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Dominant nucleon-pair configurations in low-lying states of deformed nuclei
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In this paper we explicitly study dominant nucleon-pair configurations in low-lying states of deformed nuclei
in two cases; the first is the schematic Elliott’s SU(3) model with valence nucleons in the p f shell, and the second
is the effective Vlow−k interaction with valence protons in the 50-82 shell and valence neutrons in the 82-126
shell, exemplified by 146Ba and 148Ce. We find that the SD nucleon-pair configurations are more predominant
in low-lying states of these deformed nuclei than expected. Mixings of nucleon-pair configurations beyond the
conventional SD-pair subspace, in particular, one-G and/or one-I nucleon-pair configurations, albeit small, are
found to be necessary to reproduce the moment of inertia.
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I. INTRODUCTION

The nuclear shell model (NSM) [1,2] is the most fun-
damental framework of low-energy nuclear structure and
has been widely used in interpreting and predicting energy
levels and decay modes of low-lying states [3–8]. For re-
views, refer to Refs. [9–11]. However, the NSM configuration
space increases explosively, and thus truncation to the con-
figurations is indispensable. Towards this goal, collective
nucleon-pair truncation, among the truncation schemes, is
both very efficient and useful and has become more and more
realizable. Along this line, we mention the (generalized) se-
niority scheme [12–16], broken pair approximation [17], the
fermion dynamical symmetry model [18], and nucleon-pair
approximation (NPA) [19].

In studies of the microscopic foundation of the interacting
sd boson model, sd bosons are referred to as mapping images
of collective SD nucleon pairs in the valence NSM config-
uration space [20,21]. For nearly spherical and transitional
regions, there have been many discussions on validity of SD
nucleon pair approximation, the studies of which demonstrate
the SD-pair truncation is essentially good unless nuclei are
deformed [22,23]; in other words, SD nucleon pairs are dom-
inant in low-lying states of atomic nuclei if the deformation
is not very large. Indeed, the fermion dynamical symmetry
model [18]. and the SD NPA calculations [24] adopt this
scenario as the configuration space to diagonalize the Hamil-
tonian. On the other hand, for the low-lying states of deformed
nuclei, there has been a lot of discussion about the ability of
the SD-pair truncation [25], and the collective nucleon pairs
with higher spin (such as G pair with spin four [26]) could
be essential. In recent years, numerical calculations assuming
SD nucleon pairs and a few other collective nucleon pairs such
as G pairs were explicitly performed in Refs. [27,28], where
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collective G pairs and even I pairs (with spin six) were re-
ported to be important to reasonably reproduce the exact NSM
results. However, nucleon-pair configuration space would also
expand very rapidly as the number of valence nucleons in-
creases if we consider more and more types of nucleons pairs,
which renders the NPA calculations extremely complicated.
So far, unfortunately, there have been few explicit studies and
analyses of the roles played by collective nucleon pairs with
higher spins (such as G and I) in very large nucleon-pair
configurations, in low-lying states of well-deformed nuclei.

It is therefore the purpose of this paper to study the dom-
inant configurations in low-lying states of nuclei with stable
and large deformation, in particular whether or not the tra-
ditional SD nucleon pairs are dominant and whether or not
collective nucleon pairs with higher spins, e.g., G and I nu-
cleon pairs, play important roles. In this paper we focus on
two cases. The first case is the Elliott’s SU(3) Hamiltonian
[29] in the presence of valence nucleons in the p f shell, and
the second is the effective Vlow−k Hamiltonian in the presence
of valence protons in the 50-82 shell and valence neutrons in
the 82-126 shell. In doing so, we find that we can achieve
very good approximation to the SDG or SDGI configuration
space by considering actually a tiny portion of the configu-
rations beyond the collective SD nucleon-pair subspace. This
means that the SD dominance in low-lying states of deformed
nuclei is much more pronounced than intuitive presumptions,
and more importantly, the NPA calculations yield reliable
theoretical results in a very small configurations, involving
of conventional SD subspace coupled with a small subspace
spanned by one or two nucleon pairs other than SD pairs,
which lays the foundation to simplify NPA calculations and
to make the NPA much more realizable for low-lying states of
well-deformed nuclei in future studies.

This paper is organized as follows. In Sec. II, we briefly
introduce the NPA configuration space, and an approach of
ranking basis states according to their importance to certain
eigenstates, which facilitates the optimization of the model
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space with different degrees of freedom. In Sec. III and IV,
the optimization of the NPA model space is discussed in
the scenarios of Elliott’s SU(3) model and effective Vlow−k

interaction, respectively. Finally, we summarize this paper in
Sec. V.

II. THEORETICAL FRAMEWORK

The NPA [19] uses collective nucleon pairs as building
blocks of the configuration space. There have been constant
efforts in developing the NPA for different purposes and ad-
vantages. In Ref. [30], the NPA is extended with consideration
of the isospin degree of freedom; in Ref. [31], nucleon pairs
with particle-hole excitations are taken into account in or-
der to study cross-shell configurations. There have been also
attempts using M-scheme bases to simplify the NPA calcula-
tions [32]. In Ref. [33], a hybrid scheme, with the M scheme
in computation of matrix elements and J scheme for nucleon-
pair basis states, was adopted to refine the NPA, in which
the low-lying states of the well-deformed 152Nd nucleus were
computed in a truncated SDGI nucleon-pair space with ef-
fective shell-model interactions. In this section, we present a
very brief introduction to the formulation of the NPA and our
procedure to select the optimal nucleon-pair basis states.

A. The nucleon-pair basis state

In the NSM, a single nucleon state is denoted by quantum
numbers n, l , j, and m, with n the radial number of a spherical
oscillator, l the orbital angular momentum, j the total angular
momentum, and m the z-axis projection, respectively. In this
paper we denote a single-nucleon creation operator as a†

j
(i.e., nl are suppressed) to alleviate confusion. The NPA uses
collective nucleon-pair basis states as building blocks of the
configuration space. A collective nucleon pair with spin r and
z-axis component M is defined by

Ar†
m =

∑
j1 j2

y( j1 j2r)
(
a†

j1
× a†

j2

)(r)

m

=
∑

j1 j2m1m2

y( j1 j2r)Crm
j1m1, j2m2,

a†
j1m1

a†
j2m2

, (1)

where j1, j2 run over the single-nucleon levels in the valence
shell and y( j1 j2r) are called structure coefficients which sat-
isfy the symmetry

y( j1 j2r) = (−) j1+ j2+r+1y( j2 j1r).

Crm
j1m1, j2m2

denotes the Clebsch-Gordan coefficient. In the pres-
ence of an even number of valence nucleons, a nucleon-pair
basis state is constructed by successive couplings of collective
nucleon pairs, while for a system with an odd number of
valence nucleons there is an unpaired nucleon coupled into
the bases. The basis state with N nucleon pairs is thus defined
as

| τJN MN 〉
= AJ†

M (r0r1r2 · · · rN , J1J2 · · · JN MN ) | 0〉
= {· · · [(Ar0† × Ar1†)(J1 )×Ar2†](J2 ) × · · · × ArN †}(JN )

MN
| 0〉.

(2)

TABLE I. Dimension of the 2+ configuration space constructed
by S, D, G, and I pairs without considering the Pauli effect. Nπ and
Nν denote the numbers of proton and neutron pairs.

�
��Nπ

Nν 0 1 2 3 4 5 6

0 0 1 2 27 128 543 2149
1 9 71 438 2370 11187 47403
2 654 4539 26245 130060 570310
3 34127 207242 1×106 5×106

4 1×106 7×106 3×107

5 4×107 2×108

6 8×108

Here JN and MN are the total angular momentum of the basis
state and its projection, and τ denotes additional quantum
numbers of the state; Ar0† = 1 for an even system, and Ar0† =
a†

j=r0
for an odd system. Different from the basis states in the

NSM, the NPA configuration basis states are in principle not
orthogonal with each other. This feature leads to additional
complexity in selecting important configurations in the model
space, as we shall see in next subsection.

In this paper, the collective nucleon pairs, both the
spin-parity and their structure coefficients, are obtained by
projecting unconstrained Hartree-Fock (HF) ground state with
consistent interactions [27]. This method provides us with a
good estimation for the importance of each pair and has been
used widely for deformed nuclei [27,28,34–36]. In all cases
of this paper we find that the most important S, D, G, and
I pairs constitute over 95% of the HF ground state. We thus
use the SDGI-pair approximation and take these four pairs to
construct the configuration space.

For nuclei with both valence protons and neutrons, the
model space is constructed by coupling the nucleon-pair ba-
sis states of valence protons and those of valence neutrons,
denoted by (|πτJ〉 × |ντ ′J ′〉)(I ), where π and ν represent
proton and neutron systems, respectively. We note that such
nucleon-pair configuration space becomes very large with the
number of proton and neutron pairs increased. Table I presents
the dimensions of 2+ spaces constructed by the above pairs
without considering the Pauli effect. In previous papers it was
required that the number of non-S pairs in the model space
be small, particularly, and with few exceptions, the number of
pairs beyond SD nucleon pairs was very small (one or two) in
NPA calculations. In this paper, we shall investigate whether
this simplification is warranted, and furthermore, we wish to
determint the minimal and optimal configurations involving G
and I nucleon pairs.

To facilitate our discussion, in this paper we shall call the
configuration space constructed by using SDGI nucleon-pair
basis, with the number of all these four types of pairs from
zero to the total pair number (which is three or four in this
paper), as the full SDGI nucleon-pair configuration space, de-
spite that it is one subspace and is much smaller than the exact
shell-model configuration space, as it is generally believed
that this SDGI nucleon-pair configuration space is a very good
approximation of the exact shell model space even for very
large shells and for deformed nuclei. Furthermore, we shall
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also investigate some smaller configuration spaces obtained
by limiting the numbers of G and/or I pair. For convenience,
we denote these spaces by SDmGnI with m and n the maximal
numbers of G and I pairs in the NPA basis states.

B. Procedure to optimize nucleon-pair basis states

In previous studies [37–41], the overlap between two nor-
malized states was usually used to evaluate the validity of
an approximate wave function for given eigenstate � of the
system. If {ϕi} is a set of orthogonal bases, then � can be ex-
panded in terms of ϕi, that is, � = ∑

i αiϕi with
∑

i |αi|2 = 1.
If |〈ϕi|�〉|2 = |αi|2 is close to 1, then one could say that
ϕi is a very good approximation to �. In realistic practice,
among all basis states ϕi, one selects the basis state with the
largest magnitude of αi as the optimized approximate wave
function; if |αi| is not large enough, then one further includes
the next basis state ϕi′ with the second-largest magnitude of
αi′ , and the configuration space becomes two dimensional.
This process continues until the sum of |αi|2 + |αi′ |2 + · · ·
is close to 1. This is a common practice in computation in
quantum mechanics.

However, this practice is not straightforward for (nor-
malized) nonorthogonal basis states. Suppose that two basis
vectors, ϕi and ϕi′ , are nearly parallel and the overlaps
〈ϕi|�〉 � 〈ϕi′ |�〉. In optimizing the basis states, one keeps
only one of them. A simple way to avoid this issue is to incor-
porate the Schimidt orthogonalization in the selection process.
Below we describe our procedure of optimizing nucleon-pair
basis from the full SDGI configuration space.

Our NPA wave function |�α〉 in the full SDGI nucleon-pair
space is expanded as follows:

|�α〉 =
∑
iJ,i′J ′

�
(α)
iJ,i′J ′

[∣∣ψ (J )
π i

〉 × ∣∣ψ (J ′ )
νi′

〉](Iα )
, (3)

where |ψ (J )
ηi 〉 represents a complete set of normalized proton

(η = π ) or neutron (η = ν) nucleon-pair basis states, with J
being the spin quantum number and i the additional quan-
tum number. α is the label of the eigenstate in the SDGI
nucleon-pair configuration space. Here squared overlap ex-
plicitly reflects whether a basis state is a dominant component
of |�α〉.

In our procedure of optimizing the basis states for valence
protons, the first nucleon-pair basis state we select, |πσ1J1〉,
has the largest squared overlaps with |�α〉, defined by

P(α)
πσJ ≡

∑
i′J ′

|〈πσJ, νi′J ′; Iα|�α〉|2

=
∑
ii′J ′

∣∣〈πσJ|π iJ〉� (α)
iJ,i′J ′

∣∣2
. (4)

Then, before we obtain next proton basis state, the Schimidt
orthogonalization is performed. The residual basis states are
transformed to∣∣ϕ(2,J )

πσ

〉 = N (1 − |πσ1J1〉〈πσ1J1|)|πσJ〉,
with N the normalization factor. Now we search for the sec-
ond optimal basis state by calculating squared overlap P(α)

πσJ
defined in Eq. (4), except that |πσJ〉 should be replaced by
using |ϕ(2)

πσJ〉, and obtain the second-most-optimal basis state

|πσ1J1〉. In general we define

∣∣ϕ(k,J )
πσ

〉 = N
[

1 −
k−1∑
a=1

∣∣ϕ(Ja )
πσa

〉〈
ϕ(Ja )

πσa

∣∣]|πσJ〉

= N [
1 − ∣∣ϕ(Jk−1 )

πσk−1

〉〈
ϕ(Jk−1 )

πσk−1

∣∣]∣∣ϕ(k−1)
πσJ

〉
, (5)

P(k,α)
πσJ =

∑
ii′J ′

∣∣〈ϕ(k,J )
πσ

∣∣ψ (J )
π i

〉
�

(α)
iJ,i′J ′

∣∣2
, (6)

where |ϕ(Jk )
πσk

〉 is the orthogonalized state |ϕ(k,J )
πσ 〉 with its

squared overlaps P(α)
πσkJk

being the largest one over P(k,α)
πσJ .

This procedure is iterated until one achieves satisfactorily∑
k P(α)

πσkJk
which is very close to 1.

Similarly, one optimizes the nucleon-pair basis states for
valence neutrons.

Following the above procedure, we can conveniently dis-
cuss the effect of truncation to the model space by different
degrees of freedom according to the optimal order for proton
(neutron) basis states.

III. SCHEMATIC ELLIOTT’S SU(3) MODEL

In this section, we study the p f shell with isospin-
conserved quadrupole-quadrupole interaction,

VQ = −(Qπ + Qν ) · (Qπ + Qν )

= −
√

5[(Qπ + Qν ) × (Qπ + Qν )](0), (7)

with Qπ and Qν the quadrupole spherical harmonics of pro-
tons and neutrons in terms of both the coordinate �r and the
momentum �p,

Q = 1
2

[
r2Y (2)(�r ) + r4

0 h̄−2 p2Y (2)(�p)
]
, (8)

where the magnetic quantum number has been omitted with-
out confusion and r2

0 = 1.012A1/3 fm2. �r and �p are the
polar angles of �r and �p, respectively. It is easy to prove that
Q conserves the principal quantum number of the oscillator
basis and thus has a closed second quantization form in one
major shell,

Q =
∑
j1 j2

q( j1 j2)
(
a†

j1
× ã j2

)(2)
, (9)

with j1, j2 running over the single-nucleon lev-
els in the major shell. The coefficients q( j1 j2) =
(−) j1+1/2√

20π

√
2 j1 + 1

√
2 j2 + 1C20

j11/2, j2−1/2〈n1l1|r2|n2l2〉, where

C20
j11/2, j2−1/2 is the Clebsch-Gordan coefficient. Equation (9)

is used to construct VQ in our NPA calculations.
This interaction is very interesting, because one is able to

obtain the exact and analytical shell-model results with the
help of the Elliott model [29], regardless of how enormous the
shell-model space might be. The interaction in Eq. (7) respects
the SU(3) symmetry of the Elliott model, according to which
the eigenvalue is given in terms of the irreducible representa-
tion quantum numbers of SU(3) group, (λ,μ), and irreducible
representation quantum number of the SO(3) group, L, by

E = − 5

2π

[
1

2
(λ2 + λμ + μ2 + 3λ + 3μ) − 3

8
L(L + 1)

]
.

(10)
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For μ = 0, the reduced electric quadrupole transition proba-
bility is given by

B(E2; L → L′) = 5e2
eff

16π

(2L + 1)

(2L′ + 1)

[
cL′

cL
CL′0

L0,20

]2

×
[

2λ + 3 + 1

2
L′(L′ + 1) − 1

2
L(L + 1)

]2

,

(11)

where eeff is the effective charge for both protons and neu-
trons, CL′0

L0,20 the Clebsch-Gordan coefficient, and

cL =
[

(2L + 1)2Lλ!
(

1
2λ + 1

2 L
)
!

(λ + L + 1)!
(

1
2λ − 1

2 L
)
!

] 1
2

.

For μ 
= 0, however, there is no available formula to obtain
exact B(E2) value. Instead, one can derive an approximate
value by neglecting the nonorthogonality of eigenstates from
intrinsic states with different projection. From the Eq. (45) of
Ref. [29], we get an approximate expression,

B(E2; L → L′)

= 5e2
eff

16π

(2L + 1)

(2L′ + 1)

[
c̃L′

c̃L
CL′0

L0,20

]2

×
[

2λ + μ + 3 + 1

2
L′(L′ + 1) − 1

2
L(L + 1)

]2

, (12)

which differs from Eq. (11) mainly in terms of the coefficient
c̃L obtained through an iterative technique. This approxima-
tion is good for the states with low angular momenta. Several
useful SU(3) representations for low-lying states can be found
in Refs. [42–44]. It is also worth noting that an additional
single-particle term is necessary in order to reproduce the
above results in the shell-model calculation if the momentum-
dependent part in Eq. (8) is omitted [45].

Now we come to a system of six protons and six neutrons
in the p f shell in the presence of interaction defined in Eq. (7).
Figure 1 shows the excitation energies and B(E2) of the
ground band states calculated in nucleon-pair subspaces as
well as corresponding results given by Eqs. (10) and (11) with
(λ,μ) = (24, 0) of the Elliott model, namely the exact NSM
results. The effective charge eeff = 1.0e for sake of simplicity.
We find that the NPA calculation in the full SDGI-pair space
exactly reproduces all excitation energies and B(E2) for the
ground band; on the other hand, NPA calculations in the SD-
and SDG-pair subspaces yield only 38.7% and 58.5% of the
exact moment of inertia and much smaller B(E2) values.
However, one should be careful in comments of the SD- or
SDG-pair approximations, as the structure coefficients here
are obtained using the Hartree-Fock approach [27,28]. It has
been reported in Ref. [35] that the SDG-pair space with the
structure coefficients of S, D, and G pairs optimized using
the conjugate gradient (abbreviated as CG in this paper) ap-
proach is sufficient to exactly reproduce these ground band
states. The disadvantage to obtain the nucleon-pair structure
coefficients by the CG approach is that this approach re-
quires repetitions of NPA calculation for hundreds or even
thousands of times, and this makes the application of CG

FIG. 1. Excitation energy Ex (I ) and reduced electric transition
probability B(E2; I → I − 2) for the ground band states of six va-
lence protons and six valence neutrons in the p f shell versus spin
I of the states. “Elliott” denotes the results based on the Elliott’s
SU(3) model. “SD,” “SDG,” and “SDGI” denote configurations
constructed by collective SD, SDG, and SDGI nucleon pairs, respec-
tively. “SD1G1I” denotes SD nucleon pair subspace coupled to a
space with one G and/or one I pair (in addition to SD nucleon pairs).

approach much less practical for realistic nuclei with stable
deformation.

It is very interesting, as shown in Fig. 1, that the SDGI-pair
approximation with the requirement of G and I pair number
equal to or below 1, denoted by “SD1G1I ,” also reproduces
the excitation energies and the B(E2) values very well, except
for states with spins close to maximum. The dimension of this
“SD1G1I” subspace is only about a fifth of the full SDGI-pair
space. This means most of the SDGI-pair configurations with
G pair number more than 1 do not play any essential roles, at
least for the ground band structure.

Therefore it is informative to investigate, among the full
SDGI pair configurations, those basis states which play im-
portant roles in low-lying states. Towards this goal, we make
use of the procedure to optimize the nucleon-pair basis, dis-
cussed in Sec. II B. We first obtain the wave functions of
states in the full SDGI-pair space and calculate the squared
overlap P(α)

ησkJk
for each proton (or neutron) basis state. In

Fig. 2 we show the sum of these squared overlaps of a given
nucleon-pair configuration for the low-lying 0+

1 , 2+
1 , 4+

1 , and
6+

1 states. One finds that the pattern of P(α)
ησkJk

in terms of
various nucleon-pair configurations are very similar to each
other for different eigenstates. This is clearly distinct from the
cases in spherical and vibrational nuclei, where the “nucleon-
pair states” dominating in the eigenstates can be drastically
different [41]. Another important feature exhibited in Fig. 2
is that the dominant configurations of these low-lying states
of the ground rotational band are constructed by S and D
nucleon pairs, and the most important configurations are given
by D3 and SD2; these configurations together with SSD and
SSS account for more than 50% in wave functions of those
states. Furthermore, we also see that the SD nucleon-pair
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FIG. 2. Squared overlaps,
∑

σk Jk
P(α)

ησk Jk
[see Eq. (4), where η =

π (or ν), σ specifies a nucleon-pair subspace, and α denotes an
eigenstate], with the wave functions calculated in the full SDGI
pair configuration space. The results in black, red, blue, and green
correspond to 0+

1 , 2+
1 , 4+

1 , and 6+
1 states, respectively.

subspace, generalized by considering more one-G and/or -I
nucleon pairs, denoted by SD1G1I nucleon-pair space, very
well overlap with the full SDGI configuration space. The
squared overlap of the top nine configurations of the SD1G1I
space in the 0+

1 , 2+
1 , 4+

1 , and 6+
1 states is 0.95, 0.94, 0.93, and

0.92, respectively.
The result, that the very large SDGI nucleon-pair space is

well represented by its SD1G1I subspace, is very encourag-
ing. For Nπ = Nν = 3 in the SD1G1I nucleon-pair subspace,
the numbers of 0+, 2+, 4+, and 6+ states are 1146, 5211, 8014,
and 9047, respectively. One would ask whether this subspace
can be further reduced without expensive cost of accuracy for
calculated results. Figure 3 presents the calculated excitation
energies and the B(E2) values of the 2+

1 , 4+
1 , and 6+

1 states
in truncated model spaces spanned by proton and neutron
pair basis states, |ησkJk〉 with k = 1 ∼ Nps, with the optimal
procedure of Sec. II B. As shown in Fig. 3, we obtain good
agreement with calculated results of the full SDGI space at
Nps = 50, for which the dimensions of the 0+, 2+, 4+, and 6+
spaces are only 518, 1405, 1929, and 2005, respectively.

Figures 4–6 present similar investigations but for eight
valence protons and eight valence neutrons in the p f shell.
In Fig. 4 the Elliott’s excitation energies and B(E2) values
are given by Eqs. (10) and (12) with (λ,μ) = (20, 8), respec-
tively. We note that Eq. (12) is close to the exact NSM value
in the limit of very low spins (I is small), as the value of
μ 
= 0 in this case. From Figs. 4–6, we see that the SDG-,
SDGI-, as well as SD1G1I-pair approximations are in good
agreement for excitation energies and exhibit discernible but
very small differences for B(E2) values, in comparison with
the results of Eqs. (10) and (12); and the agreement between
these NPA results, in particular, the SDGI NPA, and those of
the Elliott model, are very good. The difference of NPA calcu-
lated B(E2) values between the SDGI and the SD1G1I results
means that the transition probability is much more sensitive
to the details of wave functions than eigenenergies. Indeed, as
shown in Fig. 5, configurations with two I nucleon pairs also

FIG. 3. Excitation energy and reduced electric transition proba-
bility for the 2+

1 , 4+
1 , and 6+

1 states versus the number of selected
optimal neutron-pair basis states for systems of Nπ = Nν = 3 in the
presence of the Hamiltonian of Eq. (7) and in the p f shell. The
exact results are derived from the Elliott’s SU(3) model according
to Eqs. (10) and (11).

contribute considerably large to the ground rotational bands of
this system. Actually, the SD1G2I-pair approximation does
reproduce the B(E2) values given by the calculation in the
full SDGI model space. Similarly to our above study of the
Nπ = Nν = 3 case, we find that we achieve very good results
at Nps = 500, as shown in Fig. 6.

IV. 146Ba AND 148Ce WITH EFFECTIVE
INTERACTION Vlow−k

With the same motivation as in Sec. III, here we in-
vestigate the optimal nucleon-pair basis states of low-lying

FIG. 4. Same as Fig. 1 but for the system with eight valence
protons and eight valence neutrons in the p f shell.
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FIG. 5. Same as Fig. 2 but for the system with eight valence
protons and eight valence neutrons in the p f shell.

states, exemplified by two realistic nuclei, 146Ba and 148Ce,
in the presence of effective interactions. For both nuclei,
we use 132Sn as the inert core and take the experimen-
tal spectra of 133Sb and 133Sn [46] as the single-particle
energies of the Hamiltonian, as shown in Table II. The two-
body effective matrix elements are obtained by integrating
the model-independent low-momentum nucleon-nucleon in-
teraction [47,48], known as Vlow−k , sandwiched between the
harmonic oscillator wave functions with the oscillator pa-
rameter h̄ω = 7.87 MeV. The effective charges are taken as
eπ = 2.0 e and eν = 1.0 e for the B(E2) evaluation; the ef-
fective factors glπ = 1.0 μN , glν = 0, gsπ = 5.586×0.7 μN ,
and gsν = −3.826×0.7 μN are taken for the calculation of
magnetic dipole moments μ.

Figure 7 plots the NPA-calculated excited energies of
ground band states in the SDG, SD1G1I , and the full SDGI
nucleon-pair spaces in comparison with corresponding exper-
imental data taken from Ref. [46]. One sees that all these
calculations predict the quasirotor structure, while the inertia
moments of the SDG and SD1G1I nucleon-pair approxima-
tions are smaller than the result of the SDGI approximation:

FIG. 6. Same as Fig. 3, but for the system with eight valence
protons and eight valence neutrons in the p f shell.

TABLE II. Single-particle energies of valence protons (π ) and
valence neutrons (ν) taken from the experimental spectra of 133Sb
and 133Sn [46].

jπ 2s1/2 1d3/2 1d5/2 0g7/2 0h11/2

ε jπ 2.990 2.440 0.962 0.000 2.793

jν 2p1/2 2p3/2 1 f5/2 1 f7/2 0h9/2 0i13/2

ε jν 1.363 0.854 2.005 0.000 1.561 2.690

23.7(7), 27.9(7), and 35.3(6) h̄2MeV−1 for 146Ba, and 22.9(5),
28.4(6), and 33.3(6) h̄2MeV−1 for 148Ce, given respectively by
linear fitting to the 2+

1 , 4+
1 , and 6+

1 states in the three model
spaces. This indicates that some configurations out of the
SD1G1I space also come into play, although their contribution
to the wave functions may be very small [49].

Next we investigate the electromagnetic properties of our
calculations. Tables III and IV present the B(E2) and g values
of low-lying yrast states calculated by the SDG, SD1G1I ,
and SDGI approximations. We also compare these values to
experimental data from the NNDC and the theoretical results
from the rotational model (RM), given by

B(E2; IK ) = 5

16π

(
CI-2 K

IK,20Q0
)2

,

g = Z/A,

where the magnetic quantum number in the intrinsic space
K = 0 and the intrinsic quadrupole moment is regarded as
a parameter and taken Q0 = 5.0 eb; Z and A are the proton
number and the mass number, respectively. In the aspect of
the B(E2) values, there are no significant differences among
the three sets of the NPA calculations. Also our calculations
are close to the experimental data and the RM results. On the
other hand, the gyromagnetic ratios obtained from the NPA
calculations are systematically larger than the experimental
and the RM values, especially for 146Ba. One possible reason
for this difference is that the magnetic moment is sensitive
to the nuclear wave functions and thus magnifies the impact
of nucleon-pair truncation. As manifested by our calculations,

FIG. 7. Excitation energies of the yrast states for 146Ba and 148Ce.
Experimental data are taken from the NNDC [46] database, and
“SD,” “SDG,” “SD1G1I ,” and “SDGI” correspond to calculated
results in SD, SDG, SD1G1I , and SDGI nucleon-pair configuration
spaces.
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TABLE III. Electric quandrupole transition probability B(E2) (in
e2b2) for low-lying states of 144Ba and 148Ce. Experimental data are
taken from the NNDC [46] database. Calculated results are obtained
in the SD, SDG, SD1G1I , and SDGI nucleon-pair configuration
spaces. Our effective charges eπ = 2.0 e, eν = 1.0 e. The correspond-
ing results of the rotational model (RM) are also calculated by
assuming K = 0 and the intrinsic quadrupole moment Q0 = 5.0 eb.

Nuclide State Expt. SDG SD1G1I SDGI RM

146Ba 2+
1 0.27(1) 0.45 0.45 0.49 0.50

4+
1 0.73(64) 0.65 0.65 0.71 0.71

6+
1 0.70 0.71 0.77 0.78

8+
1 0.71 0.72 0.78 0.82

148Ce 2+
1 0.40(3) 0.47 0.48 0.50 0.50

4+
1 >0.02 0.68 0.69 0.72 0.71

6+
1 0.73 0.74 0.78 0.78

8+
1 0.72 0.75 0.79 0.82

the g factors obtained from the full SDGI-pair space are closer
to the experimental value than those from the truncated SDG-
and SD1G1I-pair spaces. The deviation of the RM result from
the experimental value is also sizable, indicating that 146Ba is
not a perfect rotating rigid nucleus.

In order to understand the differences of calculated B(E2)
and μ in those nucleon-pair spaces, we investigate squared
overlaps between the low-lying states in the SDGI nucleon-
pair space and each proton-neutron basis states, with the
iteration procedure introduced in Sec. II B concerning the
nonorthogonal issue. We note that overlaps belonging to
same proton-neutron configuration are integrated. In Fig. 8,
we plot the contributions of various nucleon-pair configu-
rations to the yrast 0+

1 and 2+
1 states of the 148Ce nucleus,

where one sees clearly that SD nucleon-pair contribution are
by far predominant in these states, with slight mixings of the
one-G-pair and/or one-I-pair and two-G-pair configurations;
contribution from other nucleon-pair configurations are tiny
and negligible in these states. In quantitative terms, the pure
SD-pair configurations account for 55% and 47% of the wave
functions for the 0+

1 and 2+
1 states, while the squared overlaps

TABLE IV. Same as in Table III but for gyromagnetic ratio g
(in μN/h̄). The effective parameters are taken glπ = 1.0 μN , glν =
0, gsπ = 5.586×0.7 μN , and gsν = −3.826×0.7 μN . The rotational
model (RM) predicts g = Z/A = 0.38 and 0.39 for 146Ba and 148Ce,
respectively.

Nuclide State Expt. SDG SD1G1I SDGI

146Ba 2+
1 0.26(5) 0.52 0.53 0.47

4+
1 0.54 0.55 0.49

6+
1 0.56 0.57 0.50

8+
1 0.59 0.58 0.52

148Ce 2+
1 0.38(5) 0.47 0.42 0.41

4+
1 0.51 0.45 0.42

6+
1 0.55 0.47 0.43

8+
1 0.62 0.48 0.44

increase to over 90% if we take the mixings of one-G and/or
-I pair into account.

In Fig. 9 we present the marginal distribution of squared
overlaps in each proton- and neutron-pair configuration for the
yrast 0+, 2+, 4+, and 6+ states of 146Ba and 148Ce. One sees
that, as in the two cases in last section for the Elliott model,
the differences of contributions from each proton and neutron
nucleon-pair configuration is quite small for different states in
the yrast band (except for the S-pair condensate configuration
and the one-broken-pair SD configuration). This indicates the
“robustness” of the contribution of pair configurations to dif-
ferent low-lying states in the deformed nuclei.

On the other hand, proton and neutron nucleon-pair config-
urations exhibit different behaviors. This is understandable,
because valence protons and neutrons are in different shells
in the presence of different interactions. For valence protons,
configurations including one I pair are of importance to re-
produce the wave functions of low-lying states; the DDI ,
SDI , DGI , and SGI configurations in the proton system of
146Ba also contribute considerable overlaps, and this pattern
survives for 148Ce. This is why the SDG-pair approximation
deviates from the full SDGI nucleon-pair approximation. As
for the neutron part of the low-lying states of 146Ba and
148Ce, the contribution from the SDDG, SSDG, DDDG, and
SDGG pair configurations are not negligible, and the two-G-
pair configuration (i.e., SDGG) is the reason the SD1G1I-pair
approximation presents slight deviations in comparison with
the full SDGI nucleon-pair space. To demonstrate this is
indeed the case, we present the calculated results in the sub-
space constructed by the proton SD1G1I-pair and the neutron
SD2G1I-pair configurations, which reproduce very well the
results of the SDGI approximation; e.g., calculated energies
of the 2+

1 , 4+
1 , and 6+

1 states of 146Ba are 0.10, 0.31 and
0.63 MeV in this subspace, while the corresponding results
are 0.10, 0.30, and 0.59 MeV in the full SDGI nucleon-pair
configuration. Those for for 148Ce are 0.11, 0.33, and 0.65
MeV in this subspace while the corresponding results are 0.10,
0.32, and 0.62 MeV in the SDGI nucleon-pair space.

It is also very interesting to point out once again that for
low-lying states of these two nuclei, the first two configu-
rations are SDD and SSD for the proton part of 146Ba and
SSDD, SSSD for the neutron part of 146Ba and both parts
of 148Ce, with their squared overlaps significantly larger than
other configurations. Moreover, the integrated overlaps of the
SD-pair configurations for the low-lying states of these two
nuclei (except the 6+

1 state of 146Ba) are over 50%, as shown
in Table V. These integrated overlaps of SD nucleon-pair
subspace for realistic nuclei using the shell-model effective
interaction are even larger than those obtained from the Elliott
SU(3) model. It thus provides us with evidence of the SD-pair
dominance in the low-lying states of realistic deformed nuclei.

It is noteworthy that, on the one hand, the SD1G1I-pair
subspace yields calculated results with slight deviations in
comparison with calculated results in the full SDGI config-
uration space, as shown in Tables III and IV and Fig. 7, and,
on the other hand, Fig. 9 demonstrates that the SD1G1I-pair
subspace contributes essential components of the full SDGI
configuration; all integrated squared overlaps of the SD1G1I
configurations are larger than 0.91. This means that calculated
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FIG. 8. Contribution from various nucleon-pair configurations in the yrast 0+
1 and 2+

1 states of the 148Ce nucleus, in wave functions
calculated by using the full SDGI nucleon-pair configuration space. Calculation of squared overlaps are performed via the procedure of
Sec. II B in this paper. Left panel corresponds to the 0+

1 state, and the right panel corresponds to the 2+
1 state. The results plotted in black

corresponds to those with contributions below 10−6.

B(E2) and μ values are more sensitive to residual components
beyond the SD1G1I nucleon-pair subspace in the SDGI space
than calculated energy levels. This is different from the case
of semimagic and open-shell spherical nuclei, where “pair
states” with squared overlaps of ∼0.64 reproduce excitation
energies and B(E2) results with good accuracy [41].

To study how sensitive the excitation energies are to over-
laps, we perform the NPA calculation in a series of model
subspaces spanned by the basis states in the SDGI-pair con-
figurations. These model spaces are truncated in sequence of
the basis states |σkJk〉 with the number Nps that 1 � k � Nps.
Figure 10 plots calculated energies of 2+

1 , 4+
1 , and 6+

1 states in
these truncated spaces and the corresponding squared overlaps
between wave functions calculated in truncated subspaces and
those calculated in the full SDGI-pair space. One sees these
energies and overlaps converge exponentially to the expected
values (though with more rapid decreases for small Nps). This
behavior might be related to the procedure in optimizing the

TABLE V. Sum of squared overlaps,
∑

σk Jk
P(α)

ησk Jk
with η = π or

ν and |σkJk〉 for the SD-pair configurations in a few yrast states of
146Ba and 148Ce in the full SDGI-pair configuration space.

146Ba 0+
1 2+

1 4+
1 6+

1

Proton 0.68 0.64 0.56 0.46
Neutron 0.65 0.61 0.54 0.47
148Ce 0+

1 2+
1 4+

1 6+
1

Proton 0.78 0.72 0.64 0.51
Neutron 0.67 0.63 0.57 0.51

subspaces of Sec. II; similar patterns have been discussed in a
number of previous truncation schemes [38,50,51].

In Tables VI and VII, we present the calculated B(E2) and
μ of low-lying states in the truncated space with the limitation
Nps = 30, 60, 90, and 120 for 146Ba and 40, 80, 120, and 160
for 148Ce. The dimensions of corresponding subspaces of 2+,

TABLE VI. B(E2; I → I − 2) (in e2b2) and μ (in μN ) values for
a few yrast states of 146Ba in a few truncated SDGI spaces, versus
the number of selected nucleon-pair basis states Nps. The dimensions
of selected subspaces are presented, with that of “full” correspond to
the case of the full SDGI nucleon-pair configuration space.

State Nps Dim. B(E2) μ

2+
1 30 580 0.39 1.09

60 2222 0.45 1.10
90 4717 0.48 1.06
120 7815 0.48 1.02

Full 193 052 0.49 0.94
4+

1 30 729 0.58 2.28
60 2926 0.65 2.30
90 6366 0.68 2.19
120 10 713 0.69 2.13

Full 312 342 0.71 1.94
6+

1 30 665 0.61 3.60
60 2852 0.71 3.61
90 6389 0.74 3.42
120 10 969 0.75 3.36
Full 382 247 0.77 3.02
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FIG. 9. Squared overlap of each specific nucleon-pair configuration with the wave function obtained in the full SDGI-pair space for the 0+
1 ,

2+
1 , 4+

1 , and 6+
1 states of 146Ba and 148Ce. Panels (a) and (c) correspond to proton configurations, and panels (b) and (d) correspond to neutron

configurations. See Sec. II B for the procedure to calculate the overlaps.

4+, and 6+ states in each cases are also listed for comparison.
One sees that calculated B(E2) values in truncated subspaces

TABLE VII. Same as Table VI but for 148Ce.

State Nps Dim. B(E2) μ

2+
1 40 994 0.42 0.79

80 3881 0.47 0.84
120 8560 0.49 0.83
160 14 453 0.50 0.82
Full 1 089 688 0.50 0.81

4+
1 40 1261 0.61 1.66

80 5157 0.68 1.75
120 11 574 0.70 1.74
160 19 761 0.71 1.71
Full 1 774 997 0.72 1.67

6+
1 40 1156 0.65 2.69

80 5104 0.73 2.75
120 11 743 0.76 2.74
160 202 30 0.77 2.71
Full 2 192 601 0.78 2.59

converge rapidly to the value calculated in the full SDGI-pair
space, while the μ values do not. For 146Ba, one is able to well
reproduce the B(E2) values at N = 120, with the truncated
space about 3% of the full SDGI nucleon-pair space; while for
magnetic moment the average deviation of truncated nucleon-
pair subspaces is about 10% (with fluctuations). Considering
the exponential convergence of the overlaps shown in Fig. 10,
we conclude that the magnetic moment is a more sensitive
probe to the wave functions of low-lying structure in deformed
nuclei.

V. SUMMARY AND DISCUSSION

To summarize, in this paper we study the nucleon-pair
approximation for deformed nuclei. Explicitly, we study the
contributions of different nucleon-pair basis states, with a
focus on the analysis of the roles played by G and I nucleon
pairs, in very large nucleon-pair configuration spaces. We
demonstrate that for low-lying states of deformed nuclei, SD
components are more predominant than previously assumed.
On the one hand, G and I pairs are not negligible, and, on the
other hand, with very small mixings of those configurations
with the conventional SD nucleon-pair space, one is able to
achieve reasonable agreement with exact results.
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FIG. 10. Convergence of calculated excitation energies of 146Ba and 148Ce in truncated SDGI subspaces versus the number of selected,
optimized nucleon-pair basis states Nps (see Sec. II B for details of the procedure to optimize the basis states). Panels (a) and (c) correspond
to excitation energies (in units of MeV) of a few yrast states, and panels (b) and (d) present corresponding squared overlaps between the
eigenstates in the truncated spaces and those in the full SDGI-pair space. The solid lines are exponential curves to fit data.

In this paper, two typical forms of Hamiltonian, the
Elliott’s SU(3) Hamiltonian and the effective Vlow−k Hamil-
tonian, are investigated in a number of nucleon-pair model
spaces. Both our nucleon pairs and corresponding struc-
ture coefficients are derived from the Hartree-Fock ground
states, which was used in Ref. [27] and exemplified in
Ref. [28] for deformed nuclei. In the first case, the excita-
tion energies Ex and reduced electric quadrupole transition
probabilities B(E2) of systems, with six valence protons and
six valence neutrons or with eight valence protons and eight
valence neutrons, in the p f shell in the presence of the
SU(3) quadrupole-quadrupole interaction, calculated in the
full SDGI nucleon-pair configuration space, are in excellent
agreement with the exact values from analytic solutions of the
Elliott model. In the second case we calculate Ex and B(E2)
values of 146Ba and 148Ce in the presence of Vlow−k effective
interaction in both the full and a number of truncated SDGI
nucleon-pair configuration spaces.

Among the calculated results in these truncated nucleon-
pair configuration spaces, we obtain good agreement and
quick convergence for energy levels. As is well known, cal-
culated B(E2) and magnetic moments are seen to be more

sensitive to the configuration space beyond the so-called
SD1G1I configuration space than calculated energy levels.
As expected, for the SU(3) model we need the configurations
including two I pairs in order to satisfactorily reproduce the
B(E2) values from the SDGI approximation; for realistic nu-
clei, 146Ba and 148Ce, some configurations with two G pairs
are useful to reproduce the moments of inertia in the SDGI
approximation.

This study provides us with a simple pattern for the com-
ponents of the low-lying states in the deformed nuclei. First,
the distribution of wave function in terms of nucleon-pair
configurations is very similar for different states in the yrast
band, and, second, the SD-pair configurations contribute the
most important proportion in the low-lying states by usually
over 50%. The configurations with only one G and/or I pair(s)
contribute the second important, and all other configurations
are much less important, as a whole. This study lay foundation
and benchmark of simplifications in the NPA studies of low-
lying states for deformed nuclei in future.

In order to study how compact a subspace could be under
the requirement of reasonable accuracy in description of phys-
ical observables, we perform the NPA calculation in a number
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of model spaces constructed by nucleon-pair basis states.
We find that it is relatively easier to obtain convergence for
calculated energy levels, next for B(E2) values, and relatively
more difficult to obtain convergence for calculated magnetic
moments, as we expand the subspaces step by step in the full
SDGI subspace. This means that, at least for these deformed
nuclei, the magnetic moment is a much more sensitive probe
to the nuclear wave function, comparing to the excitation
energy and B(E2).
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