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Improved Wong and classical approximations, and reduction of fusion data
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We present an improved version of the Wong formula for heavy-ion fusion, where the parameters of the
parabolic approximation of the Coulomb barrier are replaced by parameters of the l-dependent potential at an
effective partial wave. A pocket formula for this l dependence is given. This version reproduces the fusion cross
sections of quantum-mechanical calculations very well, even when the original Wong formula is invalid. The
same procedure is used to derive an improved expression for the classical fusion cross section, which is very
accurate at above-barrier energies. Based on this classical expression, we propose a new method to reduce fusion
data in this energy range. This method is used to perform a comparative study of complete fusion suppression in
collisions of weakly bound projectiles. This study indicates that the suppression of complete fusion is essentially
due to the action of nuclear breakup couplings.

DOI: 10.1103/PhysRevC.109.054609

I. INTRODUCTION

The dynamics of fusion reactions are highly complex,
especially in collisions of projectiles with low breakup thresh-
olds (lower than 3 or 4 MeV) [1–6]. Owing to the low binding
energy, the projectile can break up as it approaches the target,
giving rise to different fusion processes. First, is the direct
complete fusion (DCF), where the whole projectile fuses with
the target. This is the usual fusion reaction, observed also in
the collisions of tightly bound nuclei. In addition, the breakup
of the projectile triggers two more fusion processes: the in-
complete fusion (ICF) and the sequential complete fusion
(SCF). The former occurs when at least one, but not all,
projectile fragments fuse with the target. The latter takes place
when all breakup fragments fuse sequentially with the target.
Experimentally, SCF cannot be distinguished from DCF. The
experimental cross section corresponds to complete fusion
(CF), the sum DCF + SCF. Besides, many experiments cannot
distinguish CF from ICF. Then, the data correspond to total
fusion (TF), the sum of all fusion processes.

In collisions of weakly bound projectiles, the low breakup
threshold affects the CF cross section in two ways. Owing to
the low binding energy, the projectile’s density has a long tail,
leading to a reduction of the Coulomb barrier. This is a static
effect, which enhances CF at all collision energies. On the
other hand, the low breakup threshold leads to strong breakup
couplings, diverting an appreciable part of the incident flux
into the breakup channel. This is a dynamic effect that hinders
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CF. In this way, the CF data is the net result of the competition
between the opposing static and dynamic effects of the low
binding energy of the projectile. Experimental and theoretical
studies indicate that the CF cross section is enhanced at sub-
barrier energies and suppressed above the Coulomb barrier
[1–6]. However, the present understanding of CF reactions
is not entirely satisfactory. New experimental and theoretical
studies are called for.

There are different methods to assess the influence of the
low breakup threshold of the projectile on the CF cross sec-
tion. The first is to compare the CF data to predictions of
theoretical models that do not consider the projectile’s low
binding. A standard procedure is to compare them to fusion
cross sections of one-channel calculations with a standard
real potential and short-range absorption. Usually, one adopts
implementations of the double-folding model with standard
nuclear densities, like the São Paulo (SPP) [7,8] or the Akyüz-
Winther (AW) [9] potential. A more straightforward approach
is to compare the data to predictions of semiclassical or
classical approximations to the quantum-mechanical (QM)
treatment, like the barrier penetration model (BPM), the Wong
formula [10], or even the classical fusion cross section. How-
ever, one should ensure that the approximate model for the
theoretical cross section is valid under the conditions of the
experiment. Then, the differences between the experimental
and the theoretical cross sections are assumed to arrive from
the low binding energy of the projectile.

The other possibility is to compare CF data of the weakly
bound system to fusion data of similar tightly bound systems.
However, direct comparisons of the data would be meaning-
less since they are strongly dependent on the charges and
masses of the collision partners. Thus, submitting the data to
some reduction procedure that eliminates the influence of such
trivial factors is necessary. Several reduction procedures have
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been proposed (for a review, see Ref. [11]). A very efficient
one is the fusion function (FF) reduction method, which is
based on the Wong formula [10]. In an ideal situation where
the fusion cross section is unaffected by the collision partners’
intrinsic structure, and the Wong formula approximates the
QM cross section, the reduced data is well described by a
universal fusion function. Then, this universal function is used
as a benchmark to assess the importance of channel coupling
effects in the fusion data. However, the Wong formula is not a
good approximation to the QM cross section for light systems
at subbarrier energies and at energies well above the barrier
[12–14].

In the present paper, we discuss the limitations of the
Wong formula and the classical expression for the fusion cross
section. We show that their validity can be extended if one
replaces the s-wave barrier parameters with effective barrier
parameters obtained by proper angular-momentum averages.
Then, we propose a new reduction method for the above-
barrier fusion data based on this improved version of the
classical cross section. This method is used to study CF data
of weakly bound systems.

The paper is organized as follows: In Sec. II, we discuss the
use of complex interactions in potential scattering to simulate
the effects of fusion and total reaction in the scattering wave
function. In Sec. III, we introduce the classical and Wong ap-
proximations to the QM fusion cross section. We then discuss
the validity of these approximations and the classical limit
of the Wong formula. In Sec. IV, we develop new versions
of Wong and the classical approximations and then propose
a new reduction method based on the latter. In Sec. V, we
use the new reduction method to perform a comparative study
of CF data in collisions of 6Li, 7Li, 9Be, and 6He on several
targets. Finally, in Sec. VI, we give the main conclusions of
the present paper.

II. THE FUSION AND THE REACTION CROSS SECTIONS
IN POTENTIAL SCATTERING

In an idealized situation where the intrinsic degrees of free-
dom of the collision partners do not affect the collision, the
elastic cross section can be described by potential scattering.
In this approach, the colliding nuclei are treated as point par-
ticles, interacting through Coulomb and nuclear forces. The
scattering wave function is expanded in partial waves and the
resulting radial wave functions are calculated by solving
the radial equation with the l-dependent potential

Vl (r) = VN(r) + VC(r) + h̄2l (l + 1)

2μr2
. (1)

Above, VN(r) is the nuclear interaction between the projectile
and the target, where r is the distance between them. It can be
obtained by integrating the densities multiplied by a properly
chosen nucleon-nucleon interaction (folding model). The São
Paulo (SPP) [7,8] and the Akyüz-Winther (AW) [9] potentials
are implementations of the folding model, using different
approximations. They are widely used in the literature.

The Coulomb potential is usually approximated as

VC(r) = ZPZTe2

2RC

(
3 − r2

R2
C

)
for r < RC

= ZPZTe2

r
for r � RC. (2)

Above, RC is the Coulomb radius, corresponding to the sum
of the radii of the collision partners, and ZP and ZT are the
atomic numbers of the projectile and the target, respectively.

The third term in Eq. (1) is the centrifugal potential, which
accounts for the tangential kinetic energy in the radial equa-
tion. It is inversely proportional to the reduced mass, μ, and
grows quadratically with the angular momentum (∼l2 for
large l).

The attractive nuclear potential is very strong but has a
short range. On the other hand, the repulsive Coulomb and
centrifugal terms are weaker but have longer ranges. The
competition between the attractive and repulsive terms leads
to a barrier in the potential Vl (r), located at Rl and with
height Bl .

However, actual nucleus-nucleus collisions are always af-
fected by intrinsic degrees of freedom, which are coupled
with the coordinate r. Then, a fraction of the incident flux
is diverted into nonelastic channels along the collision. In
potential scattering, this effect is simulated by the addition of
an attractive imaginary part to the nuclear potential, namely,

VN(r) −→ UN(r) = VN(r) + iW (r).

In this way, the S-matrix loses its unitarity, giving rise to an
absorption cross section. For a collision with energy E (wave
number k), it is given by

σabs(E ) = π

k2

∑
(2l + 1)Pabs(l, E ). (3)

Above, Pabs(l, E ) is the absorption probability,

Pabs(l, E ) = 1 − |Sl (E )|2, (4)

where Sl (E ) is the lth component of the S matrix.
The characteristics of the imaginary potential depend on

the nuclear reactions whose effects it is simulating. This point
is discussed below.

A. The total reaction cross section

The elastic cross section is influenced by fusion and
nonelastic processes. The former only takes place when the
densities of the collision partners overlap strongly. On the
other hand, the latter are dominant in grazing collisions, where
the distance of closest approach is larger than the barrier
radius. Then, if one wants to evaluate the total reaction cross
section, which has contributions of both reaction mechanisms,
the imaginary potential must be very strong in the inner region
of the barrier but also act in the neighborhood of the barrier
radius. Then, the range of W (r) must be similar to that of the
real part of the nuclear potential.

Frequently, the imaginary potential used in calculations
of the total reaction cross section is represented by a
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Woods-Saxon (WS) function,

WR(r) = − W0

1 + exp [(r − Rw)/aw]
. (5)

Above,

Rw = rw
(
A1/3

P + A1/3
T

)
, (6)

where AP and AT stand respectively for the mass numbers of
the projectile and the target. Adopting parameters of the order
W0 � 50 MeV, rw ≈ 1.2 fm, and aw ≈ 0.6 fm, the imaginary
potential has the desired behavior.

Another possibility is to take the imaginary potential pro-
portional to the real one. That is, one writes

UN(r) = (1 + βi)VN(r), (7)

where β is a constant, usually close to one. Gasques et al.
[15] used the SPP together with imaginary potentials of this
kind to successfully analyze experimental scattering and total
reaction data of a large number of systems.

B. The fusion cross section

An imaginary potential to simulate the effects of fusion
in potential scattering must lead to total absorption in the
inner region of the barrier and be negligible elsewhere. This
behavior is guaranteed by a WS function like that of Eq. (5)
with a short range, i.e., with parameters like

W0 � 50 MeV, rw ≈ 1.0 fm, and aw ≈ 0.2 fm. (8)

Denoting by SF
l (E ) and PF(l, E ) the partial-wave compo-

nents of the S matrix and the corresponding fusion probability
in a calculation with the imaginary potential of Eqs. (5) and
(8), the fusion cross section can be written as

σF(E ) = π

k2

∞∑
l=0

(2l + 1)PF(l, E ), (9)

with

PF(l, E ) = 1 − ∣∣SF
l (E )

∣∣2
. (10)

We remark that similar results can be obtained with a real
nuclear potential but adopting ingoing wave boundary condi-
tions [16]. This approach is used in the CCFULL computer code
[17], frequently used in coupled-channel calculations.

The above discussion suggests that the fusion probability
in Eq. (9) is equivalent to the probability of the incident wave
reaching the strong absorption region. In this way, the fusion
cross section could be approximated by the cross section of
the barrier penetration model (BPM),

σBPM(E ) = π

k2

∞∑
l=0

(2l + 1)aaT (l, E ). (11)

Above, T (l, E ) is the transmission coefficient for the system
to go through the barrier of the potential Vl (r) in a colli-
sion with energy E . It is calculated by Kemble’s version
[18] of the Wenzel-Kramers-Brillouin (WKB) approximation,
through the expression

T (l, E ) ≡ TWKB(l, E ) = 1

1 + exp [2�(l, E )]
. (12)

TABLE I. Barrier parameters of the São Paulo potential for the
systems discussed in the text. The barrier radii are expressed in fm
and height and curvature parameters are given in MeV.

System RB VB h̄ω

7Li + 27Al 8.5 6.1 2.4
7Li + 209Bi 11.4 29.4 4.1
24Mg + 138Ba 11.1 81.6 3.9

At subbarrier energies, �(l, E ) is the integral of the imaginary
wave number between the classical turning points. That is,

�(l, E ) =
∫ re

ri

κl (r)dr, (13)

where

κl (r) =
√

2μ

h̄2 [Vl (r) − E ]. (14)

The internal (ri) and external (re) turning points are deter-
mined by the conditions

Vl (ri ) = E , ri < Rl and Vl (re) = E , re � Rl . (15)

However, this prescription cannot be used above the bar-
rier, with no real turning points. A solution to this problem
was found by Hill and Wheeler [19]. First, they approximated
the potential barrier by the parabola

V (r) � Bl − 1
2μω2

l (r − Rl )
2, (16)

where Bl , Rl , and h̄ωl are the height, radius, and barrier
curvature parameters. Of particular interest are the parameters
for the Coulomb barrier, denoted by

VB ≡ Bl=0, RB ≡ Rl=0, and h̄ω ≡ h̄ωl=0. (17)

Next, they carried out the analytical continuation of the
collision coordinate onto the complex plane and found the
complex turning points (see also Ref. [20]). In this way,
the WKB integral of Eq. (13) could be evaluated analytically,
and they found the result

�(l, E ) = π

h̄ω
(Bl − E ). (18)

We compared BPM cross sections to those obtained by
solving the one-channel radial equations with a short-range
imaginary potential. These cross sections are denoted by σBPM

and σ 1ch
F , respectively. We also compared the total reaction

cross sections, denoted by σ 1ch
R .

We considered a light, 7Li + 27Al, an intermediate,
7Li + 209Bi, and a heavy system, 24Mg + 138Ba. Here, and
throughout the present work, we adopt the SPP for the real
part of the nuclear potential. The barrier parameters of the
parabolic expansion of Vl=0(r) for the above-mentioned sys-
tems are listed in Table I. In the calculations of σ 1ch

F , we used
strong absorption imaginary potentials with a short range.
They were given by a WS function with the parameters of
Eq. (8). In the calculations of σ 1ch

R , the imaginary potential
was given by Eq. (7), with β = 0.78 [15].
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FIG. 1. Comparison of BPM fusion cross sections, σBPM, with fusion cross sections of QM calculations with the SPP and short-range
absorption, σ 1ch

F , for three systems in different mass regions. For comparison, we also show cross sections of QM calculations with the
long-range imaginary potential of Eq. (7), σ 1ch

R .

The σBPM, the σ 1ch
F , and the σ 1ch

R cross sections for the
7Li + 27Al, 7Li + 209Bi, and 24Mg + 138Ba systems are shown
in Fig. 1. The calculations were performed at collision ener-
gies ranging from ≈4 MeV below VB to ≈30 MeV above it. In
each case, the results are presented in linear and logarithmic
scales, appropriate for comparisons at the above-barrier and
subbarrier energies, respectively. We find that the σ BPM

F and
the σ 1ch

F cross sections for the three systems are really very
close. The corresponding curves can hardly be distinguished
in the figures. On the other hand, the total reaction cross sec-
tions are much larger than the other two, mainly at subbarrier
energies. This is not surprising since σ 1ch

R has contributions
from absorption beyond the barrier radius, which remains
relevant even at collision energies well below VB. Then, we
stress that the BPM is a very good approximation to fusion
but very different from the total reaction cross section.

Since σBPM is practically identical to the QM fusion cross
section, σ 1ch

F , we henceforth consider the former as the bench-
mark cross section to assess the accuracy of approximate
expressions.

III. THE CLASSICAL AND THE WONG
APPROXIMATIONS TO THE FUSION CROSS SECTION

A. The classical approximation

At high enough collision energies (the meaning of high
enough will be clarified later), one can use the classical ap-
proximation for the fusion cross section. To derive it, one
makes the following assumptions:

(1) The sum of partial waves involves many l values,
so that the angular momentum can be treated as a

continuous variable λ:

l → λ = l + 1/2. (19)

In this way, the sum over partial-waves becomes an
integral, namely,

∞∑
l=0

(2l + 1) →
∫ ∞

λ=1/2
2λdλ. (20)

Then, one replaces in Eq. (1): l (l + 1) = λ2 − 1/4,
and one gets the λ-dependent potential

Vλ(r) = VN(r) + VC(r) + h̄2

2μr2
(λ2 − 1/4). (21)

(2) Next, one neglects the λ dependence of Rλ and h̄ωλ,
and writes

Rλ = RB, h̄ωλ = h̄ω. (22)

In this way, one gets the barrier heights

Bλ = VB + h̄2

2μR2
B

(λ2 − 1/4). (23)

(3) Tunneling effects are neglected, so that the transmis-
sion coefficient becomes

T (λ, E ) � Tcl(λ, E ) = 1 for λ � λg

= 0 for λ > λg. (24)

Above, λg is the grazing angular momentum in a collision
with energy E , given by the condition

Bλg = E . (25)
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Using the explicit form of Bλ, within the approximation of
Eq. (23), one gets the relation

λ2
g − 1

4
= 2μR2

B

h̄2 (E − VB). (26)

Within the above approximations, we can derive an an-
alytical expression for the fusion cross section of Eq. (11).
One gets

σcl(E ) = π

k2

∫ ∞

λ=1/2
2λT (λ, E )dλ, (27)

or, using Eq. (24),

σcl(E ) = π

k2

∫ λg

λ=1/2
2λdλ = π

k2

(
λ2

g − 1

4

)
. (28)

Then, using Eq. (26), one gets the classical fusion cross
section

σcl(E ) = πR2
B

(
1 − VB

E

)
for E � VB (29)

= 0 for E < VB.

The classical fusion cross section has a serious flaw: it
vanishes at subbarrier energies.

B. The Wong formula

Wong [10] derived an analytic expression for the fusion
cross section which includes tunneling effects. To get his
formula, Wong made the same assumptions as in the deriva-
tion of the classical cross section, except for the transmission
coefficient of Eq. (24). Instead, he used the Hill-Wheeler
transmission coefficient,

THW(l, E ) = 1

1 + exp
[

2π
h̄ω

(VB − E )
] , (30)

below and above the barrier. Then, Eq. (27) becomes

σW(E ) = π

k2

∫ ∞

λ=1/2

2λdλ

1 + exp
[

2π
h̄ω

(VB − E )
] . (31)

The above integral can be evaluated analytically; the result is
the Wong formula,

σW = h̄ωR2
B

2E
ln

{
1 + exp

[
2π

h̄ω
(E − VB)

]}
. (32)

For future purposes, we write the above equation in the form

σW = σ0F0(x), (33)

where

σ0 = h̄ωR2
B

2E
(34)

is a characteristic (energy-dependent) strength of the cross
section, and

F0(x) = ln[1 + e2πx] (35)

FIG. 2. The Wong fusion function and its asymptotic limit.

is the universal fusion function (UFF) [12,13], which is ex-
pressed in terms of the dimensionless energy variable

x = E − VB

h̄ω
. (36)

1. The classical limit of the Wong formula

For 2πx � 1, one can approximate: 1 + exp(2πx) �
exp(2πx) and one gets the classical limit of the universal
fusion function

F cl
0 (x) = 2πx. (37)

The convergence of F0(x) to its classical limit is illustrated
in Fig. 2. Comparing the two curves, one concludes that
the universal fusion function can be safely approximated by
Eq. (37) for x � 0.5. Since typical values of h̄ω are between
2 and 4 MeV, the classical cross section of Eq. (29) is very
close to σW, starting at ≈1.5 MeV above VB. Then, at energies
above this limit, we can insert the classical limit of the Wong
fusion function into Eq. (35) and get the classical fusion cross
section of Eq. (29), namely,

σ cl
W(E ) = πR2

B

(
1 − VB

E

)
for E � VB.

2. Validity of the Wong formula

The Wong formula is a very nice analytical expression,
but its validity is limited. It is a very good approximation to
the QM fusion cross section in collisions of heavy systems
(ZPZT > 500) at near-barrier energies [13]. However, it is
not appropriate for light systems or at collision energies well
below or well above the barrier.

The accuracy of the Wong formula is illustrated in
Fig. 3, which shows comparisons between σW and σBPM for
the 7Li + 27Al (ZPZT = 39), 7Li + 209Bi (ZPZT = 249), and
24Mg + 138Ba (ZPZT = 672) systems. As in the previous fig-
ures, the results are shown at collision energies ranging from 4
MeV below the Coulomb barrier to 30 MeV above it. Compar-
ing the cross sections for the 7Li + 27Al system at subbarrier
energies, one concludes that the Wong formula overestimates
σBPM drastically. At E = 2 MeV (≈4 MeV below VB), the
Wong cross section is wrong by more than one order of
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FIG. 3. The Wong fusion cross section in comparison with the cross sections predicted by the BPM. See the text for details.

magnitude. For the two heavier systems, the Wong formula
is quite close to σBPM in this energy region. At above-barrier
energies, σW is systematically larger than σBPM, mainly in
the case of the 7Li + 27Al. At 30 MeV above VB, the Wong
cross section for this system overestimates σBPM by ≈45%.
The situation is better for the other two heavier systems. For
the 7Li + 209Bi and 24Mg + 138Ba systems at the same energy
above VB, σW exceeds σBPM by 10% and ≈5%, respectively.
The exceedingly large values of the Wong cross section above
the Coulomb barrier can be traced back to neglecting the
angular-momentum dependence of the barrier parameters. A
detailed discussion of the failure of the Wong formula is
presented below.

At subbarrier energies, the cross section results exclusively
from tunneling effects. Thus, it is susceptible to the shape of
the potential barrier. Figure 4 shows the Coulomb barriers
and the parabolic fits for the three systems of Fig. 3. The
potential axes are truncated at the lowest collision energies
of our calculations, namely, V (r) = VB − 4 MeV. The com-
parison between the potential barrier of the 7Li + 27Al system
and the parabolic fit sheds light on the abnormally large val-
ues of the Wong cross section at subbarrier energies. The
parabolic barrier is much thinner than the actual Coulomb
barrier. Thus, the transmission coefficient for the parabola is
unrealistically large. This leads to a considerable enhance-
ment of σW in comparison to σBPM. Conversely, the parabolic
fits for the barriers of the two heavier systems are quite rea-
sonable. Besides, the fitted barrier is thicker on the inner side
of the barrier but thinner on the outer side. Then, there is
some compensation in calculating the transmission factors,
and the Wong formula reproduces the QM cross sections
well.

Now, we consider the Wong formula above the Coulomb
barrier. In this case, the differences between σW and σBPM

arise from the neglect of the angular-momentum dependencies
of Rλ and h̄ωλ. However, we have shown that the Wong cross

section reduces to the classical cross section just above the
Coulomb barrier, and this cross section does not depend on
the barrier curvature. Then, we concentrate on the angular-
momentum dependence of Rλ. Table II shows the explicit
value of the highest energy considered in our calculations
for each system, namely, Emax = VB + 30 MeV. The next two
columns show the corresponding values of the grazing angular
momentum and the barrier radius associated with it. They are
represented by λg and Rg, respectively. The table also shows
the s-wave barrier radius and the ratio R2

g/R2
B. This ratio esti-

mates the inaccuracy of Wong and the classical expressions in
the worst scenario of the present calculations.

In the 7Li + 27Al collision at E = 36 MeV, the angular-
momentum dependence of Rλ is significant. If one uses R2

g

instead of R2
B in the Wong or the classical expression, as

proposed by Rowley and Hagino [21], the cross section is
reduced by a factor of ≈2. The situation is better for the
7Li + 209Bi and mainly the 24Mg + 138Ba systems, where the
reduction factors would be considerably closer to one (0.83
and 0.91, respectively).

TABLE II. Variation of the barrier radii as the angular momen-
tum varies from zero to its grazing value for the systems discussed
in the text. Column two gives the maximal energy considered in our
calculations. For each system, it corresponds to the Coulomb barrier
plus 30 MeV. The remaining columns are explained in the text. The
grazing angular momenta are given in h̄ units; the barrier radii are
given in fm.

System Emax (MeV) λg Rg RB R2
g/R2

B

7Li + 27Al 36 20 6.2 8.5 0.53
7Li + 209Bi 60 34 10.4 11.4 0.83
24Mg + 138Ba 112 59 10.6 11.1 0.91
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FIG. 4. The Coulomb barriers for the 7Li + 27Al, 7Bi + 209Al,
and 24Mg + 138Ba systems, in comparison with the corresponding
parabolic fits.

IV. IMPROVED VERSIONS OF THE WONG
AND THE CLASSICAL CROSS SECTIONS

Two papers reported improvements in the original Wong
formula (32). One was already mentioned at the end of the
previous section [21]. The other was another paper by Wong
[22]. Wong reported corrections to the original formula due
to the continuum approximation of the discrete angular mo-
mentum l . Besides, he proposed a method to improve the
description of the fusion cross section by determining the ex-
perimental barrier for each angular momentum from the low-
energy fusion cross section. In this way, the modified Wong
formula can describe the fusion data better than the barrier
penetration model devised in the original approximation, con-
sidering the influence of particular nuclear structure effects on
the fusion cross section. Although it is a nice feature of this
formula, it is unsuitable for the reduction of fusion data, which
is the main concern of the present work. The fusion function

reduction method, which will be discussed in Sec. IV B, re-
quires that the Wong formula be a good description of the
BPM cross section rather than the data.

To reduce fusion data, one seeks a bare potential to provide
a so-called nominal Coulomb barrier. This potential should
lead to good descriptions of experimental cross sections of
systems where particular nuclear structure properties have no
significant influence on fusion. A good candidate is the poten-
tial of the double-folding model, evaluated systematically by
an integral of the matter densities of the colliding nuclei with a
realistic nucleon-nucleon interaction. The São Paulo potential
[7,8] implements this model based on realistic matter den-
sities given by a two-parameter Fermi distribution. Another
good candidate is the Akyüz-Winther [9] potential, given by a
Woods-Saxon approximation to the double folding potential.
The parameters of the WS function are obtained through a
systematic study involving many systems distributed over a
broad mass range. The SPP and the AW potentials provide
similar fusion cross sections, as reported in Ref. [23].

In this section and throughout the present paper, we adopt
the São Paulo potential. This potential has been widely used
in studies of weakly bound systems, including systematic
investigations of reduced fusion cross sections [13], the en-
ergy dependence of the optical potential, seeking the so-called
breakup threshold anomaly [24], and theoretical predictions
of CF and ICF cross sections in collisions of weakly bound
stable and neutron halo radioactive projectiles [25–27]. It has
also been used as the bare potential in many coupled reac-
tion channels calculations of multinucleon transfer reactions
together with elastic, inelastic, and charge-exchange angular
distributions (see, for example, Refs. [28–30]).

The previous subsection showed that the Wong formula
works poorly for light systems at energies well below or above
the Coulomb barrier. The problem can be fixed by introducing
effective barrier parameters, R and h̄ω̄, in the modified Wong
formula,

σ W = h̄ω̄R
2

2E
ln

{
1 + exp

[
2π

h̄ω̄
(E − VB)

]}
. (38)

Since the behavior of the cross section at subbarrier en-
ergies is determined by the argument of the exponential,
2π (E − VB)/h̄ω̄, we keep the original values of the barrier
parameters in the slowly varying multiplicative factor. That
is, we approximate

h̄ω̄R
2

2E
� h̄ωR2

B

2E
. (39)

Then, we get the effective barrier curvature parameter, h̄w̄,
by imposing that the modified Wong cross section of Eq. (38)
be equal to the fusion cross section of the barrier penetration
model. We find

h̄ω̄ = 2π (E − VB)

/
ln

[
exp

(
2EσBPM

h̄ωR2
B

− 1

)]
. (40)

At above-barrier energies, the main contributions to the fu-
sion cross section come from angular momenta in the vicinity
of λg. This led Rowley and Hagino [21] to propose an im-
proved version of the Wong formula. It consists of replacing
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RB and h̄ω with barrier parameters for λg. The Wong formula
then becomes

σ
g
W = h̄ωgR2

g

2E
ln

{
1 + exp

[
2π

h̄ωg
(E − VB)

]}
, (41)

where we used the short-hand notation h̄ωg ≡ h̄ωlg .
As can be seen in Table II, the barrier radius decreases as

λ increases, and replacing R2
B with R2

g in the Wong formula
reduces the cross section at above-barrier energies. Since the
Wong formula overestimates σBPM (see Fig. 3), this modifi-
cation is expected to improve the agreement between the two
cross sections. However, it might overestimate the weight of
the grazing angular momentum in the partial-wave series. This
possibility is avoided in the improved Wong cross section pro-
posed below.

Since the system Hamiltonian depends on λ quadratically
(through the centrifugal term of the potential), we assume
that the angular-momentum dependence of the barrier radius
is also quadratic, at least around λ = 0. Then, we make a
series expansion of Rλ and keep only the term of lowest order.
We get

Rλ � RB − γ λ2, (42)

where γ is a system-dependent parameter.
Then, we define the effective barrier radius in a collision

with energy E and grazing angular momentum λg as the
weighted average,

R = 〈Rλ〉λ = 1

N

∫ λg

0
2λdλ[RB − γ λ2], (43)

where N is the norm

N =
∫ λg

0
2λdλ. (44)

At above-barrier energies, the integrations involve large val-
ues of λ. Then, it is a reasonable approximation to use λ = 0
(instead of λ = 1/2) as the lower limit of the integrations in
Eqs. (43) and (44). Following this procedure, we get

R = RB − γ
λ2

g

2
. (45)

Comparing the above expression with Eq. (42), one concludes
that R corresponds to the barrier radius of the λ-dependent
potential of Eq. (21) at the effective angular momentum

λrms =
√

〈λ2〉λ = λg√
2
. (46)

Thus, we can write

R = Rλrms . (47)

Note that R is fully determined by Eqs. (47) and (46). There-
fore, one does not need the explicit value of the coefficient γ

in the expansion of Eq. (42).
The curvature parameter can be modified in the same way,

namely,

h̄ω = 〈h̄ωλ〉λ = h̄ωλrms . (48)

The improved Wong cross section at above-barrier energies is
then given by Eq. (38), with the R and h̄ω parameters of the
above equations.

An improved version of the classical cross section of
Eq. (29) can be derived by the same procedure. Replacing RB

with R, one gets

σ cl = πR
2
(

1 − VB

E

)
for E � VB

= 0 for E < VB. (49)

It is convenient to introduce the dimensionless energy
variable,

y = 1 − VB

E
. (50)

Then, the standard classical cross section takes the form

σcl = πR2
By, (51)

and its improved version can be written as

σ cl = fR(y)σcl. (52)

Above, fR(y) is the correction factor

fR(y) =
[

R(y)

RB

]2

, (53)

which is always less than one. To stress the energy-
dependence (or y-dependence) of R, we used the notation
R(y). One may notice that the R(y) value may be obtained
directly from the fR(y) function. The next section will present
an empirically obtained version of this function.

Figure 5 shows the approximate cross sections σ
g
W

[Eq. (41)], σ W [Eq. (38)] and σ cl [Eq. (52)], for the 7Li + 27Al,
7Li + 209Bi, and 24Mg + 138Ba systems. They are represented
by dashed lines, blue circles, and red stars, respectively. The
solid lines correspond to the BPM cross sections. First, one
notices that σ

g
W (dashed lines) actually underestimates σBPM at

above-barrier energies. The difference between the two cross
sections is particularly large in the case of the light 7Li + 27Al
system. The difference is smaller for the 7Li + 209Bi system,
and the agreement is very good for 24Mg + 138Ba. On the
other hand, the improved Wong fusion cross sections (σ W)
for the three systems are in excellent agreement with the cor-
responding σBPM below and above the Coulomb barrier. One
also observes that, at above-barrier energies, the improved
classical cross sections, σ cl, reproduce σBPM equally well,
except in a very small energy interval just above VB.

A. An approximate expression for R

The barrier parameters of the real potential, VB, RB, and
h̄ω, can be obtained from available computer codes. However,
the effective barrier radius, R, is more complicated to obtain,
as it is necessary to determine the function fR(y), of Eq. (53).
We carried out a systematic study of this function, considering
several systems over a broad mass range, and two commonly
used nuclear interactions: the SPP [7,8] and the AW [9,31]
potentials. In each case, we evaluated fR(y) for collision en-
ergies ranging from E = VB to E = 2 × VB. The results for
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FIG. 5. The BPM fusion cross sections for the 7Li + 27Al, 7Li + 209Bi, and 24Mg + 138Ba systems, in comparison to those obtained by the
improved versions of the Wong formula, σ

g
W and σ W. The improved classical cross sections, σ cl, are also shown.

the SPP and for the AW interactions are shown in Figs. 6(a)
and 6(b), respectively. The points correspond to the effective
barrier radius numerically calculated at a mesh of collision
energies.

FIG. 6. The function fR(y) of Eq. (53), for the 7Li + 27Al,
7Li + 209Bi, and 24Mg + 138Ba systems, plotted versus the dimension-
less energy variable, y.

The solid line represents the pocket formula

fapp(y) = 1 − 0.14y − 0.14y2, (54)

which gives the best fit to the data. Inspecting Figs. 6(a) and
6(b), one concludes that fR(y) has a very weak dependence
on the system. For all systems, fR(y) is given by Eq. (54) as
an excellent approximation. Furthermore, one notices that this
conclusion is valid for both the SPP and the AW potentials.
Then, the dependence of σ W and σ cl on the nuclear potential
occurs exclusively through the S-wave barrier parameters.

The improved version of the Wong formula presented in
this section is valid for any choice of nuclear potential. The
only requirement is that RB, VB, and h̄ω be the parameters of
the parabolic approximation of the barrier in the BPM calcu-
lation. On the other hand, the validity of the pocket formula
has been demonstrated exclusively for the SPP and the AW
potentials. However, we should keep in mind that the angular-
momentum dependence of Rλ and h̄ωλ arises exclusively from
the centrifugal term of the total potential in the radial equation.
For this reason, we believe that the pocket formula remains
valid for any choice of nuclear interaction.

B. Reduction of fusion data and universal functions

A frequently used reduction procedure is the fusion func-
tion (FF) method [12,13], which is based on the Wong
formula. The collision energy E and the fusion cross sec-
tion σF are transformed into the dimensionless quantities

E → x = E − VB

h̄ω
, σF → F (x) = σF

σ0
, (55)

where σ0 is the characteristic cross section of Eq. (34).
The improved Wong cross section of Eq. (38) leads to an

improved fusion function (IFF) method, implemented by the
transformations

E → x = E − VB

h̄ω̄
, σF → F (x) = σF

σ 0
. (56)
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FIG. 7. Reduced BPM cross sections for the 7Li + 27Al,
7Li + 209Bi, and 24Mg + 138Ba systems, reduced by the two fusion
function procedures discussed in the text.

Above, h̄ω̄ is the effective barrier curvature parameter of
Eq. (40), and σ 0 is the characteristic cross section of the
improved Wong formula,

σ 0 = h̄ωR
2

2E
. (57)

As a simple test, the reduction procedures can be applied
to the BPM fusion cross section [11,13]. The procedure is
successful if reduced cross sections for systems in different
mass ranges are very similar. Furthermore, if the procedure
leads to a universal function, the reduced cross sections should
be very close to it. We applied this test to the two versions of
the fusion function method, Eqs. (55) and (56).

Figure 7(a) shows the reduced σBPM fusion cross sec-
tions for the 7Li + 27Al, 7Bi + 209Al, and 24Mg + 138Ba
systems. They are denoted by FBPM(x). The reduction was
carried out through the standard fusion function method of
Eq. (55). For comparison, the UFF is also shown (black
solid line). One notices that the fusion functions exhibit a
significant system dependence. At the highest energies, corre-
sponding to x ≈ 10 (≈25 MeV above VB), the fusion function
for the 7Li + 27Al system is ≈30% lower than the UFF. The
fusion functions for the two heavier systems remain below
the UFF, but the difference is much smaller. Despite this
system dependence, the fusion method has been widely used

in comparing fusion data of weakly bound systems [13,32–
37]. In practical studies of nuclear structure effects based on
this reduction method, the fusion functions are renormalized
to avoid system dependencies arising from the inaccuracy of
the Wong formula [13].

Next, we apply the same test to the improved fusion func-
tion method of Eq. (56). The reduced cross sections, shown
in Fig. 7(b), are denoted by F BPM(x). Now, the situation is
entirely different. The system dependence of the previous
figure is fully eliminated. The fusion functions for different
systems can hardly be distinguished, and they agree very well
with the UFF.

The fact that the improved classical cross section of
Eq. (49) is very close to σBPM leads to another universal
function, which we denote by G0(y). It is obtained by the
transformations

E → y = 1 − VB

E
, σ cl → G0 = σ cl

πR
2 . (58)

In this way, one gets the classical fusion line (CFL)

G0(y) = y. (59)

The above transformation suggests a new reduction pro-
cedure to analyze fusion data at energies above the Coulomb
barrier. The energy is transformed into the dimensionless en-
ergy variable, y, as in Eq. (58), and the fusion cross section,
σF, is transformed into the classical fusion function (CFF),

G(y) = σF

πR
2 = σF

πR2
B fR(y)

. (60)

Above, fR(y) is the ratio R
2
/R2

B, introduced in Eq. (53).
We submitted the classical fusion function (CFF) reduction
method of Eqs. (58) and (60) to the same test applied to the
fusion function method. Since the empirical function fapp(y)
is quite close to fR(y), we used the approximate expression

G
expt

(y) = σ
expt
F

π fapp(y)R2
B

. (61)

The reduced σBPM cross sections, denoted by GBPM(y),
for the 7Li + 27Al, 7Bi + 209Bi, and 24Mg + 138Ba systems are
shown in Fig. 8. The black solid line represents the classical
fusion line of Eq. (59). We observe that the reduced cross
sections for the three systems are extremely close and agree
very well with the classical fusion line.

An interesting point in Fig. 8 is that the results for heavier
systems are concentrated at the lower region of the CFL,
whereas those for lighter systems reach the high end of this
line. The reason is that our calculations were performed at
energies up to ≈VB + 30 MeV. In this way, the largest y value
in the calculations is

ymax = 1 − VB

VB + 30 MeV
.

Then, for the lightest systems, 7Li + 27Al, the barrier (VB =
6.1 MeV) is much lower than 30 MeV and ymax is close to one.
For the heaviest system, 24Mg + 138Ba, the barrier (VB = 81, 6
MeV) is much larger than 30 MeV, so that ymax is much lower.
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FIG. 8. Reduced BPM cross sections for the same systems as the
previous figure, but the CFF method now carries out the reductions.

Note that, above the Coulomb barrier, the fusion cross
section does not depend on the barrier curvature. This can
be seen explicitly in the expression for σ clbut needs to be
clarified in the Wong formula. However, it becomes trans-
parent if one uses the classical limit of F0(x) [Eq. (37)].
Then, the dependence on h̄ω cancels when F0(x) is multiplied
by σ0.

V. APPLICATION: REDUCED CROSS SECTIONS
OF WEAKLY BOUND SYSTEMS

The experimental fusion functions evaluated by the IFF
method are very similar to those reduced by the standard FF
method, reported in Ref. [12]. The advantage of the former
over the latter method is that it does not require a renormal-
ization to take care of the inaccuracies of the Wong formula.
However, the results of the two methods are very similar.
For this reason, the discussion of the present section will be
focused on the CFF reduction method.

We used the CFF method to reduce the fusion data of
several tightly and weakly bound systems, performing the
transformations

E −→ y = 1 − VB

E
, G

expt
(y) = σ

expt
F

πR
2 . (62)

To accomplish this goal, one needs the barrier height of the
potential, VB, and the effective barrier radius R.

A. Comparative study of experimental CFFs

In this section, we apply the CFF reduction method to the
fusion data of weakly bound systems.

Before considering weakly bound systems, we submitted
the CFF method to a test similar to the one carried out in
Sec. IV B. The difference is that instead of applying it to
BPM cross sections, we reduce experimental fusion cross
sections of tightly bound systems where nuclear structure
properties do not influence the cross section at above-barrier
energies. In such cases, one expects the reduced fusion data
to be very close to the classical fusion line of Eq. (59).

FIG. 9. Experimental CFF for a few tightly bound systems with
negligible channel coupling effects.

Figure 9 shows the experimental CFF for the 4He + 209Bi
[38], 12C + 194Pt [39], 12C + 208Pb [40], and 16O + 144Sm [41]
systems. To obtain the CFFs in this section, we use Eq. (62),
with πR

2 = π fapp(y)R2
B, where RB was derived using the São

Paulo potential with realistic nuclear densities and fapp(y) by
the pocket formula of Eq. (54). The values of VB are given
in Table III. One observes that the reduced data points are,
indeed, very close to the classical fusion line.

Now, we study CFFs associated with the CF of weakly
bound projectiles. As we show below, the reduced data of
these systems can be fitted by a linear function through the
origin of the form

G
expt

(y) = αy. (63)

TABLE III. Barrier parameters of the SPP for the systems studied
in Figs. 9 and 10.

System RB (fm) VB (MeV) h̄ω (MeV)

4He + 209Bi 10.6 21.3 4.7
12C + 194Pt 11.3 55.6 4.1
12C + 208Pb 11.5 57.7 4.1
16O + 144Sm 10.8 61.4 3.9
6Li + 90Zr 9.6 16.6 3.4
6Li + 124Sn 10.3 19.5 3.6
6Li + 197Au 11.1 28.7 4.1
6Li + 198Pt 11.1 28.3 4.1
6Li + 209Bi 11.2 29.8 4.2
7Li + 124Sn 10.4 19.3 3.3
7Li + 197Au 11.3 28.3 3.8
7Li + 198Pt 11.3 27.9 3.7
7Li + 209Bi 11.4 29.4 3.8
9Be + 208Pb 11.5 38.5 3.9
6He + 209Bi 11.6 16.4 3.4
6He + 238U 11.9 21.0 3.4
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FIG. 10. Experimental CFF for weakly bound projectiles with different targets: (a) collisions of 6Li, (b) collisions of 7Li, (c) collisions of
9Be, (d) collisions of 6He. See the text for details.

Since the classical fusion line is given by this function with
α = 1, the angular coefficient for a weakly bound projectile
can be interpreted as a CF survival factor. This probability is
usually called the suppression factor. We do not adopt this
terminology here, because it is not intuitive: a large suppres-
sion factor corresponds, actually, to a small suppression, and
the other way around. Figure 10 shows experimental CFFs
for several weakly bound systems. In Fig. 10(a), the projec-
tile is 6Li, which has a breakup threshold of 1.47 MeV, and
the targets are 209Bi, 198Pt, 197Au, 124Sn, and 90. The data
are from Refs. [42,43] (6Li + 209Bi), [44] (6Li + 198Pt), [45]
(6Li + 197Au), [46] (6Li + 124Sn), and [47] (6Li + 90Zr). Note
that we are considering targets over a significant mass range.
The atomic and mass numbers of the targets are comprised of
the intervals {40, 83} and {124, 209}, respectively. One finds
that the experimental CFF of these systems are very similar.
They follow closely the linear function of Eq. (63), with the
CF survival factor

α
6Li = 0.60. (64)

Next, we consider collisions of 7Li projectiles, which have
a breakup threshold of 2.47 MeV. Figure 10(b) shows the
CFFs corresponding to the fusion data for the 209Bi [42,43],
198Pt [48], 197Au [45,49], and 124Sn [46] targets. Qualitatively,
the figure is very similar to the previous one. The experimen-
tal CFF points for these targets are also distributed along a
straight line but with a slightly larger CF survival factor

α
7Li = 0.70. (65)

Comparing Figs. 10(a) and 10(b), one observes that the CF
survival factor decreases with the breakup threshold of the

projectile, as expected. However, these figures reveal another
very interesting behavior of the CF suppression: it seems in-
dependent of the target charge. The results for 90Zr (ZT = 40)
are essentially the same as those for the 209Bi target (ZT = 83),
which has an atomic number about twice as large. Note that
the same conclusion was reached in the study of Kumawat
et al. [47]. This finding suggests that the Coulomb breakup
does not affect the CF cross section. Thus, one is led to the
conclusion that the observed CF suppression in collisions of
weakly bound projectiles with heavy targets is due to nuclear
breakup. This conclusion seems to contradict our knowl-
edge of breakup reactions, which are strongly influenced by
Coulomb breakup and Coulomb-nuclear interference [50–53].

However, there is a significant difference between the
breakup and the fusion processes. The former gets contri-
butions from hundreds of partial waves, most corresponding
to distant collisions, where the distance of closest approach
is larger than the range of the nuclear potential. At lower
partial waves, nuclear couplings are also relevant, and there
are strong Coulomb-nuclear interference effects. Nuclear cou-
plings dominate only at the lowest partial waves. However,
their contributions are small due to the factor (2l + 1) con-
tained in the partial-wave expansion of the breakup cross
section.

The fusion process is quite different. At high angular
momenta, the centrifugal barrier prevents the system from
reaching the strong absorption region, where the fusion pro-
cesses occur. Thus, it is unsurprising that Coulomb couplings
play a major role in the breakup process, but they have a
negligible influence on the CF cross section. Then, only l � lg
contributes to fusion, and the nuclear couplings are dominant
at these angular momenta.
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Now we discuss the collisions of 9Be projectiles. They are
also very interesting since their breakup threshold is only 1.65
MeV. There are available CF data for collisions of 9Be with
several targets: 144Sm [54], 197Au [35,55,56], 186W [57], and
208Pb [43]. A comparative study of the CF data of these sys-
tems, reduced by the fusion function method, was presented
in Fig. 13 of Ref. [35]. This comparison was inconclusive
since the data did not show any trend. The CF survival factors
for systems in the same mass range differed considerably.
However, we emphasize that the data for different targets
were measured by different groups using different experi-
mental techniques. Thus, a detailed study of the experimental
procedures of each experiment would be needed before one
can draw reliable conclusions and this would be beyond the
scope of the present work. Nevertheless, the data for the
9Be + 208Pb and the 6,7Li + 209Bi systems, analyzed in the pre-
vious two figures, were measured by the same group using
similar experimental techniques. Then, we restrict our study
to 9Be + 208Pb.

The experimental CFF for the 9Be + 208Pb system is shown
in Fig. 10(c), compared with the classical fusion line. One
finds that the reduced data points are also distributed along
the linear function of Eq. (63), but now the CF survival
factor is

α
9Be = 0.65. (66)

Note that ita value is intermediate between α
6Li and α

7Li. Since
the breakup threshold of this nucleus lies between those of the
two Li isotopes, this result is consistent with the assumption
that the CF survival factor decreases with the breakup thresh-
old of the projectile.

Finally, we look at collisions of the two-neutron halo nu-
cleus 6He. Since experiments involving unstable beams are
much more challenging, fusion data involving 6He projectiles
are very scarce. Nevertheless, there are good CF data for
the 6He + 209Bi system at several collision energies and the
6He + 238U system at a few collision energies. In typical situa-
tions, CF followed by the evaporation of two neutrons, cannot
be distinguished from ICF events with the capture of the 4He
cluster. However, the CF cross sections could be measured
under special conditions of these experiments. Kolata et al.
[58,59] measured the CF cross section for the 6Li + 209Bi
system at near-barrier energies. The CF of this system leads
to the formation of the 215At, which evaporates 1, 2, 3, and 4
neutrons. The cross section was determined by measuring the
characteristic alpha particles emitted by the 212At and 211At
residual nuclei, which, according to statistical model code
predictions [58,59], are the dominant decay modes within the
energy interval of the experiment. The 212At and 211At are also
formed by the breakup of the projectile, followed by the cap-
ture of the 4He cluster (ICFα). However, owing to excitation
energy considerations [27], these nuclei could not emit the
alpha particles detected in the experiment. Nevertheless, they
are expected to make a small contribution to the data points at
the highest collision energies.

The CF cross section for the 6He + 238U system was mea-
sured by Raabe et al. [60]. In this case, the signature of CF
events was the detection of two fission fragments emitted

back to back, unaccompanied by a third charged fragment
with a projectile-like kinematic. In fact, the same residual
nucleus can be formed by the CF and the ICFα processes
after the evaporation of different numbers of neutrons (two
more neutrons in the case of CF). However, comparing the
fission barrier with the excitation energies in the CF and ICFα

processes, one concludes that the latter does not contribute to
the measured cross section [27].

Figure 10(d) shows the experimental CFFs corresponding
to the CF data of the 6He + 209Bi and 6He + 238U systems.
One observes that the results exhibit the same behavior as the
CFFs for 7Li projectiles. The data points of both systems are
very close to the black dotted line, which corresponds to the
function of Eq. (65). Note that the experimental CFF tends
to grow above the dotted line at the two data points with the
highest energies. This is likely due to spurious contributions
from ICFα events, which, according to PACE estimates, be-
come relevant at the highest energies of the experiment.

In the calculation of the CFFs of Figs. 10(a)–10(d), we used
the radii of the Coulomb barriers of the SPP and the approx-
imate expression for fR(y) [Eq. (54)]. The barrier parameters
of the SPP for the weakly bound systems studied in the present
work are listed in Table III.

Now we introduce another method to investigate the sup-
pression of CF in collisions of weakly bound projectiles. It
consists in evaluating the ratio of the experimental cross sec-
tions to the fusion cross section of the BPM, which can be
replaced by the cross section σ W, to a very good approxima-
tion (see Fig. 5). That is,

H(y) = σ
expt
F (y)

σ W(y)
. (67)

It is then plotted as a function of the reduced energy variable y.
Similar procedures have already been used by other authors to
measure the suppression of CF in collisions of weakly bound
projectiles (see, e.g., Refs. [47,61,62]).

We used the ratio of Eq. (67) to investigate the suppres-
sion of CF in collisions of 6Li with the same targets as
Fig. 10(a). The results are shown in Fig. 11(b). For compar-
ison, Fig. 11(a) shows a similar figure for the tightly bound
systems of Fig. 9. At above-barrier energies, the experimental
points for tightly bound systems are close to one (the dashed
line), whereas those for 6Li projectiles fall well below, around
0.6 (dotted line). Thus, the function H(y) can be used to
investigate the suppression of CF above the Coulomb barrier.
However, this ratio systematically increases as y decreases
toward the Coulomb barrier and below it, both for weakly
and tightly bound systems. The reason is that, in this energy
region, this ratio is very sensitive to the exact value of the
Coulomb barrier and any channel coupling effect, even very
weak ones. Thus, associating this behavior with any particular
static or dynamic property of the colliding system may be
misleading.

To close this section, we emphasize that the reduction
methods discussed in this section lead to universal functions
that play the role of a benchmark to which reduced fusion data
should be compared. Since the influence of trivial factors like
the charges and sizes of the collision partners are washed out
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FIG. 11. The ratio H(y) for (a) tightly bound and (b) weakly
bound systems.

by the reduction procedure, deviations from the benchmark
indicate the influence of nuclear structure effects. However,
it has been assumed that the reduction is carried out with
parameters of a potential that describes experimental fusion
cross sections in the absence of nuclear structure effects. If
the barrier parameters are determined by fitting fusion data,
the reduced cross section will also account for the effects of
the nuclear structure that one wants to investigate. In this way,
it tends to reproduce the universal function of the model, and
no useful information can be extracted from the comparison.

VI. CONCLUSIONS

We derived an improved version of the Wong formula for
heavy-ion fusion that is valid under conditions where the
standard Wong formula is inaccurate. This is achieved by
replacing the s-wave barrier parameters in the Wong formula
with the parameters of the l-dependent potential barrier at an
effective partial wave, given by an average over angular mo-
mentum. The same procedure is used to obtain an improved
expression for the classical fusion cross section.

The improved Wong cross sections for systems over a
broad mass range were compared with the corresponding
cross sections of the barrier penetration model. They were
shown to be in excellent agreement. An analogous comparison
was made for the improved classical fusion cross sections of
the same systems. In this case, it was restricted to energies
above the Coulomb barrier. The agreement with the barrier
penetration model cross section was also extremely good.

Based on the improved classical cross sections, we pro-
posed a new procedure to reduce the fusion data of different
systems. This procedure, which we call the classical fusion
function method, leads to a new universal function, the clas-
sical fusion line, which plays the role of a benchmark in
comparisons of reduced fusion data. This method was used
to study the suppression of complete fusion in collisions of
weakly bound projectiles. Comparisons of reduced cross sec-
tions in collisions of 6Li and 7Li with targets over a wide mass
range lead to two conclusions: (i) The suppression increases as
the breakup threshold of the projectile increases, (ii) the sup-
pression does not seem to depend on the target charge. This
indicates that the suppression of complete fusion is mainly
due to nuclear breakup couplings.
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