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In this work we study unitary neutron systems confined in a harmonic-oscillator trap, based on the BCS
theory and the quasiparticle ring-diagram method. The low-momentum interaction Vlow-k renormalized from a
fine-tuned CD-Bonn potential with the 1S0 scattering length approaching the infinity is adopted. The energy
ratios of trapped unitary neutron systems with various particle numbers, both those with magic numbers and
those with nonmagic ones, to corresponding noninteracting systems, are shown to all flow to a constant value.
The BCS wave functions for these trapped unitary systems, with different trap parameters and different particle
numbers, manifest themselves with universal patterns: the effect of harmonic-oscillator shells is significant,
and moreover, the orbits of the lowest valence shell are occupied with a uniform probability. We also discuss the
self-energy given by the BCS calculation, and present a weighted sum rule satisfied by the monopole components
of the unitary neutron-neutron interaction. In terms of these, the constant energy ratio independent of the trap
parameter and the particle number can be interpreted.

DOI: 10.1103/PhysRevC.109.054314

I. INTRODUCTION

The unitary limit of a fermionic system refers to a special
scenario where the interfermion interaction has its scatter-
ing length approaching infinity. This scenario was originally
formulated by Bertsch, with the question what will be the
ground-state properties of such a system [1]. Universal behav-
iors of a Fermi gas at the unitary limit, such as those regarding
the ground state, collective excitations, and nonequilibrium
aspects, are expected and have attracted intensive attention;
see, e.g., Refs. [2–21]. Meanwhile, a unitary Fermi system
with finite particle number confined in a trap is attracting
increasing attention; see, e.g., Refs. [22–28].

With the advances of cold-atom experimental technique,
unitary Fermi systems became experimental accessible at the
atomic level by way of the Feshbach resonance. From another
perspective, the unitary limit naturally plays a crucial role in
low-energy properties of nuclear systems, such as those of
low-density neutron matters [29–31] and those of extremely-
neutron-rich nuclei [32]. This is because the scattering lengths
of two S channels, in particular the 1S0 channel, of a realistic
NN potential are both large. Recently, the effect of the unitary
limit was shown to be significant in binding energies of nu-
clear few-body systems [33] and in fundamental properties of
nuclear matters and neutron stars [34].

It is thus of much interest and importance to study neutron
systems interacting via a unitary 1S0 interaction, as well as
nuclear systems interacting via unitary 1S0 and 3S1 interac-
tions. In Refs. [11,12], unitary neutron matters were studied
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within the framework of the particle-particle-hole-hole (pphh)
ring-diagram method [35,36], and these neutron matters, dif-
ferent in various aspects but all at the unitary limit, were
shown to have a universal nature. In a previous work [28] we
studied trapped unitary neutron systems with magic particle
numbers, and energy ratios of these trapped unitary systems
to corresponding noninteracting systems, were shown to be
remarkably invariant with the variation of the trap parameter,
as well as the change of the type of the unitary interaction
and the variation of the decimation momentum of the adopted
renormalization procedure.

Yet, the question whether the universality of trapped uni-
tary neutron systems survives with respect to different choices
of the system type, i.e., being a system of a magic number or
a system of a nonmagic one, as well as the variation of the
particle number, remains unanswered. In this work we gen-
eralize our study regarding trapped unitary neutron systems,
based on the BCS theory and the quasiparticle ring-diagram
method, in which a system of a magic particle number and
a system of a nonmagic one are treated on the same footing.
We check the aforementioned question, and study regularities
emerging in trapped neutron systems at the unitary limit. The
paper is organized as follows: In Sec. II we present a brief
introduction to the theoretical framework of this work. In
Sec. III we present and discuss our results for trapped unitary
neutron systems. In Sec. IV we summarize the work.

II. THEORETICAL FRAMEWORK

The pairing correlation plays a crucial role in atomic nu-
clei and nuclear matter; see, e.g., Refs. [37,38]. Significant
efforts have been devoted to various theories to treat pairing
correlation, such as the well-known BCS theory [39–42], the
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seniority scheme [43] and its generalization [44,45], the inter-
acting boson model [46], the fermion dynamical symmetry
model [47,48], the nucleon-pair approximation of the shell
model [49–52], etc. In Ref. [53] the formulation to solve a
spherical BCS wave function considering a general Hamilto-
nian was presented, and BCS calculations in association with
effective interactions derived from realistic NN potentials us-
ing renormalization methods, such as the G-matrix method
[54], were further carried out [55–58].

In this work we study trapped and strongly coupled neutron
systems at the unitary point, based on the BCS theory in
association with a low-momentum interaction Vlow-k [59–65]
renormalized from a unitary CD-Bonn interaction [11,66].
The formulas to carry out such a BCS calculation are given
as below, which follow closely those considering a realis-
tic effective interaction [53,55–58]. The spherical BCS wave
function reads

|�BCS〉 =
∏

j,m>0

[u j + (−1) j−mv ja
†
jma†

jm̄]|0〉. (1)

Here we use | jm̄〉 to denote | j,−m〉 for brevity; v2
j is the

occupation probability of the single-particle state | jm〉 for all
possible m values, and u2

j = 1 − v2
j . With the single-particle

energy for neutrons in a harmonic-oscillator trap ε j ≡ εnl j =
(2n + l + 3/2)h̄ω and the normalized two-body matrix ele-
ment of a unitary neutron-neutron interaction V ( ja jb jc jd , J ),
the energy of the BCS state is expressed as below:

EBCS = 〈�BCS|Ĥ |�BCS〉

=
∑

j

(2 j + 1)

[(
ε j − 1

2
μ j

)
v2

j − 1

2
� ju jv j

]
. (2)

Here μ is the self-energy given by

μ ja = 2(2 ja + 1)−1
∑

jb

[∑
J

(2J + 1)G( ja jb ja jb, J )

]
v2

jb

= 2(2 ja + 1)−1/2
∑

jb

(2 jb + 1)1/2F ( ja ja jb jb, 0)v2
jb, (3)

and � is half the pairing gap given by

� ja = (2 ja + 1)−1/2
∑

jb

(2 jb + 1)1/2G( ja ja jb jb, 0)u jbv jb,

(4)

with

G( ja jb jc jd , J ) = −σ ( ja jb)σ ( jc jd )V ( ja jb jc jd , J ),

σ ( ja jb) =
{

1 if ja = jb

1/
√

2 otherwise,
(5)

and

F ( ja jc jd jb, J ′)

=
∑

J

(−)J+ jc+ jd

{
ja jb J

jd jc J ′

}
(2J + 1)G( ja jb jc jd , J ).

(6)

As is well known, the occupation probabilities v2
j are deter-

mined variationally to minimize the energy expectation under
the constraint of the particle-number condition, i.e., by solving
the following variational equation:

δ

δv j
〈�BCS|(Ĥ − λN̂ )|�BCS〉 = 0, (7)

under the constraint 〈�BCS|N̂ |�BCS〉 = A, where A is the par-
ticle number of the system. When one considers the energy
expectation in the form of Eq. (2), the above variation equa-
tions correspond to the following equations:

2u jv j = � j√
(ε j − λ − μ j )2 + �2

j

,

u2
j − v2

j = ε j − λ − μ j√
(ε j − λ − μ j )2 + �2

j

,

u2
j + v2

j = 1,
∑

j

(2 j + 1)v2
j = A. (8)

With the solution of the BCS equations, one can define
quasiparticles based on the Bogolyubov-Valatin transforma-
tion:

α
†
jm = u ja

†
jm − (−1) j−mv ja jm̄. (9)

Then |�BCS〉 in the particle representation is the vacuum state
|0̃〉 in the quasiparticle representation, and the Hamiltonian
(Ĥ − λN̂ ) is transformed into a quasiparticle Hamiltonian
Ĥq.p.(λ):

Ĥq.p.(λ) = Ĥ00
q.p.+ Ĥ11

q.p.+ Ĥ22
q.p.+ Ĥ13

q.p.+ Ĥ31
q.p.+ Ĥ04

q.p.+ Ĥ40
q.p.,

where Ĥmn
q.p. denotes a normal-ordered operator cluster con-

sisting of m (n) quasiparticle creation (destruction) operators.
Note that Ĥ00

q.p. = EBCS − λA and Ĥ20
q.p. = Ĥ02

q.p. = 0.
Apparently, the physical ground state of the system should

be composed of not only the vacuum state |0̃〉 but also com-
ponents of quasiparticle states. We then also calculate the
ground-state energy (denoted E2nd) corrected by the second-
order quasiparticle ring diagram generated by Ĥ40

q.p. and Ĥ04
q.p.

vertices, to take into account the lowest-order contribution
of four quasiparticle components in the ground-state energy.
Note that there is no contribution from the first-order quasi-
particle ring diagram since 〈0̃|Ĥ22

q.p.|0̃〉 = 0.
We have the energy correction given by the second-order

quasiparticle ring diagram as below:

D2 = −
∑

J

(2J + 1)
∑

ja� jb, jc� jd

[H40( ja jb jc jd , J )]2

Eja + Ejb + Ejc + Ejd

. (10)

Here Ej is the quasiparticle energy given by

Ej = [
(ε j − μ j − λ)2 + �2

j

]1/2
. (11)
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And the matrix element for the vertex Ĥ40
q.p. is given by

H40( ja jb jc jd , J ) = 〈0̃|Aq.p.( jc jd JM̄ )Aq.p.( ja jbJM )Ĥ40
q.p.|0̃〉

= [R( ja jb jc jd , J ) − S( ja jb jc jd , J )]

× [(1 + δ ja, jb )(1 + δ jc, jd )]−1/2, (12)

where Aq.p.( ja jbJM ) is the normalized quasiparticle pair de-
struction operator, and

R( ja jb jc jd , J ) = (
u ja u jb + v jav jb

)(
u jc u jd + v jcv jd

)
× G( ja jb jc jd , J ) + (

u jav jb − v ja u jb

)
× (

u jcv jd − v jc u jd

)
[F ( ja jb jc jd , J )

+ θ ( jc jd J )F ( ja jb jd jc, J )], (13)

S( ja jb jc jd , J ) = (
u ja u jb − v jav jb

)(
u jc u jd − v jcv jd

)
× G( ja jb jc jd , J ) + (

u jav jb + v ja u jb

)
× (

u jcv jd + v jc u jd

)
[F ( ja jb jc jd , J )

− θ ( jc jd J )F ( ja jb jd jc, J )], (14)

with θ ( jc jd J ) = (−)J+ jc+ jd and G, F defined in Eqs. (5)
and (6).

In this work we calculate EBCS and E2nd as aforementioned
and study the resulting ratios

RBCS = EBCS

Efree
, R2nd = E2nd

Efree
(15)

for trapped unitary neutron systems. Here Efree denotes
the ground-state energy of the corresponding noninteracting
system.

III. RESULTS AND DISCUSSIONS

In this work we study trapped unitary neutron systems.
We adopt a unitary neutron-neutron interaction renormalized
from a fine-tuned CD-Bonn potential [11,66] via the Vlow-k

procedure [59–65]. From the perspective of the Brown-Rho
scaling mechanism [67–70], this fine-tuned CD-Bonn poten-
tial [11] was constructed by decreasing the σ -meson mass by
2.4% in comparison with the original one [66]. Its 1S0 channel
has the scattering length as = −12 070 fm and the effective
range re = 2.54 fm. Next the renormalization procedure of
Vlow-k is enacted, where the high-momentum components of
the bare NN potential are integrated out. Note that because
the half-on-shell T matrix is preserved in the renormaliza-
tion, both the scattering length and the effective range are
preserved. The decimation momentum is taken to be � =
2.0 fm−1, the same as in a number of nuclear structure studies
[61]. For the harmonic-oscillator trap parameter, a few h̄ω

values which are comparable with those for realistic nuclei
are adopted. Apparently, the scattering length of the fine-
tuned CD-Bonn potential is enormous, i.e., approaching to
the infinity, compared with any other length scales in the
systems.

In Table I we present the ratios given by the BCS en-
ergy and the one also including the energy shift arising
from the second-order quasiparticle ring diagram, denoted as
RBCS and R2nd, for trapped unitary neutron systems with the

TABLE I. The ratios RBCS and R2nd for trapped unitary neutron
systems with the mass number A = 50, 54, . . . , 102, respectively.
The trap parameter h̄ω = 8.5, 9.5, 10.5, 12.0 MeV, respectively,
which is comparable with those for realistic nuclei, is adopted. For
the unitary interaction, the low-momentum interaction Vlow-k [59–65]
renormalized from the fine-tuned CD-Bonn potential [11,66] with
the 1S0 scattering length as = −12 070 fm is adopted.

A h̄ω Interaction RBCS R2nd

50 8.5 CD-Bonn 0.757 0.754
54 8.5 CD-Bonn 0.756 0.752
58 8.5 CD-Bonn 0.755 0.751

9.5 CD-Bonn 0.755 0.751
10.5 CD-Bonn 0.757 0.752
12.0 CD-Bonn 0.760 0.754

62 8.5 CD-Bonn 0.754 0.751
66 8.5 CD-Bonn 0.753 0.751
70 8.5 CD-Bonn 0.752 0.750
74 8.5 CD-Bonn 0.752 0.750
78 8.5 CD-Bonn 0.752 0.750
82 8.5 CD-Bonn 0.752 0.749
86 8.5 CD-Bonn 0.752 0.749

9.5 CD-Bonn 0.753 0.750
10.5 CD-Bonn 0.755 0.752
12.0 CD-Bonn 0.759 0.755

90 8.5 CD-Bonn 0.752 0.749
94 8.5 CD-Bonn 0.751 0.749
98 8.5 CD-Bonn 0.750 0.749
102 8.5 CD-Bonn 0.750 0.749

mass number A = 50, 54, . . . , 102, respectively. As shown in
Table I, for all these trapped unitary systems, the R2nd value
is very slightly decreased in comparison with corresponding
RBCS. Besides, we have done initial calculations also including
energy corrections given by higher-order quasiparticle ring
diagrams generated by Ĥ04

q.p., Ĥ40
q.p., and Ĥ22

q.p. vertices. Ac-
cording to the initial calculations, the effect of higher-order
quasiparticle ring diagrams are much smaller than that of the
second-order one. These suggest that the quasiparticle ring-
diagram expansion with respect to the BCS state provides a
rapidly converging framework for trapped unitary systems.

One sees in Table I that, very interestingly, the energy ratios
for all the trapped unitary systems, both the system with a
magic number A = 70 and the systems with nonmagic num-
bers, are remarkably close to a constant value of 0.75. This
is a manifestation of a universal nature for trapped unitary
systems, surviving despite of the change of the system type,
as well as the variation of the particle number. As shown
in Table I, the ratio for the trapped unitary system with a
nonmagic number is also invariant with the variation of the
adopted trap parameter h̄ω. This indicates the ground-state
energy of the trapped unitary system is proportional to h̄ω,
and we exemplify this point in Fig. 1 using the systems with
the nonmagic particle number A = 58, 66, 74, 86, 98, respec-
tively. Plotted is the energy per neutron versus the h̄ω value,
as well as the corresponding linear-fitting result. One sees all
lines fit the data very well, and they all converge to the origin
(0,0). For such a linear scaling relation (i.e., E0 = αh̄ω, with α
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FIG. 1. The energy per neutron (denoted E0/A) given by the BCS
energy and the energy shift arising from the second-order quasi-
particle ring diagram, versus the trap parameter h̄ω, for the unitary
systems with the nonmagic particle number A = 58, 66, 74, 86, 98,
respectively.

a constant independent of h̄ω), it has been analytically proved
in our previous work [28] to be equivalent to the unitary-limit
virial theorem [23] (i.e., E0 = 2〈�0|Uosc.|�0〉, with Uosc. the
harmonic-oscillator potential and �0 the ground-state wave
function for the trapped unitary system).

Next we focus on the BCS results for trapped unitary
neutron systems. In the BCS calculations, we consider 28 j
orbits of seven harmonic-oscillator major shells with 2n + l =
0, 1, . . . , 6, respectively. According to our calculations, for a
given particle number, the distribution of the BCS occupation
probabilities is robust with the variation of the trap parameter.
Furthermore, the distributions of the occupation probabilities,
for systems with various particle numbers, have a universal
shell structure. In Fig. 2 we exemplify the distribution of
the occupation probabilities, using the unitary systems of
A = 40, 50, 58, 66 confined in the harmonic-oscillator trap
with h̄ω = 10.5 MeV in Fig. 2(a), and using the systems of
A = 70, 78, 86, 94, 102 in the trap with h̄ω = 8.5 MeV in
Fig. 2(b).

As shown in Fig. 2, for both systems with magic numbers
and those with nonmagic numbers, the effect of the harmonic-
oscillator shells is significant and is further characterized by
a special step-like distribution of the occupation probabilities.
For systems with magic numbers, for example, for the system
with A = 70, one can see in Fig. 2(b) that the distribution has
a “one-step” structure: v2

jk = 1 for k = 1, . . . , 15 and v2
jk = 0

for k = 16, . . . , 28. For systems with nonmagic numbers, for
example, for the system with A = 86, one can see in Fig. 2(b)
that the distribution has a “two-step” structure: v2

jk = 1 for
k = 1, . . . , 15, v2

jk ≈ 16/42 for k = 16, . . . , 21, v2
jk = 0 for

k = 22, . . . , 28. In conclusion, the BCS occupation probabil-
ities for the trapped unitary neutron system can be described
approximately as follows:

v2
j =

⎧⎪⎪⎨
⎪⎪⎩

1 for orbits in bottom shells

Aval./
∑

j′∈P(2 j′ + 1) for orbits in the lowest valence shell

0 for orbits in higher valence shells.

(16)

Here Aval. is the number of valence neutrons (e.g., equals to
zero for A = 70 and 16 for A = 86) and P denotes the lowest
valence shell (e.g., is the 0h1 f 2p shell both for A = 70 and
for A = 86). Note that for a given particle number, this special
distribution of the occupation probabilities also gives the low-
est energy to corresponding noninteracting system. In other
words, the BCS wave function of the trapped unitary system
is nearly identical to that of corresponding noninteracting one.

Let us discuss a little further about this special distribution
of the occupation probabilities. For a system with a magic
number, the BCS state defined with the occupation proba-
bilities of Eq. (16), is equivalent to a Hartree-Fock state,
i.e., a determinantal wave function with bottom shells fully
occupied. Correspondingly the ground-state energy is given
by the Hartree-Fock energy. Note that for such a system,
the degree of freedom for excitations of one pair of neu-
trons across the closed shell is taken into account both in the
BCS calculation here and in our previous work [28] using
the particle-particle-hole-hole ring-diagram method. The two
studies using different methods suggest the same structure for
the ground state of the trapped unitary system with a magic
number.

For a system with a nonmagic number, for example, for the
system with A = 86, the occupation probabilities of Eq. (16)
indicate that the system can be described to be 70 neutrons
forming an inert core and 16 neutrons occupying the orbits of
the lowest valence shell with a uniform probability. In other
words, Fig. 2 suggests that for the trapped unitary system with
a nonmagic number, the BCS state is well approximated to be
the product of the determinantal wave function of an inert core
and the wave function of valence particles described by

|�val.〉 = uexp

[
v

u
S†

]
|0〉. (17)

Here v2 = Aval./
∑

j∈P(2 j + 1) and u2 = 1 − v2, which are
the uniform occupation probability and corresponding
emptiness probability for the lowest valence major shell;
 = ∑

j∈P  j with  j = (2 j + 1)/2 is the pair capac-

ity of the lowest valence shell; S† = ∑
j∈P S†

j with S†
j =∑

m>0(−) j−ma†
jma†

jm̄ is the quasispin raising operator of the
lowest valence shell. It is interesting to note that the above
BCS wave function of valence particles has a definite qua-
sispin quantum number /2.
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(a)

(b)

FIG. 2. Shell structure of the BCS occupation probabilities v2
j ’s,

for the trapped neutron system at the unitary limit. Panel (a) is for
the systems of A = 40, 50, 58, 66 confined in the harmonic-oscillator
trap with h̄ω = 10.5 MeV; Panel (b) is for the systems of A =
70, 78, 86, 94, 102 in the trap with h̄ω = 8.5 MeV. The model space
for the BCS calculations is taken to be consisting of 28 j orbits, i.e.,
seven harmonic-oscillator major shells with 2n + l = 0, 1, . . . , 6,
respectively.

In our calculations for trapped unitary systems, the contri-
bution of the pairing energy, i.e., the − 1

2

∑
j (2 j + 1)� ju jv j

term, in the BCS energy is small, compared with the left part
which can be expressed to be

E (m)
BCS =

∑
j

(2 j + 1)

[(
ε j − 1

2
μ j

)
v2

j

]

=
∑

j

(2 j + 1)ε jv
2
j +

∑
ja� jb

∑
J

(2J + 1)

×V ( ja jb ja jb, J )v2
jav

2
jb . (18)

Here the self-energy μ is defined in Eq. (3). In Fig. 3 we
present the μ values for various j orbits versus the trap pa-
rameter h̄ω adopted in the calculation, for the trapped unitary
systems with A = 58 and 86, respectively. As shown in Fig. 3,
the self-energy μ is approximately proportional to the trap
parameter h̄ω. This, as well as the robust distribution of the
occupation probabilities independent of the h̄ω value, will
give rise to a linear scaling relation where E (m)

BCS is proportional
to h̄ω, according to Eq. (18). As aforementioned the E (m)

BCS
is closely equal to EBCS, and as shown in Table I EBCS is
very slightly shifted by the second-order quasiparticle ring
diagram. Thus one expects a linear scaling relation that E2nd

(a)

(b)

FIG. 3. Self-energies μ’s [defined in Eq. (3) and in units of MeV]
for the 0p3/2, 0d5/2, 0 f7/2, 0g9/2, 0h11/2, 0i13/2 orbits, versus the
adopted trap parameter h̄ω, for the trapped unitary systems with
(a) A = 58 and (b) A = 86.

is proportional to h̄ω, which is indeed the case as shown in
Fig. 1.

In Fig. 4 we present the single-particle energy (SPE)
corrected by the self-energy, ε j = ε j − μ j , for the trapped
unitary systems. Such shifted SPE’s, which are obtained self-
consistently in the BCS calculation, were found in Ref. [58]
to play a crucial role in reproducing a few transition matrix
elements of two-neutrino double beta decays using the QRPA
together with realistic effective interactions. Noting ε j can be
also expressed as

ε j = ε j + 1

2 j + 1

∑
j′

∑
J

(1 + δ j j′ )(2J + 1)V ( j j′ j j′, J )v2
j′ ,

(19)

one sees that the shifted SPE can be interpreted to be the
effective single-particle energy (ESPE) based on the BCS
occupation numbers. In Fig. 4(a) we present the distribution
of the shifted SPE’s for the trapped unitary systems with
A = 62, 78 and 94, respectively. One sees that, interestingly,
the distribution of the shifted SPE’s for a trapped unitary
neutron system, exhibits a special shell structure, which is the
same as that in the distribution of the SPE’s for corresponding
noninteracting system. In Fig. 4(b) we further present the av-
erage value of the shifted SPE’s over orbits of one major shell,
denoted ε, versus the quantum number (2n + l ) of the shell.
One sees that the average of shifted SPE’s of each major shell
for trapped unitary systems follows remarkably the straight
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(a)

(b)

FIG. 4. (a) Shell structure of the single-particle energy (SPE)
corrected by the self-energy, ε j = ε j − μ j , for the trapped unitary
systems with A = 62, 78 and 94, respectively. (b) The average value
of the shifted SPE’s over orbits of one major shell, denoted as ε,
versus the quantum number (2n + l ) of the shell, for the systems
with A = 62, 78 and 94, respectively. The trap parameter h̄ω = 8.5
MeV is adopted in these calculations.

line described by [C1(2n + l ) + C0], the same as the SPE of
each major shell for noninteracting systems.

At last we come back to the constant energy ratio indepen-
dent of the particle number, i.e., the ratios for various particle
numbers all flowing to the value of 3/4. Recall that for a
trapped unitary neutron system, we have E (m)

BCS close to E2nd.
At the same time, recall that we have a special distribution
of the BCS occupation probabilities for the trapped unitary
system, which is described by Eq. (16) and is identical to
that of corresponding noninteracting system. Then one can
see that E2nd

∼= 3
4 Efree arises from a weighted sum rule for the

monopole components of the unitary neutron-neutron interac-
tion as follows.∑

j� j′
V ( j, j′ )

mono.(2 j + 1)(2 j′ + 1)v2
j v

2
j′

∼= −1

4
Efree. (20)

Here Vmono. denotes the monopole components of the
unitary interaction and is defined by V ( j, j′ )

mono. = ∑
J (2J +

1)V ( j j′ j j′, J )/[(2 j + 1)(2 j′ + 1)]; and for a given particle
number, the weight for the component V ( j, j′ )

mono. is the product

FIG. 5. The weighted sum of the monopole components of the
unitary CD-Bonn interaction,

∑
j� j′ V ( j, j′ )

mono. (2 j + 1)(2 j ′ + 1)v2
j v

2
j′ ,

versus the value of − 1
4 Efree, using h̄ω = 8.5, 9.5, 10.5 MeV, respec-

tively, for the systems of A = 50, 54, . . . , 102. Here the monopole
component of the neutron-neutron interaction is defined by V ( j, j′ )

mono. =∑
J (2J + 1)V ( j j′ j j ′, J )/[(2 j + 1)(2 j′ + 1)]; and for a given parti-

cle number, the weight for the component V ( j, j′ )
mono. is the product of the

occupation number in the j orbit [(2 j + 1)v2
j ] and that in the j ′ orbit

[(2 j ′ + 1)v2
j′ ] with v2

j , v
2
j′ given by Eq. (16); and Efree is the energy

of corresponding noninteracting system.

of the occupation number in the j orbit [(2 j + 1)v2
j ] and that

in the j′ orbit [(2 j′ + 1)v2
j′ ] with v2

j , v
2
j′ given by Eq. (16); and

Efree is the energy of corresponding noninteracting system. In
Fig. 5 we present the left-hand side of the above Eq. (20) ver-
sus the right-hand side, using the unitary CD-Bonn interaction
combined with h̄ω = 8.5, 9.5, 10.5 MeV, respectively, for the
systems of A = 50, 54, . . . , 102. One sees that the results in
Fig. 5 are in satisfactory agreement with the weighted sum
rule of Eq. (20).

IV. SUMMARY

In this work we study unitary neutron systems in a
harmonic-oscillator trap, based on the BCS theory and the
quasiparticle ring-diagram method. The low-momentum in-
teraction Vlow-k renormalized from the fine-tuned CD-Bonn
potential which has its 1S0 scattering length approaching the
infinity, is adopted.

For the energy ratio of the trapped unitary neutron system
to corresponding noninteracting system, our results support
a universal value, despite of different choices of the system
type, i.e., being the system of a magic particle number or
the one of a nonmagic number, and the variation of the par-
ticle number. For the BCS wave function, our results suggest
universal patterns in the distribution of the occupation proba-
bilities, despite of the variation of the trap parameter and the
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variation of the particle number: the wave function for the
system with a magic number is approximately equivalent to
a determinantal wave function with bottom shells fully occu-
pied; and the wave function for the system with a nonmagic
number is closely equal to a product of an inert core with bot-
tom shells fully occupied and valence particles occupying the
orbits of the lowest valence shell with a uniform probability.

We also discuss the self-energy and the single-particle
energy (SPE) corrected by the self-energy, for the trapped
unitary neutron system. The self-energy is shown to be pro-
portional to the trap parameter. This, together with the robust
distribution of the BCS occupation probabilities independent
of the trap parameter, gives rise to the linear scaling relation of
the ground-state energy versus the trap parameter. The shifted
SPE’s for the trapped unitary system are shown to have the
same characters as those of the SPE’s for the noninteracting

system. At last we present a weighted sum rule satisfied by
the monopole components of the unitary neutron-neutron in-
teraction. This sum rule, as well as the special distribution
of the BCS occupation probabilities for the trapped unitary
system, gives rise to the constant ground-state energy ratio
independent of the particle number.
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