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Influences of deformation parameters on wobbling motion
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The influences of deformation parameters β and γ on the wobbling motion have been investigated in the
framework of particle rotor model taking the valence nucleon h11/2 and i13/2 combined with a triaxial core as
examples. Comprehensive examinations have been carried out to assess the influence of β and γ on the wobbling
frequencies, electromagnetic transition probabilities, and angular momentum geometries. It is demonstrated that
larger β and smaller γ favors the formation of transverse wobbling. In addition, a smaller β leads to a smaller
transverse wobbling energy, while a larger longitudinal wobbling energy. These behaviors can be well explained
by the harmonic frozen alignment approximation method.
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I. INTRODUCTION

Wobbling motion was first predicted for a nucleus with
stable triaxial deformation by Bohr and Mottelson in the
1970s [1]. Due to unequal moments of inertia, rotation around
nonpreferred axes causes deviation from the principal axis,
resulting in wobbling motion.

When the triaxial rotor is coupled with a high- j va-
lence particle, two distinct wobbling modes were identified
by Frauendorf and Dönau: longitudinal wobbling (LW) and
transverse wobbling (TW) [2]. In the LW (TW), the angular
momentum of the high- j valence particles is parallel (per-
pendicular) to the principal axis with the largest moment of
inertia. Both LW and TW exhibit enhanced I → I − 1 E2
transitions between adjacent wobbling bands, characterized
by a series of E2 rotational bands corresponding to the dif-
ferent wobbling quanta. The variation trend of the excitation
energy of wobbling motion, called wobbling frequency or
wobbling energy, is used to distinguish different types of wob-
bling modes. The wobbling frequency of a LW increases with
spin, while that of a TW decreases [2]. Later on, Chen and
Frauendorf further proposed a comprehensive classification
based on the topology of the classical orbits that are visualized
using the spin coherent state (SCS) maps [3]. Explicitly, the
LW corresponds to a revolution of total angular momentum J
around the axis with the largest moment of inertia and TW a
revolution of J around an axis perpendicular to the axis with
the largest moment of inertia.

Experimentally, the phenomenon of wobbling was first
discovered in 2001 [4]. The 163Lu is the first discovered wob-
bling nucleus for the one-phonon wobbling excitation [4] in
2001 and in 2002 for the two-phonon wobbling excitation
[5], which was later interpreted as TW [2]. After that, the
wobbling nuclei in the A ≈ 160 mass region were reported,
including 161Lu [6], 165Lu [7], 167Lu [8], 167Ta [9], and the
latest 151Eu [10]. After the concept of LW and TW was pro-
posed, the wobbling motion in other mass regions was also
well explored. In detail, in the A ≈ 130 mass region, there
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are candidates 135Pr [11,12], 133La [13], 130Ba [14–16], 127Xe
[17], 133Ba [18], and 136Nd [19,20]. In the heavier A ≈ 190
mass region, two candidates 187Au [21] and 183Au [22] were
reported. In the lighter A ≈ 100 mass region, there is only one
experimental candidate 105Pd [23] and several predicted can-
didates in the isotones of 105Pd [24]. Moreover, in the A ≈ 60
mass region, wobbling candidates were also predicted in the
Ni isotopes [25]. It is worth pointing out that the wobbling
motion can exist in the nucleus with deformation ranging from
small to large. For example, the wobbling nuclei reported in
the A ≈ 160 mass region are built on the i13/2 configuration
with significantly large deformations (β ≈ 0.40), while in
the other mass regions on the h11/2 configuration with small
deformation (β ≈ 0.20).

Since the concept of wobbling motion [1] was put for-
ward, many theoretical models have been developed, such
as the random-phase approximation (RPA) method [26–37],
the collective Hamiltonian method [38–40], and the angu-
lar momentum projection method [12,16,19,41]. Here, it is
worth emphasizing that the RPA study started right after
Bohr and Mottelson’s prediction [1], aiming at microscopi-
cally justifying the triaxial rotor model [26]. More RPA work
preceding the experimental discovery [4] can be refereed to
the references cited in Ref. [27]. Furthermore, the triaxial
particle-rotor model (PRM) serves as the main framework
for describing various physical quantities associated with the
wobbling motion [2,3,15,21–24,42–48]. Additionally, some
approximate methods for solving the PRM have also been
utilized to study wobbling motion [49–53]. The PRM provides
a systematic and quantitative approach to analyze and under-
stand wobbling motion by considering the coupling between
the rotational degrees of freedom of the core and the motion
of the valence particles. Through the PRM, energy spectra,
electromagnetic transitions, and other observable related to
wobbling motion can be obtained, which is highly suitable for
the systematic study of wobbling motion due to its advantages
of providing a simple solution and requiring less computa-
tional effort.

The phenomenon of wobbling motion in atomic nuclei
serves as a pivotal criterion for assessing the presence of
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triaxial deformation. The existence of wobbling motion in
an odd-mass nucleus is contingent upon the satisfaction of
two critical prerequisites: first, the existence of a high- j par-
ticle or hole, and second, the manifestation of pronounced
triaxial deformation γ [1–3]. Extensive theoretical investi-
gations have elucidated that the intrinsic properties of the
high- j particle or hole plays a decisive role in characterizing
the nature and dynamics of the wobbling motion [2,3,48].
Moreover, deformation parameters, representing the second
essential condition for the emergence of wobbling motion,
warrant thorough investigation. Observational evidence and
theoretical analyses has delineated a marked distinction in
the stability and persistence of TW across different mass
regions and deformation regimes. Specifically, in the context
of strongly deformed nuclei within the mass region A ≈ 160,
TW exhibits enhanced stability and extends over a broader
range of spin compared to its manifestation in nuclei charac-
terized by lower deformation in alternative mass regions [2,3].
This observation prompts a deeper inquiry into the underlying
mechanisms governing the stability of wobbling motion with
a particular emphasis on the role of nuclear deformation pa-
rameters.

In this paper, we aim to comprehensively analyze the im-
pact of quadrupole deformation parameters, specifically β and
γ , on the wobbling frequencies, electromagnetic transition
probabilities, as well as angular momentum geometries in the
framework of PRM. Our investigation focuses on the system
with valence nucleons h11/2 and i13/2 in combination with
a triaxial core. A focal point is to elucidate the mechanism
underlying the observed phenomenon where TW exhibits
markedly greater stability in nuclei with strong deformation
compared to those with lower deformation. Through this
study, we aim to shed light on the intricate interplay between
nuclear deformation parameters and the dynamical properties
of wobbling motion.

II. NUMERICAL DETAILS

We consider the systems consisting of a triaxial ro-
tor and a single proton particle locating at h11/2 or i13/2

shells. The triaxial deformation parameter is taken as γ =
20◦, 30◦, and 40◦ and the quadrupole deformation pa-
rameter β for the single-particle Hamiltonian is taken as
0.1, 0.2, 0.3, 0.4, and 0.5. The moment of inertia for
the triaxial rotor is adopted as irrotational flow type Jk =
J0 sin2(γ − 2kπ/3) with J0 = 20 h̄2/MeV. The ratios be-
tween the three moments of inertia for the intermediate (m),
short (s), and long (l) axis is Jm/Js/Jl ≈ 1.00/0.43/0.12
for γ = 20◦, Jm/Js/Jl = 1.00/0.25/0.25 for γ = 30◦, and
Jm/Js/Jl ≈ 1.00/0.12/0.43 for γ = 40◦. For the elec-
tromagnetic transition probabilities, the intrinsic charge
quadrupole momentum Q0 = (3/

√
5π )R2

0Zβ and the g factors
gp − gR are 0.80 for h11/2 and 0.74 for i13/2.

III. RESULTS AND DISCUSSION

A. Energy spectra and electromagnetic properties

Based on the PRM, the variation of energy differences
as well as the electromagnetic transition probability ratios

for the h11/2 and i13/2 configurations with different deforma-
tion parameters are shown in Fig. 1. The energy difference
between the obtained bands B2 (n = 1) and B1 (n = 0) is
calculated as

�E (I ) = EB2(I ) − [EB1(I + 1) + EB1(I − 1)]/2. (1)

As aforementioned, the change in �E can reflect the type
of wobbling motion. The decreasing �E is a hint of TW,
while the increasing one corresponds to a LW [2,3]. For h11/2

with γ = 20◦, �E shows a trend of first decreasing and then
increasing. This indicates that it is a TW in the low spin region
and a LW in the high spin region, consistent with the previous
work [2,3,48]. The magnitude of �E varies with deformation
β. When β is small, e.g., β = 0.1, the �E change is very
small in the low spin region, showing less pronounced TW
characteristics. Moreover, the minimum value of �E appears
at I = 10.5h̄, followed by LW. A smaller β corresponds to a
smaller �E at low spin. For the fixed γ , e.g., γ = 20◦, with
the increase of β, the nucleus is more likely to exhibit TW in
the low spin region. In addition, the positions of the turning
points of �E for different β are different. For example, for
β = 0.2 and 0.3, it occurs at I = 12.5h̄, while for β = 0.4
and 0.5 at I = 14.5h̄. One notes that these TW spin regions
are much shorter than those observed in Lu isotopes, reaching
up to 40h̄ [54]. The reason is attributed to that the ratio
Js/Jm used in the calculation (≈0.12, 0.25, and 0.43) is much
smaller than the realistic cases (≈0.85 [2]). With the increase
of spin, the magnitude of �E for larger β becomes smaller,
exhibiting distinct behaviors with the cases of low spin
region.

Different from the �E at γ = 20◦, all �E at γ = 30◦
within the low spin region, including β = 0.1, shows a sig-
nificant decrease. Moreover, the turning point of transition
from TW to LW shifts towards to the lower spin region.
By focusing on the wobbling bands with large β, one notes
that the �E increases slowly in the high spin region. The
characteristics of LW become less distinct. As γ increases to
40◦, the TW of the h11/2 configuration disappears. The nucleus
with β = 0.1 exhibits LW throughout the entire spin region,
and as β increases, LW gradually disappears, indicating the
absence of wobbling motion. Specifically, �E < 0 happens
at some spins, which means that the wobbling excitation is
unstable. Similar characteristics are observed in the wobbling
energy of the i13/2 configuration. In short, within the studied
range of deformations, TW is more likely to form at larger β

and smaller γ . Compared to triaxial deformation γ , LW shows
higher sensitivity to β.

The investigation of electromagnetic transition probabili-
ties plays a crucial role in experimental studies focused on
wobbling motion. An experimental hallmark of wobbling on
the electromagnetic transition probability is the collective en-
hancement of I → I − 1 B(E2) values for transitions from the
excited band to the yrast band [2,3]. This enhancement arises
due to the collective motion of the charged system, which
differs from the scenario observed in the traditional signa-
ture partner bands. To check the electromagnetic properties
of the discussed systems, we further illustrate the variations
of B(E2)out/B(E2)in and B(M1)out/B(E2)in for the h11/2 and
i13/2 configurations with different deformation parameters in
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FIG. 1. The calculated wobbling energies (left panels) as well as the electromagnetic transition probability ratios B(E2)out/B(E2)in (middle
panels) and B(M1)out/B(E2)in (right panels) as functions of spin I by the PRM for the h11/2 and i13/2 configurations with different deformation
parameters β and γ . Here, the suffices “in” and “out” refer to the intraband �I = 2 and interband �I = 1 transitions that connect the bands,
respectively.

Fig. 1. Here, the suffices “in” and “out” refer to the intraband
�I = 2 and interband �I = 1 transitions that connect the
bands, respectively. Under the same γ , the variation of the
B(E2)out/B(E2)in ratio for h11/2 and i13/2 is not significant
across different β values. The difference of B(E2)out/B(E2)in

mainly comes from γ deformation. Additionally, there is
a significant variation in B(E2)out/B(E2)in in the low spin
region.

Compared to B(E2)out/B(E2)in, the variation rate of
B(M1)out/B(E2)in is more sensitive to the β. The value of
B(M1)out/B(E2)in for small β is larger than that for large β,
which is attributed to the fact that the intrinsic quadrupole
momentum Q0 is proportion to β and results in B(E2)in value
proportion to β2. Additionally, the ratio of B(M1)out/B(E2)in

increases with an increase in triaxial deformation γ .
Furthermore, it is important to note that the behavior of

B(M1)out/B(E2)in for γ = 30◦ and 40◦ exhibits nonsmooth
characteristics at specific spin values. It is revealed that this
nonsmooth behavior stems from the dynamics of B(M1)out.
In Fig. 2, we present the calculated B(M1)out as functions of
spin I by the PRM for the h11/2 configuration with different
deformation parameters β and γ . We find that the nonsmooth
behavior of B(M1)out correlation with the critical spin value
marking the transition from TW to LW. This observation sug-
gests that the nonsmooth behavior arises from single-particle
motion. Interestingly, we observed that compared to small
γ , the nonsmooth behavior in B(M1)out is more pronounced
for large γ . This can be attributed to, as we will show in
the following, the enhanced ease with which valence nucle-
ons are transferred from the s axis to the m axis when γ is
large. This insight highlights that the nonsmooth behavior of
B(M1)out/B(E2)in or B(M1)out can serve as a criterion for dis-
tinguishing the wobbling mode. Specifically, the nonsmooth
features in the behavior of B(M1)out/B(E2)in or B(M1)out can
provide valuable indicators for identifying the transition from
TW to LW within the nucleus.

B. Distinguish wobbling modes

To begin with, the judgment of the wobbling motion type
is based on varying deformation parameters. The total an-
gular momentum serves as an effective tool for intuitively
exploring the types of wobbling motion for understanding the

FIG. 2. The calculated B(M1)out as functions of spin I by the
PRM with different deformation parameters β and γ for the h11/2

configuration.
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FIG. 3. Total angular momentum components along the interme-
diate (m), short (s), and long (l) axes for the lowest bands B1 and B2
calculated by PRM with different deformation parameters β and γ

for the h11/2 configuration.

underlying physics [3]. Taking the h11/2 configuration case as
an example, the components of the total angular momentum
on the three principal axes for the calculated bands B1 and B2
with different deformation parameters are shown in Fig. 3. In
the low spin region, the total angular momentum component
along the s axis is the largest, followed by the m axis, and the
l axis is the smallest. This reflects that the angular momentum
of the nucleus is mainly aligned along the s axis. This is the
picture of TW [3], consistent with the phenomenon presented
in Fig. 1.

As spin increases, the s component of the total angular
momentum increases and tends to stabilize at a certain spin.
The m component continuously increases and eventually dom-
inates. In contrast, the change of l component is relatively
small. This indicates that the competitions between the s and
m components are different under different deformation pa-
rameters. For β = 0.1 and γ = 20◦, the s component is larger
than the m one when I < 8.5h̄, consistent with the results in
Fig. 1, indicating TW in the low spin region. With the same
γ , a larger value of β corresponds to a higher critical spin
for TW.

C. Role of single particle

In order to further explore the influence of deformation
parameters on the wobbling motion, Fig. 4 shows how the
particle angular momentum components change with spin for
h11/2 configuration with different deformation parameters. For
β = 0.1 and γ = 20◦, the s component is about 5h̄ at the
beginning, higher than those of m and l components. When
I > 8h̄, the s component begins to decrease rapidly, and the

FIG. 4. Same as Fig. 3, but for the particle angular momentum.

m component begins to increase. This behavior is generated
because the core and valence nucleons produce a strong Cori-
olis force and the core tries to drive the particles to align along
the m axis, making the energy lower. As spin increases, the m
component increases and eventually exceeds the s one. This
also implies that as the spin increases, the wobbling mode
changes from TW to LW, consistent with the phenomenon
observed in Fig. 1. In addition, the l component does not
change much in the whole spin region.

Next, let us examine the influence of the parameter β on
the particle angular momentum while keeping the triaxial
deformation γ . In this analysis, we focus on the example of
a h11/2 nucleon with γ = 20◦. Upon investigating different
values of β, it becomes evident that the angular momentum
of the l axis remains relatively unchanged. The significant
changes in angular momentum occur primarily in the s and
m components. Moreover, in the whole spin region, the s
and m components change more rapidly for smaller β, and
the change rate of band B1 is larger than that of band B2.
Corresponding to Fig. 1, the wobbling energy of the larger β

can maintain the TW to a larger spin region.
For the same β, the larger γ corresponds to the larger

s component and smaller m component at the beginning of
rotation. The change in the l component remains insignificant
throughout the entire spin region. Within the studied spin
region, the angular momentum in the s axis decreases while
the angular momentum in the m axis increases.

Furthermore, one notes that there are differences in the
variations of bands B1 and B2. With an increase in γ , the
decrease in the s component of band B1 becomes weaker,
and the corresponding increase in the m component of band
B1 becomes slower. On the other hand, the decrease in the
s component of band B2 is more pronounced at large γ
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FIG. 5. Probability distributions and for the single-particle state
(n-plot Pn) calculated by the PRM for states in the bands B1 (with
I = 2m − 1/2) and B2 (with I = 2m + 1/2) of h11/2 configuration
with γ = 20◦ for β = 0.1 (upper panels) and 0.5 (lower panels).
The numbers n = 1, 2,..., 6 correspond to the single-particle states
with third angular momentum components k approximating to ±1/2,
±3/2,..., ±11/2.

compared to small γ , and the increase in the m component
is more prominent at larger deformations. These observations
indicate a competitive relationship between the changes in
bands B1 and B2.

Considering the importance of valence nucleons in wob-
bling motion under different deformation parameters β,
probability distributions for the single-particle state (n-plot
Pn) calculated in the PRM for bands B1 and B2 of the h11/2

configuration with γ = 20◦ for β = 0.1 and 0.5 are presented
in Fig. 5. The index n is in accordance with the increasing
energy of the single-particle state. For the h11/2 configura-
tion, there are six double-fold degenerated energy levels, i.e.,
n = 1, 2,..., 6. For β = 0.1, the angular momentum is mainly
composed of n = 1 at I = 5.5h̄. As spin increases, the angu-
lar momentum distribution of the valence nucleon becomes
more and more mixed. Different from β = 0.1, the angular
momentum distribution in β = 0.5 mixing is less. This results
in a less change in the angular momentum of the nuclear with
larger β.

In the following, we will further explore why the nucleus
with smaller γ and larger β are more prone to undergo TW.
The γ directly affects the value of the moment of inertia.
When the triaxial deformation parameter γ is smaller, the
ratio Js/Jm becomes larger. This results in that the angular
momentum is more aligned towards the s axis, making it
easier to form TW.

FIG. 6. Upper panel: The triaxial h11/2 shell (γ = 20◦) single-
particle energies εn with respect to the lowest energy level as a
function of β. The corresponding third angular momentum com-
ponents k are ±1/2, ±3/2,..., ±11/2 at γ = 20◦ (which is a good
quantum number only for β = 0◦). The arrows between the k ≈
±1/2 and ±3/2 levels indicate the energy spacing for the two levels
at small deformation β = 0.1 and large deformation β = 0.5. Lower
panel: Triaxial rotor energies (γ = 20◦) as functions of its angular
momentum R. The full dots with solid lines belong to the states with
signature α = 0, while the empty dots with solid lines to signature
α = 1. The empty dots with dashed lines are obtained by shifting
the lowest energy with a value of the energy splitting between the
k ≈ ±1/2 and ±3/2 levels at β = 0.1 (dot-dashed line) and β = 0.5
(dashed line).

How does the quadrupole deformation parameter β affect
the wobbling motion? To answer this question, we show in
Fig. 6 the single-particle energies εn of the h11/2 shell (γ =
20◦) relative to the lowest energy level as a function of β, and
the energies of the triaxial rotor (γ = 20◦) as functions of its
angular momentum R. The single-particle energy levels ex-
hibit a linear variation with increasing β. The arrows between
the k ≈ ±1/2 (n = 1 level) and ±3/2 (n = 2 level) levels
represent the energy splitting between these two levels for
small deformation (β = 0.1) and large deformation (β = 0.5).
The energy splitting at β = 0.5 is significantly larger than
that at β = 0.1. Shifting the energy difference between the
k ≈ ±1/2 and ±3/2 levels at β = 0.1 and β = 0.5 to the
core R ground state energy yields the dot-dashed line and
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FIG. 7. The calculated wobbling energies as functions of spin I
by the HFA (lines) in comparison with those by the PRM (line with
symbols) for the h11/2 with γ = 20◦. For the HFA results, we fix j
on the s axis (low spin) and m axis (high spin) and calculate the
wobbling energy using Eq. (2).

dashed line in the lower panel of Fig. 6. Clearly, under the
same γ , a higher rotor angular momentum and rotor excitation
energy are required to have comparable excitation with the
valence nucleon excitation energy from k ≈ ±1/2 to ±3/2
for β = 0.5 than that for β = 0.1. This explains the much less
mixed in the n-plot Pn of Fig. 6 and the characteristic of TW
exhibiting wobbling energy over a wider range in Fig. 1 for
the larger β.

D. Harmonic frozen alignment analysis

In Ref. [2], the harmonic frozen alignment (HFA) ap-
proximation method was proposed to analysis the rotational
properties of TW and LW. Preceding Ref. [2], the method
essentially the same as the HFA approximation has been

utilized in Ref. [32] to give an explanation of the calculated
dependence of the wobbling energy on the rotational fre-
quency in the 163Lu, i.e., increasing in the lower frequency
and decreasing in the higher frequency (can also c.f. right
panel of Fig. 8). The advantage of HFA method is that it can
describe the wobbling frequency and transition probability in
a simple analytical expressions, thus providing a qualitative
understanding of the wobbling motion. In the following, we
will also use the HFA to understand the behavior of the wob-
bling energy with respect to the deformation parameters. The
HFA assumes that the angular momentum of the odd particle
is frozen aligned with one of principal axis of the nucleus and
can be considered as a number j. In this way, the wobbling
energy can be approximated as [2]

h̄ωw = j

J3

[(
1 + J

j

(J3

J1
− 1

))(
1 + J

j

(J3

J2
− 1

))]1/2

.

(2)

By adjusting the value of j, the impact of the magnitude
of angular momentum on wobbling energy can be reflected,
as shown in Fig. 7. We fix j on the s axis (low spin) and
m axis (high spin) and calculate the wobbling energy using
Eq. (2). It can be seen that the larger j corresponds to the
larger wobbling energy, which applies to both low and high
spin regions. This is helpful for qualitatively understanding
the influence of quadrupole deformation parameters on wob-
bling energy in different spin regions. According to Fig. 4, we
observe that at the beginning of the rotation of the TW region,
the s component with larger β is larger than that with smaller
β. In the end of the spin region of the LW region, the m axis
component with smaller β is larger. This explains why the nu-
cleus with smaller β has smaller wobbling energy in the low
spin region, whereas has larger wobbling energy in the high
spin region.

E. Compare with experimental data

In order to investigate the behavior of wobbling motion
in realistic nuclei under varying nuclear deformations, we

FIG. 8. Calculated wobbling energies as functions of spin I by the PRM with different deformation parameter β in comparison with the
experimental data for the 135Pr (left) and 163Lu (right).
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FIG. 9. Experimental wobbling energies as functions of spin I
for 161,163,165,167Lu. The data are extracted from Refs. [4,6–8].

conducted a detailed study focusing on two distinct cases:
the low deformation nucleus 135Pr (β ≈ 0.16) [11] and the
strongly deformed nucleus 163Lu (β ≈ 0.40) [4]. Our analysis,
depicted in Fig. 8, presents the calculated wobbling energies
as functions of spin I using the PRM with different defor-
mation parameters β, alongside experimental data for 135Pr
and 163Lu. In our calculations, we utilized input configura-
tion, moments of inertia, and triaxial deformation parameters
from Ref. [2]: π (1h11/2)1 configuration with Jm,s,l = 21, 13,
4 h̄2/MeV and γ = 26◦ for 135Pr, and π (1i13/2)1 configuration
with Jm,s,l = 64, 56, 13 h̄2/MeV and γ = 20◦ for 163Lu.

For 135Pr, the experimental wobbling frequencies exhibit a
decreasing trend with spin for I � 14.5h̄, indicative of trans-
verse wobbling motion [11]. Beyond I > 14.5h̄, the wobbling
frequency shows an increasing pattern, suggesting a transition
from transverse to longitudinal wobbling mode [11], with the
critical spin value for this transition identified as I = 14.5h̄.
This instability is expected from the changes in the effective
moments of inertia for example by using the HFA approxima-
tion or by the microscopic cranked shell model plus random
phase approximation calculations [28,30,32]. Maintaining a
constant γ in the PRM calculations, we observed that smaller
β values correspond to lower critical spin values. Specifically,
a β = 0.16 was found to align well with experimental data
for 135Pr.

In the case of 163Lu, experimental data displayed a gradual
decrease in wobbling energy, indicating a stable TW mode
across the spin region. The instable TW observed at low spin
in 135Pr is not observed in 163Lu. The decreasing trend in wob-
bling energy was successfully reproduced with β = 0.40 and
0.30. The initial increase in theoretical results was attributed
to the moment of inertia Jm being only slightly greater than
Js, consistent with previous findings [2], underscoring the
sensitivity of the wobbling mode to the axis ratio of moments
of inertia [47]. Similar to 135Pr, smaller β values in 163Lu
led to lower critical spin values. Notably, PRM calculations
with β = 0.20 and 0.10 yield critical spin values that are too
small for 163Lu, highlighting the significant impact of the β

deformation parameter on the wobbling motion within the
nucleus.

Furthermore, the study of wobbling motion in an isotope
or isotone is valuable to check the deformation dependence

of the wobbling motion. For this purpose, we summarize
the wobbling energies of the n = 1 wobbling bands ob-
served in 161,163,165,167Lu [4,6–8] in Fig. 9. As illustrated in
the figure, the wobbling energy decreases with increasing
spin, indicating that they are all TW. In the cranking cal-
culations utilizing the ultimate cranker (UC) method, based
on a modified harmonic oscillator potential, the deforma-
tion parameters of these isotopes were predicted as follows:
161Lu (β = 0.40, γ = 20◦) [6], 163Lu (β = 0.40, γ = 20◦)
[4], 165Lu (β = 0.40, γ = 20◦) [7], and 167Lu (β = 0.43, γ =
19◦) [8]. We further performed the constrained covariant
density functional theory (CDFT) [55,56] calculations with
effective interaction PC-PK1 [57] for these four isotopes
based on the i13/2 configuration. The deformation param-
eters are predicted as follows: 161Lu (β = 0.52, γ = 12◦),
163Lu (β = 0.48, γ = 11◦), 165Lu (β = 0.48, γ = 10◦), and
167Lu (β = 0.64, γ = 13◦). It is observed that the CDFT pre-
dicts relatively larger β but smaller γ values than the UC
method. Nevertheless, in both calculations, the β deformation
values are relatively large. Consequently, the wobbling motion
in these strongly deformed nuclei is anticipated to persist over
a broader range of spin values compared to those in normally
deformed nuclei, aligning with prior findings.

Upon closer examination, however, it is noted that the mag-
nitudes of wobbling energy differ among these four nuclei.
Specifically, within the spin region I � 35.5h̄, the ordering of
wobbling energy from smallest to largest is observed to be
163Lu, 165Lu, 161Lu, and 167Lu. This observed ordering does
not fully align with the anticipated trend based solely on pre-
dicted β deformation in the UC results, where larger β values
are expected to correspond to larger wobbling energy. On the
contrary, the CDFT calculations corroborate this trend with
respect to the β deformation parameters. However, notably,
the CDFT predictions yield quite small γ values, even less
than 15◦. Indeed, other factors such as moments of inertia
along the three principal axes in realistic nuclei are likely to
influence the dynamics of the wobbling motion. For example,
in the microscopic cranked shell model plus random phase
approximation calculations [28,30,32], the moments of inertia
varies with the rotation. Correspondingly, the wobbling en-
ergy trend can also change. However, in the present work, the
moments of inertia are fixed and show somewhat limitations
in the descriptions for the realistic nuclei. This suggests that
a more nuanced understanding of the underlying physics is
necessary.

IV. SUMMARY

In summary, the PRM has been used to investigate the
influence of deformation parameters β and γ on the wobbling
motion. The valence nucleon h11/2 and i13/2 combined with
a triaxial core are considered as examples. The influences
of deformation on the wobbling mode are studied through
the analysis of wobbling energy, electromagnetic transition
probabilities, and angular momentum components.

Within the investigated range of deformation, larger
quadrupole deformation β and smaller triaxial deformation
γ are more likely to form TW. A smaller β corresponds
to a smaller transverse wobbling energy, while a larger
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longitudinal wobbling energy. These behaviors can be well ex-
plained by the HFA approximation method. In comparison to
γ , LW exhibit higher sensitivity to β. The B(E2)out/B(E2)in

ratios of h11/2 and i13/2 configurations shows great similarity
with different β, while the variation rate of B(M1)out/B(E2)in

is more significant at different β.
The impact on the angular momentum mainly stems from

the competition between the s and m axes. With the same β

value, increasing the triaxial deformation parameter γ leads to
a larger initial angular momentum in the s axis and a smaller
angular momentum in the m axis for the valence nucleon. As
spin increases, the angular momentum decreases in the s axis
and increases in the m axis. The finding that the TW under
the large β can maintain a wide range can be understood by
the analysis of the Pn plot and h11/2 shell single-particle en-
ergy levels. The behavior of wobbling motion in nuclei under
varying nuclear deformations is tested on two distinct cases:
the low deformation nucleus 135Pr and the strongly deformed
nucleus 163Lu.

Finally, it should be pointed out that the current work
fixed the moments of inertia J0 as a constant. This is not
very realistic as the moment of inertia J0 is in fact in direct

proportion to β2 [1,58]. In addition, the wobbling mode is
quite sensitive to the adopted axis ratio of the moments of
inertia [47,59]. In our model study, we use irrotational flow
type moment of inertia. In realistic nuclei, this kind of ratio
can be modified, e.g., as in the cases of 135Pr and 163Lu as
we have shown. Further considering this fact is needed. One
of the ways is adopting the RPA method [26–37], which can
predict moments of inertia microscopically. The other way is
adopting the mean-field theory, e.g., covariant density func-
tional theory [56], to provide microscopic moments of inertia
for PRM calculations. Moreover, very high spin energy levels
cannot be solely explained by assuming a rigid triaxial core
and one particle. Several other effects, such as multiparticle
modes, can significantly influence the energy spectra and will
be considered in future research.
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