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Barrier penetration in a discrete-basis formalism
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The dynamics of a many-particle system are often modeled by mapping the Hamiltonian into a Schrödinger
equation. An alternative approach is to solve the Hamiltonian equations directly in a model space of many-body
configurations. In a previous paper the numerical convergence of the two approaches was compared with a
simplified treatment of the Hamiltonian representation. Here, we extend the comparison to the nonorthogonal
model spaces that would be obtained by the generator-coordinate method. With a suitable choice of the
collective-variable grid, a configuration-interaction Hamiltonian can reproduce the Schrödinger dynamics very
well. However, the method as implemented here requires that the barrier height is not much larger than the
zero-point energy in the collective coordinates of the configurations.
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I. INTRODUCTION

Ever since the pioneering work of Hill and Wheeler [1],
low-energy fission has been parametrized by their barrier
penetration formula, based on a one-dimensional Schrödinger
equation. (See Refs. [2–5] for recent extensions of that
model.) A kinetic energy operator and potential energy func-
tion for the Schrödinger equation can be derived in the
generator coordinate method of many-body theory, but be-
yond the extension to two dimensions [6] the generalization
to other degrees of freedom presents formidable obstacles [7].
In contrast, Hamiltonians constructed from the configuration-
interaction (CI) approach can, in principle, deal with any
mechanisms present in nuclear dynamics.

A CI basis is usually constructed from nucleonic
Hamiltonians by solving the Hartree-Fock or Hartree-Fock-
Bogoliubov equations in the presence of shape constraints.
Those constraints map out a path for the barrier crossing. The
constrained configurations are typically not orthogonal. The
generator-coordinate method is the well-known procedure to
overcome that problem in calculating spectroscopic proper-
ties, but there is little experience for dealing with it in reaction
theory. Also, as a practical question, how closely do the con-
figurations need to be spaced along a fission path to reproduce
the Schrödinger dynamics? In this work we apply reaction
theory as formulated in a discrete basis of states to investigate
how well that framework can reproduce the Schrödinger.

We note that a number of simplified CI models of nuclear
dynamics are based on the pairing interaction [8–10]. The
Pension-Kolb-Hubbard model in condensed matter physics
[11,12] makes use of a similar pairing interaction.

The focus of this study is the transmission probability T
for traversing an isolated one-dimensional barrier, following
up on the work of Ref. [13]. We assume that the barrier
potential vanishes at large distances, so the wave function
satisfies ordinary plane-wave boundary conditions.

II. MODEL SPACE AND HAMILTONIAN

A. Basics

The states in the space are obtained by self-consistent
mean-field theory augmented by a q-dependent constraining
field. A finite basis is generated on a mesh of points {qi},
making a path along the collective coordinate. With those
wave functions one computes the overlaps

Ni j = 〈ψi|ψ j〉. (1)

Here and hereafter, we use boldface symbols for matrices. The
Hamiltonian matrix elements are similarly computed with a
Hamiltonian H that contains a nucleon-nucleon interaction,

H i j = 〈ψi|H |ψ j〉. (2)

Insight into the workings of this approach can be obtained by
taking the center-of-mass coordinate as a paradigm of a col-
lective variable [14]. One finds that Ni j can be parametrized
quite well as a Gaussian,

Ni j ≈ n|i− j| = exp(−(qi − q j )
2/4s2), (3)

where s is a physical parameter associated with the size of the
collective wave packets. The states giving rise to the above
overlaps have a separable form

ψi(q, �ξ ) = ψint (�ξ ) exp(−(q − qi )
2/2s2), (4)

where ψint depends only on intrinsic coordinates �ξ . One as-
sumes that the Hamiltonian can be separated into an intrinsic
part and a collective kinetic part given by

Ĥ0 = − h̄2

2Mq

∂2

∂q2
. (5)

Here, Mq is an inertial parameter associated with the collective
coordinate. The matrix elements of Ĥ0 are parametrized as

H0
i j ≈ h|i− j| = n|i− j|Eq(1 − (qi − q j )

2/2s2), (6)
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where Eq = h̄2/(4Mqs2) is the zero-point energy of the
configuration.

In using a discrete-basis representation in reaction theory, it
is helpful to understand how to represent noninteracting plane
waves. For this purpose, we choose a grid of uniformly spaced
points separated by �q = qi+1 − qi. The eigenstates of H0 are
given by

�k (q, �ξ ) =
∑

n

ψn(q, �ξ ) rn, (7)

where r = eik�q and k is a momentum index. Note that
the space states only support momenta in the range
−π < k�q < π .

The kinetic energy EDB of the plane-wave state in the
discrete basis is given by [14]

EDB(k) = h0 + 2
∑

j>0 h j cos jk�q

1 + 2
∑

j>0 n j cos jk�q
. (8)

In practice H will be treated as a band-diagonal matrix with
matrix elements H i j set to zero for |i − j| > Nod . In the
simplest version of the theory, Nod = 1 and the matrix is
tridiagonal with interactions only between nearest neighbors.
The quality of the energy fit to the Schrödinger energy Es =
k2 h̄2/2Mq depends on Nod and on the dimensionless ratio
�q/s. The computed EDB(k) does not go exactly to zero at
k = 0, since the sum of the Gaussians in Eq. (7) still has some
variation as a function of q. To keep the energy comparisons
consistent, we compare the excitation energy

E = EDB(k) − EDB(0) (9)

with the Schródinger energy Es.
Figure 1 shows the comparison with some examples.

In Ref. [14] the choice �q = 51/2s was advocated for
discrete-basis Hamiltonians of tridiagonal form. The derived
eigenenergies for the tridiagonal and next-to-nearest-neighbor
approximations in the range 0 < k < π/s are shown in
Fig. 1(a). One can see small differences between the two,
but overall it appears that the tridiagonal approximation is
acceptable up to energies ∼2Eq. Figure 1(b) shows the spectra
for a somewhat smaller mesh spacing, �q = 2

3 51/2 s. Here,
the tridiagonal treatment fails. On the other hand, inclusion of
next-to-nearest neighbors (Nod = 2) restores a good approxi-
mation to the energy curve and increases the range of k.

B. The barrier

We consider the transmission coefficient for a plane wave
incident on a barrier of the form

V (q) = V0 exp(−q2/2σ 2). (10)

This simulates a quadratic barrier around q = 0 but vanishes
at large distances. The matrix elements for wave functions in
Eq. (4) are

〈ψi|V̂ (q)|ψ j〉 = V i j

= V0

√
2σ 2

s2 + 2σ 2
exp(−(q1 + q2)2/4(s2 + 2σ 2))Ni j . (11)

FIG. 1. Energies of plane-wave states in the discrete-basis for-
malism for mesh parameters �q = 51/2 (upper panel) and 2/3×51/2

(lower panel). Black line: Schrödinger Hamiltonian Ĥ0 = k2 h̄2/2Mq;
red dashed line: discrete-basis Hamiltonian with Nod = 1; blue dotted
line: Nod = 2. Energies are in units of Eq, and momenta in units of s.

Besides �q and Nod , a third numerical parameter in the
discrete-basis formulation is the dimension NDB of the H and
N matrices. We will see that the space needs to extend beyond
the range of the barrier by only a few states to produce fairly
accurate transmission probabilities.

C. The transmission probability

The energies E and eigenstates �ψE = ( f1, f2, . . . , fNod ) of
the matrix Hamiltonian H i j = H0

i j + V i j satisfy the equation

H ′ �ψE ≡ (H − N E ) �ψE = 0 (12)

for rows m that contain all of the possible elements of �H ′ in
its band-diagonal construction. The rows beyond m = Ngrid −
Nod lack one or more matrix elements and must be modified
to ensure that the transmitted wave satisfies an outgoing-wave
boundary condition. The same applies to the topmost rows
with m < Nod . The boundary condition here requires the wave
function to be composed of a linear combination of incoming
and reflected plane waves. This is achieved by modifying the
diagonal H ′

mm and replacing Eq. (12) by the inhomogeneous
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equation

(H ′ + �H ′) �ψE = �v. (13)

The general expressions for �H ′ and the vector �v are derived
in the Appendix. Following the numerical solution of Eq. (13)
the transmission probability1 is evaluated as

TDB = 1 − | f1eik�q − f2|2
| f1e−ik�q − f2|2 . (14)

In previous publications (e.g., Ref. [15]) we examined the the-
ory at the level of the Nod = 1 approximation. In this work we
also consider the Nod = 2 approximation. The Appendix also
includes the detailed formulas for this case.

The discrete-basis formalism defined in this way satisfies
an important check on the theory. Equation (13) can be solved
analytically if V vanishes, yielding the plane-wave solution
�ψk of Eq. (7) with k satisfying E = EDB(k). Thus TDB = 1

trivially when there is no barrier.
One should be cautious in using the discrete-basis formal-

ism at higher energies even though they may still be in the
allowed range of EDB(k). As an extreme example, the energy
is a maximum at k �q = π but the corresponding wave func-
tion is a pure standing wave with amplitudes �ψi alternating
in sign. Its transmission probability is zero. This is easily
seen from Eq. (14). The transmission probability reaches a
maximum somewhere inside the allowed range of EDB and
decreases at higher energies (see Fig. 4 below). Obviously the
treatment is then unphysical.

III. NUMERICAL EXAMPLES

We now compare calculated transmission probabilities TDB

with those obtained by integrating the Schrödinger equation2

(
Ĥ0

q + V (q)
)
φ = Eφ. (15)

The first example is a Hamiltonian with a moderately sized
barrier; its parameters are V0 = 1 in energy units of Eq and
σ = 2 in length units of s. This barrier height is well within
the domain of acceptable energies. Also the barrier curvature
parameter expressed as a harmonic oscillator energy h̄ω is
within the domain. Figure 2 displays the calculated wave
function for an incident energy just at the barrier top, E = V0.
The numerical parameters are �q = (2/3)51/2 s, Nod = 2, and
NDB = 42. The dimension of the matrices NDB is much larger
than necessary; the purpose is to exhibit the plane-wave char-
acter of the solution outside the barrier region. The points
show the real and imaginary parts of the scattering wave

1This method is an alternative to standard S-matrix theory [16–18].
The present approach avoids the necessity of calculating the real
and imaginary parts of the coupling between states in H and the
scattering channels.

2The resulting Ts is quite close to the Hill-Wheeler transmission
probability THW = [1 + exp(−2π (E − V0 )/h̄ω)]−1 if the curvature
parameter ω = (V0/σ

2Mq )1/2 is the same. A comparison is provided
in the Supplemental Material [19].

FIG. 2. Scattering wave function partially transmitted across a
barrier. Physical parameters are (V0, σ, E ) = (1.0, 2.0, 1.0) in length
and energy units s and Eq, respectively. The numerical parameters are
(Ngrid, Nod , �q) = (42, 2, 2×51/2/3). The real and imaginary parts
of the wave function are shown as solid blue and dashed red lines,
respectively.

function in the q-representation calculated as

�(q) =
∑

i

fiψi(q) =
∑

i

fi exp(−(q − qi )
2/2s2). (16)

The wave function on the right-hand side is clearly a traveling
wave of the form eikx with k > 0 as required for an outgoing
flux. The wave on the other side has both incoming and
outgoing components that almost add together for a standing
wave pattern. This is somewhat deceptive. A pure standing
wave would have equal amplitudes of incoming and outgoing
components implying a reflection probability of one. The ac-
tual reflection probability in this example is close to 1/2, the
expected value in the Hill-Wheeler formula.

We next compare the energy dependence of TDB with
Schrödinger solutions, taking the same barrier parameters as
before. The numerical parameters are set to NDB = 10 and
�q = 51/2s to show what can be achieved in a small space.
The Hamiltonian is defined on a range of q that is long enough
to cover the barrier region and meet the criteria for plane-
wave behavior near the end points The calculated TDB(E ) is
shown in Fig. 3, both in linear and logarithmic scales, to-
gether with that obtained by solving the Schrödinger equation,
see Supplemental Material [19]. The figure shows that the
discrete-basis approach with Nod = 2 is in excellent agree-
ment with the Schrödinger equation, even at deep sub-barrier
energies. Also, the more economical Nod = 1 treatment with
a somewhat larger mesh spacing is useful, given that the
microscopic nuclear Hamiltonians in current use have limited
predictive power.

We now examine limits of the discrete-basis approach for
higher barriers. Figure 4 shows TDB(E ) for V0 = 2 and 3Eq.
At both barrier heights the discrete-basis Hamiltonian is not
useful above E ∼ 3Eq. For a more quantitative assessment
of the performance we examine energies E1/2 at which the
transmission probability reaches 1/2, i.e., TDB(E1/2) = 1/2,
and its slope dT/dE at that energy. These are presented in
Fig. 5. The parameters are the same as before except for
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FIG. 3. Transmission probabilities T for barrier crossing as a
function of excitation energy Eex, plotted in linear (upper panel) and
logarithmic (lower panel) scales. The barrier has the form Eq. (10)
with V0 = Eq and σ = 2 s. Shown are the transmission probabilities
from the Schrödinger equation (solid black line), the discrete-basis
equation in the tridiagonal approximation (blue dotted line), and
the discrete-basis equation with next-to-nearest neighbor interactions
(red dashed line).

Nod . One sees that E1/2 is quite accurate up to V0 = 3Eq. But
this is somewhat misleading because the full TDB(E ) curve
does not reach close to T = 1 at higher energies. From the
lower panel one sees that the transmission probability rises
somewhat more sharply for the tridiagonal Hamiltonian than
for the Schrödinger Hs in most of the safe regions of ener-
gies. However, the Nod = 2 treatment is quite accurate at low
energies.

IV. CONCLUSION

At a purely phenomenological level, the one-dimensional
Hamiltonian proposed by Hill and Wheeler leads to a simple
formula that remains an integral part of fission phenomenol-
ogy [4,20]. But fission theory at a microscopic level relies on
a many-particle formalism to create a matrix Hamiltonian or
to determine the parameters of a Schrödinger Hamiltonian.
This work has shown that the usual procedure for building
a CI basis can mimic the Schrödinger approach quite well.
However, there is a important restriction on its applicability.
Namely, the barrier height cannot be much higher than a few
times the zero-point energies of the configurations as given by

FIG. 4. Transmission coefficients for V0 = 2Eq (upper panel) and
V0 = 3Eq (lower panel). Blue dashed line: Schrödinger equation; red
solid line: discrete-basis method with Nod = 1 and �q = 51/2.

FIG. 5. (a) E1/2 vs V0 for the Schrödinger Hamiltonian (solid
black line) compared to the discrete-basis Hamiltonian (dashed blue
line). E1/2 = V0 on the dotted black line. (b) dT/dE at E1/2 vs V0.
Schrödinger results are shown by the solid black line. The discrete
results are shown by dotted blue and dashed red lines for Nod = 1
and 2, respectively. Other parameters are the same as in Fig. 3.
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Eq in Eq. (6). In Ref. [15] the functional form of the equa-
tion is verified for a few barrier-top configurations finding Eq

in the range3 1.5–2 MeV. Whether this is too small depends on
the details of how the paths to a transition-state start out. The
barrier heights of well-known fissile nuclei are of the order
of 6 MeV above the ground-state energy, somewhat outside
the reach of the present approach. However, CI configurations
at more favorable energies in the compound nucleus might
be diabatically connected to the transition states, giving more
scope to the method.

Two ways come to mind for increasing the space of higher
energy excitations in the collective variables. In reaction the-
ory of small clusters, excitations of their center of masses can
be introduced by algebraic operators in the harmonic oscil-
lator representation [21]. However, that representation may
not be practical for heavy nuclei. Another approach would
be to include momentum constraints at the mean field level
to increase the energies with respect to collective coordinates
[22,23]. This may have been explored for small-amplitude
shape changes, but to our knowledge has not been imple-
mented in codes for generating a CI basis in heavy nuclei.

If the space were large enough to use the discrete-basis
approach with confidence, a fundamental question in fis-
sion theory could be addressed. Namely, what is the relative
importance of collective flow versus diffusive flow in large-
amplitude shape changes? In one extreme, the shape changes
go mainly through collective coordinates that lead to a
Schrödinger equation in one or a few dimensions. In another
extreme, the shape changes come about as a random walk
through noncollective intermediate configurations. There are
compelling arguments that diffusive flow dominates at ener-
gies much higher than the barrier [24]. On the other hand
theory based on an adiabatic collective coordinate does quite
well at the far sub-barrier energies associated with sponta-
neous fission [25,26]. It seems to us that some form of a CI
approach is needed for treating both mechanisms on the same
footing.

As a final remark, the present analysis is based on the
factorization hypothesis contained in Eq. (4) and leading to
the dynamics derived from Eq. (6). The conclusions regarding
the adequacy of the generated space of configurations would
certainly be affected.
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APPENDIX: IMPLEMENTATION OF PLANE-WAVE
BOUNDARY CONDITIONS

We derive here the equation for the wave function satis-
fying plane-wave boundary conditions of the discrete-basis
Hamiltonian. The outgoing wave function has the form

3Eq = h2/2 in the notation of Ref. [15].

fm = Crm, where r = exp(ik�x) and C is an arbitrary con-
stant. The equation for row m0 in the matrix H ′ reads

rm0

Nod∑
m=−Nod

h′
|m|Crm = 0 (A1)

providing that the Hamiltonian matrix elements are beyond
the range of the potential V and that the row is within Nod <

m0 � NDB − Nod . The missing terms of rows NDB − Nod <

m0 � NDB are added to the diagonal element in that row,

�H ′
m0,m0

=
Nod∑

m=m′
h′

mrm, (A2)

where m′ = NDB − m0 + 1. To deal with the missing entries
in the beginning rows, we consider the incoming channel am-
plitude f0 on the site adjacent to the first site q1 in the matrix
Hamiltonian and possibly others if Nod > 1. The contribution
of f0 is missing from rows of H ′ψ in the range m0 � Nod .
Only the term h′

1 f0 is missing in the last of these rows. It is
separated out as an inhomogeneous term in the Hamiltonian
equation.

For Nod = 1 the matrix H ′ is tridiagonal and the equa-
tion to be solved is (H ′ + �H ′) �f = −h1�v with vector �v =
( f0, 0, . . . , 0). For the numerical solution, one can set f0 = 1
and determine the rest of the wave function by matrix inver-
sion as in Ref. [15].

The wave function around the first site will have outgoing
as well as incoming components for the full Hamiltonian with
a barrier V . The amplitudes of incoming and reflected com-
ponents (ain, aout ) can be extracted from the wave function
amplitudes at f0 and f1,

(
ain

aout

)
= 1

r − r−1

[
r −1

−r−1 1

](
f1

f0

)
. (A3)

This is the end of the story for Nod = 1.
For Nod > 1, there are other incomplete rows in the Hamil-

tonian matrix requiring amplitudes f0, . . . , f−Nod +1. These can
be determined from (ain, aout ) as

fm = ainr−(1−m) + aoutr
(1−m), (A4)

= 1

r − r−1
((r−m − rm) f1 + (r−m+1 − rm−1) f0). (A5)

The coefficients of terms with fi on the second line are added
to the Hamiltonian matrix element H ′

1,m0
while the terms with

f0 are added to vector �v in Eq. (13). In detail, the matrix
elements added to H ′ for Nod = 2 are

�H11 = −h′
2(1/(1 − r2) + 1/(1 − r−2)), (A6)

�HNDB,NDB = h′
1r + h′

2r2, (A7)

�HNDB−1,NDB−1 = h′
2r2, (A8)
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and the nonzero components of the vector v are

v1 = h′
1 + h′

2(r−1/(1 − r2) + r/(1 − r−2)), (A9)

v2 = h′
2. (A10)

The final inhomogeneous equation to be solved is

(H ′ + �H ′) �f = −�v f0 (A11)

with an arbitrary nonzero f0.
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