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Comprehensive estimation of nuclide production cross sections
using a phenomenological approach
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Nuclide production cross sections are crucial in nuclear research, development, space exploration, and astro-
physical investigations. Despite their importance, limited experimental data availability restricts the practicality
of phenomenological approaches to comprehensive cross-section estimation. To address this, we propose a
Gaussian process-based machine learning (ML) model capable of transferring knowledge from elements with
abundant data to those with limited or no experimental data. Our ML model not only enables comprehensive
cross-section estimations for various elements but also demonstrates predictive capabilities akin to physics
models, even in regions with scarce training data.
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I. INTRODUCTION

Cross-section data for nuclear reactions, specifically nu-
clide production cross sections, are fundamental for nuclear
research, development, space exploration, and astrophysical
investigations [1–11]. These research areas demand com-
prehensive and reliable data at varying precision levels.
Theoretical and semiempirical models (e.g., [12–23]) play an
indispensable role in understanding nuclear reaction mech-
anisms and predicting cross sections. However, with ample
experimental data, accurate cross-section estimation can be
achieved through a phenomenological approach eliminating
the need for these theoretical and semiempirical models (e.g.,
[24–26]). Unfortunately, such data are available only for re-
stricted reaction channels and a restricted range of incident
energies in a very small number of materials, limiting the
practicality of a phenomenological approach to comprehen-
sive cross-section estimation.

To address these limitations, this paper introduces a ma-
chine learning (ML) model, utilizing the Gaussian process
(GP) [27]. This model, an extension of our GP regression
model [28,29] to a transfer learning framework, transcends the
challenges of the phenomenological approach by transferring
knowledge from target elements with abundant experimen-
tal data to those with limited or no experimental data.

*iwamoto.hiroki@jaea.go.jp

The developed model not only facilitates comprehensive
cross-section estimations, including uncertainties, for target
elements but also demonstrates predictive capabilities compa-
rable to physics models, even in regions where experimental
data used for training are scarce. To the best of our knowledge,
this is the first effort to comprehensively estimate nuclide pro-
duction cross sections in a fully phenomenological manner.

In Sec. II, we introduce our ML model, leveraging transfer
learning. In Sec. III, we explore the limitations of conven-
tional GP regression models and compare them with physics
model analyses to specifically highlight the effectiveness of
our approach and address associated challenges. Here, we fo-
cus on the cross sections of beryllium-7 (7Be) and tritium (3H)
production resulting from proton-induced nuclear reactions,
targeting elements from C to Bi. For the physics model, we
employ the Monte Carlo spallation model INCL4.6/GEM,
incorporated into the Particle and Heavy Ion Transport code
System (PHITS) version 3.30 [30]. This model, suitable for
nuclear reaction simulation spanning the MeV to GeV energy
range, combines the generalized evaporation model (GEM)
[31] and the Liège intranuclear cascade model version 4.6
(INCL4.6) [32], describing the production of nuclides and
secondary particles. Its accuracy has been validated through
benchmark analyses [33–36]. Note that since our focus is on
demonstrating the applicability of the developed ML model,
we exclusively compare it with INCL4.6/GEM. Furthermore,
we showcase the estimation capability of our ML model using
experimental data. Finally, Sec. IV provides a summary of
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FIG. 1. Cross-section data flow in the developed model.

the study, highlighting key findings, and offer suggestions for
future research.

II. MODEL

A. Experimental data employed

We obtained experimental data from the experimental
nuclear reaction database EXFOR [37] and those recently
measured by the authors at J-PARC [38,39], correspond-
ing to each target element and produced nuclide. Most
nuclide production cross-section measurements have been
conducted on targets with natural abundance, and there is
limited experimental data on enriched targets. Therefore, this
study utilized only experimental data for targets with natural
abundance.

While the typical process of nuclear data evaluation in
the evaluated nuclear data libraries (e.g., ENDF [40] and
JENDL [41]) involves a thorough examination of the ex-
perimental data to determine its acceptability, we chose to
use the data registered in EXFOR as directly as possible
in order to focus on the applicability of our ML model to
cross-section estimation. Even if measurement uncertainties
are revisited in the future or the experimental data em-
ployed undergo slight changes, they will not significantly
alter the applicability of our model. As demonstrated in
our prior work [28], the measurement uncertainty of ex-
perimental values affects the cross-section estimations by
our GP regression model. Therefore, only experimental data

FIG. 2. Proton-induced 7Be production cross sections for Al
(left) and Mo (right) generated by GP-1. The blue dot-dashed lines
(GP-1) represent the generated nominal value with its 1σ uncer-
tainty. The green dot-dashed lines indicate analytical values with
INCL4.6/GEM. The gray points with error bars indicate the experi-
mental cross-section data with 1σ measurement uncertainty.

for which measurement uncertainty was evaluated were
employed.

The obtained data set for target element j is denoted as
{εe, σe,�σe | εe,i, σe,i,�σe,i, i = 1, ..., I} j , where I denotes
the number of the experimental data points for j. Here, εe,
σe, and �σe indicate the incident proton energy in MeV, cross
section in mb, and its uncertainty in mb, respectively.

B. Pre-processing

Figure 1 depicts a cross-section data flow in our ML
model, comprising three stages: pre-processing, training and
inference, and postprocessing. In the preprocessing stage, the
cross section and its uncertainty undergo a logarithmic trans-
formation to avoid negative estimates, as te = log10 σe and
�te = log10(σe + �σe ) − te, where {te,�te | te,i,�te,i, i =
1, . . . , I} j . Given the target energy spans from MeV to GeV
range, the energy is logarithmically transformed using the nat-
ural logarithm, as xe = ln εe, where {xe | xe,i, i = 1, . . . , I} j .
Our ML model utilizes these transformed data sets De, j =
(xe, te,�te ) j alongside the atomic mass of the target element
{we | we, j, j = 1, ..., J} as the input data sets of the subse-
quent stage, where J indicates the number of elements that
have experimental data.

C. Training and inference

The training and inference stage comprises two processes.
These processes are accomplished by two GP modules: GP-1,
which initially estimates nuclide production cross sections for
target elements with available experimental values, and GP-2,
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TABLE I. EXFOR entry numbers and references for proton-induced 7Be-production cross-section data for targets from C to Bi.

Target I EXFOR entry number

C 97 C0235 [43], C0255 [44], C0261 [45], D0640 [46], O0073 [47], O0277 [48], O0284 [49], O0729 [50],
O2474 [51], X0000 [38]

N 72 A0485 [52], D0640 [46], O0277 [48], O0282 [53], O0284 [49], O0414 [54], O0729 [50], O0871 [55],
O2000 [56]

O 34 D0640 [46], O0073 [47], O0277 [48], O0282 [53], O0729 [50], O2250 [57]
F 45 A0485 [52], C0061 [58], C0220 [59], O0276 [60], O0729 [50], O2134 [61]
Na 25 A0485 [52], C0220 [59], O0554 [62], O0729 [50]
Mg 154 A0485 [52], C0196 [63], C1508 [64], O0073 [47], O0077 [65], O0078 [66], O0094 [67], O0276 [60],

O0277 [48], O0282 [53], O0284 [49], O0501 [68], O2056 [69], O2134 [61]
Al 536 A0340 [70], A0902 [71], A0917 [72], B0085 [73], C0196 [63], C0220 [59], C0255 [44], C0261 [45],

C0265 [74], C0461 [75], C2368 [76], D0028 [77], D0054 [78], D0505 [79], D0640 [46], D4384 [80],
C0401 [81], E0057 [82], E1829 [83], E2665 [84], E2667 [85], F1215 [86], O0078 [66], O0276 [60],
O0277 [48], O0282 [53], O0284 [49], O0501 [68], O0554 [62], O0729 [50], O0985 [87], O1728 [88],
O2056 [69], O2128 [89], O2134 [61], X0000 [38]

Si 135 C0507 [90], D0640 [46], O0078 [66], O0094 [67], O0276 [60], O0277 [48], O0282 [53], O0284 [49],
O0554 [62], O0729 [50], O2037 [91], O2056 [69], O2134 [61]

P 6 O0554 [62], O0729 [50]
S 6 O0554 [62], O0729 [50]
Cl 5 O0729 [50]
Ar 4 A0928 [92], C1962 [93]
Ca 5 O0729 [50]
Sc 4 X0000 [38]
Ti 25 A0501 [94], A0512 [95], C0271 [96], C0401 [81], O0078 [66], O0276 [60], O0277 [48], O0284 [49],

O1882 [97], X0001 [39]
V 16 C2366 [98], D0054 [78], O0277 [48], O2128 [89], X0000 [38]
Cr 11 A0901 [99]
Mn 12 D0640 [46], E2719 [100], O0078 [66], O0277 [48], O0284 [49]
Fe 86 A0501 [94], C0401 [81], O0073 [47], O0078 [66], O0085 [101], O0094 [67], O0276 [60], O0277 [48],

O0283 [102], O0284 [49], O0299 [103], O0729 [50], O1881 [104], O1882 [97], O2037 [91], T0131 [105]
Co 20 A0501 [94], C0401 [81], C2110 [106], D0640 [46], E2719 [100], O0078 [66], O0277 [48], O0284 [49],

O0397 [107]
Ni 46 A0906 [108], E2731 [109], C0401 [81], O0073 [47], O0077 [65], O0078 [66], O0094 [67], O0114 [110],

O0276 [60], O0277 [48], O0284 [49], O1882 [97]
Cu 33 A0501 [94], C0255 [44], C0401 [81], O0078 [66], O0276 [60], O0277 [48], O0284 [49], O0542 [111],

O0722 [112], T0131 [105]
Zn 7 E1243 [113], E1251 [114], O0722 [112]
Ge 1 A0512 [95]
Y 14 D0640 [46], O0078 [66], O0204 [115], O0276 [60]
Zr 21 A0513 [116], D0640 [46], E2731 [109], O0204 [115], O0276 [60]
Nb 25 A0491 [117], D0054 [78], D0640 [46], O0276 [60], O0981 [118], X0001 [39]
Mo 1 A0557 [119]
Tc 4 O0985 [87]
Rh 1 D0640 [46]
Ag 6 C0401 [81], C2109 [120], C2340 [121], C2351 [122], F1312 [123]
In 1 C0342 [124]
Sb 1 A0917 [72]
Hf 1 A0822 [125]
Ta 7 A0904 [126]
W 12 A0721 [127], O0781 [128], O0800 [129], O1099 [130]
Re 4 O2139 [131]
Au 15 A0491 [117], D0054 [78], O0276 [60], O2128 [89]
Pb 19 A0927 [132], O0500 [133], O1728 [88]
Bi 7 O1728 [88]
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which estimates nuclide production cross sections for energy
points based on the target atomic mass using the previously
estimated cross sections. When experimental data is input into
this stage, the two learning models assimilate the information
and generate cross-section outputs for any target element and
incident proton energy.

In the first process, a data set for target element j,
D∗, j = (x∗, t∗,�t∗) j , where {x∗, t∗,�t∗ | x∗,l , t∗,l ,�t∗,l , l =
1, . . . , L}, is generated as a function of x, with De, j serving as
the training data, where L is the number of energy points. To
prevent the cross section from diverging below the threshold
energy, an inducing point with a small cross-section value at
10 MeV, considered below the threshold energy for the targets
of interest, was included in the training data set, as in our
previous work [29]. The GP-1 defines that the observed value
y∗ at x∗, given De, j , follows a normal distribution with mean
μ(x∗) (≡ μ∗) and covariance �(x∗, x∗) (≡ �∗):

p(y∗|De, j ) = N (μ∗,�∗), (1)

where

μ∗ = k�
LI k

−1
II t I , (2)

�∗ = kLL − k�
LI (kII + nII )−1kIL. (3)

In these equations, we define t I as te; kLI (equivalent to kIL)
as κ (x∗, xe ), kII as κ (xe, xe ), and kLL as κ (x∗, x∗), where κ

represents kernel functions. The behavior of the mean and
covariance among the training data depends on the chosen
kernel function. In GP-1, we utilized the radial basis function
(RBF) kernel to ensure a smooth function. The noise term nII

is defined as nII = diag((�te )2). Here, we define the nominal
value t∗ as μ∗ and its 1σ uncertainty �t∗ as

√
diag(�∗). These

operations apply to J target elements.
In the second process, the same operation as in GP-1

is performed for w instead of x. A data set for incident
energy l , D∗∗,l = (w∗∗, t∗∗,�t∗∗)l where {w∗∗, t∗∗,�t∗∗ |
w∗∗,m, t∗∗,m,�t∗∗,m, m = 1, . . . , M}, is generated as a func-
tion of w, with D̃∗,l = (we, t∗,�t∗)l serving as the training
data, where M is the number of atomic mass points. The
GP-2 defines that the observed value y∗∗ at w∗∗ given D∗,l ,
follows a normal distribution with mean μ(w∗∗) (≡ μ∗∗) and
covariance �(w∗∗,w∗∗) (≡ �∗∗):

p(y∗∗|D̃∗,l ) = N (μ∗∗,�∗∗), (4)

where

μ∗∗ = k�
MLk−1

LL tL, (5)

�∗∗ = kMM − k�
ML(kLL + nLL )−1kLM . (6)

In these equations, we define tL as t∗; kML (equivalent to kLM )
as κ (w∗∗,w∗), kLL as κ (w∗,w∗), and kMM as κ (w∗∗,w∗∗).
In GP-2, we employed the Matérn 3/2 (M3/2) kernel for κ

to reasonably interpolate the atomic mass range from 120 u
to 170 u, where no training data exists. The noise term nLL

is defined as nLL = c0 · diag((�t∗)2). Here, we have adopted
c0 = 5 to ensure a plausible fitting. Additionally, we introduce
the nominal value t∗∗ as μ∗∗ and its 1σ uncertainty �t∗∗ as√

diag(�∗∗). These operations are performed for L energy
points.

FIG. 3. Proton-induced 7Be production cross sections for the
incident proton energies of 50 MeV, 200 MeV, 600 MeV, 1 GeV,
and 3 GeV against the target atomic mass, generated by GP-1 and
GP-2. The line with a band for each incident proton energy represents
the generated nominal value with its 1σ uncertainty. The points with
error bars show the cross-section data with uncertainty generated
by GP-1.

In ML, methods such as cross-validation and grid search
are often used to obtain hyperparameters with high general-
ization performance. On the other hand, GPs achieve excellent
generalization by maximizing the marginal likelihood within
their Bayesian framework. Therefore, both GP-1 and GP-
2 employ this latter method. To solve the maximization
problem, we utilized a constrained gradient method called
L-BFGS-B [42], aimed at preventing excessively small length
scales of the employed kernel functions.

D. Postprocessing

In the postprocessing stage, the data set generated through
GP-1 and GP-2 is scaled back to its original scale: ε∗ =
ex∗ , σ∗ = 10t∗ , and �σ∗ = 10(t∗+�t∗ ) − σ∗, and then an
output data set Dout = (wout, εout, σout,�σout ) is obtained,
where {wout | w∗∗,m, m = 1, . . . , M} and {εout, σout,�σout |
ε∗,l , σ∗∗,l ,�σ∗∗,l , l = 1, . . . , L}.

III. RESULTS AND DISCUSSION

A. 7Be production cross sections

Tables I provide a summary of EXFOR entry numbers
and references for experimental data extracted from the EX-
FOR database regarding the proton-induced 7Be production
cross-section data. ‘I’ in the table denotes the total number
of experimental data points for each target. X0000 [38] and
X0001 [39] are not currently registered in EXFOR and rep-
resent our most recently acquired data. A combined total of
1524 points from these entries and our own data were utilized
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FIG. 4. Proton-induced 7Be production cross sections over target elements from C to Bi. The blue lines (GP-1) represent nominal values
with 1σ uncertainty obtained by GP-1 learning. The red lines (GP-2) represent values generated from GP-2 learning. The green lines show
analytical values using INCL4.6/GEM. The points with error bars represent experimental cross-section data with 1σ measurement uncertainty.

to train the model. The table illustrates a significant imbalance
in the availability of experimental data for each target.

Figure 2 compares GP-1 regression results for the proton-
induced 7Be production cross sections, using Al and Mo as
examples with and without ample experimental data, where
a data point of (εe, σe,�σe ) = (10, 1 × 10−5, 2 × 10−6) was
given as the inducing point. The figure also includes results
from INCL4.6/GEM at incident proton energies up to 3 GeV.
Abundant experimental data for the Al target allow GP-1 to
reasonably estimate cross sections from the threshold energy
to 10 GeV. Because our ML model derives cross sections phe-
nomenologically from experimental values, it exhibits better
agreement with experimental data than with analytical values
from the physics model, as indicated by our previous study
[28]. However, due to only one available data set for the
Mo target [119], the GP produces highly uncertain results.
Figure 3 displays the atomic mass distribution of cross-
section estimates at specific incident energies. These estimates
were derived by GP-2 learning from GP-1 results for a total of
40 target elements with available experimental data, ranging

from C to Bi (see Table I). Points accompanied by error bars
correspond to cross sections produced by GP-1. To enhance
clarity, data with an uncertainty margin exceeding 80% have
been excluded for ease of interpretation. The 7Be production
cross section data for B and Li, exhibiting significant individu-
ality in their excitation functions, were omitted from the GP-2
process due to their adverse impact on the transferability of
cross-section estimates between targets in GP-2. It is observed
that, within the atomic mass range of 120 u to 170 u, GP-2
successfully interpolates the cross-section data, even in the
absence of experimental data. The figure reveals the following
trends: Except for a few light target elements, 7Be is more
likely to be produced at high incident energies. Heavier target
elements result in less 7Be production. Above 1 GeV, produc-
tion saturates at an almost constant value (∼10 mb), regardless
of the target mass. As demonstrated later, the physics model
exhibit similar trends.

Figure 4 presents proton-induced 7Be production cross
sections for target elements ranging from C to Bi, obtained
through GP-1 and GP-2, plotted against incident proton
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FIG. 5. Proton-induced 7Be production cross sections of Mo
generated from GP-2 (red dot-dashed line with band) compared with
recent preliminary data measured at J-PARC (black points with error
bars), which are not used for training. The green dot-dashed line
indicates analytical values using INCL4.6/GEM.

energy from 10 MeV to 10 GeV. The blue lines accompanied
by 1σ uncertainty bands represent results exclusively from
GP-1 and is relevant to target elements with available experi-
mental data. In contrast, the red lines, also with 1σ uncertainty
bands, represent results from GP-2, extending its applicability

FIG. 6. Proton-induced 7Be production cross sections of Fe gen-
erated from GP-2 excluding the Fe experimental data for training
data (red dot-dashed line with band). The green dot-dashed line
indicates analytical values with INCL4.6/GEM. The gray points
with error bars indicate the experimental cross-section data with 1σ

measurement uncertainty.

to all target elements. As shown in this figure, GP-2 produces
plausible cross-section shapes for all target elements from C
to Bi. It also provides reasonable shapes for elements where
experimental data are unavailable and cannot be estimated by

TABLE II. EXFOR entry numbers and references for the proton-induced 3H production cross-section data.

Target I EXFOR entry number

C 10 O0235 [43], O0304 [134], O0305 [135], O0342 [136]
N 4 C0235 [43], C0836 [137], O0305 [135]
O 4 C0235 [43], O0305 [135]
Mg 6 A0877 [138], C0836 [137], D0628 [139]
Al 30 C0116 [140], D0628 [139], F1477 [141], O0304 [134], O0313 [142], C0836 [137], E1854 [143], O0044 [144],

O0305 [135]
Si 3 D0628 [139], O0529 [145]
V 1 D0628 [139]
Cr 1 D0628 [139]
Mn 1 D0628 [139]
Fe 16 C0277 [146], C0836 [137], D0627 [147], D0628 [139], O0304 [134], O0305 [135], O0342 [136]
Ni 15 C0836 [137], D0628 [139], F1477 [141]
Zn 1 A0877 [138]
Nb 2 E1854 [143], O0342 [136]
Cd 1 A0877 [138]
Sn 7 E1854 [143], O0305 [135], O0313 [142], O0342 [136]
Sb 1 A0877 [138]
Ag 4 A0877 [138], C0836 [137], D0628 [139], E1854 [143]
W 11 F1477 [141]
Au 14 A0877 [138], D0512 [148], E1854 [143], O0044 [144], O0342 [136]
Pb 11 C0836 [137], D0628 [139], E1854 [143], O0305 [135], O0313 [142]
Bi 7 A0877 [138], D0628 [139], O0313 [142]

054610-6



COMPREHENSIVE ESTIMATION OF NUCLIDE … PHYSICAL REVIEW C 109, 054610 (2024)

FIG. 7. Same as Fig. 4 but for 3H production.

GP-1 such as elements from Te to Lu, those with only one
data point resulting in a large uncertainty estimate such as Ge,
Mo, and Re. This is because of the assumption of similarity
in cross-section shapes among adjacent targets based on the
target mass number. The reduced reproducibility of GP-2 for
cross sections below 50 MeV for C, N, and O compared to
GP-1 results is attributed to the lack of similarity between
these target elements. In such cases, it is advisable to adopt
results from GP-1.

It is important to highlight that although the cross-
section shapes resemble those obtained from the physics
model analysis, our ML model distinctly outperforms in
reproducing the experimental values. Additionally, unlike
Monte Carlo–based physics models like INCL4.6/GEM,
which demand extensive computational resources for analyses
at each incident energy point and target element to achieve
adequate statistics, our ML model completes the task in a few
seconds to a few minutes of parallel computation, contingent
on the number of experimental data points.

In Fig. 5, we compare the estimated 7Be production cross
section of the Mo target based on the experimental data

from Table I with recent preliminary data obtained at J-
PARC, which will be reported along with data for other
nuclides in the future. The physics model underestimates
the experimental data in high-energy region, but our ML
model successfully reproduces the experimental results. The
7Be production cross section shown in Fig. 6 is derived
from experimental data in Table I, excluding the data for
the Fe target from the training set. Despite not incorporat-
ing the experimental data for the Fe target, our ML model
accurately reproduces the experimental results, thanks to the
similarity of cross sections with neighboring targets. These
figures show that our ML model has good predictive capability
for cross sections even in regions where no experimental data
exist.

B. 3H production cross sections

Table II presents the EXFOR entry numbers and reference
numbers for generating 3H production cross sections, along
with the corresponding number of experimental data points
for each target. In contrast to the experimental 7Be production
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FIG. 8. Normalized frequency density distributions of C/E − 1
values for the proton-induced 7Be and 3H production cross sections.
Point with error bar indicates median with IQR.

cross-section data (Table I), the experimental 3H production
cross-section data consists of only 150 points. However, as
illustrated in Fig. 7, our ML model generates plausible cross-
section curves. Although the estimation uncertainty would be
significant compared to the 7Be production cross-section re-
sults due to limited experimental data, the amount of 3H
produced increases with both target mass number and inci-
dent proton energy for all targets from C to Bi, consistent
with the physics model analysis. It is worth noting here that
INCL4.6/GEM generally tends to overestimate the 3H pro-
duction cross sections.

In Fig. 8, the C/E − 1 normalized frequency density
distributions of the ML model estimates for 7Be and 3H
production cross sections are depicted. The 7Be production
cross section had a median and interquartile range (IQR) of
(−0.02, 0.25), while the 3H production cross section showed
(median, IQR) = (−0.08, 0.53). This implies that the
C/E − 1 values for 3H production cross sections exhibit
greater variability compared to 7Be production cross sections.
This distribution does not align with the normal distribution
generated by GPs, but the widths of both distributions are
anticipated to decrease with the inclusion of additional exper-
imental data in the training set, according to Bayes’ theorem.

IV. CONCLUSION

In this study, we developed an ML model using GP
to estimate nuclide production cross sections in a fully
phenomenological manner. The model exhibits the capabil-
ity to estimate cross sections even in regions with sparse
experimental data through transfer learning, assuming the
similarity of cross-section shapes between target masses. Us-
ing this model, we estimated 7Be and 3H production cross
sections from experimental data spanning a wide range of
target elements, from C to Bi. The results were compared with
both experimental data and physics model analysis, validating
the reliability of our ML model.

This paper focused on target elements with natural abun-
dance (e.g., natFe), for which experimental data were relatively
abundant. However, to estimate nuclide production cross sec-
tions for individual target nuclei (e.g., 54,56,57,58Fe) using
a phenomenological approach, additional experimental data
may be necessary. Additionally, while our primary focus was
on nuclide production cross sections, the results suggest the
potential applicability of our ML model to various cross
sections.

It is important to note that the current ML model is not
equipped to handle highly characteristic nuclear reactions,
such as nuclear resonances, or cases where the trend changes
dramatically for adjacent target nuclei, such as magic iso-
topes. For such scenarios, physics models serve as a powerful
tool for estimating cross sections. The limitation of our ML
model lies in its assumption of similarity in cross-section
shapes among adjacent target elements in terms of atomic
mass. However, this assumption enhances generalization and
interpolation performance for various target elements, as
demonstrated in this paper. Even for nuclear reactions that
lack obvious similarities at first glance, identifying com-
monalities could facilitate cross-section estimation through a
phenomenological approach using transfer learning.
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