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Background: The no-core shell model (NCSM) is an ab initio method that solves the nuclear many-body
problem by expanding the many-particle wave function into a (typically) harmonic oscillator basis and min-
imizing the energy to obtain the expansion coefficients. Extensions of the NCSM, such as its coupling with
microscopic-cluster basis states, further allow for an ab initio treatment of light-ion nuclear reactions of interest
for both astrophysics and nuclear technology applications. A downside of the method is the exponential scaling
of the basis size with increasing number of nucleons and excitation quanta, which limits its applicability to mass
A � 16 nuclei, except for variants where the basis is further down-selected via some truncation scheme.
Purpose: We consider a basis selection method for the NCSM that was first introduced in the context of the
large-scale shell model and captures the essential degrees of freedom of the nuclear wave function leading to a
favorable complexity scaling for calculations and enabling ab initio reaction calculations in sd-shell nuclei.
Methods: The particle configurations within the NCSM basis are ordered based on their contribution to the first
moment of the Hamiltonian matrix that results from the projection onto the many-body basis. The truncation
scheme then consists in retaining only the lowest-first-moment configurations, which typically contain only
few many-body basis states (Slater determinants). As the energy threshold above which configurations are
disregarded is increased, the size of the basis becomes an almost-continuous variable, allowing for tunable
fidelity in the obtained wave functions. The resulting wave functions can then be used directly in ab initio
reaction calculations.
Results: We present calculations for 7Li and n + 12C scattering using nucleon-nucleon interactions derived
from chiral effective field theory and softened using the similarity renormalization group method. The obtained
energy levels invariably demonstrate exponential convergence with the size of the basis, and we find improved
convergence in scattering calculations. To demonstrate the possibilities enabled by the approach, we also present
a first calculation for the scattering of neutrons from 24Mg.
Conclusions: The method presented in this work appears promising for future studies of nuclei with mass A>

16, opening multiple future research directions impacting both nuclear astrophysics and nuclear technology
applications.
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I. INTRODUCTION

The description of nuclear structure from first principles
(or ab initio) plays a key role in modern-day nuclear theory
with various methods developed in recent years exhibiting
remarkable successes [1–5]. Many such methods are able to
reach midmass and heavier nuclei as they exhibit polynomial
scaling with the number of nucleons in the system [1,6,7].
Alternatively, quasiexact methods such as quantum Monte
Carlo [8] or the no-core shell model (NCSM) [9,10] do not
enjoy such a favorable scaling, with an exponential growth
in problem dimension being typical as heavier nuclei are
targeted. Nevertheless, these methods come with increased
precision, making them the state of the art in the systems
where they can be applied.

*kravvaris1@llnl.gov

The adaptation of these ab initio methods to the cal-
culation of nuclear reactions has been slower and more
limited: In light and medium-mass systems, most devel-
opments centered around the scattering of single nucleons
from nuclei [11–20] though some extensions to the treat-
ment of nonelastic reactions [21] have also been considered.
Approaches utilizing lattice effective field theory [22] have
also been brought forward, targeting the scattering of 4He
nuclei from N = Z targets. The NCSM with continuum (NC-
SMC) [23,24] is perhaps the most advanced of this class
of methods, having enabled a wide range of predictive ab
initio calculations of nucleon and deuteron-induced scattering
[25–29], capture [30,31], and fusion reactions [32] in light
nuclei. (For a more in-depth discussion of such methods we
refer the reader to Refs. [33,34].) Finally, we should also
mention that multiple ab initio nuclear structure methods
have been successfully extended to the description of pho-
tonuclear cross sections [35–37] and electroweak response
functions [38,39].
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The wave function ansatz of the NCSMC approach com-
bines microscopic cluster states in the spirit of the resonating
group method (RGM) [40,41] that describe the relative motion
of the reaction fragments with eigenstates of the aggregate
system that capture the many-body correlations whose effects
dominate at short distances. The many-body wave functions of
the projectile, target, and aggregate systems are all computed
within the NCSM. Thus, the NCSMC faces some of the same
computational limitations as the NCSM, particularly when
applied to the description of reactions for nuclei heavier than
oxygen. However, the basis states required to describe the
wave functions of the reactants are not all equally important
when it comes to computing low-energy scattering and re-
actions. While the projectile’s and target’s energies must be
described accurately to correctly reproduce reaction thresh-
olds, high-fidelity details in their wave functions may not be as
essential [42,43]; it is therefore interesting to explore the use
of tunable-fidelity NCSM wave functions within the NCSMC.

Work along these lines was first carried out in Ref. [42],
when the NCSM combined with the resonating group method
(NCSM/RGM) [44,45] was applied to n + 12C and n + 16O
scattering by leveraging the importance-truncated NCSM (IT-
NCSM) [46,47]. Wave functions obtained in the IT-NCSM
were later also used in NCSMC calculations of n + 16C in
Ref. [48], as well as in the description of the properties of
9Be [49]. The many-body basis selection in the IT-NCSM
is founded in many-body perturbation theory, where the ac-
tion of the Hamiltonian on a starting vector will determine
the basis states that will be retained. This approach can be
considered part of a broader class of methods that use the
Hamiltonian to dynamically select the relevant components
of the basis, while remaining agnostic to the specifics of the
nuclear interaction.

In a similar spirit, and particularly relevant when extending
the NCSM to systems with mass A>16 is the symmetry-
adapted NCSM (SA-NCSM) [50,51]. In this case, the many-
body basis is systematically reorganized and down-selected
according to a symmetry-guided prescription, retaining at
each step states linked to ones that are determined to be im-
portant in the preceding step via exact diagonalization. Under
this approach, calculations require an additional unitary trans-
formation to transition from the more traditional J-scheme
basis to the symmetry adapted one, but fare remarkably well
when considering the convergence of symmetry-dominated
observables, such as collective E2 transition rates.

First steps towards the extension of this approach by com-
bining it with the RGM method [43] demonstrated the efficacy
of the SA basis and promising scalability with number of
particles toward ab initio descriptions of nucleon scattering
and capture reactions up through the medium-mass region.
However, a full implementation of the combined method has
not yet been achieved.

More recently, a different extension combining the (un-
truncated) SA-NCSM basis with the single-particle Green’s
function approach enabled the ab initio description of single-
nucleon scattering from a 4He nucleus [52] opening a path for
predictions of nucleon elastic scattering and capture as well
as deuteron breakup reactions for a broad range of open-shell
spherical and deformed nuclei.

To bridge the gap that currently still exists when it comes
to the ab initio description of scattering and reactions for
A>16 nuclei, we implement in the context of the NCSM
an approach first introduced in Ref. [53] for the large-scale
shell model [54,55] (LSSM) and explore its effectiveness
for producing tunable-fidelity wave functions for use in ab
initio scattering calculations. The approach, which we dub
configuration-truncation no-core shell model, or CT-NCSM,
consists in pre-selecting important configurations based on the
value of their contribution to the trace (or, first moment) of the
Hamiltonian.

Despite the similarity in name, the NCSM bears little re-
semblance to the LSSM, and thus it should not be immediately
assumed that such an approach will bear fruit. In the LSSM,
the low-lying structure of nuclei results from the interactions
between configurations of a few valence particles on top of
an inert core via an effective residual force, with two-body
matrix elements either fitted directly to experimental data
[54,56–60], or obtained via a renormalization of the nucleon-
nucleon (NN) and sometimes three-nucleon (3N) interaction
[61–64]. The NN and 3N interactions that are used in the
NCSM typically depend on a significantly smaller number
(∼40 compared to the hundreds of matrix elements used in
the LSSM) of parameters [65–69] and all nucleons are treated
as active particles.

Nevertheless, insights gained from past shell model studies
have been found to still be applicable in the NCSM [51,70].
Over the years, multiple methods have emerged attempting
to tackle the dimensionality explosion problem in the shell
model with some even finding application in the NCSM, or
vice versa [47,51,71–74]. Most of these truncation methods
fall broadly into two categories: methods that statically pre-
select the basis on which the many-body wave function will
be expanded (as, for example, in Refs. [43,51,75,76]), and
methods that dynamically select basis states based on the
adopted Hamiltonian, such as the IT-NCSM. The former class
of methods typically still relies on some general aspects of
the adopted nuclear interaction and offers the flexibility of
selecting basis states that better fit the search for observables
other than the energy (e.g., basis of states that are strongly
linked to the electric quadrupole operator if a good description
of deformation is sought). The latter class, being dynamically
generated based on a given Hamiltonian, is free from potential
biases that may be introduced when preselecting the basis to
target specific observables.

This paper is organized as follows. In Sec. II we outline
the basics of basis construction in the NCSM, present the
systematics of Hamiltonian first moments for various types
of nuclear interactions, and briefly revisit the extensions to
the NCSM that allow the calculation of nuclear scattering and
reaction observables. Then, in Sec. III we move on to apply
the CT-NCSM in the calculation of structural properties of
light nuclei (specifically 7Li) and the scattering of neutrons
on 12C using the nucleon-nucleon interaction described in
[65], softened with a similarity renormalization group (SRG)
approach. We also present a first demonstration of the reach of
the CT-NCSM by computing the differential cross section for
the scattering of neutrons from 24Mg. Concluding remarks and
future prospects are given in Sec. IV.
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II. METHODS

Ab initio methods solve the quantum mechanical equa-
tions for the bound state and scattering wave functions arising
from the microscopic nuclear Hamiltonian

Ĥ = T̂rel + V̂ NN + V̂ 3N (1)

with the three operators on the right-hand side denoting the
relative kinetic energy between the nucleons, and the NN and
3N components of the nuclear interaction, respectively. This
Hamiltonian, when projected on a many-body harmonic oscil-
lator basis (as is done in the NCSM), typically leads to binding
energies that are the result of large cancellations between the
expectation values of the kinetic energy and NN interaction,
whereas the 3N part of the interaction plays a somewhat more
limited role.

A. No-core shell model

In the NCSM, the nuclear many-body problem is solved
on a complete harmonic oscillator (HO) basis defined by
the maximum allowed number of quanta of excitation (Nmax)
from the lowest Pauli-allowed state. Increasing the value of
Nmax yields approximately exponentially convergent energies
for the states of the system [10,77]. Therefore, in the tra-
ditional NCSM, the variable Nmax solely controls the size
of the basis for a given nucleus, irrespective of the adopted
interaction model. The unique properties of the HO, allow for
both the use of Jacobi relative-coordinate basis states [9,78]
or single-particle Slater determinants (SDs) and still preserve
the translational invariance of the problem [79,80]. In this
paper we focus on the SD version of the approach, which
is computationally more advantageous when exploring the
structure and reactions of p-shell nuclei.

B. Configuration-truncation no-core shell model

The SD basis states are constructed from HO single-
particle wave functions (or states) φi bearing quantum
numbers i = {n� j jztz} with n being the number of nodes, �

the orbital angular momentum, j the total angular momentum,
jz the total angular momentum projection, and tz the isospin
projection, respectively. The radial part of the single-particle
wave functions is further determined by the HO frequency,
given in units of energy as h̄ω. Similarly, we define an orbital
α = {n� jtz} as having the same quantum numbers excluding
jz, and thus having a degeneracy of 2 jz + 1. One could extend
this definition to include the isospin projection quantum num-
ber [thus giving each orbital a degeneracy of 2(2 jz + 1)], but
this is not done here (i.e., there exists a different set of orbitals
for protons and neutrons each).

Furthermore, we define as a configuration an arrangement
of nucleons in the various proton and neutron orbitals. Each
configuration is characterized by a defined value N � Nmax of
total HO quanta of excitation and contains multiple SDs, with
each SD uniquely belonging to a configuration. It is worth
noting that SDs do not necessarily have a good total spin (J)
or isospin (T ). However, since the spin raising and lower-
ing operators do not link different configurations, states with
good J quantum numbers can be constructed within a single

configuration as linear combinations of SDs belonging only
to that configuration. States with good isospin would require
the extended definition mentioned above (i.e., excluding the tz
quantum number from the definition of an orbital).

As has been extensively discussed in the context of the
LSSM [81,82], configurations can be assigned an energy
centroid, identified as the average trace of the Hamiltonian ex-
panded in the SDs included in the configuration. For example,
over a set of M orbitals (αi), each with occupation nαi , we can
define a configuration κ = [nα1 nα2 . . . nαM ] having dimension
dκ with a first moment given by

〈Ĥ〉κ = 1

dκ

Tr[Ĥ]κ . (2)

The κ-configuration trace itself can be computed straight-
forwardly either by explicitly constructing the Hamiltonian
matrix projecting only onto SDs belonging to the configura-
tion, or by simply adding up the diagonal contributions from
the various components of the Hamiltonian according to [81]

〈Ĥ〉κ = 1

4

∑
i j

H2b
i j D[i j]

κ + 1

36

∑
i jk

H3b
i jkD[i jk]

κ . (3)

Here, the indices i, j, and k enumerate single particle states
and the values D[i jk]

κ denote the number of SDs within configu-
ration κ that have the states i, j, and k occupied; the definition
of D[i j]

κ is analogous. The two-body matrix elements H2b
i j =

V NN
i ji j along with their three-body counterparts H3b

i jk = V 3N
i jki jk

are the only matrix elements contributing to the diagonal.
Higher moments of the Hamiltonian can also be computed
without explicit construction of the matrix [81,83], though
their calculation quickly becomes cumbersome.

While the eigenstates of the Hamiltonian will be given by
superpositions of the various configurations within a specific
Nmax model space, one does not expect that the eigenvector
amplitude for such configurations will be uniformly dis-
tributed within low-lying states. Indeed, just by considering
the convergence pattern of the energy of low-lying states
computed in the NCSM [10], it is clear that configurations
with lower values of N are more important as the energy gain
from increasing Nmax values quickly diminishes. As a result,
it is not uncommon for the contribution of the Nmax = 0 part
of the wave function to be ∼70% in low-lying states. Along
this line of reasoning, the centroid energy of each configu-
ration provides a first-order estimate of the energy at which
that configuration is expected to become important. However,
the correlation energy contributed by the interaction between
configurations will shift states towards lower energies.

In the CT-NCSM we thus follow the prescription suggested
in Ref. [53] and truncate the basis by selecting a desired total
basis dimension and including only the configurations with
the lowest centroid energies up to the point where the desired
limit (denoted by NSD) is reached. Since the number of SDs
that belong to a configuration is significantly smaller than
the full size of the basis, this approach transforms the basis
dimension into a quasicontinuous variable with the (severely
reduced in dimension) matrix diagonalization resulting in a
tunable-fidelity wave function for the low-lying nuclear states.
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FIG. 1. Configuration distributions for 12C using (a) the bare
nuclear interaction of Ref. [65], (b) the NN-only part of the same
interaction after it has been unitarily involved via the SRG trans-
formation with λ = 2 fm−1, and (c) including the SRG-induced 3N
components. For each case, the configurations that have the same
total number of quanta (N) are binned together and their dimension
(number of SDs) is plotted against their centroid. The black line
denote the cumulative total number of states as the centroid cutoff
is increased; that is if one wants a basis of a fixed size (NSD), the
abscissa at that point of the black line will provide the maximum
partition centroid that should be included in the calculation.

Previous work [82] exploited this configuration decom-
position in the NCSM to examine the effects of the SRG
evolution of the NN interaction in two-body space (or NN-
only). It was found that the SRG transformation results in
a lowering of the energy centroids for all configurations ac-
companied by a spreading of the centroids within subspaces
with fixed total number of excitation quanta N . Repeating
this study, we can reproduce the behavior and further demon-
strate how the inclusion of the 3N force induced by the
SRG evolution of the NN interaction in three-body space,
or NN + 3Nind, somewhat alleviates, but does not completely
correct, the spreading effect (see Fig. 1).

Furthermore, Fig. 1 clearly shows that the specifics of the
interaction are not essential in making a selection of the most
important configurations. Indeed, for a large enough value of

FIG. 2. Centroid energies of the first 2 × 104 configurations us-
ing the NN-only and Bare interactions plotted against those obtained
with the NN + 3Nind interaction for 12C. The absence of any obvious
zig-zag shape in the data points to the lack of sensitivity of configura-
tion ordering to the specifics of the interaction. Linear fits are shown
to guide the eye.

NSD, the last few configurations to be included should not play
an important role in the description of the wave function. In
addition, the ordering of configurations shown in each of the
three panels of Fig. 1 hardly differ macroscopically (i.e., apart
from small re-orderings among a few configurations). This
observation is also supported by the absence of zig-zagging in
the energy centroids obtained with the NN + 3Nind interaction
plotted versus those from the NN-only and bare interactions
(see Fig. 2).

We find a similar ordering with the inclusion of vari-
ous forms of three-nucleon forces [84–86], again pointing
to the lack of any significant reorganization arising from the
specifics of the 3N part of the interaction.

C. No-core shell model extensions for ab initio calculations
of scattering and reactions

The NCSM has been extended to the description of scatter-
ing through a variety of methods [23,44,87–89]. Most relevant
to this work, the NCSM combined with the resonating group
method (NCSM/RGM) [44] and the NCSM with continuum
(NCSMC) [23] rely on the ability to explicitly construct
microscopic binary-cluster states where the two reactants (ar-
ranged in a total angular momentum-parity Jπ channel and
places a distance r from each other) are described by NCSM
wave functions:∣∣	Jπ

νr

〉 = [(∣∣A − aαt J
πt
t

〉∣∣aαpJ
πp
p

〉)(s)

× Y�(r̂A−a,a)
]Jπ δ(r − rA−a,a)

rrA−a,a
. (4)

The index ν contains all other quantum numbers needed to
define the the basis states, namely the masses A − a and a and
spin-parities of the target (Iπt

t ) and projectile (Iπp
p ) nucleus,

respectively (any other quantum number needed to define
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the target/projectile internal states is given in the collective
index αt/p) as well as asymptotic quantum numbers � and s
determining, respectively, the relative angular momentum and
spin of the reaction channel. The total wave function of the
system is then determined as an expansion over all the |	Jπ

νr 〉
states

∣∣�Jπ

NCSM/RGM

〉 =
∑

ν

∫
drr2 γ Jπ

ν (r)

r

∣∣	Jπ

νr

〉
(5)

with the continuous amplitudes γ Jπ

ν (r) determined using the
microscopic R-matrix method on a Lagrange mesh [90,91].

The NCSMC further extends this description by augment-
ing the binary-cluster basis with NCSM-computed states of
the aggregate system (here, with mass A):

∣∣�Jπ

NCSMC

〉 =
∑

λ

cλ|AλJπ 〉 +
∑

ν

∫
drr2 γ Jπ

ν (r)

r

∣∣	Jπ

νr

〉
, (6)

where λ enumerates the various A-body eigenstates obtained
in the NCSM, and the coefficients cλ are determined simulta-
neously with the γ Jπ

ν (r) amplitudes.
The computational difficulty in both of these methods

arises in computing the matrix elements of the many-body
Hamiltonian between the binary-cluster states, a difficulty
further exacerbated with increasing Nmax values for the wave
functions of the fragments and, as a consequence, increasing
the number of SDs in the expansion. Naturally, combining the
CT-NCSM with both the NCSM/RGM and the NCSMC is
expected to significantly alleviate this issue, and could open a
path to the ab initio description of reactions for nuclei beyond
oxygen.

III. RESULTS

To demonstrate the performance of the CT-NCSM, we
conducted NCSM, NCSM/RGM and NCSMC calculations
starting from a microscopic two-nucleon Hamiltonian. That
is, for the present study, we disregard the three-nucleon force
term of Eq. (1), as well as the SRG-induced 3N compo-
nents. There is no issue in generalizing the method to 3N
forces. Specifically, we adopt the interaction described in [65],
evolved to an SRG resolution scale of λ = 2 fm−1 [92], and
set the oscillator parameter for the NCSM basis at h̄ω = 20
MeV as these are typical choices used in many light-nuclei
calculations in the past [29,31,93].

A. Low-lying spectrum of 7Li

We start by considering the nucleus of 7Li. This nucleus
is light enough that NCSM calculations can be performed up
to Nmax = 12 with relative ease, but complex enough that its
spectrum of low-energy levels is affected by multiple modes
of clusterization (3H + 4He, n + 6Li, and eventually p + 6He).
Reproducing the coexistence of such modes in the CT-NCSM
is a necessary component in demonstrating the effectiveness
of the present approach for the description of any nuclear
state, including those that may present different properties
(or share different dominant configurations) from the ground
state.

FIG. 3. Convergence of absolute energies of low-lying states in
7Li with respect to the CT-NCSM basis size, shown by horizontal
bars. Triangles correspond (going from the left to the right in increas-
ing size of the basis) to energies obtained with the traditional NCSM
Nmax = 4, 6, 8, 10, and 12 truncation. The markings along the hori-
zontal axis indicate at which basis dimension the first configuration
corresponding to a specific total number of quanta enters.

First, we look at the convergence of the 7Li spectrum of
energy levels with respect to the size of the CT-NCSM basis
(NSD). As described in the previous section, we use the first
moment of the Hamiltonian as a guide to order the config-
urations. We progressively truncate the many-body basis at
increasing values of NSD, ranging from ∼104 SDs to ∼108

SDs, by correspondingly retaining an increasing number of
configurations. We consider here all configurations having a
total number of quanta N � 20; for reference, the full Nmax =
20 space would contain roughly 7.5 × 1010 SDs which, to the
best of our knowledge, is a factor of 3 larger than currently
accessible dimensions [94]. As a reminder, in the Nmax trun-
cation typically adopted in the NCSM, all and only states
with up to a fixed total number of quanta are included; in
the present configuration truncation scheme, there is no such
restriction with, for example, basis states reaching as high as
Nmax = 18 being included already at NSD = 4.3 × 107 (see
Fig. 3), a dimension similar to that of the full Nmax = 10 space.

The convergence of the CT-NCSM absolute energies in
the low-lying spectrum of 7Li follows a similar exponential
convergence as observed in the LSSM and the NCSM [53,77]
with increasing NSD (Fig. 3). Moreover, the NCSM calcu-
lations obtained with the Nmax truncation mostly lie along
the same convergence pattern as those obtained with the CT-
NCSM despite of the different HO quanta content of the basis
states included. That we do not find a substantially accelerated
convergence is not unexpected; the fact that in many-body
calculations a large part of the total binding energy comes
from many states with small amplitudes has been demon-
strated in various cases over the years [95,96]. While in past
microscopic approaches some part of the interaction could
be tuned to reproduce the total binding energy for a given
wave function truncation scheme [97,98], this is not an easily
accomplished—or desired—feat in ab initio calculations. It
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is, however, helpful to have a truncation scheme that follows
exponential convergence, as absolute energies can be obtained
by extrapolation. In this respect, the CT-NCSM is highly
favorable as the energy of a given state can be computed at
additional basis dimensions compared to the traditional Nmax

truncation (see, e.g., Fig. 3), thus providing an increased data
set for constraining such an extrapolation.

The wave functions obtained with such successively larger
bases provide further insight on the convergence of the CT-
NCSM. At roughly NSD = 3 × 107 we obtain a ∼1% change
in binding energy compared to NSD = 107, hitting the point of
diminishing returns. For all five states in Fig. 3, the difference
between the energies obtained with NSD = 108 versus NSD =
107 is ∼2% and the overlap between the corresponding wave
functions is greater than 98.6%, corroborating that reasonable
convergence has been achieved. Remarkably, the 5/2−

2 state is
also well reproduced in the CT-NCSM, despite it belonging
to a sufficiently different class of states than the ground-
state rotational band. This serves as a demonstration that the
truncation scheme underlying the CT-NCSM is unbiased and
effective.

Next, we investigate the convergence properties of the
matrix elements of electromagnetic transition operators com-
puted within the low-lying 7Li states obtained within the
CT-NCSM. Naively, one may think that the inclusion of basis
states with higher quanta earlier on in the many-body basis
would provide an improved description of the long-range part
of the wave functions and thus an accelerated convergence
of the electromagnetic transitions computed from them, such
as B(E2) quadrupole transition probabilities. However, (rela-
tively large) collective transition rates emerge from multiple
coherent transitions over all the SDs with small amplitudes
and thus B(E2) values computed within the CT-NCSM follow
the same convergence pattern as they would using the standard
Nmax truncation (see Fig. 4).

Finally, one of the advantages of using the Nmax truncation
is that it enables the exact separation of the center-of-mass
(c.m.) part of the wave function [10]. A priori, the CT-NCSM
does not enjoy this property because the c.m. Hamiltonian
(Hc.m., here defined so as to be dimensionless) mixes different
configurations. In principle, one could extend the configura-
tion truncation scheme to include all configurations required
to exactly diagonalize Hc.m.. Since Hc.m. is a two-body op-
erator, if a configuration is selected then all configurations
that change the orbital occupations by up to a number of two
particles would need to also be included. However, such an
approach would severely limit the benefits of the CT-NCSM,
quickly leading to large basis dimensions. Rather, we use a
technique almost as old as the shell model itself [101–103]
that consists in diagonalizing the altered Hamiltonian

Hβ = H + β × (
Hc.m. − 3

2

)
, (7)

where β is chosen to be some large value (we choose here a
value of 40 MeV). The effect of adding this term is to sepa-
rate (spurious) eigenstates that contain non-zero-quanta c.m.
contributions and shift them to higher energies. We find that
the number of c.m. quanta in our final wave functions never
grow above 0.002 for calculations with a reasonably large
basis size. (Very small values for NSD tend to yield up to 0.005

FIG. 4. B(E2) values for excited states of 7Li decaying into
the 3/2− ground state. Solid lines with circles denote calculations
performed in the CT-NCSM, while dashed lines with triangles corre-
spond to calculations performed using the Nmax truncation (Nmax = 6,
8, 10, and 12). For the transition B(E2, 1/2−

1 → 3/2−
1 ), experimental

data yield 16.6(10) e2fm4 [99], which is almost double the value
calculated here, however the work of [100] has demonstrated the
need for the inclusion of the 3H + 4He continuum in order to obtain
an accurate description of the transition rate.

c.m. quanta.) Note that these values concern wave functions
obtained using the hamiltonian of Eq. (7) and thus provide a
good measure of the spuriosity contributions as discussed in
Ref. [104]. One could be tempted to use the altered Hamil-
tonian of Eq. (7) already when selecting the configurations,
however this would simply result in a spreading (dependent
on the value of β) of configurations having different total
numbers of quanta [53] because the selection process utilizes
only the diagonal part (trace) of the Hamiltonian.

B. Low-energy neutron-12C scattering

Keeping in mind that the main driver for this work, we now
turn to the scattering of a neutron from 12C. The two methods
that will be employed are the NCSM/RGM [25,44,45] and
the NCSMC [23–25], briefly introduced in Sec. II C. While
the NCSM/RGM requires a good description of the target nu-
cleus 12C, the NCSMC further requires as input NCSM wave
functions of the aggregate projectile-target system (in this case
13C). In both methods we replace all NCSM-obtained wave
functions (i.e., for states of 12,13C) with CT-NCSM ones and
study the convergence with respect to NSD. The configuration
centroid structure for 12C (Figs. 1 and 2) has already been
discussed in Sec. II B and we do not repeat it here; the ground
state energies obtained for both nuclei at various values of
NSD are listed in Table I. Note that calculations of different
nuclei with the same NSD should not be directly compared to
evaluate, for example, the position of decay thresholds, as the
fidelity obtained for each nucleus is different. In traditional
NCSM calculations, this comparison is done on the basis of
Nmax; while a priori there is no particular reason for which
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TABLE I. Absolute values for the energies of 12,13C in the
CT-NCSM and 13C binding energies with respect to the n + 12C
threshold in the CT-NCSM/RGM for various basis sizes (NSD). Note
that the overbinding compared to experiment is a byproduct of the
NN-only SRG evolved interaction used in the calculations, as dis-
cussed for example in Ref. [42].

CT-NCSM CT-NCSM/RGM

NSD
12Cg.s.

13C1/2− 13C1/2+ 13C1/2− 13C1/2+

3 × 107 −96.38 −104.73 −93.26 −3.15 −0.23
5 × 107 −97.08 −105.58 −94.40 −2.98 −0.22
7.5 × 107 −97.57 −106.01 −95.19 −2.72 −0.22
1 × 108 −97.87 −106.32 −95.84 −2.63 −0.22
1.5 × 108 −98.36 −106.72 −96.69 −2.54 −0.22
2 × 108 −98.64 −107.01 −97.25 −2.49 −0.22
2.5 × 108 −98.86 −107.24 −97.68 −2.43 −0.22
Extrap. −98.93 −107.32 −97.83
Exp. −92.16 −97.11 −94.02

energies obtained for different nuclei at the same Nmax value
should yield the best description of reaction thresholds, in
practice such a behavior has been observed [93].

Apart from the Nmax (or NSD) used to describe the wave
function of the target (and projectile if it is a composite parti-
cle) an additional parameter that defines (CT-)NCSM/RGM
and (CT-)NCSMC calculations is the size of the harmonic
oscillator model space (Nrel) used to represent the relative mo-
tion when computing the (projectile-target) potential kernel
[44,45,105]. In the traditional approach, Nrel is set equal to the
maximum shell that particles in the target nucleus can reach
for a given Nmax value, incremented by one to account for the
parity opposite to that of the ground state (so for s-shell nu-
clei Nrel = Nmax + 1, and for p-shell nuclei Nrel = Nmax + 2).
Using this approach may lead to ambiguities when compar-
ing standard NCSM/RGM calculations with those performed
with the bases selected using the CT-NCSM, since states with
different total numbers of quanta would appear at different
bases sizes (see Fig. 3). Rather, in the following we set
Nrel = 14 for all calculations, including those in which the 12C
wave function is obtained with the traditional Nmax truncation
scheme. We choose this value because the largest CT-NCSM
basis used in the present study was constructed using states
coming from configurations with up to Nmax = 12 excitation
quanta.

The neutron scattering phase shifts computed within the
CT-NCSM/RGM show rapid convergence even with a very
modest number of basis states (Fig. 5). In all partial waves, lest
for the 3/2− case, there is virtually no difference by almost
doubling the size of the basis from NSD = 3 × 107 to 5 × 107

with a small but somewhat visible difference when compar-
ing to calculations using NSD = 106. It is worth noting the
remarkable convergence of all phase shift channels other than
the 3/2− which should clearly be attributed to fixing Nrel at a
relatively large value. In these cases it would appear that the
specifics of the target state are not important overall, however,
the RGM norm and Hamiltonian kernel matrix elements [45]

FIG. 5. 12C +n phase shift convergence with increasing size of
the selected basis. Dot-dashed, dashed, and solid lines correspond
to calculations using NSD = 106, 3 × 107, and 5 × 107 many-body
states, respectively. The 12C +n relative motion is expanded on an
Nrel = 14 space in all cases.

vary at the order of ∼1–10 % between the calculation with
NSD = 106 and the one with NSD = 5 × 107.

Within the CT-NCSM/RGM, we also compute the 13C
ground (1/2−) and first excited (1/2+) bound states; no other
bound states are found. The ground state is found to be bound
by about 2.5 MeV for the largest numbers of basis states
considered in the CT-NCSM calculation of the 12C ground
state (see Table I). The first excited state binding energy
is remarkably better converged with respect to the 12C +n
threshold, having converged to a value of 0.2 MeV even in cal-
culations with smaller bases (NSD < 107). It should be noted
that both these binding energies come as differences between
the energy of the 12C wave function used to describe the target
and the ones obtained from the CT-NCSM/RGM calculation
for 13C. Thus they represent a fairly delicate cancellation
between large numbers. The different convergence patterns
for these two states, however, demonstrates how extending the
many-body basis with the microscopic binary-cluster states of
Eq. (4) affects nuclear properties at different scales.

On the one hand, the 1/2+ state—that evolves to be the
ground state in heavier carbon isotopes—appears at a lower
energy than the 3/2− state as in experiment, showing its halo-
like structure is indeed captured in the truncated calculations
as was the case for the second 5/2− excited state in 7Li. As
a consequence of this structure, the state converges almost
immediately once the binary-cluster channels are included in
the wave function description. On the other hand, the ground
state of 13C is still a compact state with its wave function
spread over multiple SDs, and the short-range correlations
that are further incorporated with increasing NSD are more
important.

The rapid convergence of the 3/2−, 3/2+, and 5/2+ res-
onances further indicates that the structure of these states
should also be dominated by the binary-cluster channel com-
ponents. Like the 1/2+ state, the 3/2− and 5/2+ states
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FIG. 6. 12C +n phase shifts in the 3/2− channel obtained with the
CT-NCSM scheme (black lines) compared to the ones obtained with
the Nmax scheme (red lines with points) of approximately the same
dimension, as well as with wave functions obtained in the Nmax = 8
IT-NCSM with κ = 10−5 (see Ref [42] for details). The number
in parentheses for each space indicates their respective dimension.
We observe a rapid convergence using the CT-NCSM. The inset
shows the higher-energy phase shifts, highlighting the discrepancy
between the CT-NCSM and IT-NCSM results, likely originating in
the Nmax > 8 parts of the 12C wave function probed in the CT-NCSM.
All calculations where done in the same Nrel = 14 space for the
carbon-neutron relative motion.

correspond to experimentally bound levels, but to accurately
describe their position with respect to the n + 12C threshold
within the CT-NCSM/RGM it is possible that calculations
including the 2+ excited state of the 12C target would need
to be performed, preferably including the SRG-induced 3N
part of the NN interaction.

The comparison with calculations using the Nmax trun-
cation scheme is also quite favorable. We find accelerated
convergence with the same total size of basis indicating
that the configuration centroid selection scheme succeeds in
capturing the features of the target wave function that are
essential for the description of the 12C +n continuum with a
reduced basis size (see Fig. 6 for a comparison of the least-
well-converged 3/2− phase shifts). Furthermore, the good
agreement between calculations using the Nmax truncation and
the one presented here point to only minimal effects from the
small c.m. contamination of the target wave function.

Next, we make a first comparison of CT-NCSMC phase
shifts using CT-NCSM/RGM norm and Hamiltonian kernels
computed with 12C CT-NCSM wave functions having NSD =
5 × 107 and NSD = 108 (Fig. 7, dashed and solid lines, respec-
tively), denoting each of these cases RGM-A and RGM-B,
respectively. The CT-NCSMC kernels are computed using the
same 13C wave functions in both cases, obtained on bases
of NSD = 108 states for both the negative and positive parity
spectrum. While the overall characteristics of the phase shifts,
such as the number of resonances in each partial wave and
their approximate position, are consistent between the two
CT-NCSMC calculations at different NSD, there is some dis-
agreement in the exact resonance positions.

FIG. 7. NCSMC-computed 12C +n phase shifts using differ-
ent fidelity wave functions—5 × 107 (dashed lines) and 108 (solid
line)—for the NCSM/RGM components and 108 states for both
negative and positive parity states of 13C. Points indicate phase shifts
for the 5 × 107 case with the binding energy of 12C shifted to be
identical to that obtained with 108 states. While the repulsive phase
shifts are almost identical in all cases, there is a clear shift in reso-
nance positions when comparing the dashed and solid lines, which is
corrected by using the same (RGM-B) value of the 12C ground state
energy in both calculation, see the text for further details.

The explanation for this disagreement can be traced back
to the difference in the neutron threshold which for all single-
nucleon-projectile cases can be identified by the binding
energy of the target nucleus. By using the same (RGM-B)
value of the 12C ground state energy in both calculations, the
phase shifts become essentially identical in both the RGM-A
and RGM-B (compare solid lines and points in Fig. 7).

Far from unexpected, this result reaffirms that the
projectile-target interaction potential (RGM kernels and NC-
SMC couplings) arise mostly from the bulk of the wave
function, meaning that one can compute them with the
low-fidelity wave functions and combine them with inde-
pendently calculated binding energies that in turn determine
decay thresholds. There are multiple choices for obtaining
the thresholds, either by performing high-fidelity calculations,
extrapolating to the infinite-basis result [77,106] or, when
precise comparisons to experiment are the goal, setting them
to the measured values. This latter approach is already in use
in the so-called NCSMC-pheno approach [29,31,32].

C. Heavier systems

Finally, we discuss the applicability of the CT-NCSM to
nuclei with mass number greater than A = 13 and specifically
to sd-shell nuclei. While the IT-NCSM has been applied to
nuclei reaching as far as 26O [107] and even 40Ca [46], the IT-
NCSMC has thus far been applied to lighter nuclei, reaching
16O [42] and 17C [48]. To this end, we performed exploratory
CT-NCSM/RGM calculations of the n + 24Mg system, ly-
ing squarely out of reach of the traditional NCSM/RGM.
The convergence of the low-spin members of the yrast band
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FIG. 8. Convergence of excitation energies of the yrast rotational
band members for 24Mg in the CT-NCSM, plotted against the ground
state energy (Eg.s.) obtained in the same calculation. While Eg.s. varies
by about 5% in basis sizes ranging from 5 × 106 to 2 × 108, the ex-
citation energies remain remarkably constant. Right panel compares
the low-lying positive parity states obtained in the CT-NCSM with
experimental data. Spin-parity assignments from ENSDF database as
of April 1, 2022; the tentative (4−, 5+) level is identified as 5+ in the
CT-NCSM calculation. The CT-NCSM excitation energies are ob-
tained by extrapolation, with the resulting extrapolation uncertainty
denoted by the width of each level.

computed in the CT-NCSM is seen in Fig. 8 with the exci-
tation energies (Ex) pointing to an almost perfect rotor with
an R42 = Ex(4+)/Ex(2+) = 3.2 and R64 = Ex(6+)/Ex(4+) =
2.1 (compare with perfect rotor values of 3.3 and 2.1, re-
spectively). The nucleus is significantly overbound due to the
choice of retaining only the NN part of the SRG-evolved
interaction [42], and the rotational band appears to be some-
what squeezed, suggesting a larger moment of inertia than
seen in experiment. Nevertheless, the entirety of the low-
lying positive-parity spectrum is mostly reproduced (Fig. 8),
yielding evidence for the tentative (4−, 5+) state reported in
ENSDF to correspond to the CT-NCSM-computed 5+

1 , since
no other such spin-parity state is seen up to 11 MeV of exci-
tation. For a more robust spin-parity assignment, the negative
parity spectrum should also be computed in a consistent calcu-
lation, but this is not done in this work. Future work including
the 3N components of the interaction in the CT-NCSM should
provide a clearer picture of the static properties of the nucleus,
as well as comparisons with interactions that include, for
example, �-isobar degrees of freedom [108] and can point
to how this spectrum arises from the fundamental properties
of the nuclear interaction.

Despite this overbinding, the excitation energies are well
converged, leading us to the conclusion that the dynamic
properties should also converge in a similar manner, much like
the n + 12C case. This is indeed the case with, for example,
the differential cross section of neutrons with an energy of 3.4
MeV scattering off a 24Mg nucleus (Fig. 9). We find a similar
convergence when looking at the scattering phase shifts for all
angular momentum channels. Again, similar to the n + 12C
case, the bound state spectrum in the CT-NCSM/RGM is

FIG. 9. Differential elastic cross section of neutrons scattering on
24Mg in the CT-NCSM/RGM compared to experimental data from
Ref. [109]. Tripling the size of the basis used to describe the 24Mg
target ground state has virtually no effect on the cross section.

somewhat less converged, predicting, however, a 1/2+ ground
state, a 5/2+ first excited state approximately 500 keV higher
and a 3/2+ state at about 4 MeV of excitation. Compared
to experiment, the ordering of the first two levels is inverted,
and the spacing with the second excited state is significantly
larger. In contrast, CT-NCSM results for 25Mg still show a
1/2+ ground state but place the 3/2+ as the first excited state
at approximately 300 keV and the 5/2+ at approximately 500
keV. Multiple other bound states predicted in the CT-NCSM
are not seen in the n + 24Mg CT-NCSM/RGM calculation as
they would arise predominantly from the coupling of excited
states of 24Mg to the incoming neutron which are not included
here.

In future work, the 3N components of the Hamiltonian of
Eq. (1), both SRG-induced and chiral, will be included in the
CT-NCSM(C) calculations so that particular effects about the
emergence of collectivity in sd-shell nuclei can be probed.

Looking further, from the results presented in the previous
sections we can estimate that, at a minimum, basis compo-
nents entering at Nmax = 6–8 are required for the CT-NCSM
approach to converge. At the same time, computational com-
plexity places a limit on how many states can be reasonably
included in CT-NCSMC calculations. Being optimistic, we
can estimate this upper bound at around 109–1010 basis states.
For 40Ca, states originating from Nmax = 10 configurations
enter after about 2 × 108 total SDs, suggesting that reactions
involving nuclei across the sd shell can be addressed using the
CT-NCSMC. We did not pursue CT-NCSM calculations for
f p-shell nuclei in this work due to computational limitations,
but it seems very likely that the lower f p shell would be ac-
cessible with minor code improvements in computer memory
management. Preliminary calculations for 40Ca have shown
that the centroids of configurations belonging to different total
numbers of quanta (N) are significantly more mixed, but still
maintain the character seen for 12C in Fig. 1, making the
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CT-NCSM a viable approach to obtain nuclear wave functions
for use in the CT-NCSM/RGM and CT-NCSMC.

It is worth noting, however, that it is not immediately
obvious that the configuration selection performed strictly on
the basis of the centroid energy is the best choice. Indeed,
once the configurations that belong to the same Nmax value
are sorted according to their centroid energy, we could select
the lowest ones per Nmax instead of in an absolute scale as
done in the present work. Such an approach would ensure
that “long-range” orbits are included, while still keeping the
size of the basis manageable; we defer this investigation to
future work, along with various other options for selecting
configurations including higher Hamiltonian moments.

IV. CONCLUSIONS

In this work we applied the configuration centroid trunca-
tion method proposed in Ref. [53] to the NCSM, as well as
its NCSM/RGM and NCSMC extensions that allow for the
ab initio treatment of nuclear reactions. Despite the simplicity
of the approach, extending from the traditional shell model
to the NCSM with its vastly increased number of configu-
rations represented somewhat of a technical challenge. We
found promising results for both the convergence of energy
levels but especially for calculations of reaction observables.
Specifically, for the case of neutrons scattering off of 12C in
the CT-NCSM/RGM framework, we find rapid convergence,
even with modest basis sizes, lending credence to the postu-
late that the projectile-target interaction does not depend on
the more delicate features of the target states, but rather the
longer-range properties of the nuclear wave function. The pre-
cise description of well-bound states, however, still requires
the inclusion of short range correlations in the many-body
wave function and thus necessitates the extension to the CT-
NCSMC.

When more than one nuclear wave function is needed for
the description of the reaction—as is the case for the NCSMC
and, in general, for any reaction except for single-nucleon
elastic scattering—we find that the position of resonances de-
pends the computed position of the respective threshold which

is less accurately described solely within the presented frame-
work. Nevertheless, we have pointed to various approaches
for mitigating this issue, each with its own set of advan-
tages. Particularly interesting when comparing to low-energy
experimental data, the NCSMC-pheno approach described in
[29,31,93] tunes the position of thresholds and resonance po-
sitions to the experimental values.

The results presented here enable several avenues of fu-
ture research. Ab initio calculations of nuclear reactions for
nuclei up to 40Ca now appear possible, allowing for studies
of continuum effects along entire isotopic chains, including
neutron-heavy light nuclei, where the open-quantum-system
effects can be significant, essentially defining the dripline
[110]. Moreover, as evidenced by the convergence of the 7Li
spectrum, essential features of deformed nuclei are also well
captured within this approach, making the study of the effects
of deformation on reaction cross sections from first principles
another possibility for the future.

This work is the first in an on-going program that aims
to both extend the reach of current ab initio nuclear reac-
tion methods, as well as connect ab initio nuclear theory to
phenomenological nuclear reaction methods targeting heavier
nuclei relevant in nuclear astrophysics and nuclear technology
applications.
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