance

FIG. 1. Phase shifts of the elastic 4He +d and 3He + 3H calcu-
lated for the 1+ and 2− states in the advanced version of RGM.
Results are obtained with the standard (S) and advanced (A) versions
of the RGM by using the 4He +p + n and 3H +d + n configurations,
respectively.

states in the channel 4He +d with Jπ = 1+, and one of them is
the Pauli resonance state with the energy E = 24.2 MeV. The
second one with the energy E = 0.257 MeV and the width
� = 0.226 is the shape resonance state. The composition of
the attractive nuclear and repulsive Coulomb interactions in
the three-cluster system 4He +p + n created a favorable con-
dition for creating the low-energy resonance. It is shown in
Ref. [21] that this resonance state is transformed into the
bound state in the four-channel approximation.

Another example of the Pauli resonance manifestation
is shown in Fig. 2 for the 6Li + 4He scattering. This case
demonstrates that the two-cluster system may have two Pauli
resonance states; they are located at energy range 10 � E �
45 MeV. A sharp growing of the 1+ phase shifts around 13.4
MeV indicates that there is very narrow resonance state with
the widths � = 56 keV. Other Pauli resonances are signifi-
cantly wider.

Let us consider how the central part of the MP affects
the energies and widths of the Pauli resonance states. This
can be done by varying the exchange parameter u of that
potential. This parameter affects the interaction of nucleons
in odd states, as well as the cluster-cluster interaction. The
smaller is u, the smaller is the interaction of clusters. When
the parameter u approaches unity, the interaction of clusters
increases. The influence of the parameter u variation is carried
out for the 3/2− state of 7Li considered as two-cluster system
4He + 3H. Results of the variation of u are demonstrated for
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FIG. 2. Phase shifts of the elastic 6Li + 4He scattering as a func-
tion of the energy E . Results are obtained by the 4He + 4He +d
calculation.

the ground-state energy EGS and for the energy and width of
the Pauli resonance. On can see in Fig. 3 that the parameter
u changes the energy of the ground state. Moreover, when
u < 0.86, the nucleus 7Li has no bound state. By varying
the parameter u from 0.86 to 1, we change the ground-state
energy from −0.038 to −1.78 MeV. However, the variation of

FIG. 3. Dependence of the ground-state energy EGS of 7Li, the
energy and width of the Pauli resonance state in the 3/2− state of the
4He + 3H channel on the exchange parameter u of the MP. Calcula-
tions are performed with the three-cluster configuration 4He +d + n.

FIG. 4. Phase shifts of the elastic 4He +d scattering in the state
L = 0, S = 1, Jπ = 1+, obtained in three different approximations
of the RGM and with the 4He +p + n calculation.

u from 0.8 to 1 reduces significantly the energy of the Pauli
resonance from 30.67 to 24.44 MeV. Such a variation of u
slightly changes the width of the Pauli resonance state from
13 to 33 keV.

Note an unusual feature of the Pauli resonance displayed in
Fig. 3: The width of the resonance is decreasing with incising
of the exchange parameter u. For shape resonances states is
usually observed another feature, both energy and width are
decreasing with increasing of the parameter u.

B. Special case for 4He +d system

Taking into account peculiarities of our model, we decided
to carry out an additional investigation of the 4He +d system.
In this specific case, our model allows us to realize not only
the standard and advanced, but also improved version of the
RGM. If we take only one Gaussian function in the expan-
sion of the deuteron wave function (i.e., to describe relative
motion of a structureless proton and neutron) and select the
parameters b0 [see Eqs. (7) and (20)] to minimize the bound-
state energy of a deuteron, we realize therefore the improved
version of the RGM. One Gaussian function with the optimal
value of b0 = 1.512 fm creates a bound state of a deuteron
with the energy E = −0.132 MeV, while four Gaussian func-
tions with optimal values of b0 and q [see Eq. (20)] generate
the deuteron bound state with the energy E = −2.020 MeV.

To locate the Pauli resonance state in the approximation
in the energy region below 50 MeV, we have to change the
exchange parameter u and take u = 1.0. In Fig. 4, we show
the phase shift of the 4He +d scattering in the L = 0, S = 1
Jπ = 1+ state obtained in three different approximations. The
standard version of the RGM does not generate the Pauli
resonance state in this case. The Pauli resonance states appear
in the improved (I) and advanced (A) versions. The parame-
ters of the Pauli resonance states substantially depend on the
wave function describing the internal structure of a deuteron.
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TABLE II. Parameters of the Pauli resonance states in 6Li, 7Li,
and 10B.

Nucleus Channel L S Jπ E , MeV �, MeV

6Li 4He +d 0 1 1+ 24.218 1.165
1 1 2− 32.370 6.755

3He + 3H 0 1 1+ 31.844 0.209
1 1 2− 22.403 0.618

7Li 4He + 3H 1 1/2 1/2− 29.002 2.144
1 1/2 3/2− 25.810 0.027
0 1/2 1/2+ 20.148 2.589
0 1/2 1/2+ 34.444 4.702

6Li +n 0 1/2 1/2+ 12.863 3.332
0 3/2 3/2+ 18.895 0.196

10B 6Li + 4He 1 1 0− 11.090 3.198
1 1 0− 35.834 4.600
1 1 1− 11.098 3.424
1 1 1− 36.167 5.105
0 1 1+ 13.427 0.056
0 1 1+ 41.144 2.751

A more realistic wave function significantly increases the
width of the Pauli resonance (from � = 0.001 MeV to � =
1.718 MeV) and dramatically changes the energy (from E =
47.55 MeV to E = 22.49 MeV) of the resonance state in the
state Jπ = 1+.

C. Main properties of the Pauli resonance states

In Tables II and III we collect information on the pa-
rameters of Pauli resonance states detected in nuclei under
consideration. Twenty-eight Pauli resonance states are de-
tected. The energy of resonance states is reckoned from the
threshold of the channel indicated in the column “Channel” of
Tables II and III and varies from 11 to 46 MeV. There are 10
narrow resonance states with � < 1 MeV, 6 of them are very
narrow resonance states with the width � < 0.1 MeV. The
rest 18 resonance states are wider ones; their widths exceed 1

TABLE III. Energies and widths of the Pauli resonance states
in 8Be and 9Be observed in the channels 6Li +d and 7Li +d ,
respectively.

Nucleus Channel L S Jπ E , MeV �, MeV

8Be 6Li +d 0 0 0+ 17.233 3.553
0 1 1+ 14.989 1.011
0 1 1+ 25.724 4.628
0 2 2+ 20.656 0.008
1 0 1− 18.253 0.058
1 1 2− 45.555 6.097
1 1 2− 18.523 0.008
1 2 3− 18.531 0.013
1 2 2− 20.981 0.402

9Be 7Li +d 1 1/2 1/2− 13.733 1.003
0 1/2 1/2+ 15.717 5.796
0 1/2 1/2+ 27.958 1.836

FIG. 5. Density of resonance state energies (left panel) and
widths (right panel) of all determined Pauli resonance states.

MeV. One can see that, in most cases, the two-cluster system
with fixed quantum numbers L, S, and Jπ has only one Pauli
resonance state. However, there are some cases, where two
Pauli resonance states are observed. The larger the energy of
a resonance state, the larger is the total width. The energy of
the second resonance state in 7Li and 8Be is approximately by
15 MeV larger than the energy of the first resonance state. In
10B, the energy difference is more than 25 MeV.

In Table III, we present the parameters of the Pauli res-
onance states obtained in different states for the 6Li +d and
7Li +d scattering.

By analyzing the results presented in Tables II and III, we
came to the conclusion that the Pauli resonance states in light
nuclei have energy more than 11 MeV, and their widths are
mainly large (� > 0.9 MeV). However, a few very narrow
resonance states were found. The most populated area of
resonance states lies in the interval 16 < E < 21 MeV, as it is
demonstrated in Fig. 5 (left panel). Two dense area of widths
of resonance states are located in the intervals 0.008 < � <

0.22 MeV and 0.9 < � < 1.2 MeV (Fig. 5, right panel). In
many cases, only one Pauli resonance state appears in a binary
channel. We also determined several cases with two resonance
states.

In Fig. 6, we display the spectrum of Pauli resonances of
positive-parity states with the total orbital momentum L = 0.
These resonance states emerge in nuclei 7Li, 8Be, 9Be, and
10B with clusterization 6Li +A2, where A2 denotes a neutron,
deuteron, triton, and α particle. This figure shows that the en-
ergies of the first Pauli resonance states are quite close for all
nuclei. It also shows that there are two Pauli resonance states
in the channel 6Li +d with the total spin S = 1 and in the
channel 6Li + 3H with the total spins S = 1/2 and S = 3/2.
One can see that the larger the second cluster, the larger is the
energy of the highest Pauli resonance state. Indeed, it grows
from 19 MeV in 6Li +n channel to 41 MeV in the channel
6Li + 4He.

The Pauli resonance states of negative parity created in
the channel 6Li +A2 (A2 = d , 3H, 4He) with the total orbital
momentum L = 1 are shown in Fig. 7. We found no reso-
nance state in the channel 6Li +n. In this channel, the Pauli
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FIG. 6. Spectrum of positive-parity Pauli resonances for L = 0
state of nuclei 7Li, 8Be, 9Be, and 10B detected in the channels 6Li +n,
6Li +d , 6Li + 3H, and 6Li + 4He, correspondingly.

resonance states do not appear neither in states with total spin
S = 1/2 nor in the states S = 3/2. Five Pauli resonance states
are found in 8Be and 9Be, and four resonances are detected
in 10B. Figure 7 shows that the energy of the lowest Pauli
resonance state decreases, as the mass of the “projectile”
A2 increases. It is an interesting tendency, as the Coulomb
repulsion between 6Li and A2 increases with the mass of
the second cluster A2. It is necessary to underline that the
spin-orbit interaction plays an important role in the formation
of the Pauli resonance states.

To detect the Pauli and shape resonance states, we analyzed
the behavior of phase shifts as functions of the energy. The
rapid growth of the phase shift was considered as the signal
of a resonance state. There is another way for detecting the
resonance states of both types. This way is applicable for
any method which involves a square integrable basis of func-

FIG. 7. Spectrum of the Pauli resonance states of the negative
parity in 8Be, 9Be, and 10B created in the state with the total orbital
momentum L = 1.

FIG. 8. Spectrum of the 3/2− states in 7Li as a function of the
number of oscillator functions NO involved in calculations. Calcula-
tions are performed with the three-cluster configuration 4He +d + n.

tions. Unfortunately, this method works for relatively narrow
resonance states. The narrow resonance states can be de-
tected by calculating the eigenenergies of a Hamiltonian
with different numbers of basis functions. By displaying the
eigenenergies as functions of the number of basis functions
(we denote them as NO) involved in calculations, a resonance
state will display itself as a plateau or/and as an avoid cross-
ing. The energy of a plateau is the energy of a resonance
state. Such way of detecting the resonance states is an essen-
tial element of the stabilization method (Ref. [29]) and the
complex scaling method (see definitions of the method and
its recent progress in applications to many-cluster systems in
Refs. [30–32]).

In Fig. 8, we show the dependence of the eigenenergies of
the 3/2− state in 7Li = 4He + 3H on the number of oscillator
functions N0 used in calculations. We gradually change the
number of oscillator functions from 1 to 100. One can see that
it is necessary to use at least three oscillator functions to create
a plateau or, in other words, to obtain the eigenvalue with
the energy which is very close to the energy of a resonance
state. Such a plateau unambiguously indicates the presence of
a narrow resonance state. This result is naturally consistent
with the results of phase-shift calculations. Besides, the wave
functions of the resonance states obtained with 5, 10, and 100
oscillator functions are very close to one another in the region
of small values of n, as it demonstrated in Fig. 9. It proves
that the wave function of the narrow 3/2− resonance state is
formed by oscillator functions with very small values of n.

D. Peculiarities of the Pauli resonance states

Let us consider peculiarities of the wave functions of Pauli
resonance state. The analysis of wave functions will allow us
to understand the nature of the Pauli resonances. The wave
functions of resonant and nonresonant states are considered in
the oscillator and coordinate representations.
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FIG. 9. Convergence of the wave function of the narrow 3/2−

Pauli resonance state in 7Li in the channel 4He + 3H. Calculations
are performed with the three-cluster configuration 4He +d + n.

In Fig. 10, we show three wave functions of the 3/2−
states in 7Li for the clusterization 4He + 3H. One of these
functions is the wave function of the ground state (GS),
the second function is the Pauli resonance state (PR) with
the energy E = 25.810 MeV, and the third function is the
wave function of the nonresonant elastic 4He + 3H scattering
state (SC) (E = 10.1 MeV). The main difference between the
the wave functions of Pauli resonant and nonresonant states
is the contribution of the oscillator function with n = 0. This
function gives the largest contribution to the wave function of
the Pauli resonance states, and it has the smallest contribution

FIG. 10. Wave functions in the oscillator representation of the
ground state (GS), Pauli resonance state (PR), and scattering state
(SS) in the 3/2− state of 7Li. Results are obtained with the 4He +d +
n calculations.

FIG. 11. Contribution of the oscillator wave functions with n = 0
and n = 1 to the wave functions of the continuous-spectrum 3/2−

states of the 4He + 3H channel.

to the wave functions of the ground and continuous-spectrum
states.

Figure 11 shows the general picture of the contribution
of oscillator functions with the quantum numbers n = 0 and
n = 1 to the wave functions of continuous-spectrum states
over a large energy region. Figure 11 confirms also that the
oscillator wave function with n = 0 contribute mainly to the
Pauli resonance state and gives a small contribution to other
states of the 4He + 3H continuous spectrum.

E. Overlap

As it was widely recognized that the Pauli resonance states
appear due to the Pauli principle, it is then expedient to ana-
lyze its effects on the norm kernels. Matrix of the norm kernel
in general case (for the improved and advanced versions of
the RGM) is nondiagonal. Thus, we start the analysis with a
3D picture of the matrix. In Fig. 12, we display the overlap
matrix ‖〈n|m〉‖ for the channel 4He + 3H in the state L = 0,
S = 1/2, and Jπ = 1/2+. One can see that this matrix is a
quasidiagonal. The largest matrix elements are located on the
main diagonal, and the larger is m = n, the closer they are
to unity. Off-diagonal matrix elements 〈n|m〉 are very small.
A few diagonal matrix elements with small values of n are
also small due to the Pauli principle. One may conclude that
the Pauli principle has a short-range nature, since it affects
a relatively small number of cluster basis functions |n〉 de-
termined in Eq. (14), and the corresponding matrix elements
〈n|m〉. Note that Fig. 12 demonstrates a typical behavior of
the matrix elements of a norm kernel in the advanced ver-
sion of the RGM for all nuclei and all states considered in
this paper.

Figure 12 prompts us to study only the diagonal matrix
elements of the norm kernel, which completely reflects effects
of the Pauli principle. Consequently, in this subsection, we
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FIG. 12. Matrix for the norm kernel in the state L = 0, S = 1/2,
and Jπ = 1/2+ of the channel 4He + 3H. Results are obtained with
the 4He +d + n configuration.

discuss the diagonal matrix elements and eigenvalues of the
norm kernel. In Fig. 13, we compare the diagonal matrix
elements of the norm kernel determined in the standard (S)
and advanced (A) versions of the RGM, for 7Li as a two-
cluster configuration 4He + 3H. It is worth to recall that, in the
standard version, the matrix of the norm kernel is diagonal.
This figure demonstrates general features of the quantities
〈n|n〉 and �α for all two-cluster systems under consideration.
As was pointed out in the previous paragraph, the major part
of diagonal matrix elements is equal to unity and only a small
fraction of them differs from unity by showing effects of the
Pauli principle. It is necessary to recall that the oscillator
wave functions with small values of the quantum number n
describe two clusters at the smallest relative distance. Thus,
effects of the Pauli principle for these functions are prominent.
One can see that there are two Pauli forbidden states in the
1/2+ state and one in the 3/2− state within the standard
version for 4He + 3H. In the advanced version, these basis
states, namely |n, L〉 = |0, 0〉 and |1, 0〉 for 1/2+ and |0, 1〉
for 3/2−, can be considered as almost forbidden Pauli states,
since the corresponding diagonal matrix elements are very
small (〈n|n〉 < 0.1). Figure 13 demonstrates the important
features of matrix elements: The number of forbidden states
in the standard version coincides with the number of almost
forbidden states in the advanced version.

In Fig. 14 we display the diagonal matrix elements 〈n|n〉
and eigenvalues �α of the norm kernel for the 0+ states of the
advanced 6Li +d cluster system. Diagonal matrix elements
also show that there are a few almost forbidden states when
〈n|n〉 are close to zero. One may observe a set of the su-
perallowed Pauli states (〈n|n〉 > 1) for the total spin S = 1
and S = 2. There are similarities between eigenvalues and the
diagonal matrix elements of the norm kernel. The eigenvalues
�α reveals a few almost forbidden states, two states for S = 1
and one state for the total spin S = 0 and S = 2. Similarly to

FIG. 13. Comparison of diagonal matrix elements of the norm
kernel determined in the standard (S) and advanced (A) versions of
the RGM for 1/2+ and 3/2− states of 7Li = 4He + 3H. Results are
obtained with the 4He +d + n configuration.

the diagonal matrix elements, the eigenvalues for S = 0 and
S = 2 possess the superallowed states.

Diagonal matrix elements 〈n|n〉 of the norm kernel and its
eigenvalues �α for the channel 6Li + 4He in the advanced
two-cluster system are displayed in Fig. 15. Two almost
forbidden states are demonstrated by both diagonal matrix
elements and eigenvalues. They are observed in two states:
L = 0, S = 1, Jπ = 1+ and L = 1, S = 1, Jπ = 1−.

Finishing this subsection, we conclude that the number of
almost forbidden states coincides with the number of almost
forbidden eigenstates. Almost forbidden states |n〉 obey the re-
striction 〈n|n〉 < 0.3, while almost forbidden eigenstates have
�α < 0.2. Comparing the results demonstrated in Figs. 12–14
with the results in Tables II and III, we came to the conclusion
that the number of almost forbidden states equals of the num-
ber of the Pauli resonance states.

IV. METHOD REV

Let us consider the main ideas of the REV method for-
mulated in Ref. [12]. The authors of Ref. [12] paid attention
to a set of eigenstates of the norm kernel appeared in the
case when different oscillator lengths were used for an α

particle (bα = 1.395 fm) and 16O (bO = 1.776 fm). These
eigenstates have very small values as compared to eigenstates
with the common oscillator length. For example, the smallest
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FIG. 14. Diagonal matrix elements (the upper panel) and eigen-
values (the lower panel) of the norm kernel for the Lπ = 0+ states
and different values of the total spin S in the two-cluster system
6Li +d . Results are obtained with the 4He +d + d model space.

eigenvalue is 0.229 for Pauli allowed positive-parity states in
the standard version with the common oscillator length, while
there are four eigenstates with eigenvalues less than 0.03 in the
improved version with different oscillator lengths. The similar
picture was also observed for the odd-parity states. The lowest
eigenvalue is 0.344 for Pauli allowed states in the standard
version. In the advanced version, four eigenstates emerge with
eigenvalues less than 0.04.

It was suggested in Ref. [12] to eliminate such eigenvalues
and to use a smaller set of norm kernel eigenstates. Thus, in
the case of different oscillator lengths, all eigenstates with
eigenvalues smaller than the smallest eigenvalue with the
common oscillator length were treated as the Pauli forbidden
states. Actually, the border between the Pauli allowed and
Pauli forbidden states in system 4He + 16O was selected to
be 0.1. Having applied such restrictions, all Pauli resonance
states disappeared.

We will use this method to eliminate the Pauli resonance
states which appear in light nuclei within the advanced res-
onating group method. The analysis of the eigenvalues of the
norm kernel carried out in Sec. III E indicates that we have to
redetermine the border between the Pauli allowed and Pauli
forbidden states.

The efficiency of the REV method will be demonstrated in
Sec. V A.

FIG. 15. Diagonal matrix elements (upper panel) and eigenval-
ues (lower panel) of the norm kernel for the channel 6Li + 4He in the
states L = 0, S = 1, Jπ = 1+ and L = 1, S = 1, Jπ = 1−. Results
are obtained with the 4He + 4He +d model space.

V. METHOD ROF

We suggest another method to struggle with the Pauli res-
onance states in light nuclei in the improved and advanced
RGM calculations. This is because the Pauli resonances do not
appear in actual nuclei but appear in theoretical calculations.
The method is based on properties of the matrix elements of
the norm kernel. By analyzing the properties of matrix ele-
ments, our attention was focused on the behavior of diagonal
matrix elements 〈n|n〉. In many cases, the matrix element 〈0|0〉
and, sometimes, matrix element 〈1|1〉 are very small with
respect to other diagonal matrix elements. The analysis also
revealed that the matrix elements of the corresponding rows
(〈0|n〉, 〈1|n〉) and columns (〈n|0〉, 〈n|1〉) are also very small.
Besides, it was shown above (Sec. III D) that the oscillator
functions with n = 0 and, sometimes, with n = 1 dominate
in the wave functions of the Pauli resonance states. Thus,
we suggest to omit those parts of the matrix ‖〈n|̃n〉‖ whose
diagonal matrix elements are very small. We also suggest a
criterion of smallness for the diagonal matrix elements. Let us
introduce the minimal value of the diagonal matrix elements
Omin which will mark a border between the Pauli forbid-
den (or almost forbidden) and Pauli allowed states. Within
our method, all diagonal matrix elements which are smaller
than Omin will be omitted with their correspondent rows and
columns.
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The analysis of the diagonal matrix elements of the norm
kernel leads us to the conclusion that in many improved and
advanced two-cluster cases, considered above, Omin can be set
to 0.2. This can be seen in Figs. 14 and 15. Such a value can
be also used both for the case of one or two Pauli resonance
states.

It is important to notice that from mathematical point of
view almost forbidden basis states or eigenstates are allowed
states and should not create any problems. The same is true
also from computational point of view, as the smallest eigen-
values are much larger than the smallest numerical value
(numerical zero) in modern computers. Indeed, almost for-
bidden states do not create any problem for bound states and
their parameters, such as root-mean-square mass and proton
radii and so on. Presence of almost forbidden states affects
(distorts) only continuous-spectrum states. In this respect,
the REF and ROF methods suggest the redetermination of
essentially allowed Pauli states. The REF and ROF meth-
ods determine border between almost forbidden and allowed
states. This border is marked by �min and Omin in the REF
and ROF methods, respectively. In the general case, one can
use �min and Omin as variational parameters to control the
number of eliminated basis states |n〉 or eigenstates |α〉 and
their effects on scattering parameters. Naturally, the main aim
of such a procedure is to eliminate the Pauli resonance state(s)
and to cause minimal effects on bound states and shape reso-
nance states.

A. Demonstration of the REV and ROF methods

Having analyzed the diagonal matrix elements and eigen-
values of the overlap matrix, we deduced Omin and �min for all
improved and advanced RGM calculations and for those states
Jπ which have the Pauli resonance states. These quantities
are displayed in Table IV. In this table, we also indicated the
number Nf.s. of eliminated basis functions or eigenfunctions.

In Fig. 16, we demonstrate efficiency of the REV and ROF
methods for the 4He + 3H scattering in the 1/2+ state. Here
OA denotes the ordinary algorithm of obtaining phase shifts
within the advanced version of the RGM. The phase shift in
this approach exhibits two Pauli resonance states, parameter
of which are shown in Table II and III. As we can see, both
methods remove the Pauli resonance states. They also yield
the phase shifts which are close to the standard version at low-
energy region 0 � E < 6 MeV. There is very small difference
of phase shifts obtained with the REV and ROF methods. We
used minimal values of �min = Omin = 0.2. This restriction
eliminated two functions in both methods.

The similar picture is observed for the 4He +d scattering
in the 2− state, see Fig. 17. Only one Pauli resonance state is
generated in this case. Both REV and ROF methods remove
that Pauli resonance state and produce the phase shifts with
very small differences. In this case, we also used minimal
values of �min = Omin = 0.2. This restriction eliminated only
one function in both methods.

Phase shifts of the elastic 6Li +d scattering obtained within
three different approaches are shown in Fig. 18. As one can
see, in this case, we observe both low-energy shape and high-
energy Pauli resonance states. The REV and ROF methods

TABLE IV. Actual values of Omin and �min, and the number
of forbidden states Nf.s., which are omitted to eliminate the Pauli
resonance states.

Nucleus Clusterization L S Jπ Omin �min Nf.s.

6Li 4He +d 0 1 1+ 0.2 0.2 1
1 1 2− 0.2 0.2 1

3H + 3He 0 1 1+ 0.1 0.1 1
1 1 2− 0.1 0.1 1

7Li 4He + 3H 1 1/2 3/2− 0.1 0.1 1
1 1/2 1/2− 0.1 0.1 1
0 1/2 1/2+ 0.1 0.1 2
2 1/2 3/2+ 0.1 0.1 1

6Li +n 0 1/2 1/2+ 0.3 0.3 1
8Be 6Li +d 0 0 0+ 0.2 0.2 1

0 1 1+ 0.1 0.1 1
1 0 1− 0.2 0.2 1
1 1 2− 0.3 0.3 1
0 2 2+ 0.1 0.1 1

9Be 6Li + 3H 0 1/2 1/2+ 0.2 0.1 2
1 1/2 1/2− 0.1 0.1 1
0 3/2 3/2+ 0.2 0.1 2
1 3/2 5/2− 0.1 0.1 1
1 3/2 5/2− 0.2 0.2 1

10B 6Li + 4He 1 1 0− 0.3 0.2 2
1 1 1− 0.3 0.2 2
2 1 1+ 0.2 0.2 2
2 1 2+ 0.2 0.2 1
2 1 3+ 0.2 0.2 1

eliminating one eigenfunction and one oscillator function,
respectively, remove the Pauli resonance state. They also
slightly change parameters of the shape resonance. In the

FIG. 16. Phase shifts of the elastic 4He + 3H scattering in the
1/2+ state as a function of the energy determined in three different
approaches. The three-cluster configuration 4He +d + n is involved
in calculations.
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FIG. 17. Phase shifts of the elastic 4He +d scattering in the 2−

state determined in three different approaches with the three-cluster
configuration 4He +p + n.

OA, parameters of the shape resonance are E = 0.153 MeV
and � = 0.013 MeV, while in the REV method they are E =
0.374 MeV and � = 0.485 MeV and, in the ROF method,
we obtained E = 0.352 MeV and � = 0.371 MeV. Note that
the REV and ROF give almost identical phase shifts for the
6Li +d scattering. This means that the eliminated eigenfunc-
tion of the norm kernel and the eliminated oscillator function
are close to each other.

We found several cases where the REV and ROF methods
give noticeable different phase shifts. One of such examples
is shown in Fig. 19, where phase shifts of the 6Li + 4He
scattering in the state L = 1, S = 1, and Jπ = 1− are drawn.
Note that almost the same results are observed for the state

FIG. 18. Phase shifts of the elastic 6Li +d scattering in the state
L = 0, S = 0, and Jπ = 0+. Calculations are performed with the
three-cluster configuration 4He +d + d .

FIG. 19. Phase shifts of the 6Li + 4He scattering in the state
L = 1, S = 1, Jπ = 1− obtained with three different approaches. The
three-cluster configuration 4He + 4He +d is used in calculations.

Jπ = 0− and Jπ = 2− generated by the coupling of the total
orbital momentum L = 1 with the total spin S = 1. Two Pauli
resonance states were removed by eliminating two eigenfunc-
tions of the norm kernel obeying the restriction �α � 0.2,
and two oscillator functions with the restriction 〈n|n〉 � 0.3.
Noticeable deviation of the phase shifts obtained in the REV
and ROF methods is seen at the energy region E > 3 MeV.
Such deviation can be explained by structure of the eigen-
functions and their relation to oscillator functions. If an
eigenfunction is mainly represented by one oscillator func-
tion, then one may expect close results of both methods. If
eigenfunction is spread over large number of oscillator func-
tions, then results obtained with these two methods would
be different. To prove this statement, we show in Fig. 21
eigenfunctions ‖U α

n ‖of the norm kernel as a function of n
for two different cases with two Pauli resonance states. We
selected cases for elastic 6Li + 4He scattering with quantum
numbers L = S = 1, Jπ = 1−and L = 0, S = 1, Jπ = 1+.
The phase shifts for them are shown in Figs. 19 and 20.
Figure 21 demonstrates that, for the Jπ = 1− state, a large
number of oscillator functions participate in the formation
of eigenfunctions U 1

n and U 2
n , while, for the Jπ = 1+ state,

the lowest oscillator functions with n = 0 and n = 1 totally
dominate in the corresponding eigenfunctions U 1

n and U 2
n .

Similar dominance of oscillator function with the quantum
number n = 0 in the eigenfunction U 1

n are observed in all
cases, when phase shifts obtained with the REV and ROF are
coincide.

In Table V we show effects of eliminated eigenfunctions
and oscillator functions on parameters of bound and resonance
states. These results are obtained for the 1+ states in 10B. By
increasing �min (Omin) from zero to a certain value, indicated
in the second column of Table V, we manage to eliminate
one, two, and three eigenfunctions (oscillator functions). In
the fourth column of Table V, we demonstrate how eliminated
eigenfunctions and oscillator functions affect the energy of the
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FIG. 20. Phase shifts of the elastic 6Li + 4He scattering with
Jπ = 1+ calculated within three approximations. Calculations are
performed with the three-cluster configuration 4He + 4He +d .

1+ bound state of 10B. In Fig. 22 we show effects of eliminated
functions on the 6Li + 4He phase shift. By eliminating one
eigenfunction or one oscillator function, we remove the low-
est Pauli resonance state and change position (lower down)
of the second resonance on approximately 6.5 MeV. How-
ever, the energy of the ground state is slightly changed after

FIG. 21. Eigenfunctions U α
n of the norm kernel as a function of

n for Jπ = 1− and Jπ = 1+ states in 10B, considered as a two-cluster
system 6Li + 4He. The three-cluster configuration 4He + 4He +d is
involved in calculations.

TABLE V. Evolution of the 1+ bound and resonance states in
10B. The energies and widths are in MeV.

Method �min/Omin Nf EGS E � E �

OA 0.0 100 −2.477 13.427 0.056 41.144 2.751

REV 0.1 99 −2.280 — — 34.539 3.503

ROF 0.1 99 −2.264 — — 34.826 3.684

REV 0.2 98 −1.527 — — — —

ROF 0.2 98 −1.183 — — — —

REV 0.7 97 −0.132 — — — —

ROF 0.7 97 0.526 — — — —

removing one function. When we remove two eigenfunctions
or two oscillator functions, both Pauli resonance states are
disappeared. Two removed eigenfunctions increase the energy
of the bound state by 0.9 MeV, while two removed oscillator
functions increase the energy by ≈1.3 MeV.

As we indicated above, the oscillator functions with small
values of the quantum number n and eigenfunctions with
small values of index α describe the most compact two-cluster
configurations. It is interesting to analyze effects of their dele-
tion on the energies of bound states and a shape resonances, if
they appear. For this aim, we collected in Table VI the energies
of bound and resonance states. In many cases, the elimination
of the oscillator functions leads approximately to the same
results as with the elimination of the eigenfunctions.

FIG. 22. Phase shifts of the elastic 6Li + 4He scattering obtained
with different values of �min (the upper part) and Omin (the lower
part). Calculations are performed with the three-cluster configuration
4He + 4He +d .
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TABLE VI. Effects of removed eigenfunctions and oscillator
functions on the energies of bound and shape resonance states.

Nucleus Channel Jπ Parameter OA REV ROF

7Li 4He + 3H 3/2− Nf 100 99 99
EGS, MeV −1.127 −1.105 −1.064

8Be 6Li +d 0+ Nf 100 99 99
EGS, MeV −18.971 −15.281 −14.426
E , MeV 0.153 0.374 0.352
�, MeV 0.013 0.485 0.371

2− Nf 100 99 99
E , MeV 0.800 0.825 0.805
�, MeV 0.738 0.957 0.762

10B 6Li + 4He 1+ Nf 100 98 98
EGS, MeV −2.477 −1.527 −1.183

At the end of this section we made preliminary conclusions
concerning the REV and ROF methods. In all cases, pre-
sented above, both methods completely remove all detected
Pauli resonance states. In many cases, both methods give
close results for phase shifts. In some cases, phase shifts are
somewhat different. Such a difference, as we demonstrated,
appear, when eigenfunctions of the norm kernel are spread
over a large number of oscillator functions. In other words,
removed eigenfunctions and removed oscillator functions are
quite different. When results of both methods coincide, the
removed eigenfunctions are presented mainly by removed
oscillator functions.

We demonstrated that, the ROF method formulated in
this paper, is an alternative method to the one suggested
by Kruglanski and Baye. Advantage of the ROF is that it
does not require a diagonalization procedure of the norm
kernel matrix and then a transformation of matrix of the
Hamiltonian to a new representation. This procedure is time-
consuming when a large number of basis functions are
involved. We also demonstrated that oscillator representation
is appropriate tool for studying effects of the Pauli principle
on kinematic (matrix of the norm kernel) and the dynam-
ics (matrix of the Hamiltonian) of two- and many-cluster
systems.

VI. CONCLUSIONS

Properties of Pauli resonance states in the two-body con-
tinuum of the light nuclei 6Li, 7Li, 7Be, 9Be, and 10B have
investigated within the advanced version of the resonating
group method. The advanced version employs a three-cluster
configuration which allows one to consider in general case
three two-body (binary) channels. One of constituents of
a binary channel is considered as a two-cluster subsystem
which provides us with a more correct description of the
nuclei having distinct two-cluster structures and a small
separation energy. The wave functions of two-cluster sub-
system are obtained by solving the appropriate Schrödinger
equation. In the advanced version, we employed the square-
integrable bases—Gaussian and oscillator bases. Gaussian

basis is used to describe relative motion of two clusters
in two-cluster subsystem and is very efficient in obtaining
wave functions of bound states with a minimal number of
basis functions. The oscillator basis is used to study inter-
action of the third cluster with two-cluster subsystem. It
allows us to implement proper boundary condition for dis-
crete and continuous spectrum states. It was demonstrated
that oscillator basis is suitable tool to study effects of the
Pauli principle and to reveal nature of the Pauli resonance
states.

It was demonstrated that the advanced form of a two-
cluster subsystem is the origin of the Pauli resonance states.
More precisely, an advanced form of wave function of two-
cluster subsystem is responsible for appearance of the Pauli
resonance states.

It has been shown that the Pauli resonance states appear
at the relatively high energy E > 11 MeV. Some of these
resonance states are very narrow resonance states; however,
major part of them are broad resonance states. The most pop-
ulated area of resonance states lies in the interval 16 < E <

21 MeV. Two dense area of widths of resonance states are
located in intervals 0.008 < � < 0.22 MeV and 0.9 < � <

1.2 MeV.
It was found that the oscillator functions with minimal

value of the quantum number n (the number of radial oscil-
lator quanta) dominates in resonance wave functions. These
basis functions yield very small values of the diagonal matrix
elements 〈n|n〉 of the norm kernel. It was also demonstrated
that the very narrow Pauli resonance states can be detected by
using a very small number of oscillator functions: from three
to five functions.

We have established that the Pauli principle predeter-
mine appearance of the Pauli resonance states by creating
almost forbidden states; however, energies and widths of the
Pauli resonance states are mainly formed by nucleon-nucleon
forces.

We found that the number of Pauli resonance states for the
given Jπ state, discovered within the advanced version of the
RGM, coincides with the number of the Pauli forbidden states
determined in the standard version of the RGM.

One of the main conclusions of the present paper is that
one needs to find the proper definition of the Pauli forbidden
and Pauli allowed (fully or partially) states. Standard or a
formal definition for Pauli forbidden states is that the eigen-
values for them should be equal zero �α = 0. Then the Pauli
allowed states should have �α > 0. However, the carried out
analysis leads us to the conclusion that, for light nuclei with
the two-body clusterization, the border between forbidden and
allowed states is �min = 0.2. It was also shown that oscillator
functions |n〉 which generate the diagonal matrix elements of
the norm kernel 〈n|n〉 � Omin = 0.2, can be considered as the
Pauli forbidden states. By removing of the Pauli forbidden
states, one eliminates the Pauli resonance states and causes
minor effects on the energy of bound states and the energy and
width of the shape resonance states if they exist. We have not
found universal values of �min and Omin for all light nuclei,
which have been considered.

As for perspective of this work. In the present paper, we
have restricted ourselves to the single-channel approximation
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to reveal the Pauli resonance states and find main factors
responsible for the formation of such states. In the future, we
are planning to consider the appearance of the Pauli resonance
states in many-channel systems and how the REF and ROF
can help to eliminate them. Many-channel cases are specially
interesting since small eigenvalues of the norm kernel can
appear due to a strong overlap of basis functions belonging to
different channels. This strong coupling is not directly related
to the Pauli principle. This makes the problem more attractive
and challenging.
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