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Effects of center-of-mass correction and nucleon anomalous magnetic
moments on nuclear charge radii
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Effects of the center-of-mass (CM) correction together with the nucleon electromagnetic form factors on
the nuclear charge radius are systematically studied with a relativistic Hartree-Bogoliubov model. Both one-
and two-body parts of the CM correction are taken into account. It is found that the one- and two-body CM
corrections, and the spin-orbit effect originating from the nucleon anomalous magnetic moments, are all of the
same order in magnitude, and that they give sizable impacts on the charge radius from light to heavy nuclei.
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I. INTRODUCTION

The nuclear charge radius is one of the most fundamen-
tal observables of the atomic nucleus, which is measured
accurately by the electromagnetic probes such as electron
scattering and atomic laser spectroscopy [1–13]. Although
the charge radius represents simply the size of the nuclear
many-body system, it exhibits signals of the nuclear structure
effects such as the shell effect [11,12,14–16], pairing correla-
tion [7,9–11,17], and deformation [6,13,18,19]. The quantum
fluctuation of the nuclear shape can also have considerable
effects on the charge radius [20,21]. It is also argued that
the difference of charge radii between a pair of mirror nuclei
is correlated with the nuclear symmetry energy [5,9,22–27].
Therefore, the precise theoretical interpretation of the charge
radius is intimately related to various many-body and electro-
magnetic effects as well as the understanding of nuclear force.

Among the nuclear many-body theory, the mean-field
model [28–32] is suitable to study the systematic behaviors
of the charge radius. It describes the nuclear many-body sys-
tem in a microscopic manner with a universal energy density
functional (EDF). Properties of the atomic nucleus such as
binding energy, size, and electromagnetic moments are the
basic ground-state observables that one wishes to describe
with the model. An essential feature of the mean-field model
is the breaking of the symmetries possessed by the many-body
Hamiltonian. On the one hand, it introduces additional corre-
lations within a single product-state wave function, and on the
other hand, it necessitates restoration of symmetries or correc-
tion of the observables for the symmetry breaking [29–32].

The translational invariance is always violated in the mean-
field model for finite nuclei since a many-body state is
constructed as nucleons bound in a mean-field potential which
is fixed in space. The center of mass (CM) of the state is lo-
calized around the potential and gives spurious contributions
to observables. In principle, one should restore the symmetry
by a projection method, [29–33], which is numerically costly
for realistic calculations. In most applications, the spurious
effect is either neglected or removed in various approximate

ways from the binding energy and the charge radius [34–41].
Recently, the CM correction on the binding energy was ex-
tensively discussed in Ref. [35] with a particular focus on
the impact of the two-body operator part of the CM kinetic
energy, which has been neglected in many of the existing
EDFs. The significant effects of the two-body part on the
surface-energy coefficient and the deformation energy were
demonstrated [34,35].

In this paper, we assess the correction of the charge radius
for the violation of translational invariance. The correction is
made by removing the effect of the zero-point fluctuation of
the CM in calculating the expectation value of the squared
radius. As in the case of the CM kinetic energy [34,35],
there arise one- and two-body parts of the correction of the
expectation value. The CM correction of the radius has often
been completely neglected, although it is taken into account in
some of the existing functionals with the one- and two-body
parts [36,37] in an approximate way [38], with only the one-
body part [37,39]. Note that, for the charge radius, the CM
correction can also be taken into account in the nuclear charge
form factors by an approximate projection technique [33,42]
(see also Refs. [29,30,43–45]). The connection between our
approach and the projection method will also be discussed via
a harmonic-oscillator (HO) model.

In addition to the CM correction, it is important also to
consider the electromagnetic structure of the nucleon for pre-
cise description of the charge radius, which is reflected in
the electromagnetic form factors. Notice that the form factors
of the nucleon directly affect the nuclear charge-density dis-
tribution. In particular, the effect of the so-called spin-orbit
contribution due to the anomalous magnetic moment of the
nucleon is sensitive to the shell structure, as has long been
discussed [42,43,46–50]. Since it is an O[(v/c)2] ≈ 1% ef-
fect, where v/c ≈ 0.1 is the typical velocity of the nucleon
in a nucleus, it would be comparable to the CM correction of
O(1/A).

Therefore, in the present paper, we take into account
the full CM correction of the charge radius, including its
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two-body part, together with the nucleon electromagnetic
form factors to study systematically (i) the contributions to
the charge radius from CM correction and anomalous mag-
netic coupling and (ii) the impact of the corrections on the
charge radius, in comparison with the experimental data. To
be consistent with the electromagnetism formulated in a co-
variant way, it is appropriate to treat the nuclear many-body
system with a relativistic theory. For this purpose, therefore,
we employ a relativistic Hartree-Bogoliubov (RHB) model.

The paper is organized as follows. In Sec. II, we describe
how the CM correction and anomalous magnetic coupling
effect modify the calculation of charge radius. The analysis
of the corrections and comparison with experimental data are
presented in Sec. III. Lastly, a summary and outlook are given
in Sec. IV.

II. MODEL

A. Relativistic Hartree-Bogoliubov model

We employ an RHB model with DD-ME2 parameter
set [51] for the ph channel and Gogny D1S interaction [52,53]
for the pp channel. A remark on DD-ME2 is in or-
der: the parameter fit to charge radii was made by rch =√〈r2〉p + (0.8 fm)2, where 〈r2〉p is the mean-squared (MS)
radius of point-proton density distribution, and (0.8 fm)2

is a correction for the charge radius of the proton it-
self, with BCS calculations instead of Hartree-Bogoliubov.
The CM correction and anomalous magnetic coupling de-
scribed in the following subsections were not considered. See
Refs. [51,54–60] for details of the RHB model and the DD-
ME2 parameter set. We impose the spherical symmetry and
solve the RHB equations in the radial coordinate space.

B. Center-of-mass correction on mean-squared radii

The MS radius 〈r2〉p of proton distribution, without CM
correction, is given as

Z〈r2〉p =
〈∑

i∈p

r2
i

〉
=
∫

d3r r2ρp(r), (1)

where ri is the position of the ith proton. The correction for
the spurious CM contribution should be made by

Z〈r2〉p,corr =
〈∑

i∈p

(ri − RG)2

〉

≡ Z
[〈r2〉p + �(CM1)

p + �(CM2)
p

]
, (2)

where RG = (1/A)
∑A

i=1 ri is the CM position of the nucleus.
In addition to the MS radius 〈r2〉p as given in Eq. (1), the cor-
rection yields the one- and two-body parts, �(CMi)

p (i = 1, 2),
which are given by

〈r2〉p = 1

Z

∑
α∈p

v2
α〈α|r2|α〉, (3)

�(CM1)
p = − 2

AZ

∑
α∈p

v2
α〈α|r2|α〉 + 1

A2

∑
α

v2
α〈α|r2|α〉, (4)

�(CM2)
p = + 2

AZ

∑
αβ∈p

(
v2

αv2
β − uαvαuβvβ

)|〈α|r|β〉|2

− 1

A2

∑
αβ

(
v2

αv2
β − uαvαuβvβ

)|〈α|r|β〉|2, (5)

respectively, in terms of the canonical occupation amplitudes
uα and vα of the single-particle state α. Notice that the sum-
mation of the first terms in Eqs. (4) and (5) runs over the
proton states only whereas the one in the second terms runs
over both the proton and the neutron states. See Appendix A
for a derivation of Eqs. (4) and (5).

C. Effect of anomalous magnetic moment
and finite size of the nucleon

In general, the nuclear charge form factor is given
by [42,47,61–63]

ρ̃ch(q) =
∑

τ=p,n

[F1τ (q2)ρ̃τ (q) + F2τ (q2)ρ̃κτ (q)], (6)

where the Fourier components of the point nucleon densities
are given in terms of the densities in the real space as

ρ̃τ (q) =
∫

d3r eiq·rρτ (r),

ρ̃κτ (q) =
∫

d3r eiq·rρκτ (r). (7)

In the mean-field approximation, the densities are given by

ρτ (r) =
∑
α∈τ

v2
αψ†

α (r)ψα (r), (8)

ρκτ (r) = κτ

h̄

2mc
∇ ·

∑
α∈τ

v2
αψ̄α (r)iαψα (r), (9)

with ψα being the wave function of a canonical single-particle
state α. In Eq. (9), m is the nucleon mass, κp = 1.793 and
κn = −1.913 are the anomalous magnetic moments of the
nucleon, and α = γ 0γ is the usual Dirac matrix. The nucleon
form factors F1(q2) and F2(q2) contain the information about
the internal electromagnetic structure of the nucleon. Note
that their values at zero momentum transfer are identified as
F1(0) = Q and 2[F1(0) + κF2(0)] = g, where Q is the electric
charge, and g is the g factor of the nucleon [64]. Thus they are
normalized as F1p(0) = F2p(0) = F2n(0) = 1, and F1n(0) = 0.

The nuclear MS charge radius without the CM correction
is given by

〈r2〉ch = −∇2ρ̃ch(q)|q=0

ρ̃ch(0)

= 〈r2〉p + 〈r2〉κ + Cp + N

Z
Cn, (10)

where

〈r2〉κ = 1

Z

∑
τ=p,n

∫
d3r r2ρκτ (r), (11)
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and Cτ (τ = p, n) are the constants independent of the nuclear
structure:

Cτ = −6
dF1τ

dq2

∣∣∣∣
q2=0

= −6
dGEτ

dq2

∣∣∣∣
q2=0

− 3h̄2

2m2c2
κτ . (12)

Here, GEτ = F1τ − q2(h̄/2mc)2κτ F2τ is the electric Sachs
form factor [63,65–68]. The first term in Eq. (12) is interpreted
as the MS charge radius of the nucleon itself [67,69,70].
We take the experimental values [71] for proton and neutron
charge radii:

−6
dGE p

dq2

∣∣∣∣
q2=0

= (0.841 fm)2, (13)

−6
dGEn

dq2

∣∣∣∣
q2=0

= −0.116 fm2. (14)

Therefore, for given densities ρp and ρκτ of point nucle-
ons, the momentum dependence of the form factors, or the
finite-size effect, only adds a constant to the MS radius of
point-nucleon charge distribution. Note that we do not in-
clude the Darwin-Foldy correction, which has been discussed
in literature [49,72–74], since the correction for proton MS
charge radius, 3h̄2/(4m2c2) ≈ 0.033 fm2, is smaller in most
cases than the CM and spin-orbit corrections by an order of
magnitude.

In this paper, we calculate the charge radius in the follow-
ing way. In the RHB calculations, we take F1τ (q2) = F1τ (0)
and F2τ (q2) = F2τ (0), i.e., we take into account the effect of
the point-nucleon anomalous magnetic moment. The charge
density is then given as

ρch(r) =
∑

τ

[F1τ (0)ρτ (r) + F2τ (0)ρκτ (r)]

= ρp(r) +
∑

τ=p,n

ρκτ (r). (15)

The first term ρp is the point-proton density distribution while
the second term ρκ describes the contributions of the anoma-
lous magnetic couplings to the charge density. We refer to
the latter as the “spin-orbit” term. Accordingly, the Poisson
equation for the electrostatic potential A0 to be solved in the
self-consistent calculation is given by −∇2A0 = eρch, and the
electromagnetic mean field in the Dirac single-particle Hamil-
tonian for the nucleon of isospin τ takes the form eF1τ (0)A0 +
eF2τ (0) κτ

2m (−∇A0) · iγ . Since we use momentum-independent
form factors, the finite-size effect is still neglected. Instead,
the finite size of the nucleon will be considered only at the
final step to compute the MS charge radius by folding the
resulting RHB charge density by the nucleon form factors, and
consequently we add simply the Cτ terms to the MS radius.
We expect this is enough to the first approximation since the
finite-size effect would give nearly the constant shift to the MS
charge radius unless the complicated many-body effects [29]
on the nucleon form factors are explicitly considered.

With the CM correction on 〈r2〉p, we have for the MS
charge radius

〈r2〉ch,corr = 〈r2〉p,corr + 〈r2〉κ + Cp + N

Z
Cn

= 〈r2〉p + �(CM1)
p + �(CM2)

p + 〈r2〉κ

+
(

0.588 + 0.011
N

Z
fm2

)
, (16)

where we have substituted the numerical values for nucleon
charge radii [Eqs. (13) and (14)], and the 3h̄2κ/2m2c2 terms.
The first term in the second equality of Eq. (16) is the MS
radius of the point proton, the second and third terms are the
CM correction of the first, the fourth term is the contribution
from the magnetic spin-orbit term, and the last term is the
finite-size effect of the nucleon introduced by the momentum
dependence of the form factors. Notice that the last term
which is independent of the many-body wave function is
almost constant with a weak N/Z dependence. In the present
paper, the CM correction of the small spin-orbit contribution
〈r2〉κ is neglected. The root-mean-square (RMS) charge radius
is defined as

rch =
√

〈r2〉ch. (17)

III. RESULTS AND DISCUSSIONS

With the model described in the previous section, we calcu-
late the charge radii of even-even nuclei in the isotope chains
4−8He, 10−22C, 12−28O, 36−56Ca, 50−80Ni, 78−112Zr, 100−148Sn,
and 180−220Pb.

For brevity, the one- and two-body CM correction, �(CM1)
p

and �(CM2)
p , and the spin-orbit term 〈r2〉κ will be referred to

as CM1, CM2, and SO, respectively.

A. Contribution of each correction

Before making a direct comparison of calculated and mea-
sured values of the charge radius, we first show in Fig. 1 the
contributions to the MS charge radius of three terms: the SO
term, 〈r2〉κ , with magenta triangles; the CM1 term, �(CM1)

p ,
with sky-blue squares; and the CM2 term, �(CM2)

p , with purple
squares. The sum of the three is shown by black dots. The gray
bands in the figure show, as a reference to the size of exper-
imental uncertainty, the range given by �〈r2〉(exp) ∈ [(rch −
δrch )2 − r2

ch : (rch + δrch )2 − r2
ch], with rch and δrch being the

measured value of the charge radius and the associated error,
respectively.

Remarkably, all of the three correction terms are of the
same order of magnitude, and furthermore, each contribution
as well as their sum are much larger than the size of experi-
mental uncertainty except for a few cases. It implies that the
three contributions have to be considered if one strives for
precise description of the nuclear charge radius.

1. Center-of-mass correction

The CM1 and CM2 terms are respectively negative and
positive in most cases and rather smooth as functions of the
mass number. Since CM1 and CM2 are O(1/A) corrections,

054323-3



YUSUKE TANIMURA AND MYUNG-KI CHEOUN PHYSICAL REVIEW C 109, 054323 (2024)

FIG. 1. Contributions of each correction term to the MS charge radius for (a) He, (b) C, (c) O, (d) Ca, (e) Ni, (f) Zr, (g) Sn, and (h) Pb
isotopes. Magenta triangles, the anomalous magnetic contribution 〈r2〉κ ; sky-blue and purple squares, the one- and two-body CM corrections,
�(CM1)

p and �(CM2)
p , respectively; black dots, the total correction 〈r2〉κ + �(CM1)

p + �(CM2)
p . The gray bands show the size of experimental

uncertainty �〈r2〉ch ∈ [(rch − δrch )2 − r2
ch : (rch + δrch )2 − r2

ch], with rch and δrch being the measured value of the charge radius and the
associated error, respectively. The data for 54,56Ni are taken from Ref. [3], data for 58−70Ni are taken from Ref. [4], and data for the others
are taken from Refs. [1,2]. The vertical lines are drawn at N = 2, 8, 20, 28, 40, 50, 82, and 126.

their values tend to be more substantial for the light nuclei
but smaller and almost constant for heavy nuclei. Moreover,
the CM2 term tends to cancel the CM1 term for heavier
systems, representing the correct asymptotic behavior of the
CM correction for A → ∞, or infinite-matter limit. Therefore,
the CM2 term should not be neglected in particular for heavier
nuclei.

An approximation with a harmonic-oscillator model de-
scribed in Appendix B is helpful to discuss the CM correction.
As shown in Appendix B, the harmonic-oscillator model re-
produces accurately the RHB results for Ca and heavier nuclei
but only qualitatively for the lighter nuclei. With a further
crude approximation in the harmonic-oscillator model, N =
Z = A/2, one finds for the two-body to one-body ratio of the
CM correction that

�(CM2)
p

�
(CM1)
p

= − N̄

N̄ + 2
, (18)

where N̄ is the harmonic-oscillator quantum number of the
highest-occupied major shell. One immediately sees that the
ratio tends to zero for s-shell nuclei and decreases with A
towards the asymptotic value −1 for A → ∞. One observes a
similar trend in Fig. 1 (see also Fig. 6 in Appendix B).

Now let us pick up the He isotopes showing somewhat
irregular behavior, for which the harmonic-oscillator model
may not work well because of the small mass numbers and the
weakly bound nucleons. As can be seen in Fig. 1(a), �(CM1)

p

for 8He becomes positive, and �(CM2)
p is negative for 6He and

8He. From Eq. (4), we have for the CM1 correction

�(CM1)
p = 1

A

[
−2

(
1 − Z

2A

)
〈r2〉p + N

A
〈r2〉n

]

=

⎧⎪⎪⎨
⎪⎪⎩

1
8 (−3〈r2〉p + 〈r2〉n) for 4He,
1

18 (−5〈r2〉p + 2〈r2〉n) for 6He,
1

32 (−7〈r2〉p + 3〈r2〉n) for 8He,

(19)
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TABLE I. The neutron and proton MS radii, and the CM1 cor-
rection in the unit of fm2 for He isotopes obtained with the RHB
model.

Nucleus 〈r2〉n 〈r2〉p �(CM1)
p

4He 3.91 3.97 −0.999
6He 7.54 3.87 −0.237
8He 9.84 3.90 0.0688

where 〈r2〉n is the MS radius of the neutron. Thus it is
determined by the balance between negative and positive
contributions from protons and neutrons, respectively. In the
neutron-rich He isotopes, the neutron MS radius enhanced by
the weakly bound p-shell neutrons increases the CM1 term.
See Table I for the neutron and proton MS radii and the
resulting CM1 term of the He isotopes obtained by the RHB
calculations. We note that a similar mechanism applies also to
general near-dripline nuclei and that this effect is missing in
the harmonic-oscillator model. (See also Fig. 5 in Appendix B
for the comparisons of the CM correction between the RHB
and the harmonic-oscillator models.) The negative values of
the CM2 correction in 6He and 8He can be understood more
simply. Since the two protons fill only the s shell, the first term
in Eq. (5), which is positive, vanishes for the He isotopes. If
we assume roughly that v2

n1s1/2
≈ 1 and v2

n1p3/2
≈ (N − 2)/4

for the occupation probabilities of the neutron 1s1/2 and 1p3/2

states, respectively,

�(CM2)
p ≈ −2

3

N − 2

A2
I2
sp, Isp ≡

∫
dr rGn1s1/2 (r)Gn1p3/2 (r),

(20)

where Gn1s1/2 (r) and Gn1p3/2 (r) are the radial wave functions of
the upper component of the canonical neutron 1s1/2 and 1p3/2

states, respectively. Since I2
sp ≈ 1 fm2, Eq. (20) explains the

small negative values of the CM2 term in 6He and 8He.
We also mention here the connection of our approach to the

approximate projection method [33] via harmonic-oscillator
approximation. Within the harmonic-oscillator model as de-
scribed in Appendix B, the total CM correction given by
Eqs. (2)–(5) satisfies

�(CM1)
p + �(CM2)

p = − 9h̄2

4
〈
P2

CM

〉 , (21)

where PCM is the CM momentum. On the other hand, it
was shown in Ref. [33] that the second-order Gaussian-
overlap approximation to the momentum projection yields
an effect identical to that with a harmonic-oscillator approx-
imation. In their approximation, the nuclear charge form
factor is corrected by an additional factor of ρ̃CM(q) =
exp( 3h̄2q2

8〈P2
CM〉 ) [33,42]. The additional factor on the charge form

factor, ρ̃ch(q) → ρ̃ch(q)ρ̃CM(q), yields an additional term
−6 d ρ̃CM(0)

dq2 = − 9h̄2

4〈P2
CM〉 in the MS charge radius, which coin-

cides with the total CM correction in Eq. (21). Thus our
approach yields, for heavy nuclei, approximately the same
correction as the projection method, but not for light or weakly

bound nuclei for which the harmonic-oscillator model is not a
good approximation (see Appendix B).

2. Spin-orbit effect

The SO effect is more sensitive than the CM corrections to
the shell structure. As a result, the shape of the total correction
for the heavier isotopes is determined almost by the SO effect
with a shift by the CM correction.

The behavior of 〈r2〉κ can be qualitatively understood by a
nonrelativistic reduction1 [42,48,50]:

ρκ = κ h̄

2mc
∇ · 〈ψ̄ iαψ〉 ∼ − κ h̄

2mc

h̄

mc
∇ · J, (22)

where J is the nonrelativistic spin-orbit density [75]. By inte-
grating Eq. (22) with r2, one finds that

Z〈r2〉κ ∼ κ

(
h̄

mc

)2 ∑
a

v2
a (2 ja + 1)〈l · σ〉a (23)

where a labels a j shell, and v2
a and ja are the occupation prob-

ability and the angular momentum of the level a, respectively.
The symbol 〈l · σ〉a is defined as

〈l · σ〉a =
{

+la for ja = la + 1/2,

−la − 1 for ja = la − 1/2,
(24)

where la is the orbital angular momentum of the level a. Thus
neutrons in a j> = l + 1/2 ( j< = l − 1/2) shell give negative
(positive) contribution to 〈r2〉κ , and a pair of spin-orbit doublet
orbitals cancel each other at an LS-closed configuration. Since
κp is similar in the absolute value to κn with the opposite sign,
protons make the opposite contribution to 〈r2〉κ in LS-open
nuclei. Thus 〈r2〉κ approximately vanishes for, e.g., doubly
LS-closed or N = Z nuclei. We illustrate here the five isotope
chains for which we will show the isotope shifts in the next
subsection. In the Ca isotopes shown in Fig. 1(d), the increase
towards zero of 〈r2〉κ up to N = 20 and the decrease beyond
is understood by the effects of neutrons filling 1d3/2 and 1 f7/2

shells, respectively. In the Ni isotopes shown in Fig. 1(e),
〈r2〉κ ≈ 0 at N = Z = 28 due to the approximate isovector
character of the SO effect. Above N = 28, the neutrons are
scattered over the 1p3/2, 1p1/2, and 1 f5/2 states by the pairing
interaction, which smoothen the variation of 〈r2〉κ . The net
increase of 〈r2〉κ from N = 28 to 40 is caused by the 1 f5/2

neutrons. The large negative slope for N > 40 is the effect
of the 1g9/2 neutrons. In the Zr isotopes shown in Fig. 1(f),
〈r2〉κ ≈ 0 at the doubly LS-closed 80Zr nucleus and decreases
as the neutrons are added in the 1g9/2 shell. In the Sn iso-
topes shown in Fig. 1(g), although the shell effect on 〈r2〉κ is

1Note that the simple reduction provides only a modest approxi-
mation to the SO contribution in relativistic mean-field theory. The
difference originates, as pointed out in Refs. [47,61], from the char-
acteristic of the relativistic mean-field potentials. However, it is still
useful to discuss the qualitative behavior of 〈r2〉κ . We have found
indeed that the estimates with Eq. (23)—〈r2〉κ (fm2) = −0.0422n
for 4+nHe, 〈r2〉κ (fm2) = −0.0211n for 16+nO, and 〈r2〉κ (fm2) =
−0.0127n for 40+nCa—underestimate the RHB results by factor of
≈2 in the absolute value but with the correct sign.
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FIG. 2. Comparison to experimental data of the calculated charge radii for (a) He, C, and O isotopes, (b) Ca and Ni isotopes, (c) Zr and Sn
isotopes, and (d) Pb isotopes. Dashed lines, the radii calculated by rch = √〈r2〉p + (0.8 fm)2 without CM and SO corrections; green triangles,
with only the SO and finite-size corrections as in Eq. (10); yellow circles, with the full correction as in Eq. (16). The experimental data [1–4]
are shown by red squares with error bars.

smoothened by the pairing correlation, its decrease between
A ≈ 120 and 132 is caused mainly by the 1h11/2 neutrons.
Finally, in the Pb isotopes shown in Fig. 1(h), it is again
the intruder 1i13/2-state neutrons that mainly contribute the
smooth decrease of 〈r2〉κ up to A = 208.

Let us give a little more general discussion on the SO effect
around the neutron shell closures. Below the larger magic
numbers N = 50, 82, and 126, the neutrons filling the intruder
j> state, whose orbital angular momentum is larger than any
levels in the shell below, mainly contribute to the decrease
of the charge radius when approaching the magic numbers.
Above a magic number, the decrease before is eventually
compensated by filling of the spin-orbit partner of the intruder,
but the other levels may also contribute at the early filling of
the new shell. As a result, a local minimum of 〈r2〉κ at or a
little beyond N = 50, 82, or 126 is developed. It is not the
case, however, for the lower magic numbers N = 8 and 20
(and N = 40) that correspond to the LS closures. In contrast
to the N � 50 shell closures, the single-particle level below
(above) an LS closure is j< ( j>), which for the neutron case
makes positive (negative) contribution to the charge radius,
forming a local maximum at N = 8, 20, or 40. Such local
extrema of 〈r2〉κ as described above are clearly observed
indeed in Fig. 1. This characteristic behavior of 〈r2〉κ may
influence the shape of the isotope shifts, in particular the kink
structure as discussed also in Ref. [48]. See also a similar
discussion based on the effect of nuclear spin-orbit force in
Ref. [14].

B. Comparison with experimental data

Here we compare the following three calculations with
experimental data for the charge radius.

(1) The RHB calculations are done with F1p(q2) = 1,
F1n(q2) = 0, and F2p(q2) = F2n(q2) = 0. In this case, the
electrostatic potential is generated by the point-proton den-
sity ρp alone. The charge radius is calculated by rch =√〈r2〉p + (0.8 fm)2, denoted in Figs. 2 and 3 as “+(0.8)2.”

(2) The RHB calculations are done with anomalous mag-
netic moment, i.e., F1p(q2) = 1, F1n(q2) = 0, and F2p(q2) =
F2n(q2) = 1, and the charge radius is calculated by Eq. (10),
denoted in Figs. 2 and 3 as “+FF.”

(3) Same as 2 but rch is calculated by Eq. (16) with the CM
correction, denoted in Figs. 2 and 3 as “+FF+CM.”

1. Absolute values of charge radii

Figure 2 shows the calculated absolute values of the RMS
charge radii rch in comparison with experimental data. The
black dashed lines are the results obtained simply by rch =√〈r2〉p + (0.8 fm)2 without CM and SO corrections, and
the green triangles and yellow circles are the ones obtained
with only the SO and finite-size correction as in Eq. (10)
and with the full correction as in Eq. (16), respectively.
The experimental data [1–4] are shown by red squares with
error bars.

As was shown also in Sec. III A, both CM and SO influ-
ence the charge radii by much more than the experimental
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FIG. 3. Calculated isotope shifts compared to the experimental data for (a) Ca, (b) Ni, (c) Zr, (d) Sn, and (e) Pb isotopes. See caption of
Fig. 2 for the description of the legends. The experimental data are taken from Ref. [1–4].

uncertainties. The CM correction systematically reduces the
charge radii. The effect is most significant for He isotopes, and
less for the heavier systems. The SO effect is comparable to
the CM correction in light nuclei and dominant in many of the
heavier nuclei. It is negative except for neutron-deficient C, O,
and Ni isotopes and some of the Sn isotopes (see discussion
in Sec. III A 2).

The calculated radii with the full correction of the He and
C isotopes [Fig. 2(a)] and the Pb isotopes [Fig. 2(d)] tend to
near the experimental values, while the agreements in other
nuclei are deteriorated by CM and SO corrections. We note
again that the fitting of the DD-ME2 parameter set is done
for rch = √〈r2〉p + (0.8 fm)2 without CM and SO corrections
to 16O, 40,48Ca, 90Zr, 116,124Sn, and 204,208,214Pb nuclei [51].
It has also to be mentioned that the finite-size effects for
+FF and +FF+CM values of the charge radius are given
with different values of the nucleon sizes and the additional
3κ h̄2/2m2c2 terms as compared to the one adopted in the
DD-ME2 fit [see Eqs. (10) and (16)].

The charge radii of the He isotopes [Fig. 2(a)] are most
influenced by the corrections because of small A and Z . With-
out CM and SO corrections, the charge radius is largest for
4He and is almost constant along the chain up to 8He. The
slope becomes negative with the SO effect only, but the CM
correction makes the slope positive, which follows the trend of
the measured charge radii of He isotopes. The large staggering
of rch in 4He - 6He - 8He is not reproduced.

In the C and O isotopes, the CM correction is dominant
around N = Z , but the SO effect increases as the neutrons fill
the 1d5/2 state while the CM correction becomes smaller. As
a result, the total correction is more or less constant along the
chains. One sees a kink at 24O due to the SO effect of neutrons
filling the 1d3/2 state.

In the Ni isotopes [Fig. 2(b)], the CM correction dominates
over the SO correction for N � 40. Above N = 40, the strong
negative SO effects of 1g9/2 neutrons suppress the slope of the
charge radius, forming a kink at 68Ni which was not observed
in the recent measurement [4].

In contrast to Ca, Ni, Zr, and Sn isotopes, the +(0.82) result
for the Pb isotopes [Fig. 2(d)] systematically overestimates the
experimental data. This inconsistency in Pb isotopes seems to
be a feature of DD-ME2. For example, the value of the charge
radius of 208Pb shown in Ref. [51] is 5.518 fm, which is very
close to our +(0.82) result but different from the experimental
value, 5.505 fm, quoted in that work.

We will discuss the Ca, Ni, Zr, Sn, and Pb isotopes in more
detail with the isotope shifts in the next subsection.

2. Isotopic shifts

In order to reduce the systematic error in the calculated
values of the charge radius coming from the above mentioned
fitting procedure, we show in Fig. 3 the isotopic shifts, defined
as the MS charge radius of an isotope A relative to a reference
one A′,

δ〈r2〉A,A′
ch =〈r2〉ch(A) − 〈r2〉ch(A′), (25)

for Ca, Ni, Zr, Sn, and Pb isotopes. Note that the effect of CM
correction is also nearly canceled out by the subtraction for
heavier systems.

In Ca isotopes shown in Fig. 3(a), the SO effect of 1 f7/2

neutrons drastically changes the slope of the shift between
A = 40 and 48. The slight decrease of the charge radius from
40Ca to 48Ca is qualitatively reproduced [49]. It can also be
seen that the CM correction slightly decreases the charge
radius on the A < 40 side and increases on the other side,
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moderating the change of slope beyond A = 40. The local
maximum of charge radius at 44Ca and the unexpectedly large
radius of 52Ca are not reproduced by the present calcula-
tions [9,17].

Figure 3(b) shows the shifts in the Ni isotopes. A sharp
kink at 56Ni observed in a recent experiment [3] is reproduced
both with and without the CM and SO corrections. The SO
effect sharpens the kink and improves the agreement with the
data. Another kink appears at A = 68 because of the strong SO
effect of 1g9/2 neutrons. This kink was not observed in another
recent experiment [4]. The rapid increase of the measured
charge radius above N = 28, as in the Ca isotopes, forming an
archlike shape over N = 28–40 is again not reproduced by the
present calculations. Note that it was recently pointed out in
Ref. [21] that this characteristic behavior of the charge radius
between N = 28 and 40 is affected by various properties of
the mean-field model such as the bulk properties, shell struc-
ture, and pairing correlation.

The result for the Zr isotopes is shown in Fig. 3(c). The
slope at the A < 90 region is changed mainly by the SO
effect, which improves the agreement with the decrease of the
measured charge radius from A = 88 to 90 [see also Fig. 1(f)].
The large discrepancy beyond A = 90 may be attributed to
deformation effect [76].

In Sn isotopes shown in Fig. 3(d), the decline of the slope at
the A > 120 region is well reproduced mainly by the SO effect
of 1h11/2 neutrons, as discussed in the previous subsection.
The SO effect above N = 82 shell closure is almost flat and
smooth due to the scattering of neutrons over the shell above
N = 82 [see Fig. 1(g)]. This, together with the SO effect of
1h11/2 neutrons, leads to a kink at A = 132 slightly weaker
than is experimentally observed.

Lastly, in Fig. 3(e) showing the Pb isotope chain, the slope
of the A < 208 chain is changed by the SO effect of mainly
1i13/2 neutrons, which yields the constant decrease of the neg-
ative SO effect for A < 208 [see also Fig. 1(f)]. It improves the
region 182 � A � 192 but slightly worsens 192 � A � 206.

We have also tried the same calculations for the DD-MEδ

parameter set [77] and observed qualitatively similar effects of
CM and SO corrections, but without a kink at 68Ni. It implies
that the SO effect on the kink structure is sensitive to the
proton shell structure and the proton occupation probabilities
determined by the pairing correlation. See also Ref. [48], in
which a number of mean-field models are compared without
the CM correction. Global performance studies of the DD-
ME2 and other parameter sets were also done in Refs. [59,60].

Recently, the effects of the ω-nucleon and ρ-nucleon tensor
couplings in a relativistic mean-field model on the charge radii
were systematically investigated [16]. It was observed that the
impact of the tensor couplings on charge radii is comparable
to the effects considered in the present paper. The meson-
nucleon tensor coupling indirectly influences the charge
radius through its effect on the neutron spin-orbit splittings
and the neutron occupation probabilities of the single-particle
levels [15]. The same effect was also discussed in Ref. [14]
with an extra density-dependent nuclear spin-orbit force,
which leads to results resembling ours for the isotope shifts in
Ca, Ni, Sn, and Pb chains. On the other hand, the magnetic SO
term in the present paper, namely the photon-nucleon tensor

coupling, is a consequence of the electromagnetic property of
the nucleon, which directly modifies the charge density. Note
also that the SO effect is entangled with the effect of strong
relativistic nuclear mean fields as discussed in Refs. [47,61]
although it is a pure electromagnetic effect.

As a final remark, the beyond-mean-field correlations
other than the CM correction can also alter the charge ra-
dius [20]. The effect of the zero-point quadrupole-shape
fluctuation on charge radius was found to be as large as ≈0.01
fm [20,21].

IV. SUMMARY

We have studied the effects of the one- and two-body CM
corrections, and the SO term originating from the anomalous
magnetic moment of the nucleon on the nuclear charge radius.
The former is required by the inevitable breaking of transla-
tional invariance in the mean-field model, whereas the latter
is the electromagnetic property of the nucleon affecting di-
rectly the nuclear charge-density distribution. The finite-size
effects of the nucleon from both Dirac and Pauli form factors
were also included. We employed an RHB model with DD-
ME2 for the ph channel and Gogny D1S for the pp channel.

We have observed sizable impacts of each correction on the
charge radius from light to heavy nuclei. The light nuclei are
significantly affected by both CM and SO corrections, while
the heavier nuclei are much less affected by the former, as
expected.

The CM correction consists of one- and two-body parts.
The heavier the system, the more significant is the effect of
the two-body part, thus it should not be neglected. We also
find that the harmonic-oscillator model is not a good approxi-
mation in light or weakly bound systems although it is nearly
satisfactory for heavy systems.

The magnetic SO effect is more sensitive to the shell
structure than the CM correction. In particular, it leads to
remarkable improvement of Sn and Pb isotope shifts for the
DD-ME2 functional. The SO effect also produces additional
kinks at 24O and 68Ni, the latter of which is not observed in
experimental data.

The two corrections seemingly improve also the agreement
with the measured charge radii in very light H and C iso-
topes. Although the beyond-mean-field correlations are likely
to be important in these lighter systems, it was shown that
the present mean-field model roughly follows the trend of the
measured charge radii.

It would also be interesting to study the effects of the CM
correction on other kinds of radius. More detailed analyses
including those of the matter radius and neutron skin thickness
will be reported elsewhere.

The CM correction affects also the deformation parame-
ters. The correction of the quadrupole moments can be made
in a similar way as the radius since it is quadratic in co-
ordinates. The corrections of higher moments will be much
more complicated because there arise three-body and higher
operators. However, it is expected that the CM correction is
small for the deformation parameters because cancellation
of the correction terms would occur among different spatial
directions.
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APPENDIX A: DERIVATION OF CM CORRECTION
ON RADIUS

Derivation of Eqs. (4) and (5) is given here. Let us consider
a one-body observable:

Â =
∑
αβ

Aαβc†
αcβ, (A1)

where c†
α (cβ) is the creation (annihilation) operator of a

fermion in state α (β), and Aαβ = 〈α|Â|β〉 is the matrix ele-
ment of Â. The square of the one-body operator contains both
one- and two-body parts:

Â2 =
∑
αβγ

AαβAβγ c†
αcγ −

∑
αβγ δ

AαβAγ δc†
αc†

γ cβcδ. (A2)

The expectation value of Â2 is given with Wick’s theo-
rem [31,32] as

〈Â2〉 =Tr[A2ρ] + (Tr[Aρ])2 − Tr[AρAρ] − Tr[A∗κ∗Aκ],

(A3)

where ρ and κ are the one-body density matrix and the paring
tensor, respectively, and A is the matrix representation of the
operator Â. The first term in the right hand side is the one-body
operator part of Â2, while the rest is the two-body part. If Â is
a time-even operator,

〈Â2〉 =
∑

α

v2
α〈α|A2|α〉 +

(∑
α

v2
α〈α|A|α〉

)2

−
∑
αβ

(
v2

αv2
β − uαvαuβvβ

)|〈α|A|β〉|2, (A4)

where vα and uα are the canonical occupation amplitudes.
Note that summations run over the time-reversal partner states
pairwise. If Â is time-odd, on the other hand,

〈Â2〉 =
∑

α

v2
α〈α|A2|α〉 −

∑
αβ

(
v2

αv2
β + uαvαuβvβ

)|〈α|A|β〉|2.

(A5)

Note the opposite signs of the last terms in Eqs. (A4) and (A5).
Equation (A5) applies to the expectation value of the center-
of-mass kinetic energy [34].

The proton squared radius with CM correction is given by〈∑
i∈p

(ri − RG)2

〉

= Z〈r2〉p − 2

A

〈⎛⎝∑
i∈p

ri

⎞
⎠

2〉
+ 1

A

〈(
A∑

i=1

ri

)2〉
, (A6)

where RG = (1/A)
∑A

i=1 ri. The second and third terms,
which are the CM correction terms, can be computed by (A4)
to obtain Eqs. (4) and (5).

APPENDIX B: HARMONIC-OSCILLATOR MODEL

In this Appendix, we give an analytic estimate, similar
to the one in Ref. [38], of the charge radius and the CM
correction terms with a HO model, and compare them with
the experimental data and the RHB results. A connection of
our approach with an approximate projection method [33,42]
is also demonstrated at the end.

Let us consider particles with ν intrinsic degrees of free-
dom filling HO shells up to the one of N̄ quanta. The total
number of particles Np is given by

Np =
N̄∑

n=0

ν
1

2
(n + 1)(n + 2) = ν

6
(N̄ + 1)(N̄ + 2)(N̄ + 3).

(B1)

When Np represents the number of neutrons or protons, ν = 2
for the spin degrees of freedom. However, when Np represents
the mass number of N = Z systems, ν = 4 accounting for
both spin and isospin. The squared radius within the HO
model is given by

∑
α

v2
α〈α|r2|α〉 = h̄

mω

ν

8
(N̄ + 1)(N̄ + 2)2(N̄ + 3)

=3

4

h̄

mω
Np(N̄ + 2), (B2)

where h̄/mω is the squared oscillator length which will be
determined later. For the CM2 term, we need to compute∑

αβ v2
αv2

β |〈α|r|β〉|2. Notice that we neglect the uvuv term
coming from the pairing tensor since it is only effective near
the Fermi surface and much smaller than the v2v2 term being
a bulk effect. Using the HO matrix element of r, one obtains

∑
αβ

v2
αv2

β |〈α|r|β〉|2 =ν

8

h̄

mω
N̄ (N̄ + 1)(N̄ + 2)(N̄ + 3)

=3

4

h̄

mω
NpN̄ . (B3)

The real solution for the algebraic equation (B1) is

N̄ + 2 = fν (Np)1/3 + 1

3 fν (Np)1/3
, (B4)

where

fν (Np) =
√(

3Np

ν

)2

− 1

27
+ 3Np

ν
. (B5)

It follows from Eqs. (B2), (B3), and (B4) that

∑
α

v2
α〈α|r2|α〉 = 3

4

h̄

mω
Np

[
fν (Np)1/3 + 1

3
fν (Np)−1/3

]
,

(B6)
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and ∑
αβ

v2
αv2

β |〈α|r|β〉|2

= 3

4

h̄

mω
Np

[
fν (Np)1/3 + 1

3
fν (Np)−1/3 − 2

]
. (B7)

Notice that these two expressions have the same limiting value
for N̄ → ∞.

The neutron, proton, and matter MS radii are then given by

〈r2〉n = 3

4

h̄

mωn

[
f2(N )1/3 + 1

3
f2(N )−1/3

]
, (B8)

〈r2〉p = 3

4

h̄

mωp

[
f2(Z )1/3 + 1

3
f2(Z )−1/3

]
, (B9)

〈r2〉m = 1

A
(N〈r2〉n + Z〈r2〉p), (B10)

respectively. Here we allow the oscillator parameter to be
different between neutron and proton. The CM1 term is given
by substituting the above expressions into Eq. (4), and the
CM2 term is given as

�(CM2)
p = − 3

4

h̄

mωp

Z

A2

(
1 − 2A

Z

)

×
[

f2(Z )1/3 + 1

3
f2(Z )−1/3 − 2

]

− 3

4

h̄

mωn

N

A2

×
[

f2(N )1/3 + 1

3
f2(N )−1/3 − 2

]
. (B11)

Note that we treat neutrons and protons separately and do not
set N = Z = A/2 as is done normally in estimations of this
kind [31,32,38].

We have made no approximation so far within the HO
model. Now we make the only ansatz for the oscillator pa-
rameter h̄/mω that remains yet to be determined:

3

4

h̄

mωn
= 3

4

h̄

mωp
=
(

2

3

)1/3 3

5
r2

0A1/3, (B12)

with r0 ≈ 1.2 fm. This corresponds to approximating the os-
cillator frequency by h̄ω ≈ 41A−1/3 MeV [31,32]. One could
also consider (N, Z )-dependent oscillators different between
neutron and proton, but we take the simplest assumption with
a single parameter r0. Under this ansatz, the total CM correc-
tion simplifies to

�(CM1)
p + �(CM2)

p = −3

4

h̄

mω

2

A
(B13)

= −
(

2

3

)1/3 6

5
r2

0A−2/3, (B14)

which coincides with the expression for the CM correction
adopted in TM1 parametrization [37].

In Fig. 4 is shown the HO-model estimate of the charge
radius in comparison with experimental data. The estimate
is made by substituting the HO-model values of 〈r2〉p and
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FIG. 4. Charge radii of H, C, O, Ca, Ni, Zr, Sn, and Pb isotopes
estimated with the HO model with r0 = 1.23 fm compared to exper-
imental data. The HO model results and the experimental data are
shown by black solid curves and red squares, respectively.

�(CMi)
p (i = 1, 2) into Eq. (16) but without the 〈r2〉κ and the

constant terms. We take r0 = 1.23 fm fitted to the measured
charge radii of Pb and Sn isotopes. One can see that the HO
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FIG. 6. The ratio �(CM2)
p /�(CM1)

p for H, C, O, Ca, Ni, Zr, Sn, and
Pb isotopes obtained with the RHB calculations. For comparison,
the HO model values for N = Z = A/2 with A are plotted with the
dashed curve.

model with a single parameter r0 reproduces the measured
charge radii reasonably well from light to heavy nuclei. In
particular, the present HO model closely follows the deviation
of the measured values from the simple empirical formula
R = r0A1/3. Although the model does not take into account
the Coulomb effect, shell effect, deformation, etc., it captures
the rough (N, Z ) dependence of the radius.

Using the same value of r0 adjusted to the measured charge
radii, we also compare the HO model with RHB results. In
Fig. 5, we show the comparison of �(CM1)

p and �(CM2)
p be-

tween the RHB calculations and the HO estimates. It is found
that the HO model gives only qualitative estimates for H and O
isotopes, while the agreement is nearly satisfactory for Ca, Sn,
and Pb isotopes. There are two reasons for the discrepancies
in the light isotopes. First, the enhancement of the radius by
the weakly bound nucleons in near-dripline nuclei is not taken
into account in the HO model, as discussed in Sec. III A 1.
Second, the simple assumption of h̄ω ≈ 41A−1/3 MeV may
not be good for the very light nuclei.

We also consider the ratio of the two-body part to the one-
body part of the CM correction, �(CM2)

p /�(CM1)
p . The ratio for

N = Z = A/2 within the HO model is given by

�(CM2)
p

�
(CM1)
p

= − N̄

N̄ + 2
. (B15)

In the large-A limit where N̄ + 2 ≈ (3A/2)1/3,

�(CM2)
p

�
(CM1)
p

≈ 2

(
3A

2

)−1/3

− 1. (B16)

In Fig. 6, we show the comparison of the ratio between the
HO estimate (B16) and the RHB results. As discussed in
Sec. III A 1, one can see that the ratio for light nuclei tends
to zero, while it approaches the asymptotic value −1 as the
mass A increases.

The CM correction for the kinetic energy can also be com-
puted in the HO model. Neglecting the contribution from the
pairing tensor again, one has

〈
P2

CM

〉 ≈ ∑
α

v2
α〈α|p2|α〉 −

∑
αβ

v2
αv2

β |〈α|p|β〉|2, (B17)

where the one- and two-body parts read

∑
α

v2
α〈α|p2|α〉

= 3

4
h̄2 mω

h̄

{
N

[
f2(N )1/3 + 1

3
f2(N )−1/3

]

+Z

[
f2(Z )1/3 + 1

3
f2(Z )−1/3

]}
, (B18)

−
∑
αβ

v2
αv2

β |〈α|p|β〉|2

= −3

4
h̄2 mω

h̄

{
N

[
f2(N )1/3 + 1

3
f2(N )−1/3 − 2

]

+Z

[
f2(Z )1/3 + 1

3
f2(Z )−1/3 − 2

]}
, (B19)

respectively. The sum of the two contributions is given by

〈
P2

CM

〉 = 3

4
h̄2 mω

h̄
2A. (B20)

From Eqs. (B13) and (B20), one finds the approximate rela-
tionship of the CM correction between MS charge radius and
kinetic energy:

�(CM1)
p + �(CM2)

p = − 9h̄2

4
〈
P2

CM

〉 . (B21)

This expression is consistent with the CM correction adopted
in Ref. [42] with an approximate projection method [33] giv-
ing an additional factor of exp( 3h̄2q2

8〈P2
CM〉 ) to the nuclear charge

form factor.
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