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Modern numerical differentiation technique for extracting nucleon momentum distributions
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Numerical differentiation is crucial for extracting reliable nucleon momentum distributions (NMDs) from
cross section data of inclusive electron scattering within the framework of y scaling. A naive application of
the traditional finite difference approach to noisy experimental data may lead to negative values and suspect
fluctuations in NMDs at high momenta. To solve this problem, we propose using a sophisticated modern
technique known as smoothing spline for numerical differentiation, which has a number of advantages over
the traditional approach and gives NMDs more compatible with physical considerations. We extract new NMDs
for the deuteron and study their scaling behaviors with respect to the nucleon momentum k. It is found that
NMDs may follow piecewise scaling laws with n(k) ∼ 1/k5 for 0.25 < k < 0.6 GeV/c and n(k) ∼ 1/k7 for
0.6 < k < 1.2 GeV/c.
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I. INTRODUCTION

Nucleon momentum distributions (NMDs) quantify the
probability of nucleons taking specific momenta in nuclear
systems. They play a fundamental role in nuclear physics and
offer crucial insights into the nature of nuclear forces [1–5].
Experimentally, they can be extracted from cross section data
of inclusive quasielastic electron-nucleus scattering [6–11].
A leading framework for this task is y scaling based on the
plane wave impulse approximation (PWIA) [12–18], which
relates the NMD n(k) to the first-order derivative of a special
single-variable function known as the scaling function F (y),

n(k) = − 1

2πy

dF (y)

dy

∣∣∣∣
|y|=k

. (1)

Here, k is the nucleon momentum, and y is the so-called
scaling variable which can be interpreted as the minimal
momentum of nucleons knocked out of the nucleus by the
electron [19]. As shown later in Sec. II A, F (y) and y can
be derived directly from experimental observables including
inclusive cross sections, electron momentum transfer, and
electron energy transfer, based on which the experimental
extraction of n(k) is finally achieved. In the literature, the
experimental NMDs have been extracted for the deuteron,
3,4He, 12C, and 56Fe in this way [8,20]. They act as bench-
marks to compare and evaluate different proposals of realistic
nuclear forces [21,22].

In this work, we focus on an important yet easily over-
looked aspect of the experimental extraction of NMDs based
on y scaling, the implementation of the first-order derivative
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dF (y)/dy in Eq. (1). As mentioned before, the scaling func-
tion F (y), from which the NMD is extracted, can be derived
from cross section data. The experimental F (y) takes values at
discrete points of y (see Fig. 2), and the first-order derivative
dF (y)/dy has to be calculated in a numerical way. Maybe, the
simplest way to do this is to employ finite difference [8],

dF (y)

dy

∣∣∣∣
y=yi

≈ F (yi+1) − F (yi )

yi+1 − yi
, (2)

where {(yi, F (yi ))} is the ith data point derived from exper-
imental data. Moreover, this would be a satisfactory choice
if the data points are of large numbers and of high quality.
However, the real situation can be different. For example, at
high momenta above the Fermi momentum kF , the number
and quality of data points are both reduced compared to
those at low momenta below kF [7]. It turns out that these
issues may lead to negative values and suspect fluctuations in
NMDs at high momenta [see Fig. 3(b)]. Can this situation be
improved by adopting more sophisticated numerical differen-
tiation techniques?

We propose that a modern numerical differentiation tech-
nique known as smoothing spline could provide a positive
answer to the above question [23,24]. It has a number of
advantages in dealing with noisy data points compared to
a naive application of finite difference and many other nu-
merical differentiation techniques (e.g., Gaussian smoothing
[25] and Savitzky-Golay smoothing [26,27]). First, it has few
hyperparameters that cannot be determined by the data set and
the underlying physics [28,29]. Second, it does not assume
any specific functional form to describe complex correla-
tions between data points, making it flexible and adaptive in
modeling data. Third, it is effective at handling noisy data,
providing a reliable extraction of the underlying trends and
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FIG. 1. A typical one-nucleon knockout process in quasielastic
electron-nucleus scattering under the assumption of PWIA.

patterns. Smoothing spline has been widely used in biology
[30], chemistry [24,29], ecology [31], epidemiology [32], and
many other disciplines. However, it is fair to say that smooth-
ing spline is less known in nuclear physics. Especially, as
far as we know, it has not been applied to the experimental
extraction of NMDs.

The rest parts of the article are organized as follows: In
Sec. II, the frameworks of y scaling and smoothing spline
are introduced. In Sec. III, smoothing spline is applied to the
NMD extraction for the deuteron, with the nucleon momen-
tum k up to 1.2 GeV/c. A detailed comparison is made to

both the finite difference extraction of NMD and ab initio
calculations in order to justify the reliability and advantage
of smoothing spline. Special attention is also paid to the
scaling behaviors of the NMD with respect to k. In Sec. IV,
conclusions are drawn.

II. THEORETICAL FRAMEWORK

A. y scaling

In PWIA, it is assumed that only one nucleon is knocked
out at one time in quasielastic electron-nucleus scattering,
without interacting with the recoil system [13]. Such a one-
nucleon knockout process is illustrated in Fig. 1, along with
the meanings of relevant kinematic variables. The inclusive
cross section d2σ

dω d�
is then given by the product of the

single-nucleon cross section σep(en) and the so-called nuclear
structure function F (q, ω),

d2σ

dω d�
= (Zσep + Nσen)

∣∣∣∣∣ ∂ω

k ∂ cos α

∣∣∣∣∣
−1

F (q, ω). (3)

Here, k = |k| is the nucleon momentum, q = |q| and ω are the
momentum transfer and the energy transfer of the electron, Z
and N are the numbers of protons and neutrons in the target

nucleus, and | ∂ω
k ∂ cos α

|−1 (with cos α = q·k
qk ) is the kinematic

factor resulting from the energy conservation in the scattering
process. The single-nucleon cross sections σep and σen can be
found in Ref. [33],

σep(en) = σM

E1E2

{(
Q2

q2

)2
[

(E1 + E2)2

4

(
F 2

1 + τ̄F 2
2

) − q2

4
(F1 + F2)2

]

+
(

tan2 θ

2
+ Q2

2q2

)[
p′2sin2α

(
F 2

1 + τ̄F 2
2

) + Q̄2

2
(F1 + F2)2

]}
, (4)

where E1 and E2 are given by E1 =
√

m2
N + k2 and E2 =√

m2
N + (k + q)2 , with mN being the nucleon mass, θ is the

electron scattering angle, p′ is the momentum of the knock-
out nucleon, Q2 = q2 − ω2, Q̄2 = q2 − (E1 − E2)2, and τ̄ =
Q̄2/(4m2

N ) are three auxiliary kinematic variables, and σM is
the Mott cross section. The elastic proton and neutron form
factors F1 and F2 are taken from Refs. [34,35]. The nuclear
structure function F (q, ω) is expressed as the integral of the
nucleon spectral function PN (k, E ),

F (q, ω) = 2π

∫ Emax(q,ω)

Emin

dE
∫ kmax(q,ω,E )

kmin (q,ω,E )
k PN (k, E ) dk , (5)

where Emin(max) and kmin(max) are respectively the minimal
(maximal) energy and momentum of nucleons when they are
knocked out from the nucleus by the electron. The nucleon
spectral function PN (k, E ) represents the joint probability dis-
tribution to find a nucleon with momentum k and removal
energy E in the nucleus.

Provided that the recoil system is not excited, i.e., E =
Emin, kmin depends only on q and ω, and is renamed as the

scaling variable y

|y| = kmin(q, ω, Emin). (6)

The scaling variable y can be determined from the energy
conservation

ω + MA = [
m2

N + (q + y)2
]1/2 + (

M2
A−1 + y2

)1/2
, (7)

where MA and MA−1 denote the masses of the target nucleus
and the recoil system. In terms of the scaling variable y, the

kinematic factor | ∂ω
k ∂ cos α

|−1 in Eq. (3) is given by

∣∣∣∣∣ ∂ω

k ∂ cos α

∣∣∣∣∣
−1

=
√

m2
N + (q + y)2

q
. (8)

As PN (k, E ) decreases rapidly with the increase of k and E ,
Emax and kmax in Eq. (5) can be safely substituted by infinity. In
the large Q2 limit, the structure function becomes the scaling
function F (y) which only depends on the scaling variable y,

F (y) = 2π

∫ ∞

Emin

dE
∫ ∞

|y|
k PN (k, E ) dk. (9)
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For the deuteron, the recoil system has no excitation energy
and the removal energy E is the minimal separation energy
Emin = 2.225 MeV. The spectral function is then given by
the approximate form PN (k, E ) = n(k)δ(E − Emin) and thus
entirely determined by the nucleon momentum distribution
n(k). The scaling function F (y) becomes

F (y) = 2π

∫ ∞

|y|
n(k) k dk, (10)

where the nucleon momentum distribution is

n(k) =
∫ ∞

Emin

PN (k, E ) dE . (11)

Eventually, the master formula for the y-scaling approach to
the NMD extraction is obtained from Eq. (10),

n(k) = − 1

2πy

dF (y)

dy

∣∣∣∣
|y|=k

, (12)

where the scaling function F (y) can be extracted from the
inclusive cross sections with the help of Eq. (3).

B. Smoothing spline

Consider an experimental data set with N + 1 discrete
points{(xi, yi )} (i = 0, . . . , N ). In principle, yi consists of the
true value f (xi ) and the noise part η(xi ), i.e.,

yi = f (xi ) + η(xi ). (13)

The main goal of numerical difference methods is to obtain a
good estimation of derivatives of f (xi ) from {(xi, yi )}. In the
smoothing spline method, this is done as follows. Let f̃ (x)
be an estimation of f (x) within the interval of a < x < b.
In smoothing spline, f̃ (x) is constructed by minimizing the
penalized least-squares loss function [23]

N∑
i=0

{yi − f̃ (xi )}2 + λ−1
∫ b

a
{ f̃ ′′(x)}2dx, (14)

in the functional space of all functions with square-integrable
second derivatives. The first term calculates the least-squares
error, while the second term is referred to as the penalty
functional to assess the function’s smoothness. The smooth-
ness parameter λ manages the tradeoff between the function’s
smoothness and the least-squares fit.

From the corresponding Euler-Lagrange equations, the op-
timal function f̃ (x) satisfies the following conditions [23]:

f̃ (4)(x) = 0, xi < x < xi+1, i = 0, . . . , N − 1, (15)

f̃ (k)(xi )− − f̃ (k)(xi )+ =
{

0 if k = 0, 1, 2,

2λ[ f̃ (xi ) − yi] if k = 3,

(16)

with f̃ (k)(xi )± = limh→0 f̃ (k)(xi ± h) being the left (right) kth
order derivative of f̃ (x) at the point xi. The boundary condi-
tions at x0 and xN can be found in Ref. [23].

Equations (15) and (16) demonstrate that f̃ (x) is composed
of cubic parabolas,

f̃ (x) = ai + bi(x − xi ) + ci(x − xi )
2 + di(x − xi )

3, (17)

within the range xi � x < xi+1. The above equation joins
at common endpoints such that f̃ (x), f̃ ′(x), and f̃ ′′(x) are
continuous. Consequently, the solution f̃ (x) in Eq. (14) is
a cubic spline. The procedure of minimizing the penalized
least-squares loss function in Eq. (14) converts to solve the
spline coefficients {(ai, bi, ci, di )}.

Inserting Eq. (17) into (16), the relations of the spline co-
efficients can be obtained. Utilizing the condition of f̃ ′(xi )±,
one can obtain

T c = QT a. (18)

The superscript “T ” represents transpose. Applying the con-
dition of f̃ ′′′(xi )±, one can derive the relation

Qc = λ(y − a). (19)

Q is a tridiagonal matrix with N + 1 rows and N − 1 columns.
T is a positive definite tridiagonal matrix of order N − 1. The
nonzero matrix elements of Q and T are defined as

Qi−1,i = 1/hi−1, Qi,i = −1/hi−1 − 1/hi,

Qi+1,i = 1/hi, Ti,i = 2(hi−1 + hi )/3,

Ti,i+1 = Ti+1,i = hi/3, (20)

with hi = xi+1 − xi and i = 1, . . . , N − 1. The vectors in
Eqs. (18) and (19) are defined as

c = {c1, . . . , cN−1}T ,

y = {y0, y1, . . . , yN }T ,

a = {a0, a1, . . . , aN }T . (21)

By solving Eqs. (18) and (19), c and a are written as

(QT Q + λT )c = λQT y,

a = y − λ−1Qc. (22)

Then the explicit form of vector a is expressed as

a = y − Q(QT Q + λT )−1QT y. (23)

Noticing that f̃ (x) = ai at {xi} from Eq. (17), only the
vector a is needed for the estimations at {xi}. The estimation
of f̃ = [ f̃ (x0), . . . , f̃ (xN )]T can be addressed in matrix form,

f̃ = a = A(λ) y, (24)

where A(λ) = I − Q(QT Q + λT )−1QT is the so-called influ-
ence matrix and I is the (N + 1) × (N + 1) unit matrix. Thus,
one can choose a smoothness parameter λ and obtain the
estimations. A smaller value of λ means a more pronounced
level of smoothness.

Researchers often resort to an ad hoc procedure when faced
with the task of selecting parameters. One popular choice
to determine λ is generalized cross-validation (GCV) [28],
where the estimation of the nth point is determined by fitting
a smooth trend line to all the data points except the nth one.
GCV works by minimizing the sum of squared differences
V (λ) between the nth data point and its estimated value. For
the case of cubic smoothing spline, V (λ) is given by the
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influence matrix A(λ),

V (λ) = ||[I − A(λ)]y||2
[N + 1 − TrA(λ)]2 , (25)

where || · || represents the L2-norm and TrA(λ) calculates the
trace of the influence matrix.

In this work, we adopt cubic smoothing spline for the nu-
merical derivative and utilize GCV to optimize the smoothing
parameter such that no parameter inputs are needed. It should
be emphasized that the smoothing spline method differs from
the concepts of interpolation and curve fitting. The interpo-
lating method generates results passing through every data
point, which is a horrible scenario for experimental data with
noise. Curve fitting is a helpful method to handle noisy ex-
perimental data in extracting NMDs and can yield reasonable
results [36,37]. However, the necessity to predefine functional
form may bring some extent of model dependence. Moreover,
curve fitting is less effective in capturing local features than
smoothing spline, which can retain more information in the
data.

III. NUMERICAL RESULTS

NMDs provide a key window in validating the fundamental
nucleon-nucleon (NN) interactions. They can be extracted
from the experimental inclusive cross sections by utilizing
the y-scaling analysis. As shown in Sec. II A, experimental
NMDs are obtained by taking the first-order derivative of the
scaling function F (y) concerning the scaling variable y, with
F (y) extracted from the experimental cross sections. How-
ever, the experimental data are invariably corrupted by noise,
and a naive finite difference approach can amplify this noise,
leading to negative values and suspect fluctuations in NMDs
at high momenta [8,11]. This work tackles the numerical dif-
ferentiation problem by applying a nonparametric technique,
known as smoothing spline. We focus on the NMDs of the
deuteron because the high-momentum tails of medium to
heavy nuclei are proportional to those of the deuteron [38].
The experimental data utilized in this paper are measured at
sufficiently high Q2 values [6–8].

A. NMD extractions for the deuteron by applying
smoothing spline

Shown in Fig. 2 are the results of the scaling function
F (y) of the deuteron by using smoothing spline. The 68.3%
confidence interval is calculated using Bayesian estimation
[39]. The experimental cross sections, from which the scal-
ing function is derived, are measured at the electron energy
E = 4.045 GeV and scattering angle θ = 37◦ with Q2 =
3.5 (GeV/c)2 at the quasielastic peak [6]. The F (y) results de-
rived from the cross section data without applying smoothing
spline are also shown. It can be seen that the smoothing spline
method effectively handles the noisy data for large negative
y values. The curve passes through bunches of squares and
ensures that they are uniformly distributed on both sides of
the smoothed curve. The smoothing spline method can simul-
taneously minimize the least-squares deviation and estimate
the smoothness of the curve within the whole interval. The

FIG. 2. Scaling function F (y) of deuteron by applying smooth-
ing spline (solid red line) extracted from the inclusive cross sections.
The cross section data are measured at the electron energy E =
4.045 GeV and scattering angle θ = 37◦ with Q2 = 3.5 (GeV/c)2 at
the quasielastic peak [6]. The corresponding light red band represents
the 68.3% confidence interval. Note that the confidence interval is
so narrow that it is not visually apparent in the figure. The squares
represent the F (y) results derived from the cross section data without
applying smoothing spline.

smoothness parameter λ is needed in the smoothing spline
method to control the smoothness. To remove the uncertainty
associated with selecting λ and provide robust smoothed re-
sults, the optimal λ is determined by utilizing GCV in this
work. Then the smoothing spline method is carried out in a
nonparametric manner. It is noted that the smoothing spline
method minimizes the least-square errors as a whole. The ex-
perimental cross sections in low-ω regions, which correspond
to the high-momentum nucleons and have small values, have
little contribution. GCV fails to give an optimal λ for the
experimental data in low-ω regions. To overcome this issue,
a logarithmic scale is used to process the experimental data
in this study when applying GCV to determine the optimal λ

value in the smoothing spline method.
By taking the first derivative of F (y) with respect to y in

Fig. 2, the new NMD results for the deuteron given by smooth-
ing spline are derived and displayed in Fig. 3(a). The n(k)
results by applying the finite difference method are also shown
in the same figure. The uncertainties of F (y) are propagated
to n(k). In this paper, a Gaussian profile is assumed for each
point of F (y), centered around the measured values with a
width given by the uncertainty. The resulting n(k) values also
follow a Gaussian distribution and uncertainties of n(k) can be
estimated [11,40]. The same procedure is also applied to the
68.3% confidence interval of new NMDs given by smoothing
spline. Theoretical results of n(k) calculated by the quantum
Monte Carlo (QMC) methods with three NN interactions,
AV18, NV2-Ia, and NV2-IIb, are shown in the same figure for
comparison [1]. The new NMDs obtained with smoothing
spline are smoother when compared to the n(k) results ex-
tracted using the finite difference method. These NMDs also
eliminate suspect fluctuations caused by noise. Furthermore,
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FIG. 3. (a) New NMDs n(k) of the deuteron by applying smooth-
ing spline (solid red line with balls), extracted from scaling functions
in Fig. 2 based on y scaling. The light red band represents the 68.3%
confidence interval. The squares show the NMD results by applying
the finite difference method. The theoretical QMC calculations with
different NN interactions (lines) are also presented [1]. (b) Similar to
(a), but focusing on the momentum region of 0.4 < k < 1.1 GeV/c.
Two orange squares indicate the NMD data points with negative
values, which are missing in (a) plotted on a logarithmic scale.

the new NMDs coincide with the QMC calculations and are
positioned between the three QMC calculations employing
different NN interactions at higher momenta.

In PWIA, the scaling function F (y), as expressed in
Eq. (10), signifies the integral of the nucleon momentum
distribution from y to infinity. It is expected to exhibit a mono-
tonic decrease as |y| increases. However, as shown in Fig. 2,
the experimental cross sections fail to produce monotonic
F (y) as noise always exists. Therefore negative values of n(k)
are generated as stated in Eq. (1). n(k) points with negative
values are more likely to occur in high-momentum regions.
Figure 3(b) provides a detailed view of the n(k) results in
the region of 0.4 < k < 1.1 GeV/c. It is shown in Fig. 3(b)
that two negative n(k) points are given by the finite difference
method (specifically at k = 0.72 and 0.97 GeV/c), which
are missing in Fig. 3(a) plotted on a logarithmic scale. The
smoothing spline method recovers the monotonicity of F (y)
and avoids negative values of n(k).

FIG. 4. Scaling function F (y) of the deuteron (squares) extracted
from the experimental data measured at (E , θ ) = (4.045 GeV,
30◦), (4.045 GeV, 37◦), (5.766 GeV, 18◦), (5.766 GeV, 22◦), and
(5.766 GeV, 26◦) [6,8]. The Q2 values at the quasielastic peak are also
shown. The color band represents the uncertainties associated with
the y-scaling violations estimated by the smoothing spline method.

In the impulse approximation, the scaling limit is assumed
to be reached at large Q2 values and the scaling function
depends on only one variable, which is directly related to the
NMD [8]. However, the impulse approximation picture breaks
down when the effects of the rescattering of the knockout nu-
cleon and nucleon-nucleon correlations are included [37,41–
43]. Moreover, in Ref. [44] the authors found potentially large
contributions of meson-exchange currents (MECs) on scaling
functions at large negative y. These effects may lead to non-
negligible y-scaling violations in the region of large negative
y values and hamper the unambiguous extraction of NMDs
at high momenta. In the following we assess the impact of
y-scaling violations at large negative y using extensive exper-
imental data and provide more convincing NMD results.

Shown in Fig. 4 are the scaling functions extracted from all
the existing experimental data that can provide scaling results
for |y| > 0.8 GeV/c [6,8]. The corresponding values of the
incident energy E , scattering angle θ , and Q2 at the quasielas-
tic peak are shown in the figure. In the region 0 < |y| <

0.5 GeV/c, scaling functions show highly consistent results,
while apparent scaling violations occur at large negative y due
to the mechanisms beyond the impulse approximation. The
confidence interval, represented by the color band, is given by
smoothing spline to quantify the amount of scaling violations.
Notice that the confidence interval aims to contain the true
function values with 95.5% probability.

Theoretical QMC calculations of n(k) with different
NN interactions exhibit significant variations in their high-
momentum tails because the tensor force and the short-range
repulsion are poorly described [1]. Imposing constraints on
the high-momentum tail is a significant and difficult task in
nuclear physics. Utilizing the F (y) results in Fig. 4, new
NMD results are extracted by applying smoothing spline and
presented in Fig. 5 to mitigate the stochasticity of a sin-
gle experimental dataset. The color band is propagated from
F (y) results and associated with the y-scaling violations. The
error bar indicates the 68.3% confidence interval for each
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FIG. 5. New NMDs n(k) of the deuteron given by smoothing
spline (balls) extracted from the experimental cross sections mea-
sured at (E , θ ) = (4.045 GeV, 30◦), (4.045 GeV, 37◦), (5.766 GeV,
18◦), (5.766 GeV, 22◦), and (5.766 GeV, 26◦) [6,8]. The Q2 values
at the quasielastic peak are also shown. The error bar indicates the
68.3% confidence interval for each data set. The color band is associ-
ated with the y-scaling violations. The lines represent the theoretical
QMC calculations with different NN interactions [1].

data set. The smoothing spline method avoids the negative
values of n(k) for these data sets. Furthermore, it extends
the experimental n(k) results up to k ≈ 1.2 GeV/c. Three
QMC calculations coincide with new experimental n(k) for
k < 0.6 GeV/c. However, in the higher-momentum region,
distinctions occur for the QMC calculations using different
NN interactions. The experimental n(k) results are located
between these calculations. It is challenging to discern which
NN interaction yields superior results with the existing data.

FIG. 6. Scaling behaviors of the high-momentum tail. The new
n(k) results (balls) are the same as those in Fig. 5. The dashed red
line illustrates the fitting of n(k) results in the region 0.25 < k <

0.6 GeV/c, suggesting a scaling behavior of n(k) ∼ 1/k5. The solid
black line represents the scaling behavior of n(k) ∼ 1/k7 by fitting
the n(k) results in the region 0.6 < k < 1.2 GeV/c. The orange and
green bands depict the loci of the 95% confidence bounds of the fitted
curves.

FIG. 7. Scaled NMDs (a) k′5 n(k′) and (b) k′7 n(k′) with k′ =
k/kF . The new n(k) results (balls) are the same as those in Fig. 5.
The data points are plotted in units of kF = 250 MeV/c, the typical
Fermi momentum for medium and heavy nuclei. The dashed red lines
demonstrate the plateaus by fitting the scaled NMD data, and the
light red bands represent the 95% confidence bounds of the linear
fitted curves.

B. Scaling behaviors

The behavior of high-momentum tails significantly influ-
ences the properties of nuclear matter, such as the density
dependence of nuclear symmetry energy [45]. It also af-
fects various characteristics of neutron stars, including tidal
deformation and the mass-radius correlation [46–48]. The
high-momentum distribution of atoms in ultracold atomic
gases, described through Tan’s contact, is predominantly in-
fluenced by short-range pairs of distinct fermions, diminishing
proportionally to k−4 [49–51]. Similarly, the NMD above
the Fermi momentum is dominated by short-range corre-
lated np pairs in the nucleus. By analyzing the experimental
(e, e′ p) data and ab initio calculations of n(k), an approximate
1/k4 behavior of n(k) is observed in the region 0.325 < k <

0.625 GeV/c [45]. Another investigation on the superscaling
analysis for the inclusive cross sections finds that the high-
momentum tail scales as n(k) ∼ 1/k8.5 [52].

It is shown in Fig. 5 that the new NMDs extracted from
different inclusive cross sections present consistent results
at high momenta. Consequently, the scaling behaviors of
high-momentum tails are expected to be determined by fit-
ting the new n(k) results. The fitting outcomes are presented
in Fig. 6. Like the results of Refs. [45,52], it is hypoth-
esized that the NMD scales as 1/kα and high-momentum
regions are divided into two parts, 0.25 < k < 0.6 GeV/c and
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0.6 < k < 1.2 GeV/c. Applying a fitting procedure to the
n(k) results within the region 0.25 < k < 0.6 GeV/c leads to
1/k5 scaling. The orange band depicts the loci of the 95% con-
fidence bound of the fitting. By fitting the n(k) results at higher
momentum regions above 0.6 GeV/c, the scaling behavior of
1/k7 provides the best coincidence. Due to slight deviations in
the extracted n(k) results at 0.6 < k < 1.2 GeV/c, a relatively
broad 95% confidence bound, the green band in the figure, is
obtained in the fitting procedure.

To further signify the scaling behaviors of NMDs, we
plot the scaled NMD in Fig. 7. The scaled NMD is defined
as k′5 n(k′) in Fig. 7(a) and k′7 n(k′) in Fig. 7(b), where
k′ = k/kF with kF = 250 MeV, the typical Fermi momen-
tum for medium and heavy nuclei. It should be noted that
the selection of kF affects the normalization, but the extrac-
tion of scaling behaviors is not impacted. The region 1.0 <

k′ < 2.4 in Fig. 7(a) corresponds to 0.25 < k < 0.6 GeV/c
for k′5 n(k′) and the region 2.4 < k′ < 4.8 in Fig. 7(b) cor-
responds to 0.6 < k < 1.2 GeV/c for k′7 n(k′). Inspecting
Fig. 7(a), a plateau k′5 n(k′) = 0.700 ± 0.019 is observed for
1.0 < k′ < 2.4. Figure 7(b) also shows a plateau k′7 n(k′) =
3.710 ± 0.395 for 2.4 < k′ < 4.8. The light red bands repre-
sent the 95% confidence bounds of the linear fitted curves.
The existence of plateaus further verifies the piecewise scaling
behaviors of NMDs. It is indicated in Ref. [4] that, in the
region above kF , the tensor force predominantly influences
NMDs in the region k < 0.6 GeV/c, while the short-range
repulsion dominates the higher-momentum region. We pro-
pose that varying dominance of short-range correlations in
different k regions may underlie the piecewise scaling phe-
nomena observed in NMDs. Although the correlated nucleons

with high-k values account for a small fraction in nuclei,
considering them in investigations on nuclear matters may
yield different results.

IV. CONCLUSIONS

In summary, we utilize a modern numerical differentia-
tion technique known as smoothing spline to extract NMDs
of deuteron from the inclusive cross section data within the
framework of y scaling. Traditionally, the NMDs extracted
with the help of the finite difference approach may lead to
negative values and suspect fluctuations at high momenta.
It is shown that smoothing spline, which has a number of
advantages over the traditional approach, gives NMDs more
compatible with physical considerations. We extract new
NMDs for the deuteron and study their scaling behaviors
with respect to the nucleon momentum k. It is found that
NMDs may follow piecewise scaling laws with n(k) ∼ 1/k5

for 0.25 < k < 0.6 GeV/c and n(k) ∼ 1/k7 for 0.6 < k <

1.2 GeV/c. These results may be also helpful for understand-
ing the origin of the European Muon Collaboration effect
[53,54], neutrinoless double-beta decay matrix elements [55],
neutron stars [56], and relativistic heavy-ion collisions [57].
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