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Radius extrapolations for two-body bound states in finite volume
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Simulations of quantum systems in finite volume have proven to be a useful tool for calculating physical
observables. Such studies to date have focused primarily on understanding the volume dependence of binding
energies, from which it is possible to extract asymptotic properties of the corresponding bound state, as well
as on extracting scattering information. For bound states, all properties depend on the size of the finite volume,
and for precision studies it is important to understand such effects. In this work, we therefore derive the volume
dependence of the mean squared radius of a two-body bound state, using a technique that can be generalized to
other static properties in the future. We test our results with explicit numerical examples and demonstrate that we
can robustly extract infinite-volume radii from finite-volume simulations in cubic boxes with periodic boundary

conditions.
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I. INTRODUCTION

Finite-volume (FV) simulations of quantum systems in
periodic cubic boxes are a powerful tool that is used to study
properties of nuclear bound states and scattering. A series of
highly influential papers [1-3] established in the 1980s and
90s that real-world properties of a quantum system are en-
coded in how its discrete energy levels change as volume size
is varied. Over the past decades, this fruitful idea has spurred
a lot of activity, with recent focus on the study of three-body
systems [4-25], motivated primarily by applications to lat-
tice quantum chromodynamics (lattice QCD). For two-cluster
bound states, the volume dependence of the binding energy
is known for an arbitrary number of constituents [26]; see
also Refs. [27,28] for studies of general N-body states in finite
volume. Recent work derived the volume dependence of two-
body bound states comprised of charged particles, with a full
nonperturbative account for the repulsive Coulomb interaction
[29], and Ref. [30] extended the method to resonances. An
important motivation for understanding the volume depen-
dence of bound states is that knowledge of the functional
form makes it possible to extract asymptotic normalization
coefficients (ANCs) from FV calculations, for example based
on lattice effective-field theory (lattice EFT) simulations of
atomic nuclei [31-35].

In this paper, we extend studies of the volume dependence
for bound states beyond what is known for binding energies.
As simplest observable, we consider mean squared radii (%)
of two-body bound states, defined (in more detail in the fol-
lowing section) as the expectation value of an operator that
measures the average distance of the constituents from their
common center of mass. Just like the binding energy, (r?) will
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be shifted from its physical value in FV, and the magnitude of
this shift can be traced back to changes in the wave function
induced by being confined to a periodic box. We derive in
detail the functional form of the radius finite-volume shift,
which makes it possible to perform extrapolations from a set
of finite-volume calculations to the real world, i.e., infinite
volume.

Unlike the binding energy, which is known to depend to
leading exponential order only on asymptotic properties of
the the wave function (and is thus universal with respect to
the details of the short-range interaction that gives rise to the
bound state [1,26,29,36,37]), one should expect (rz) to be
sensitive in principle to the form of the wave function at all
relative distances. This has indeed been observed for radii and
other static properties of bounds states calculated in truncated
harmonic-oscillator bases [38—40].

We derive in this work analytical expressions for the
leading volume dependence of the mean-squared radius for
two-body states bound by a short-range interaction. Based
on an appropriate ansatz for the relevant volume dependence
of the wave function, we obtain explicit formulas for states
within the A| and 7|~ representations of the cubic symmetry
group, which correspond approximately to S- and P-wave
states in infinite volume. A constructive prescription is given
for the general case. Our results are relevant, for example, for
lattice QCD studies of the deuteron radius, and the formalism
we develop paves the way for deriving analogous relations for
other static observables, as well as for bound states comprised
of more than two particles. Relations of this form will have
applications not only in lattice QCD studies of multinucleon
bound states, but also to precision studies of atomic nuclei
with lattice EFT.

This paper is organized as follows: In Sec. II we de-
velop the formalism for deriving the finite-volume radius shift
A(r?)(L), starting with a discussion of how the bound-state
wave function changes when it is confined to a periodic box.

©2024 American Physical Society
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Subsequently, in Sec. III we present closed-form analytical
expressions that describe the radius shift for bound states
within the A] and 7,” cubic representations, and we verify
these the results with explicit numerical calculations. Finally,
in Sec. IV we close with a summary and outlook.

II. FORMALISM
A. General setup in infinite volume

We consider a system of two particles with reduced mass p
and relative coordinate denoted r interacting via a finite-range,
spherically symmetric potential, i.e., for R > 0 and

B={xeR®:|x| <R}, (D
it holds that

Vi, r')=0 if r,r' ¢B, 2)

and V depends only on the magnitude of r and r’. To be as
general as possible, we allow V to have a nonlocal form and
we emphasize that our main results to do not depend on the
detailed form of V (r, r’). We furthermore note that, although
for convenience we assume a strict finite range R in the fol-
lowing, our results remain valid with negligible corrections
for short-range potentials that fall off faster than any power
law at large distances.
We write the Schrodinger equation for a state |y) as

Hiy) = E|y), 3)
with the Hamiltonian given by
N 1
Hy(r) = —ﬂvzw(r) + f v, vy @)

We define |) to be a solution with positive binding energy
E such that

H|Yoo) = —Eool¥oo).- (5)
For r ¢ B the Hamiltonian simplifies to
. 1
Ay()"E — —Vy ), ©)
2p

and we can write the asymptotic wave function as

Yoo®) E Yo aam(®) = =iy K (i)Y (x /1), (7)

where hél) is the spherical Hankel function of the first kind
and

k? = 2uE. ®)

The asymptotic normalization coefficient (ANC) y is fixed
via the normalization condition (V¥o|¥s) = 1 and Eq. (7).
For later use we also define a state |5 ,sm) to be the purely
asymptotic form of a bound state with binding energy E,
satisfying

A am(@®) "2 —Eg aom(r). ©)

We are not making any assumption here about the behavior
of Yg asm(r) for r € B and just note that in all applications
YE asm Will be multiplied by an indicator function that is zero
forr € B.

B. Finite-volume wave function

Now we consider the same system confined to a cubic
periodic box of edge length L > R. The potential becomes
periodic, taking the form

Vi(r,r') = ZV(r—i—nL, r' +nlL), (10)

nez

and it satisfies

Vi(r,r')=0 if reAorr €A, an

where A, called the asymptotic domain, is defined as
A={xeR’:(x+nL)¢BVneZ (12)

The action of the finite-volume Hamiltonian on a generic state
|1), written in configuration space, is then

. 1
AL = -y + / PV, O ()

=Hvy () + Z /d3r/V(r +nL, ¥ +nL)y(r)
[n|5£0
Ay ). (13)
The exact finite-volume bound state v (r) has an energy
—E(L) that depends on the size of the box. We relate the
infinite and finite-volume binding energies via

E(L) = Eo + AE(L), (14)

where AE (L) is called the energy shift and has been investi-
gated extensively for various systems [1,26,29,36,37]. In the
derivation that follows we therefore treat AE (L) as a known
quantity and we frequently make use of the fact that

AE(L) = O(e™h). (15)

The finite-volume wave function must be a solution to
the finite-volume Schrodinger equation with energy —E (L)
that obeys the periodic boundary condition. In the remain-
der of this section, we work out an ansatz for this periodic
finite-volume wave function that will form the basis for our
derivation of the radius volume dependence.

Asymptotic solution. Based on the observation that the
infinite and finite-volume Hamiltonians are equal in the
asymptotic domain, we make the ansatz that an asymptotic
solution in finite volume is of the following form (analogous
to what is used in Refs. [38,39,41], based on the “linear energy
method” of Ref. [42]):

E:Em:|

+ O(AE(L)?). (16)

d
1;l/asm(r) = XA (I') |:Ipoo,asm (l') + AE(L)d_EwE.asm(r)

This means we consider the wave function as a function
of the energy and relate the volume dependence to an en-
ergy dependence via E = E(L), allowing us to Taylor-expand
around infinite volume and keep the linear term explicitly.
We include xa(r), the indicator function of A, to conve-
niently set the state to zero outside of the asymptotic domain.
If we act on |Y,g,) with H; in the asymptotic domain,
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we find
reA

H i Yasm (1) "= Hragm (1)

o d .
= XA(r) Hwoo,asm(r) + AE(L)d_EI—IwE,asm(r)

d
= XA(r) - oowoo,asm(r) - AE(L)EEwE,asm(r)

d
= XA(r) - me,asm(r) - AE(L)woo,asm(r) - AE(L)EwEwE,asm(r)

d
- _[Eoo + AE(L)]XA(r) |:¢loo,asm(r) + AE(L)d_E wE,asm(r)

= —E(L)Yam(r) + O(AE(L)?).

In going from the fourth to the penultimate line in this equa-
tion we have added and subtracted a term proportional to
AE(L)?. This allows us to pull out the overall factor E,, +
AE(L), and the remainder is subsequently absorbed into the
O(AE(L)?). Overall we have found that to leading order
[Vasm) satisfies the Schrodinger equation with energy —FE (L),
restricted to the asymptotic domain. However, |{/,sm) does not
satisfy the periodic boundary condition that characterizes the
proper finite-volume eigenstate.

Therefore, we now proceed to construct a periodic solution
based on |Y,sm). We introduce a translation operator defined
via

(r|T(m)|y) = ¢ (r +nL), (18)
from which it follows that
(W|TTm)|r) = v*(r +nL). (19)
It holds that
T7(n) = T(—n) (20)
because

@IT (m)|y) = fd3r¢*(r+nL>w(r>

= / d’r ¢*(r)y(r — nL)

= (@IT(—n)|y). (2)
Translation operators also have the property
T(m)T(m) = T(n+m). (22)

Using translation operators we can construct the asymp-
totic finite-volume wave function by adding shifted copies
of |Y¥sm) to satisfy the periodic boundary condition. This
leads to

WLasm) = Y T(0)[am). (23)

Due to the linearity of the Schrodinger equation and the
fact that the finite-volume Hamiltonian commutes with our

} + O(AE(L)?)
E=E

} + O(AE(L)*)

E=E

] + O(AE(L)*)

E=Ex

E=E

] + O(AE(L)?)

A7)

(

translation operators, |V ,sm) 1S a periodic solution of the
finite-volume Schrodinger equation with energy —E (L), to
leading order, and restricted to the asymptotic domain.

Interior solution. Now that we have found an asymptotic
solution, we must find a solution for r ¢ A. We need only find
an appropriate form for r € B, since periodic copies of this set
cover A, illustrated in Fig. 1.

By our previous discussion, we know that o (r) is an
approximate solution for r € B up to corrections of the order
O(e*1). Specifically, by Egs. (14) and (15) it holds that

HYoo(r) S Hroo (r) = —E(L)Yroo(r) + O(e™).  (24)

Therefore we make the ansatz that an exact finite-volume
solution for r € B is of the form

Vin(r) = xa()[Voo(r) + ¢(r)], (25)

L

e— L —>

FIG. 1. Illustration showing the sets B, A, and C in a two-
dimensional analogy of the three-dimensional scenario we consider.
The central box C, cf. Eq. (37), is shown with neighboring periodic
copies surrounding it.
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where ¢(r) is some correction of order O(e™*%). We note that
¢(r), in general, may depend on L to leading order. Now we
wish to find the form of this leading-order L dependence. This
state must satisfy

ALY (@) "E A () = —E(L)in(Y). (26)
Expanding the left-hand side we get
Hin (1) = xp(0)[~Esc¥oo(r) +HM].  (27)

Expanding also the right-hand side gives
—E(L)Yin(r) = —xp(r)[Esc + AE(L)][Yoo(r) + ¢(1)],
(28)

and combining the two previous equations we obtain a differ-
ential equation for ¢(r):

xa(HP() = — x3()[Excd(r) + AE (L)oo ()] + O(e ).
(29)
|

Yint ()| je)=r = ¥L,asm ()| jrj=r>

’

Yoo(®) + AEL)P(O)liri=r = Y T(0)Yaem(r)

|r|=R

. d
Voo(r) + AEL)P(O)|jei=p = ) T(n){lﬁoo,asm(l’) + AE(L)d—EwE,asm(r)}

d
1poo(r) + AE(L)¢(r)||r\:R = woo,asm(r) + AE(L)EwE,asm(r)

d
¢(r)||r\=R = d_EWE,asm(r)

For this boundary condition to be independent of L to
leading order, it must be true that

ﬁ > Ysam(nL) = const + 0 ¥?). - (32)

In|=1

Although this is not true in general, it trivially holds for any
odd-parity state since Eq. (32) evaluates to zero. We note that
it also happens to hold for a number of even-parity states,
most notably the S wave. In this paper we focus exclusively
on S and P waves, for which this condition is known to hold.
However, the following arguments work for any state as long
as it can be shown that Eq. (32) holds.

Based on Eq. (30) and the boundary conditions, we con-
clude that indeed ¢(r) is independent of L to leading order for
at least S- and P-wave states, and we write

Vin (1) = x50 [Yoo (1) + AEL)p(r)] + Oe™V*L), (33)

where all leading-order L dependence is now explicitly ac-
counted for. Just as before, we can make this solution periodic

E=Ec,|r|=R

If we make the substitution |¢) = AE(L)|g), we get
xp(@HPT) = — x5O [Excp(r) + Yoo (1)] + O(e ™). (30)

Now we make the observation that the differential equa-
tion defining ¢(r) is independent of L to leading order. If
the boundary conditions on ¢(r) are also independent of L
to leading order, then we can conclude that the L dependence
of ¢(r) must be limited to the factor of AE (L) at this order.
We can fix two separate boundary conditions for ¢(r).
For the first one, we use the fact that parity remains a good
quantum number in finite volume, so all states will have either
even or odd parity. For even-parity states, the derivative of the
wave function at the origin must vanish along all three axes.
For odd-parity states, the wave function must vanish at the
origin. Since Vi (r) and Yo (r) have definite parities, ¢(r)
must also have a definite parity by Eq. (25), and therefore we
obtain that either ¢(r) or its derivatives must vanish at the
origin, and this condition is independent of L. For the second
boundary condition we impose continuity between Y, and

WL,asm:

(31a)
(31b)
, (31c)
E=E,|r|=R
+ 3 Yooam@L) + 0>, (31d)
E=E,|r|=R Inj=1
1
asm(nL (1=V2xLy 31
AED ‘;zlwoo“ (nL) + O(e ) (3le)
[
by adding shifted copies:
Wrin) = Y T0)[Wine)- (34)
n

Full construction. Finally, we can join our two solutions
to get the full finite-volume wave function:

|1//L> = |1/fL,asm) + |¢L,im> = Z 7/\w(n)(h//int) + Wfasm))-

(35)
|¥L.asm) and | ine) are both periodic solutions to

H |Y) = —EL)Y) (36)
to order O(e‘ﬁ“). By linearity, |v;) must also be such a

solution. In addition, |1 ) is periodic and continuous.
In the next section we only need the form of v, (r) forr €

C, where
C= L LY’ (37)
S\ 2'2)°
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Therefore, we drop the unused shifted copies of |¥iy) and
rearrange:

reC

W) "= o) + AEWIS) + Y Tm)la) + 0e™0),

In|7£0
(38)

where

d
18) = xs(r)le) + XA(r)d_E|WE,asm)|E=EOO- (39)

C. Radius shift
1. Definition

In general, we define the mean-squared radius of a state as
the expectation value of the operator:

N
1 R
A2 N 2
==Y (& -R)?, 40

where N is the number of particles, ; is the position operator
of the ith particle, and R is the center-of-mass position oper-
ator. Since we work in coordinate representation we drop the
hats for these operators in the following. For two particles, we
have

(41a)
(41b)

1
rp =R+,
rn=R-jr,

J

where r = r; —r; is the relative coordinate. Plugging this
into Eq. (40), we find that the mean squared radius expectation
value for two particles can be written in terms of their relative
coordinate simply as

(r?) = 3(r%). (42)
The finite-volume radius shift A(r?)(L) is defined as
A(?) (L) = (P)(L) = (r), (43)
where (r2)(L) is

P 1 (Y r? xe ()| 9e)
Ly=—-—————, 44
) kel @
so A(r?)(L) can be written as
2

(WLlxc(r)r)

The matrix elements in the numerator and denominator of
Eq. (45) can all be written in the form

(YLIr" xc ()L, (46)

where n = 0 in the denominator and n = 2 in the numerator.

2. Expansion

Upon expanding the sums over shifted copies stemming
from the definition of | ) in Eq. (46), we get the following
terms:

(WL xc)YL) = (Yool xc (0)[Yoo) + 2AE(L)Re[(oo|r" xc (r)|8)] + Z 2Re[(Yoo 1" xc (1) () Wasm) ]

In|70

+ Y (Waam| T ()X xc (0T (M) [Yrm) + O(e™). 47

|n|#0
|m|70

We can add zero to the first term in the form of

(Yoo " X (D) [Wo0) = (Yoo P X (D) Wo0) + D (Yool X = ML) [Yro0) = Y (Yoo xc(r — nL)|¥roc), (48)

|50

[n|z0

which allows us to absorb the lone term into the first sum:

(Voo " X (O)[Yoo) = D (Yool e (r — ML) |Yrcc)

n

— D (Yool xc(r — nL)|Yr). (49)
[n]#0

Xc(r —nL) simply sums to 1 over all n, so

(Yoo " xc (N)[Woo) = (Yool X" |Yoo)

— Y (Yool xc (X — nL)[Yrsc). (50)
[n|#0

=0

(

We write (Voo 1" [¥o) as (rh ) and therefore we get:

(Yool X (@)|Woo) = (1) = D (Woo|F" xc (X — nL)[Yrso).
In|£0
(51

Expanding also the second term in Eq. (47), we find

2AE(L)Re[(Yos 1" xc (1)16)] = ZAE(L)Re[(I/fooIr"XB(I‘)Iw)

:| . (52)
E=E.,

The first term in the square brackets on the right-hand side
contains no L dependence, and since we do not explicitly
know the form of ¥, (r) for all r, we choose to parametrize

d
+ <woo|rnXCﬁA(r)E|WE,asm>
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the entire term by a constant 8. Moreover, since ¥g asm(T)
decays exponentially for large r, any L dependence introduced
by the second term will contribute only some decaying expo-
nential in L. Since the right-hand side overall already contains
a factor of AE(L), the L dependence from the second term
turns out to be of higher exponential order and can therefore
be dropped. Altogether, neither matrix element in Eq. (52)
directly contributes to the leading L dependence and so we
can combine them into a single constant §,:

2AE(L)Re(Yoo|r" xc(0)|8) = B AE(L) + O(e™>F). (53)
|

Turning to the third term in Eq. (47), since Ym(r) is al-
ways evaluated shifted by at least a distance L, and because the
second term in the definition of 4y (1), Eq. (16), is already
suppressed by a factor AE(L), that part is overall beyond
leading exponential order and can be dropped. Effectively,
we may replace Yasm(r) with Yo 4sm(r), and we can further-
more replace Voo (r) with the asymptotic form because it will
only ever be evaluated in the asymptotic region. We therefore
arrive at

> 2Re (Yoo lr" X ()T (0)[Yasm) = Y 2Re(Wog asm 1 Xe ()T (M) x4 (1) [ Y0 a5m) + Oe™ VL), (54)

[0 Inj=1

where we have also made use of the fact that only [n| = 1 terms contribute to leading exponential order.
Finally, for the fourth term in Eq. (47), we can again note that the second term of s, (r) will contribute only beyond
leading exponential order since it is shifted by at least L and suppressed by AE(L). Therefore, we can replace s, (r) with

X4 () Yoo asm(r) and obtain

Z (wasm|T(_n)rnXC(r)f(m)|Wasm> = Z <woo,asm|T(_n)rnXCﬂA(r)T(m)|1//oo,asm> + 0(67\5“‘)

In|£0 In|£0
|0 Im| 0

Commuting the 7'(—n) operator to the right furthermore gives

3 Wl T~ 5 (O M) Yragm) = Y (Woo,asm | (X = DLY xcrn (f = LT (M — 0)[ g asm) + O(e™ VD),

In|£0 In|£0
|m|#£0 |m|#£0

(55)

(56)

The only case in which this is of leading exponential order is when n = m and when their magnitude is equal to one, so

Z (wasmlf(_n)rnxc(r)T(m)|Wasm> = Z (Woo,asmKr - nL)nXCﬂA(r - nL)Hboo,asm) + O(e_ﬁKL)-

[n|#0 [n|=1
[m|£0

(57)

We can make the substitution xcnsa(r —nL) — xc(r — nL) since including the shifted B in the integration domain only makes
a less-than-leading-order difference over the product of shifted wave functions:

E <wasm|T(_n)rnXC(r)T(m)|wasm) = E <woo,asm|(r - IIL)”XC(I‘ - nL)hhoo,asm) + O(eiﬂKL)- (58)
[n|#0 n|=1
Im|0

Reassembling all the simplified terms back into Eq. (47), we get

(WL xc L) = () + B AEL) + D {(Wooam|((r = DLY" = F")xc (X = NL) (Yo aem)

In|=1

+ 2Re[ (Yoo, asm " Xcra (0T () [oc asm) 1} + O™, (59)

Plugging this then into Eq. (45) and expanding to leading exponential order, we arrive at

1
A<r2>(L) =aAE(L) + Z |:<1/foo,asm|Z(L2 —2r-nL)xc(r — nL)|woo,asm>

In|=1

1 N
+ Re{ (Voo.asml z("2 — 4rZ ) xcna@T ()] Yoo asm) ” +0(e VL), (60)

where o = }‘ B2 — (r2,)Bo is a parameter that must be fit to numerical data.
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3. Simplification

We now focus on simplifying both terms. To that end, we
write Eq. (60) in shorthand notation as

A(P) (L) = a AE(L) + Re (Yoo asm || ¥oo.asm) + Oe™V2D),
(6D

where

1
fl= ‘,,.2 {‘—1(L2 —2r-nL)xc(r —nL)

| =

+ = [r* —4{r2.)] Xcm(r)T(n)}. (62)
Note that we define 7 as an operator, but choose to write it
explicitly in terms of r, with the understanding that this is
equivalent to writing £ when we specify that 7 is local in
coordinate space, (r'|fi|r) = n(r)§®(r —r’). Also note that
the following manipulations of # are done with the under-
standing that 7 will be evaluated between wave functions as
in Eq. (61). All matrix elements are computed in configura-
tion space, which is what we refer to as “integration” in the
following.

We define the rotation operator R(n) that maps the vector
n onto the direction of Z. This definition does not uniquely
describe a particular rotation, however, the ambiguity does not
matter for our purposes. For example, we say that

Rm)Tm)R'(n) = T'(2). (63)
We note that
R'(m) = R '(n). (64)

Because of this we can insert the identity RT(m)R(n) anywhere
we would like. Inserting this identity into 7 and commuting
the operators to opposite sides, we get

. 1
= R*(n){é—L(L2 — 2zL)xc(r — 2L)

In|=1

1 A A
e xcmA(l‘)T(i)}R(n). 65)

Since the real part will be taken at the end as per our previous
manipulations, we take the Hermitian conjugate of the second
term and then commute the translation operator back to the
right, leading to

= Iéf(n){j—‘(L2 — 22L)xe(r — 2L)

n|=1
1 . .
+ 5[(r —2L)" — 4{r2)] xcra(r — iL)T(—i)}R(n).
(66)
We can make the substitution yc(r — ZL) — xp(r), where

P={xeR®:x-2>L/2}, (67)

FIG. 2. Illustration showing the indicator functions of the sets
C and P in a 2D analogy. The central box is shown at the bottom
with neighboring periodic copies surrounding it. Note that P extends
infinitely from the edges of the figure.

illustrated in Fig. 2. This substitution does not cause a leading-
order change, so we write

N 1
f= Z RT(n){ Z(L2 —2zL)xp(r)

In|=1

1 N )
+5lor- L)’ — 4<r§o>]meA<r>T(—i>}R(n). (68)

We may furthermore insert the function y4(r) into the first
term without introducing a leading-order change. This makes
the indicator function conveniently identical for both terms:

o 1
= RT(“)XPHA(I'){ Z(Lz —2zL)

[n|=1
+ %[(r —2L)* — 4(r§o)]f(—z)}1é(n). (69)

We can write this now as

h= R'mERm), (70)
In|=1
where
E=xpra({3(@* — 2zL) + 1 ((r —2L)* — 4(r2.)) T (-2)}.
(71)

Finally, we arrive at the final simplified form:

A (L) =aAE(L)

+ Re Z (Ié(n)l/foo,asm|§|Ié(n)woo,asm>

In|=1

+ O(e™ VL, (72)
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Depending on the actual (cubic) symmetry properties of
|¥oo.asm), sSome of the terms in the sum may not need to be
computed. For example, for the finite-volume analog of an S-
wave state (discussed in more detail below), I?(n)l//oo,asm(r) =
WYoo,asm () for all rotations R(n), so all the terms in the sum are
identical and only one needs to be evaluated explicitly.

4. Coordinate transformation

Now we present a coordinate system in which the quantity
(WIElY) is relatively straightforward to compute in closed
form. We use a two-center bispherical coordinate system
parametrized by r, u, and ¢, where r is the distance from the
origin, u is the distance from the origin of the neighboring
periodic box in the Z direction, and ¢ is the azimuthal angle
about the z axis. The valid set of coordinates is given by

{(r,u, ) € [0,00) x [0,00) x [0,27) : r+u > L}. (73)

For reference, we note that the transformation to Cartesian
coordinates is provided by

L2 4+ 2 — 2)?
x:\/rz—#cos& (74)
12 1+ 2 — 2)?
y= \/r2 - % sin @, (75)
247202
= 76
z o7 (76)

The volume element in the (r, u, ¢) coordinate system has the
simple form

dr = %drdudqj. a7
The main advantage of using this coordinate system is that
T(—2)r=|r—2L| =u, (78)

so integrals over shifted radial functions are just as simple
as integrals over unshifted radial functions. The trade-off,
however, is that the bounds of the integration domain become
more complicated, especially given that not all coordinate
values are valid. With this in mind, the bounds of integration
with the indicator function ypna(r) become

L/2 pL+u p2m ru
/ xpra(r)...d’r = / / / - —de¢drdu
R Ji—u Jo L

o) o0 2 ru
+ / / / - —de¢drdu. (79)
2 Ju Jo L

In the (7, u, ¢) coordinate system, £ has the form
E = xpum{30? — )+ 1 — 42 )T (-2)}.  (80)

The coordinate system described above allows us to obtain
closed-form expressions for the finite-volume radius shift for
certain important cases, which we present in the following
section. We use this formalism to derive explicit analytical
expressions for the radius shift for S- and P-wave states shown
in Sec. III B, with details of the calculation presented in the
Appendix.

III. RESULTS

A. Broken spherical symmetry

As already alluded to before, spherical symmetry is broken
by confining the system to a periodic cubic box, and as a con-
sequence angular momentum £ is not a good quantum number
anymore. The relevant spatial symmetry is instead described
by the group of rotations that leave a cube invariant. The
structure of this group is well known and has been discussed,
for example, in Ref. [43]. Angular-momentum multiplets in
general break up into irreducible representations of the cubic
group, of which there are overall five different ones, denoted
I'=Ay, A, E, T}, T, with dimensions 1, 1, 2, 3, 3, respec-
tively. It is typically a good assumption to identify S-wave
(¢ = 0) states in infinite volume with AT cubic states, and P-
wave states with the 7;” representation, where the superscript
indicates positive or negative parity.!

B. Explicit formulas

We present here analytic forms of the radius shift for
£ =0 and £ = 1 contributions to the A]L and T~ cubic repre-
sentations, respectively. After calculating the radius shift for
S-wave and P-wave states using the method presented above,
we find that

4k 8k3 + KL

2 3(1-8c2r2) a)

A (L) = |y|2e‘“<— +

3
+ E|;/|2L3Ei(—KL) + 0@ V>, (81)

and

_ 12 3(5 + 8/(2(}"2 )) a
A 20T, L) = 2,—«L| _ = S\ TP Voeol) e
() (L) =y Pt | =+ S
+ 3 Iy I>L(8 — k*L?*)Ei(—«L)
16k2
+0(e V), (82)

where a is a dimensionless fit parameter. The details of how
we arrived at these expressions are given in the Appendix. We
make the following observations:

(1) S-wave representations are one dimensional, and the
same is true for Af. All three basis states for £ = 1
(and therefore for I' = 7|~ in the P-wave approxima-
tion) have the same radius shift since they are all just
different rotations of essentially the same degenerate
state.

(2) In general, the radius-shift formula will have at least
two additional fit parameters compared with the en-
ergy shift. The first of these is the « introduced in
Eq. (60), while the second is R, the upper bound of the

"Higher angular momenta £ contribute to both cubic multiplets, but
there are significant gaps. As discussed in Ref. [43], A} receives
contributions from ¢ = 0,4, 6, 8, ..., while for 7;” the sequence is
£=1,3,4,5,...
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interior integration domain that enters via the indicator
function xpny4 in Eq. (80), which is in general unknown
if the interaction does not have a strict finite range.
Remarkably, however, the S- and P-wave radius shift
formulas still feature only one additional fit parameter
compared with the energy shift since we were able to
absorb all R and « dependence into a single constant
a, as shown in the Appendix.

(3) We also note that the S- and P-wave radius shifts are
exactly negatives of each other up to order O(e ¥t x
L% = O(e~*L). That is, the S- and P-wave radius

shifts are
i 2e—KL
AP (L) = |7’1|7[/<L2 + 3L+ 0L,
WTo N |V|237KL 2 0
AGP) (L) = == lkL? + 3L+ O(L)].

This finding is similar to what has been found for
the finite-volume energy shifts [37].

(4) From the correlation between binding energies and
mean-squared radii, which in infinite-volume usually
implies that more deeply bound states become more
compact, combined with the known volume depen-
dence of the binding energy [36,37], one might naively
expect the leading radius corrections to have exactly
the opposite signs of what we found here. S-wave
bound states become more deeply bound in finite vol-
ume, so the naive intuition would be that their radii
would decrease, and vice versa for P-wave states.
However, the behavior we derived here can in fact
be related to how the finite volume affects the wave
functions, similar to the intuitive argument that ex-
plains the sign of the energy shift [36,37]: Since A]
S-wave states have even parity, the derivative of the
wave function across the boundary of the box must be
zero. This means that the finite-volume wave function
can have a larger-magnitude tail near the boundary of
the box than the corresponding infinite-volume wave
function at the same distance. Since the mean-squared
radius, defined as the expectation value of r2, relatively
emphasizes contributions from large distances, overall
the radius can increase in finite volume. For 7~ P-
wave states on the other hand, odd-parity forces the
wave function to zero at the boundary, compressing
the wave-function profile and therefore leading to a
smaller radius compared with infinite volume.

C. Numerical checks

Part of this work is determining the optimal strategy for
using the shift formulae for practical radius extrapolations.
For this purpose, we assume that we are dealing with a
finite-volume simulation that provides both energies and wave
functions for the states of interest, such as a straightforward
lattice discretization of the Hamiltonian or a discrete variable
representation (DVR) based on plane-wave states, an efficient
few-body implementation of which has been discussed in
Refs. [44-46]. Since we have access to the energy data, it
makes sense to use that first to extract the binding momentum

k and the ANC y. Once « and y have been determined,
they can be used as fixed parameters in the radius volume
dependence, leaving only two parameters still to be fit, (r2)
and a.

Determining a particular “best” fitting algorithm is difficult
due to the unknown higher-order terms and the exponential
form of the volume dependence. One option, employed in
much of the FV bound-state literature cited previously, is to
fit the data on a logarithmic scale and focus on the large-
volume region where the higher-order corrections are smaller.
However, fitting on a logarithmic scale introduces several
complications. First, in order to obtain a simple form, one
generally needs to subtract the infinite-volume value from the
data. While this can be done relatively easily for the binding
energy in some cases,” in general the infinite-volume value is
one of the fit parameters, so we do not know its value before
performing the fit. Even after getting past that problem, loga-
rithmic scales can make it very difficult to determine constant
terms, such as (r2) in

() (L) = (rX) + AGF)(L), (83)

cf. Eq. (60), because the logarithm of the right-hand side di-
verges near the correct value, i.e., when the fit is near optimal.
Since the residuals may not reflect the true quality of the fit,
this fitting method tends to be unstable.

The method we propose assumes that the only source
of uncertainty comes from the unknown higher-order terms.
Therefore, it makes sense to simply minimize the residuals on
a linear scale, weighted by the inverse absolute value of those
higher-order terms. Since of course we do not know the exact
form of the higher-order terms, we merely assume that they
scale appropriately as e~V2¢L_To illustrate this method with
concrete examples, we perform fits using a weighted least-
squares algorithm where the weights are assigned as described
above. Specifically, we apply this procedure to perform fits of
the form

E(L) = AE(L) + Ex (84)

for the energy, and as in Eq. (83) for the radius.

For our numerical simulation we use the DVR framework
of Ref. [44], and as concrete interaction we use attractive local
Gaussian potentials of the form

2
V(r) = Voexp [-(Ri() ] (85)

with parameters Vy < 0 and Ry > 0. This interaction does not
have a strict finite range R as assumed for convenience in the
derivation of the radius volume dependence, but corrections
stemming from the Gaussian tails of the potential can gener-
ally be neglected.

2For A and 7, states without Coulomb interaction, the leading
volume dependence is a pure exponential, so one can determine the
infinite-volume energy by demanding that the volume dependence
is linear on an appropriately scaled logarithmic scale, as done for
example in Ref. [26].
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FIG. 3. Volume dependence for the energy and mean squared ra-
dius of an S-wave state using a Gaussian potential (R = 2, Vp = —3).
Quantities are reported in natural units with the particle mass set to
one. The energy and radius shifts from a numerical simulation and
the analytic fit are plotted in the upper and lower panels, respectively.

Example fits for S- and P-wave states are shown in Figs. 3
and 4, respectively. Even though the fits were performed on
a linear scale, as described above, they look excellent on the
logarithmic scale that we chose to improve the display and
highlight the excellent agreement of the numerical simula-
tion with our predictions. This is because of the exponential
weighting.

The quality of the fit for the radius is particularly good
given that k and y were predetermined by the energy fit
and the fit parameter a has very little influence on the shape
of the curve. We see the analytic fit significantly deviating
from the simulation data only in very small volumes due to
the higher-order terms and due to violating of the condition
L > R. The latter is most likely the dominant reason because
we observe that the deviation occurs over approximately the
same volume range for both the energy and the radius, with
comparable magnitude.

107! 4
—— Analytic fit

X DVR simulation

S
3] 1074 .

(a) Energy

1071 X xey " Analytic fit
N

= Ko, X DVR simulation
= Ko,
< %ty
4 1073 T X %
| b) Radi %y
adius Pas
() . . X
5 10 15 20
L

FIG. 4. Volume dependence for the energy and mean squared ra-
dius of a P-wave state using a Gaussian potential (R = 1, V; = —14).
Quantities are reported in natural units with the particle mass set to
one. The energy and radius shifts from a numerical simulation and
the analytic fit are plotted in the upper and lower panels, respectively.

TABLE 1. Fit results for (r2) over different volume ranges for
an S-wave state (R = 2, V) = —3) compared with the mean squared
radius at the largest volume in the fit region. Quantities are reported
in natural units with the particle mass set to one.

Fitrange: L =6, ..., Ly
Lmax <r2>(Lmax) <r§o>ﬁt
10 0.774577 868 318 02 0.7625(3)
12 0.763 02346893672 0.76022(3)
14 0.760516 85324793 0.759917(3)
16 0.760004 146206 13 0.7598839(3)
18 0.759903 66351178 0.759 880 64(2)
20 0.759884 610244 28 0.759 880344(2)

Continuum: 0.759 880 31

A quantitative overview of the radius extrapolations we
can get using this method is shown in Tables I and II. For
comparison, continuum results were calculated as reference
by numerically solving the radial equation for the system
via the shooting method and evaluating the mean squared
radius using the wave functions obtained in that manner. The
radius extrapolations perform well over a variety of volume
ranges and the extrapolated radius is consistently more accu-
rate (compared with the reference results) than the radius from
the largest simulated volume. We note that the uncertainty
in the extrapolated radius extracted from the fits is only a
lower bound for the true theoretical uncertainties. A more
sophisticated approach would propagate the uncertainties in
k and y from the energy fits and include also the systematic
uncertainty stemming from omitted higher-order terms in the
radius volume dependence.

IV. SUMMARY AND OUTLOOK

We have studied the leading volume dependence for the
mean squared radius of bound states of two point particles in
a finite periodic box. Using an ansatz for the wave function
in finite volume and a sequence of systematic simplifications,
we derived a general formula for the finite-volume correction
to the radius expectation value. With the help of a carefully

TABLE II. Fit results for (r2) over different volume ranges for
a P-wave state (R = 1, V) = —14) compared with the mean squared
radius at the largest volume in the fit region. Quantities are reported
in natural units with the particle mass set to one.

Fitrange: L =0, ..., Ly

Lmax (r2>(Lmax) <r§o>ﬁl

10 0.578 866 122 009 667 0.5927(3)

12 0.589 849429 592 643 0.59527(8)

14 0.594 046766392319 0.59607(2)
16 0.595575413 626522 0.596305(5)
18 0.596 112250 896 048 0.596366(1)
20 0.596 295400 058 964 0.5963814(2)

Continuum: 0.596 3857
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constructed coordinate system, we were able to evaluate this
general expression and obtain closed-form expressions for the
important cases of S- and P-wave states falling within the A}
and 7~ irreducible representations of the cubic group in finite
volume. These expressions are to a large extent informed by
the volume dependence of the energy and involve a surpris-
ingly small number of additional parameters that need to be
fit to numerical simulation data. As part of this work we have
performed such numerical simulation using Gaussian model
potentials and found excellent agreement of our analytic re-
sults with calculations.

Our results constitute important progress towards obtaining
precise predictions from finite-volume simulations for ob-
servables beyond binding energies for quantum systems such
as atomic nuclei. While we have studied here explicitly the
mean squared radius, our method of constructing an ansatz
for the periodic finite-volume wave function without explicit
knowledge of the short-distance behavior, and subsequently
evaluating matrix elements based on this ansatz, provides a
recipe for deriving the volume dependence of other static
properties, such as, for example, quadrupole moments.

An important next step towards implementing radius ex-
trapolations in practical applications will be the extension
of our findings to bound states comprised of more than two
particles. Guidance for such work can be provided by the for-
malism that derived the binding-energy volume dependence
for arbitrary cluster states [26]. Moreover, recent work that
studies charged-particle bound states in periodic boxes [29]
can inform the extension of our method to such systems.

Finally, it is worth noting that radii of atomic nuclei are typ-
ically measured using electromagnetic scattering processes.
Specifically, charge radii can be inferred from the slope of the
so-called charge form factor F-(q?), where q is the momen-
tum transferred to the nucleus by virtual-photon exchange, in
the limit q> — 0. Matter radii can then be further estimated
from the measured charge radii. For theory, it is desirable to
follow an analogous procedure, which compared with eval-
uating the expectation value of 72> can ensure consistency
with the experimental determination and in particular take into
account a systematic expansion of the electromagnetic current
operator. Following this approach in finite volume requires
understanding the volume dependence of Fr(q?), which can
be informed by the results presented in this paper. These
developments are most conveniently to be pursued within the
framework of a nonrelativistic effective-field theory formu-
lated in finite volume, as used, for example, in Refs. [47,48].
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APPENDIX: DETAILED DERIVATION OF THE FINAL
RADIUS-SHIFT EXPRESSIONS

We calculate here the explicit final expressions for the
finite-volume radius shifts given in the main text.

1. S-wave evaluation

For an S-wave state, the infinite-volume wave function has
the form
y e*KV
lploo,asm(ra 9’ d’) =
amr

for large r. Since the S-wave state is rotationally symmetric
and can be chosen to be real, we can simplify Eq. (72) to

(AD)

AT (L) = @ AE(L) + 6 (Yoo asm € [ Voo aem) + O(e VL),
(A2)

We can also insert the known form of the S-wave energy shift
to get

3 2
54 ae_KL

AP ) ===

+ 6 <woo,asm |‘§|1//oo,asm>

+ O(e V2L, (A3)

Writing out the integrand that appears in the evaluation of the
matrix element, we get

Y2 asm (DE W00, asm (1)

|)/ |267K(r+u)
W(Zr(uz — 4(7'(2)0))

+ u(u — r)(r + u)e<“ "),

= xpna(r)
(A4)
noting that both u and r will be integrated over as described in

the main text. We now perform the integrals in Eq. (79) with
this integrand and drop higher-order terms:

(1= 8c?(rs)

1613

48k4L

) + 0(e™VELY, (AS)
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Putting everything back together we get

N 3 > 3(1-8k*rk)) 3«
A2A1L=— 2L3E-_L 2, —«L[ = /) 2%
(r)e' (L) 16IJ/I i(—kL) + [y|"e PP — L
e 2R (eXRI42[kR? + 2(r2 )(3 — 6kR)| — 3} + 6K (kR* + R — 4k (r2.)) + 3
8i4L
We can absorb many of the constants that appear in this expression into a single constant a. Doing that, we arrive at Eq. (81) in
the main text.

2. P-wave evaluation

As stated in the main text, all three basis states for £ = 1 and I' = T~ have the same radius shift since they are all just different
rotations of essentially the same degenerate state. It therefore suffices to consider just one of the wave functions in the multiplet,
the asymptotic form of which we can write as

Vooam(r,0,8) = 3;1”_“(”* Dcosf (A7)

Kr?

We begin again with Eq. (72). Expanding the sum and plugging in the known form of the P-wave energy shift, we get

- 3 a A R A A
AP (L) = 'Z'L“ e + Re[(R(R) Yoo, asm € IRR) Yoo asm) + (R Voo, asm € IR Yoo asm)
+ (R@) Yoo asm € IR(2) Yoo a5m) + (R(=$)Vo0,2m € [R(=) Voo asm) + (R(—%) Voo asm € |R(—%)Wos, asm)
+ (R(—2)Yo0,25m|E IR(—2) Yoo a5m )] + O(e™ VL), (AB)
For the P-wave state we have chosen in Eq. (A7) it holds that
R(_n)|¢oo,asm> = _R(n)l'(poo,asm)~ (A9)

Moreover, R(2) is simply the identity operator. Using this to simplify the expression, we get

VIS _ 3|V|20[ —xL 2 Do 21 Dra
A(I’ >1 (L) - Te + 2Re[<¢oo,asm|$|¢oo,asm> + <R(X)1ﬁoo,asm|%_|R(X)¢oo.asm>

+ (R Wooasm | EIRE) Yoo asm)] + O(e™ VD), (A10)

Writing out the integrand that appears in the evaluation of the matrix elements leads to
Y asm (P& Voo asm (F) + [RE) Voo asm (0] E[RR) Yoo, a5m (1)] 4 [R(F) Voo, asm (0)]*E[R(9)Wo0,a5m ()]

3lyPler + De 0 | o5
6472 L3rou?

(L2 + r2 _ M2)2

1 —
4122

= Xpra(r) (L (e 4+ D) — r)(r + u)e*™

+ 28t (1 = 4(r2)) Geu + D) + (L + 77 =)L Ger + D = 1)+ w)e (L + 17 = u?)
+2r%e (u? — A(rZ ) (ku + D —u® — L2))}, (A11)

noting that both u and r will be integrated over as described in the main text. We now perform the integrals in Eq. (79) with this
integrand and drop higher-order terms:

<woo,asm|é|woo,asm> + (RE) Y o0,a5m € IRE) Yoo asm) + (R Woo,a5m € IR Yoo asm)

2
ol LG~ 2L2>Ei<—KL>+|y|2e“{ L2 36 +8C)

32 3242 8/{ Clekd
£ (R ORY - 1R 4+ 462 ) + 3R(8EL) + 5)
16K*LR
— 24k (rZ)) — 3[26R’ + 6kR* + R(5 — 8k *(r2)) — 16K<r§o>]):| +O(e V), (A12)
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Putting everything back together, we get

Ny O 27 (@ _ 272\ 2. —«L| _ L_2 3(5 + 83(r.)
A{ro)) (L) = 16K2|y| L(8 — k“L*)Ei(—«L) + |y|e |: i + —a
—2kR
i (PRACR — 12R (e 4+ 41 )) + 3R(8(r2) + 5) — 48k (12,

— 3[26R® + 6kR? + R(5 — 8*(r2 ) — 16x(r2.)]) + 3—‘2} +0(e™VxL),
7

(A13)

As for AT S-wave states, we can absorb the constants that appear in this expression into a single constant a that needs to be fitted.

Doing that, we arrive at Eq. (82) in the main text.
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