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Systematic study of the low-lying electric dipole strength in Sn isotopes
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The γ -ray strength functions (GSFs) and nuclear level densities (NLDs) below the neutron threshold have
been extracted for 111–113,116–122,124Sn from particle-γ coincidence data with the Oslo method. The evolution of
bulk properties of the low-lying electric dipole response has been investigated on the basis of the Oslo GSF
data and results of a recent systematic study of electric- and magnetic dipole strengths in even-even Sn isotopes
with relativistic Coulomb excitation. The obtained GSFs reveal a resonance-like peak on top of the tail of the
isovector giant dipole resonance centered at ≈8 MeV and exhausting ≈2% of the classical Thomas-Reiche-Kuhn
(TRK) sum. For mass numbers �118 the data suggest also a second peak centered at ≈6.5 MeV. It corresponds
to 0.1%–0.5% of the TRK sum rule and shows an approximate linear increase with the mass number. In contrast
with predictions of the relativistic quasiparticle random-phase and time-blocking approximation calculations,
no monotonic increase in the total low-lying E1 strength was observed in the experimental data from 111Sn
to 124Sn, demonstrating rather similar strength distributions in these nuclei. The Oslo GSFs and NLDs were
further used as inputs to constrain the cross sections and Maxwellian-averaged cross sections of (n, γ ) reactions
in the Sn isotopic chain using TALYS. The obtained results agree well with other available experimental data
and the recommended values from the JINA REACLIB, BRUSLIB, and KADoNiS libraries. Despite relatively
small exhausted fractions of the TRK sum rule, the low-lying electric dipole strength makes a noticeable
impact on the radiative neutron-capture cross sections in stable Sn isotopes. Moreover, the experimental Oslo
inputs for the 121,123Sn(n, γ ) 122,124Sn reactions were found to affect the production of Sb in the astrophysical
i process, providing new constraints on the uncertainties of the resulting chemical abundances from multizone
low-metallicity asymptotic giant branch stellar models.
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I. INTRODUCTION

The study of the multipole electromagnetic response of
atomic nuclei has always been an ultimate testing ground
for unraveling a plethora of complex collective and single-
particle excitation modes, their interplay, and driving physical
mechanisms of nuclear interaction. Historically, one of the
most well-studied modes of collective motion is the isovector
giant dipole resonance (IVGDR), and the experimental and
theoretical systematics on the IVGDR and its bulk properties
are currently available for a wide range of mass numbers
[1–3]. Within a macroscopic picture, this prominent feature is
interpreted as a signature of out-of-phase dipole oscillations
of all protons against all neutrons in the nucleus [4].
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In contrast with the IVGDR located at 10–20 MeV in heavy
nuclei, the concentration of a weaker electric dipole strength
in the vicinity of the neutron threshold, often referred to as
the pygmy dipole resonance (PDR), is far less understood and
keeps posing new questions regarding its origin and properties
[5–8]. A macroscopic interpretation of the PDR emerging
from oscillations of excess neutrons, or a neutron skin, ver-
sus an isospin-saturated core [9] has been frequently adopted
in publications since the 1970s, shifting the main focus of
the experimental efforts in the past few decades to heavier,
more neutron rich nuclei to test this interpretation [10–12].
However, this collective surface-motion picture and the degree
of collectivity of involved transitions have been a matter of
intense debates [5,7,8,13–15]. Some studies suggest the phys-
ical mechanism behind the PDR to be a toroidal electric dipole
mode instead of a neutron-skin oscillation [16–19].

Another intensively discussed matter related to the PDR
energy region is the isovector and/or isoscalar nature of
observed structures [14,20]. The isospin splitting of the
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low-lying electric dipole response (LEDR) was, indeed,
experimentally confirmed in complementary studies with
isoscalar and isovector probes in 124Sn, 138Ba, and 140Ce
[21–25]. Combined with self-consistent relativistic quasiparti-
cle time-blocking approximation (RQTBA) and quasiparticle-
phonon model (QPM) calculations, these experiments point
towards the presence of two groups of transitions below
the neutron threshold [22,25]. The lower-lying group of
states reveals a signature of a strong neutron contribution
on the surface, whereas the higher-lying states are of a
more isovector nature, corresponding rather to the tail of
the IVGDR. Furthermore, recent experiments on 208Pb [26]
and 120Sn [27] with a deuteron probe combined with a
QPM analysis provided insight into the one-particle-one-
hole structure of the LEDR in these nuclei, revealing a
similar structural splitting based on the contributing particle-
hole configurations. In general, an extensive investigation of
the PDR region with complementary isoscalar and isovec-
tor probes in various inelastic-scattering reactions as well
as single-nucleon transfer reactions is pivotal to break down
the complex LEDR structure of nuclei within different
mass regions.

The tin isotopic chain is probably one of the best stud-
ied cases both experimentally and theoretically (see, e.g.,
the review articles in Refs. [6,8]). For the tin isotopes,
the LEDR is available from nuclear resonance fluorescence
(NRF) studies [28–30], experiments with α [22], 17O [23],
and deuteron [27] probes, Coulomb dissociation [10,31], and
Coulomb excitation [32,33] experiments. A first attempt to
extract the systematics of the PDR observed in the GSFs of
116–119,121,122Sn measured with the Oslo method was presented
in Ref. [34]. With new experimental information available on
120,124Sn [35,36] and 111–113Sn [37], a combination of the Oslo
data and the recently published strengths for even-even Sn
isotopes from Coulomb excitation experiments [33] permits
a consistent extensive study on the evolution of the LEDR,
covering eleven Sn isotopes from 111Sn to 124Sn.

The connection of the PDR strength to the neutron-skin
thickness in neutron-rich nuclei, suggested by the neutron
oscillation picture, triggered attempts to provide experimental
constraints on the symmetry-energy term in the equation of
state [31,38–40], with implications for the characteristics of
neutron stars [41,42]. While this connection is under debate
[15,43], influence of the enhanced E1 strength close to neu-
tron threshold on the astrophysical radiative neutron-capture
rates is less ambiguous [13,44]. An increased probability of
radiative neutron capture due to the boosted GSF within the
PDR region might impact the element production in the rapid
neutron-capture process (r process), responsible for creating
≈50% of elements heavier than Fe in the universe. However,
assessing the importance of the PDR in the r-process nucle-
osynthesis is difficult due to a lack of experimental constraints
for very neutron-rich nuclei and a large spread in theoretical
predictions of the PDR strength. To provide radiative neutron-
capture rates for r-process reaction network calculations, the
statistical Hauser–Feshbach model is employed [45–47]. This
model calls for consistently extracted experimental data on
the nuclear level densities (NLD) and γ -ray strength func-
tions (GSF), or average reduced γ -transition probability, for

experimentally accessible cases to constrain the available the-
oretical models.

In addition to investigating the impact of the PDR on
the r process, dipole strength distributions below the neutron
threshold in stable isotopes are of general interest for the
slow (s) neutron-capture process. The majority of the sta-
ble Sn isotopes originate predominantly from the s process
[48–50], with 121Sn and 123Sn being potential candidates for
the s-process branching point nuclei (see Refs. [51,52], re-
spectively). Moreover, isotopes heavier than 120Sn might be
involved in the main flow of the intermediate (i) neutron-
capture process, as discussed by Goriely et al. [53]. The Oslo
method enables the extraction of both key nuclear inputs,
the NLDs and GSFs, for statistical calculations within the
Hauser–Feshbach framework. Therefore, the method provides
experimental constraints on the radiative neutron-capture re-
action rates of interest for all the three above-mentioned
nucleosynthesis processes.

The paper is outlined as follows: Section II describes the
details of experiments on the Sn isotopes performed at the
Oslo Cyclotron Laboratory (II A) and the Oslo method (II B).
In Sec. III, the extracted NLDs (III A), GSFs, and the sys-
tematics of the bulk properties of the low-lying E1 strength
(III B) are presented. Section IV focuses on the comparison of
this systematics with model predictions. The neutron-capture
cross sections and Maxwellian-averaged cross sections are
presented and discussed together with the potential role of the
LEDR in Sec. V. In Sec. VI, i-process calculations in asymp-
totic giant branch (AGB) stars are presented, and the impact
of the new experimentally constrained rates on the production
of the elements in the Sn region is discussed. Finally, the main
findings of this work are summarized in Sec. VII.

II. DATA AND METHODOLOGY

A. Setup and experimental details

Eleven tin isotopes, 111–113,116–122,124Sn, were studied in
nine experimental campaigns taking place at the Oslo Cy-
clotron Laboratory (OCL) in the period from 2003 to 2022.
All nuclei were studied in light-particle-induced reactions
with p, d , and 3He beams delivered by the MC-35 Scan-
ditronix cyclotron with the main objective of extracting
particle-γ coincidence events for a further analysis with the
Oslo method. In all cases, the configuration of the setup
involved a scintillator γ -ray detector array surrounding the
target chamber and a Si particle-telescope system placed ei-
ther in forward or backward angles with respect to the beam
direction.

The first experiments on 117Sn and 119Sn, aiming at study-
ing 116,117Sn and 118,119Sn, respectively, utilized the (3He, αγ )
and (3He, 3He

′
γ ) reactions. These experiments were per-

formed with 38-MeV 3He beams and exploited eight standard
�E -E Si telescopes with ≈140-µm-thick �E and 1500-µm-
thick E counters. The telescopes were placed within the target
chamber at 45◦ with respect to the beam direction, as a
compromise between reducing the contribution from elastic
scattering and still having sufficiently large cross sections for
the reactions of interest. Collimators were placed in front of
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TABLE I. Characteristics of the experiments on Sn isotopes performed at the OCL. The given angles refer to the particle scattering angles
with respect to the beam direction.

Thickness Enrichment Beam energy Beam intensity Angles
Target (mg/cm2) (%) Reaction (MeV) (nA) (◦) Year Setup

112Sn 4.0 99.8 (p, dγ ) 25.0 ≈1.0–1.5 126–140 2013 SiRi+CACTUS
(p, p′γ ) 16.0 ≈1.0–1.5 126–140 2013 SiRi+CACTUS
(d, pγ ) 11.5 ≈0.5–0.7 126–140 2014 SiRi+CACTUS

117Sn 2.1 92.0 (3He, αγ ) 38 ≈1.5 ≈42.5–47.5 2003 Stand. Si + CACTUS
(3He, 3He γ )a 38 ≈1.5 ≈42.5–47.5 2003 Stand. Si + CACTUS
(p, p′γ )b 16 ≈2.8 126–140 2019 SiRi + OSCAR

119Sn 1.6 93.2 (3He, αγ ) 38 ≈1.5 ≈42.5–47.5 2008 Stand. Si + CACTUS
(3He, 3He γ )a 38 ≈1.5 ≈42.5–47.5 2008 Stand. Si + CACTUS
(p, p′γ )b 16 ≈0.6–0.8 126–140 2022 SiRi + OSCAR

120Sn 2.0 99.6 (p, p′γ ) 16 ≈3.0–4.0 126–140 2019 SiRi + OSCAR
122Sn 1.43 94 (3He, αγ ) 38 ≈0.2 40–54 2010 SiRi+CACTUS

(3He, 3He γ ) 38 ≈0.2 40–54 2010 SiRi+CACTUS
124Sn 0.47 95.3 (p, p′γ ) 16 ≈3.0–4.0 126–140 2019 SiRi + OSCAR

aNot used in the present work.
bRemeasured.

the Si detectors to reduce the uncertainty in the scattering an-
gle. This collimation led to a significantly reduced solid-angle
coverage of ≈0.72% of 4π and ≈1.5% of 4π for the col-
limators with circular (117Sn) and squared openings (119Sn),
respectively.

To improve the solid-angle coverage while maintaining a
reasonable angular resolution, a custom-designed Si telescope
ring (SiRi) was installed in 2011 [54]. The SiRi system was
used in the experimental campaigns to study 120–122,124Sn as
well as remeasuring 117,119Sn in 2019–2022 in the (p, p′γ )
and 121,122Sn in (3He, αγ ) and (3He, 3He

′
γ ) reactions. SiRi

is comprised of eight trapezoidal-shaped �E − E modules
with 130-µm-thick �E layers and 1550-µm-thick E layers.
The former are additionally segmented into eight curved pads.
The coverage of scattering angles in SiRi is either 40◦–54◦

in the forward or 126◦–140◦ in the backward position of the
detector array, with a 2◦ polar angle window per each pad.
With SiRi, the solid-angle coverage increased approximately
10 times as compared with the previous telescope system,
while keeping a sufficient energy resolution.

Both the older Si detector system and SiRi make use of
the �E − E technique to differentiate between the observed
reaction channels. The typical energy resolution for the ex-
periments with the 38-MeV 3He beam performed with the
older setup was ≈250–350 keV full width at half maximum
(FWHM), determined from the fit to the elastic peaks in the
(3He, 3He

′
) and (3He, α) channels. With SiRi, the energy reso-

lution is ≈150–200 keV for the same experimental conditions,
and ≈300 keV for the 11.5-MeV deuteron and 20-MeV proton
beams in the (d, p) and (p, d ) channels, respectively (due to
the large thickness of the 112Sn target). The best resolution of
≈100 keV was achieved in the experiments using 16-MeV
protons with SiRi. Besides the reaction channel, the beam
energy, and intrinsic resolution of the E -�E modules, the
excitation-energy resolution was also affected by the beam-
energy resolution (the beam-spot size varied significantly in
the experiments).

All the (3He, 3He
′
γ ) and (3He, αγ ) experiments on

117,119,122Sn as well as the (p, p′γ ), (p, dγ ), and (d, pγ ) ex-
periments on 112Sn were performed with the detector array
CACTUS [55]. CACTUS consisted of 28 spherically dis-
tributed cylindrical 5′′ × 5′′ NaI(Tl) detectors, where each
detector was additionally collimated with conical Pb collima-
tors. Using a 60Co source, the total efficiency of CACTUS and
its energy resolution at Eγ = 1332 keV were estimated to be
15.2(1)% and ≈6.8%, respectively.

In 2019, the CACTUS detectors were replaced by the
Oslo Scintillator Array (OSCAR), a γ -ray detector ar-
ray of 30 cylindrical large-volume 3.5′′ × 8′′ LaBr3(Ce)
crystals [56,57]. OSCAR provides a significantly improved
energy resolution and excellent timing properties for select-
ing particle-γ events. The total efficiency in the most recent
experiments is ≈40%, with the energy resolution of ≈2.2% at
Eγ = 1332 keV.

In the period between 2003 and 2022, 117Sn and 119Sn
were measured twice; first, with the (3He, 3He

′
γ ) reaction

using the old setup configuration (standard Si telescopes +
CACTUS), and later with SiRi and OSCAR using the (p, p′γ )
reactions. Due to a fairly good agreement between the new
and the old datasets, and considering the improved energy
resolution and timing with the new setup, we choose to show
only the (p, p′γ ) data for 117Sn and 119Sn in the present work.
The data processing before the application of the Oslo method
for these two experiments is identical to the one described in
detail for 120,124Sn in Ref. [36]. All relevant parameters for the
above-mentioned experiments are outlined in Table I.

Using the known kinematics of the studied reactions, the
energy deposited in the particle Si detectors was converted
into the initial excitation energy Ei of the residual nucleus.
By applying proper gates on the outgoing particle species and
the time spectra, the background-subtracted particle-γ coinci-
dence events were extracted. A more in-depth discussion of
the experimental details, calibration, and event selection in
each case is presented in Ref. [37] for 111–113Sn, Refs. [58,59]
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for 116Sn, Ref. [60] for 118Sn, Ref. [36] for 120,124Sn, and
Ref. [34] for 121,122Sn. Calibrations of the excitation and γ -ray
energies for the 121,122Sn datasets were revised and improved
compared with the earlier published results [34].

In the next step, the recorded γ -ray spectra are corrected
using the detector response functions of either CACTUS or
OSCAR to obtain the unfolded spectra. For all cases, the un-
folding was done with the same iterative technique described
in detail in Ref. [61]. The method is based on a consecutive
correction of the trial function for the unfolded spectra, until
they match with the original raw spectra within the experi-
mental uncertainties. To avoid introducing any strong artificial
fluctuations while still preserving the original statistical fluc-
tuations, the Compton subtraction technique was also applied
in each case. The details of this procedure are presented in
Refs. [61,62].

The last step prior to the extraction of the NLD and GSF
is to determine the distribution of first-generation γ rays for
each excitation-energy bin, i.e., γ rays stemming directly from
a nucleus decaying with an initial excitation energy Ei. The
distribution P(Eγ , Ei ) of such first-generation—or primary—
γ rays, is proportional to the probability of γ decay from
initial excitation energies Ei to the final levels E f = Ei − Eγ ,
i.e., to the corresponding average branching ratios of the levels
within the excitation-energy bin Ei. An important assumption
for the extraction of the primary γ rays is that the decay
pattern of the excited levels within the Ei bin is independent
of the way they were populated (either directly through the
reactions or via the decay of higher-lying states). Then, the
γ cascades at each initial excitation-energy bin Ei are ex-
pected to contain the same transitions as those in the bins
below, except for the primary γ transitions. By use of the
iterative first-generation method (see Ref. [63] for details),
the nonprimary γ transitions are successively removed from
each initial excitation-energy bin below the neutron threshold.
The above-mentioned assumption is expected to hold for rel-
atively high excitation energies where the spin distribution is
approximately equal for neighboring Ei bins. This imposes a
lower limit on the initial excitation energy for the further data
analysis with the Oslo method, while an upper limit is set by
the neutron separation energy Sn in each case. In addition, an
over-subtraction of γ transitions at low γ energies seen in all
datasets limits γ -ray energy to Eγ � 1–2 MeV. A thorough
discussion of the application of the first-generation method
and its limitations is presented in Ref. [62]. For the most
recent experiments on 117Sn and 119Sn, these limits were set
to 3.4 � Ei � 6.9 MeV, Eγ � 1.4 MeV and 4.0 � Ei � 6.5
MeV, Eγ � 1.8 MeV, respectively. Discussions of the chosen
Ei and Eγ limits for the subsequent Oslo method analysis
of other Sn isotopes can be found in Refs. [34,36,37,58–60].
An example of the the first-generation matrix for 117Sn with
the energy region chosen for the Oslo method application is
shown in Fig. 1.

B. Extraction of nuclear level densities
and γ-ray strength functions

As mentioned in the previous section, the first-generation
matrix reflects a distribution of decay probabilities from the

FIG. 1. The first-generation matrix for 117Sn extracted in the
(p, p′γ ) experiment. The yellow dashed line corresponds to the neu-
tron separation energy, while the blue solid lines confine the area
used for the Oslo method. The bin size is 64 keV × 64 keV.

levels within each initial excitation-energy bin Ei to the final
levels E f via γ transitions with energies Eγ = Ei − E f . The
Oslo method exploits this fact to perform a decomposition of
the primary matrix P(Eγ , Ei ) into the γ transmission coeffi-
cient Ti→ f and the density of final levels ρ f :

P(Eγ , Ei ) ∝ Ti→ f ρ f . (1)

This decomposition is supported by both Fermi’s golden
rule and the Hauser-Feshbach theory of statistical reactions
(see Refs. [64] and [65], respectively, for detailed derivations).
Being valid only for the compound excited states, this rela-
tion is expected to hold well for the chosen excitation-energy
ranges.

The transmission coefficient in Eq. (1) depends on both the
initial and the final excitation energy, making it practically
impossible to disentangle Ti→ f and ρ f in the factorized first-
generation matrix. For this reason, the generalized Brink-Axel
hypothesis [66,67] needs to be employed in the Oslo method
to reduce the dependence of the transmission coefficient on
the initial and final excitation energy to a dependence on Eγ

only [Ti→ f → T (Eγ )]. In its most commonly used, general-
ized form, this hypothesis states that the GSF (and, thus, the
γ transmission coefficient proportional to it) is independent of
excitation energy, spin, and parity of the initial and final levels.
Even though the Brink-Axel hypothesis was originally formu-
lated for the IVGDR region, it is commonly applied also in
the PDR region at lower excitation energies, as it significantly
simplifies any calculations involving photon absorption and
emission [68]. Even though the discussion around the appli-
cability of the Brink-Axel hypothesis in this region involves
cases where it holds well (see, e.g., Refs. [69,70]) as well as
cases where it seems questionable (see, e.g., Refs. [71,72]), it
has been shown that for the Oslo method analysis of nuclei in
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different mass regions (including Sn isotopes) it is a reason-
able assumption [35,36,62,69,73].

To extract the NLD ρ f = ρ(Ei − Eγ ) and the γ transmis-
sion coefficient T (Eγ ), the first-generation matrix P(Eγ , Ei )
is approximated in an iterative χ2-fit procedure with the fol-
lowing “theoretical” matrix [74]:

Pth(Eγ , Ei ) = T (Eγ )ρ(Ei − Eγ )∑Ei

Eγ =Emin
γ

T (Eγ )ρ(Ei − Eγ )
. (2)

Prior to this step, the first-generation spectra are normalized
to unity for each Ei bin. The details of this procedure and
the propagation of statistical, unfolding, and first-generation
method uncertainties are outlined in Ref. [74]. It has been re-
peatedly shown to converge well in each case [37,75,76], and
the resulting matrix Pth(Eγ , Ei ) reproduces the experimental
spectrum quite well for each excitation-energy bin within the
chosen limits.

The obtained functions ρ(Ei − Eγ ) and T (Eγ ) of
Pth(Eγ , Ei ) provide the best fit of the experimental spectra
and represent the solutions for the experimental NLD and the
γ transmission coefficient. However, as shown in Ref. [74],
although the variation of individual data points with respect
to their neighboring points is uniquely determined by the fit,
the solutions can be modified with arbitrary chosen scaling
parameters A and B and a slope parameter α, providing an
equally good fit to the experimental primary spectra through
the following transformations:

ρ̃(Ei − Eγ ) = Aρ(Ei − Eγ ) exp[α(Ei − Eγ )],

T̃ (Eγ ) = BT (Eγ ) exp[αEγ ]. (3)

To extract the “true” physical NLD and the γ transmission
coefficient, the parameters A, B, and α must be constrained
with external experimental data by following normalization
procedures as presented in the two subsequent sections.

To ensure a fully consistent normalization procedure, all
the Sn nuclei considered here were revisited and renormal-
ized using the most updated experimental information and the
same model approaches for the normalization. The main ob-
jective of this part of the analysis was not only to make use of
the updated external data, but also to apply a consistent model
approach for the spin distribution, supported by the most
recent experimental and theoretical works [77,78]. As was
shown in the earlier publications, the latter yields a reasonable
agreement of the Oslo method NLDs and GSFs with other
experimental results [35,37]. Also, a comparison with the in-
elastic relativistic proton-scattering data [(p, p′) for short] [33]
providing the GSFs for the even-even 112,114,116,118,120,124Sn
isotopes serves as a benchmark for the slope parameter α

shared by the NLD and GSF as well as the absolute normal-
ization of the strength.

1. Normalization of the nuclear level densities

To determine the slope α and the absolute value A, the
NLD solutions from Eq. (3) are anchored to known low-
lying excited states and the NLD at the neutron separation
energy ρ(Sn). We follow the same normalization procedure
as presented in the latest publication on 111–113Sn [37]. The
most recent compilation of discrete states [79] was used for

all isotopes. To estimate the total NLD at the neutron sepa-
ration energy, ρ(Sn), the average neutron-resonance spacing
D0 (s-wave neutrons) or D1 (p-wave neutrons) from neutron
resonance experiments can be used. For seven out of eleven
studied isotopes, namely, 113,116−121Sn, such data on neutron
resonances are available [80]. For s-wave resonances, the D0

value for a target with nonzero spin can be written as

1

D0
= ρ(Sn, Jt + 1/2, πt ) + ρ(Sn, Jt − 1/2, πt ), (4)

where Jt and πt are the ground-state spin and parity of the
target (sample) in the neutron resonance experiments, respec-
tively. A similar relation for a zero-spin target includes only
the first term of this equation. The parity dependence in Eq. (4)
is further reduced to the factor of 1/2 applied to the energy-
and spin-dependent level densities due to the assumption that
levels with positive and negative parities contribute equally to
the NLD in the vicinity of Sn [62,74]. This assumption was
shown to hold well for this excitation-energy region [60,62].
To calculate the total NLD ρ(Sn), we exploit that the partial
NLD for a given spin J can be found through the relation
ρ(Ex, J ) = g(Ex, J )ρ(Ex ), where g(Ex, J ) is the spin distribu-
tion from Refs. [81,82]:

g(Ex, J ) � 2J + 1

2σ 2(Ex )
exp

[
− (J + 1/2)2

2σ 2(Ex )

]
. (5)

Here, σ (Ex ) is the excitation-energy dependent spin-cutoff pa-
rameter. Following the same line of arguments as in Ref. [36],
we choose the form of σ (Ex ) provided by Ref. [82]:

σ 2(Sn) = 0.0888a

√
Sn − E1

a
A2/3, (6)

with the level density and back-shift parameters a and E1

obtained from the global parametrization of Ref. [83]. In line
with the previously published results on 111–113,116,120,124Sn
[35,37], the slopes of the NLDs and, therefore, the slopes
of the GSFs obtained with this spin-cutoff parameter are in
good agreement with the Coulomb excitation data for all
isotopes [33]. Moreover, recent calculations by Hilaire et al.
[78] within the quasiparticle random-phase approximation
plus boson expansion reveal a smaller spin cutoff parameter
than obtained, e.g., in the rigid-body moment of inertia ap-
proximation [83], which further supports the use of σ (Ex ) in
Eq. (6).

Combining Eqs. (4) and (5), ρ(Sn) takes the following
form:

ρ(Sn) = 2σ 2

D0

1

(Jt + 1) exp
(
− (Jt +1)2

2σ 2

)
+ Jt exp

(
− J2

t
2σ 2

) . (7)

For 111,112,122,124Sn no neutron resonance data are avail-
able, and the ρ(Sn) values were estimated from systematics in
the same way as done in Ref. [37]. The slopes of the NLDs in
120,124Sn were additionally constrained with the shape method
[84] as described in Refs. [35,36].

The low Eγ boundary employed in the Oslo method anal-
ysis limits the experimental NLDs to energies ≈1–2 MeV
below the neutron threshold. To be able to connect the exper-
imental NLD fixed to low-lying discrete states and the ρ(Sn)
data point, the experimental data were extrapolated with the
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TABLE II. Parameters used for the normalization of the NLDs and GSFs for 111–113,116–122,124Sn.

Sn D0 a E1 Ed ρ(Sn) T E0 〈	γ 〉
Nucleus (MeV) (eV) (MeV−1) (MeV) (MeV) σd σ (Sn) (105 MeV −1) (MeV) (MeV) (meV)

111Sn 8.169 120(36)a 12.05 −0.29 1.08(7) 2.7(4) 4.6(5) 3.54(127)a 0.67+0.03
−0.02 −0.06+0.04

−0.11 76(18)a

112Sn 10.788 3(1)a 12.53 1.12 2.83(4) 2.8(4) 4.8(5) 24.61(80)a 0.71+0.02
−0.02 0.66+0.09

−0.08 87(34)b

113Sn 7.744 172(10) 12.77 −0.27 1.88(2) 3.5(7) 4.6(5) 2.50(51) 0.63+0.01
−0.01 0.20+0.04

−0.04 73(8)
116Sn 9.563 55(5) 13.66 1.13 2.27(6) 2.7(5) 4.8(5) 4.28(91) 0.79+0.02

−0.02 −0.50+0.09
−0.04 118(10)

117Sn 6.943 507(60) 13.62 −0.21 1.11(11) 2.5(2) 4.6(5) 0.85(19) 0.69+0.02
−0.02 −0.57+0.07

−0.05 53(3)
118Sn 9.326 61(7) 13.94 1.14 2.48(4) 2.7(5) 4.8(5) 3.89(87) 0.76+0.02

−0.02 −0.18+0.08
−0.13 117(20)

119Sn 6.483 700(100) 13.80 −0.30 1.32(2) 3.7(10) 4.6(5) 0.61(15) 0.69+0.02
−0.02 −0.80+0.05

−0.12 45(7)
120Sn 9.105 95(14) 13.92 1.12 2.53(4) 3.7(5) 4.8(5) 2.49(60) 0.75+0.02

−0.02 0.07+0.10
−0.05 121(25)c

121Sn 6.170 1485(130) 13.63 −0.39 1.26(5) 4.0(8) 4.5(5) 0.28(6) 0.70+0.02
−0.02 −0.70+0.10

−0.09 36(3)
122Sn 8.815 95(28)a 13.58 1.07 2.75(2) 4.2(8) 4.7(5) 1.31(46)a 0.76+0.03

−0.04 0.07+0.19
−0.06 87(19)a

124Sn 8.489 96(27)a 12.92 1.03 2.77(3) 3.3(5) 4.7(5) 0.87(26)a 0.79+0.02
−0.04 −0.31+0.16

−0.09 82(19)a

aFrom systematics.
bModified (see Ref. [37]).
cModified (see Ref. [36]).

constant-temperature model [81,82,85]:

ρCT(Ex ) = 1

TCT
exp

(
Ex − E0

TCT

)
, (8)

with the temperature T and excitation-energy shift E0 used
as free fit parameters. As discussed earlier in Ref. [86], as
well as in Refs. [36,37] specifically for the Sn isotopes, this
model provides the best χ2 fit to the experimental data above
≈3 MeV in the odd nuclei and ≈4 MeV in the even-even
nuclei.

The uncertainty bands for the experimental NLDs com-
prise the statistical errors and systematic uncertainties due
to the unfolding and the first-generation method, as outlined
in Ref. [74]. Analogous to the analysis of 111–113Sn [37], the
experimental errors of D0 were propagated together with the
assumed additional 10% errors for the σ (Sn) parameter and
added to the total uncertainty band in each case as described
in Refs. [76,87]. Following Ref. [37], for the cases where the
normalization input parameters are obtained from the system-
atics, a symmetric 30% error for the extracted D0 parameters
was assumed and propagated in the total uncertainty bands.
The choices of the errors for σ (Sn) and D0 extracted from
the systematics are supported in all the studied cases by
a good agreement of the slopes of the Oslo method GSFs
with those extracted from the Coulomb excitation data [33].
All input values used for the normalization of the NLDs for
111–113,116–122,124Sn are provided in Table II.

2. Normalization of the γ-ray strength functions

The only remaining normalization parameter to be deter-
mined after the NLD normalization is the scaling B of the
experimental GSF. It can be obtained from the average total
radiative width 〈	γ 〉 extracted in neutron-resonance studies
[80]. In general, the average total radiative width for excited
states with spin J and parity π at excitation energy Ex can be

written as [88]

〈	(Ex, J, π )〉 = 1

2πρ(Ex, J, π )

∑
XL

∑
Jf ,π f

∫ Ex

Eγ =0
dEγ

× TXL(Eγ )ρ(Ex − Eγ , Jf , π f ), (9)

where the γ -ray transmission coefficient TXL(Eγ ) governs γ

decays of these states to final states with spins and parities J
π f

f
with photons of type X (E and M for the electric and magnetic
character, respectively) and multipolarity L. Furthermore, the
transmission coefficient is linked to the GSF, fXL(Eγ ), by the
relation [88]

TXL
(
Eγ

) = 2πE2L+1
γ fXL

(
Eγ

)
. (10)

Within the limits of excitation and γ -ray energies chosen
for the Oslo method analysis, the γ decay is expected to be
dominated by dipole transitions of mixed E1 + M1 nature
(see, e.g., Refs. [88,89]). Specifically, for the case of s-wave
neutron capture on a target nucleus with ground-state spin-
parity Jπt

t (where Jt 
= 0), Eq. (9) takes the following form:

〈	γ 〉 =〈	(Sn, Jt ± 1/2, πt )〉 = 1

2ρ(Sn, Jt ± 1/2, πt )

×
∫ Sn

Eγ =0
dEγ E3

γ f (Eγ )ρ(Sn − Eγ )

×
1∑

J=−1

g(Sn − Eγ , Jt ± 1/2 + J ), (11)

with 1/ρ(Sn, Jt ± 1/2, πt ) = D0 and g(Ex, J ) is given by
Eq. (5). By analogy with Refs. [35–37], the excitation-energy
dependence of the spin-cutoff parameter is adopted from
Ref. [68]:

σ 2(Ex ) = σ 2
d + Ex − Ed

Sn − Ed

[
σ 2(Sn) − σ 2

d

]
, (12)

which is additionally supported by microscopic calculations
(see, e.g., Ref. [90]). Here, σd is the spin-cutoff determined
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FIG. 2. Experimental NLDs for 111–113,116–122,124Sn obtained with the Oslo method shown together with the ρ(Sn) values and the constant-
temperature fits. The orange band indicates the NLD of for 124Sn from the fluctuation analysis of the Coulomb excitation data [33].

at excitation energy Ed from low-lying discrete states with
definite spin and parity assignment, within the energy range
where the level scheme can be considered complete.

The average total radiative widths are available from neu-
tron resonance experiments for most of the studied nuclei.
For the lightest 111,112Sn isotopes, the values of 〈	γ 〉 and the
corresponding uncertainties were extracted from the system-
atics in the same way as in Ref. [37]. For 124Sn and 122Sn,
the 〈	γ 〉 values and their uncertainties were extracted from
the same systematics according to the procedure described in
Refs. [35,36].

The total experimental uncertainty bands for the GSFs in
all the studied Sn isotopes include the statistical errors, sys-
tematic uncertainties of the unfolding and the first-generation
method combined with the propagated uncertainties due to
the normalization input parameters D0, σ (Sn), σd , Ed , and
〈	γ 〉. All of the discussed parameters and uncertainties are
presented in Table II.

III. EXPERIMENTAL RESULTS

A. Nuclear level densities of Sn isotopes

The experimental NLDs of 111–113,116–122,124Sn extracted
with the Oslo method are shown in Fig. 2 together with the
corresponding constant-temperature model fits and the ρ(Sn)
values. In all cases, the low-lying discrete states are well
reproduced by the experimental results up to ≈2.5–3.5 MeV
in even-even and ≈1.5–2.5 MeV in even-odd isotopes. Above
these energies, the level schemes can no longer be considered
complete, failing to follow the exponential increase observed
in the Oslo data. For the experiments performed with the
oldest configuration of the setup (116,118Sn) the excitation-
energy resolution is noticeably worse than in the most recent
experiments with SiRi, and the ground and the first excited
states are seen as broad bumps rather than well-defined peaks
as in, e.g., 120,124Sn. The ground state is somewhat underesti-
mated in most of the cases as compared with the first excited

054311-7



M. MARKOVA et al. PHYSICAL REVIEW C 109, 054311 (2024)

state(s), which appears to be a commonly observed feature in
OCL experiments (see, e.g., the case of 46Ti [54]). This might
be linked to the reaction mechanism favoring slightly higher
spins of populated states [37] or the structure of the states in-
volved, hindering direct transitions from the quasicontinuum
to the ground state. This issue will be addressed in more detail
in a forthcoming publication on 64Zn.

At higher excitation energies, all NLDs are well described
by the constant-temperature model. Even though the data are
available only up to excitation energies ≈1–2 MeV below
Sn in each case due to the limitations of the first-generation
method (see Secs. II A and II B 1), this trend may be assumed
to continue up to the neutron threshold. The new (p, p′γ ) data
on 117Sn perfectly reproduce the earlier published result using
a 3He beam [58], while the new (p, p′γ ) data on 119Sn do not
seem to reveal the same step-like structures below ≈4 MeV
as seen in the previous experiment [60]. The present result is
more consistent with the NLDs of the neighboring 117,121Sn
and reveals only one clear step-like structure in the vicinity
of ≈2.6 MeV. This feature is also seen in 117Sn (present
work and Ref. [58]) and 113Sn (Ref. [37]) and might be po-
tentially linked to the first broken neutron pair. The features
reported in the older experiment should be treated with care,
considering the poor statistics of the 119Sn(3He, αγ ) 118Sn and
119Sn(3He, 3He

′
γ ) 119Sn experiments.

A comparison of the NLDs for 111,113Sn with the NLD for
115Sn from neutron-evaporation experiments [91] has already
been discussed in Ref. [37]. The density of 1− states for 124Sn
from a fluctuation analysis of the Coulomb excitation data
on 124Sn [33] was compared with the corresponding density
from the Oslo data in Ref. [36]. In contrast with the present
work, the latter publication presents the data normalized using
a spin-cutoff parameter based on the rigid-body moment of
inertia [83], providing slightly steeper slopes of the NLDs
(lower temperatures). When applied to all the studied iso-
topes, the slopes of the corresponding GSFs appear to be
steeper than those from the Coulomb excitation data, unless
corrected with the shape method [36,75]. Due to difficulties
with the application of the shape method (such as insufficient
statistics to provide reliable results at relatively high γ -ray
energies), a consistent correction of the NLD slopes in the
studied Sn nuclei is complicated. The spin-cutoff parameter
from Eq. (6) was found to provide the most consistent de-
scription of the NLDs and GSFs in all isotopes, supported by
the good agreement with the Coulomb excitation data.

It is important to check if the agreement of the fluctuation-
analysis result and the Oslo data for 124Sn presented in
Ref. [37] still holds for the new normalization approach. The
spin distribution from Eq. (9) was applied to the density of
1− states obtained with the fluctuation analysis, assuming an
equal contribution of states with negative and positive parities
above the lower limit of the analysis at Ex ≈ 6.5 MeV. The
resulting total NLD for the 124Sn isotope is shown together
with the Oslo data in Fig. 2(k). This comparison of the to-
tal NLDs is almost identical to that for the 1− states from
Ref. [36]. Indeed, the rigid-body spin-cutoff parameter pro-
vides a broader spin distribution, predicting slightly steeper
slopes of the total NLDs and, accordingly, smaller fractions
of 1− states. These two effects compensate each other as seen

FIG. 3. Experimental NLDs for 111–113,116–122,124Sn obtained with
the Oslo method. The uncertainty bands are omitted for enhancing
the clarity of the figure.

in the analogous figure of Ref. [36]. With the normalization
approach of the present work, the total NLD obtained with
the Oslo data lies closer to the bottom of the error band of
the fluctuation-analysis data, staying within the band together
with the ρ(Sn) value. Hence, when applying the normalization
procedure from Sec. II B 1 for a consistent description of all
isotopes in the present work, the main conclusions of Ref. [36]
still hold.

The NLDs of all the studied isotopes are shown together
in Fig. 3. With the same approach to the normalization, the
slopes of all NLDs appear to be very similar, corresponding to
temperatures of T ≈ 0.6–0.8 MeV. For the even-even nuclei,
the NLDs show a good agreement in absolute values, well
within the uncertainty bands from ≈2 MeV up to the neutron
separation energies. This is expected for the even-even Sn iso-
topes considering their similar structural properties. A much
better agreement between the NLDs of the even-odd nuclei
from ≈1.5 MeV to ≈4 MeV is achieved with the present
consistent normalization approach, in contrast with the com-
parison with the earlier published data presented in Ref. [36].
As expected, the level densities of the odd nuclei are system-
atically higher than those of the even-even ones due to the
unpaired neutron. The NLDs of the lightest 112Sn and 111,113Sn
are slightly lower when compared with the heavier even-even
and even-odd isotopes, respectively. This is similar to a pattern
observed for the lightest Ni isotopes in Ref. [92]. However, the
NLDs of the heavier Sn isotopes display a smaller spread than
the heaviest studied Ni isotopes in Ref. [92], and the trend
of the NLD increasing with neutron number as discussed in
Ref. [92] is not apparent in the Sn data.

B. Experimental low-lying electric dipole strength
in Sn isotopes and its evolution

The GSFs normalized as described in Sec. II B 2 are shown
together with the (p, p′) and (γ , n) data in Fig. 4. The
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FIG. 4. Experimental GSFs of (a) 111Sn, (b) 112Sn, (c) 113Sn, (d) 116Sn, (e) 117Sn, (f) 118Sn, (g) 119Sn, (h) 120Sn, (i) 121Sn, (j) 122Sn, and (k)
124Sn shown together with the (p, p′) data from Ref. [33] (Bass2020) and the (γ , n) experimental data by Varlamov et al. [95] (Var2009), Fultz
et al. [93] (Ful1969), Leprêtre et al. [94] (Lep1974), Utsunomiya et al. [96,97] (Uts2009 and Uts2011), and Govaert et al. [28] (Gov1998). The
total fits of the experimental data are shown as solid magenta lines and the fits of the IVGDR as solid blue lines. The low-lying E1 components
(LEDR), obtained from fits with Eq. (17), are shown as shaded light-blue areas. The M1 data from the Coulomb excitation experiment [33]
are shown for 112,116,118,120,124Sn with corresponding Lorentzian fits (dashed red lines).

Coulomb excitation strengths are available only for the even-
even 112,114,116,118,120,124Sn isotopes, while photoabsorption
data from experiments performed in Saclay [93], Livermore
[94], and Moscow [95] are also available for the even-odd
stable Sn targets. The photoabsorption cross sections provided
by these experiments cover a wide range above the neutron
threshold. Overall, these data agree quite well with the (p, p′)
data in the vicinity of the IVGDR peak at ≈15 MeV (for a

more detailed discussion see Ref. [33]). The largest deviations
of the (γ , n) data from each other and the (p, p′) experiments
occur in the vicinity of the neutron threshold, which makes
a consistent comparison with the Oslo data difficult. Because
the Coulomb excitation strengths are available for lower ener-
gies (down to ≈6 MeV), there is a sufficient overlap with the
Oslo method GSFs in most cases. Therefore, we put greater
emphasis on the (p, p′) data when comparing with the Oslo
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method results than the (γ , n) data. In contrast with the above-
mentioned (γ , n) experiments with quite large uncertainties
close to the Sn energy, the most recent (γ , n) experiments
on 116–120,122,124Sn using quasimonoenergetic photon beams
from laser Compton backscattering demonstrate a very good
agreement with the (p, p′) strengths where the data overlap
(≈6-12 MeV).

In Figs. 4(a)–4(c), the extracted GSFs for 112−113Sn are
shown together with the (p, p′) strength of 112Sn. In all three
cases, the strengths agree well within the uncertainty bands
as previously discussed in Ref. [37]. The (p, p′) strength of
114Sn is in good agreement in slope and absolute value with
both the Oslo method GSF of 113Sn and the (p, p′) strength
of 112Sn. This is also the case for 117Sn and 119Sn, shown
together with the (p, p′) strengths of the closest neighbor-
ing even-even 116,118Sn and 118,120Sn, respectively. The Oslo
strengths of 116,120,124Sn agree exceptionally well within the
uncertainty bands with the corresponding (p, p′) strengths,
as reported in Ref. [35]. Due to some minor updates in the
response functions used for the unfolding since the time of
the latter publication, the slope of the 124Sn is slightly steeper
than the one reported in Ref. [35], while still being well
within both systematic and statistical uncertainty bands of the
earlier published strength. Thus, the conclusions of Ref. [35]
remain unchanged with the updated version of the GSF
for 124Sn.

Above ≈6 MeV, the statistics of the older experiment on
118Sn are insufficient to draw any reliable conclusions on the
low-lying dipole strength at these energies based on the Oslo
data alone. For this reason, the Oslo method GSF of 118Sn
is shown only up to ≈6 MeV with the (p, p′) strength being
complementary at higher energies. The Oslo strength in this
case agrees fairly well with the strengths of the neighboring
even-even isotopes. Similarly, the 122Sn strength is shown up
to ≈8 MeV, being in good agreement with the (p, p′) GSFs
of 120Sn and 124Sn. No experimental data on 121Sn above the
neutron threshold are available. Assuming a smooth evolution
of the IVGDR strength with increasing neutron number as
demonstrated by the Coulomb excitation results and the (γ , n)
data, the Oslo strength was compared with the (p, p′) GSF of
the closest even-even 120Sn in Fig. 4(i). Similarly to 118Sn,
both GSFs are in fair agreement in absolute values. Overall,
the Oslo data reveal a smooth evolution of the low-lying
dipole strength below the neutron threshold, with neighboring
isotopes having similar shapes of the GSF, consistent with the
observed strength in the IVGDR region.

C. Empirical model fits to the data

To address the evolution of the low-lying E1 strength with
neutron number, it should be consistently extracted from the
total dipole response in the studied nuclei. As mentioned
earlier, the Oslo method does not distinguish between E1 and
M1 components. Therefore, other experimental constraints on
the M1 spin-flip resonance are highly desired. In the case of
the Sn isotopes, the experimental magnetic dipole strengths
are available from the multipole decomposition analysis of
the Coulomb excitation data for even-even Sn isotopes [33].
These data provide sufficient information to extract system-

atics, which allow us to estimate the M1 component in the
neighboring nuclei. To determine the contribution of the
LEDR (or PDR in other works, e.g., Ref. [34]), the low-energy
tail of the IVGDR has to be subtracted from the remain-
ing total E1 response. Unfortunately, there is no common
approach to predict the PDR strength distribution in nuclei,
nor any consensus on how to separate it from the IVGDR
strength. The experimental strength distributions obtained
with complementary probes for the same nucleus, albeit being
insightful from a nuclear-structure perspective, do not suggest
any consistent, quantitative answer to this problem. One of
the frequently adopted approaches to extract the LEDR is to
assume a model for the IVGDR and estimate the remaining
LEDR by subtracting the tail of the modeled IVGDR from
the total E1 response. Alternatively, a model is assumed to
reproduce the general shape of the LEDR yielding the best
fit to the experimental data. This technique is often used for
the interpretation of experimental strength distributions in
neutron-rich nuclei [10,98] or analyses featuring Oslo-type
experiments (see, e.g., Refs. [75,76]). Furthermore, the total
theoretical or experimental E1 strength can be summed up to
a chosen threshold, or within a certain energy range with no
assumptions made regarding the tail of the IVGDR and its
contribution (see, e.g., Refs. [5,28,30,32]).

In this section, we exploit the first of the two above-
mentioned methods, with as few assumptions as possible, to
quantify the evolution of the LEDR in the Sn isotopes from the
Oslo results and Coulomb excitation data within the �2–18
MeV γ energy range. In accordance with Ref. [37], we choose
the enhanced generalized Lorentzian model (GLO) to describe
the IVGDR data [68]:

fE1(Eγ ) = 1

3π2h̄2c2
σE1	E1

×
[

Eγ

	KMF(Eγ , Tf )(
E2

γ − E2
E1

)2 + E2
γ 	2

KMF(Eγ , Tf )

+ 0.7
	KMF(Eγ = 0, Tf )

E3
E1

]
, (13)

with EE1, 	E1, σE1 being the IVGDR centroid energy,
width, and cross section, respectively. The 	KMF width
corresponds to a temperature-dependent width in the
Kadmenskii-Markushev-Furman model [99]:

	KMF(Eγ , Tf ) = 	E1

E2
E1

(
E2

γ + 4π2T 2
f

)
, (14)

where Tf is the temperature of the final states.
The standard Lorentzian function, commonly used to fit

the photoneutron cross section above the neutron threshold
(see, e.g., Ref. [32]), is known to overshoot the low-energy
flank of the strength and is, therefore, excluded from con-
sideration here. Among other phenomenological models, the
generalized Fermi liquid model by Mughabghab [100] and
the hybrid model by Goriely [101] are either able to cap-
ture the strength distribution at low energies (≈2–4 MeV)
and fail to follow the left flank of the IVGDR or vice
versa, being more appropriate in cases with a less steep

054311-10



SYSTEMATIC STUDY OF THE LOW-LYING ELECTRIC … PHYSICAL REVIEW C 109, 054311 (2024)

GSF below Sn (see, e.g., Ref. [76]). The simplified modi-
fied Lorentzian function (SMLO) [102] results in a milder
overshoot below the threshold energy as compared with the
standard Lorentzian, while still failing to reproduce the low-
energy tail of the Oslo data. Microscopic strength distributions
provided by calculations within Skyrme-Hartree-Fock with
Bardeen-Cooper-Schrieffer pairing [103], Skyrme-Hartree-
Fock-Bogoliubov [44], its temperature-dependent extension
[104], and Gogny-Hartree-Fock-Bogoliubov [105] with the
quasiparticle random-phase approximation (QRPA) require
certain modifications (scaling of the absolute value or width,
and often an energy shift) to be able to reproduce the IVGDR
part. Even with these modifications, the microscopic calcu-
lations still cannot be used to extract the LEDR consistently
in all the studied Sn isotopes due to an overshoot at low γ

energies in some cases. However, the GLO model is suffi-
ciently flexible within a relatively wide energy range to obtain
simultaneously a satisfactory fit of the IVGDR peak and the
tail of the strength at ≈2–4 MeV.

For a consistent modeling of the M1 part in all Sn iso-
topes, we assume a simple Lorentzian shape of the spin-flip
resonance:

fM1(Eγ ) = 1

3π2h̄2c2

σM1	
2
M1Eγ(

E2
γ − E2

M1

)2 + E2
γ 	2

M1

, (15)

with centroid energy EM1, maximum cross section σM1, and
width 	M1. The experimental M1 strengths from the (p, p′)
experiments on even-even Sn isotopes are quite fragmented,
and the Lorentzian function merely reproduces the overall
shapes and total integrated M1 strengths. As the contribution
of this component to the total GSF is less than 10% at the
maximum, the details of this fit are of little influence on the
final results.

The LEDR component was parametrized with Gaussian
peaks:

f low
E1 (Eγ ) = Clow

E1
1√

2πσ low
E1

exp

[
−

(
Eγ − E low

E1

)2

2
(
σ low

E1

)2

]
, (16)

with centroid E low
E1 , width σ low

E1 , and absolute value Clow
E1 . The

choice of this fit function is not immediately obvious, and for
more moderate slopes of the GSFs, the LEDR is also well
reproduced by one or a combination of several Lorentzian
peaks [75]. For the Sn isotopes having steep slopes at Eγ ≈
4–6 MeV and relatively flat strength distributions at lower
energies, the best fits to the experimental data in the energy
range up to Sn are achieved using Gaussian peaks. The Gaus-
sian model was also applied to reproduce the LEDR in very
neutron-rich nuclei [10,98].

To account for the flat low-energy tails of the GSF, we
follow the prescription of Ref. [106] suggesting an exponen-
tial form of the upbend feature based on the comparison of
shell-model calculations and experimental data on Zr and Mo
isotopes:

fup(Eγ ) = Cup exp(−ηupEγ ), (17)

with scaling and slope parameters Cup and ηup. The Oslo data
on the Sn isotopes reveal no clear sign of a strong upbend at
low Eγ , but show rather flat strength distributions. Since the

data are restricted to Eγ � 2 MeV, we do not have sufficient
information to reveal any reliable systematics on the upbend
as was done recently for the Nd isotopes [75]. In the present
work, the upbend is treated solely as a fit component at low
γ -ray energies, having negligible impact on the extracted
LEDR.

To disentangle the E1 and M1 components of the to-
tal GSF, we first fit the M1 strength distributions for
112,114,116,118,120,124Sn and build the systematics for the pa-
rameters of the Lorentzian functions to reconstruct the M1
part in the even-odd isotopes and 122Sn. The strength distri-
bution in the neighboring even-odd nuclei can be expected
to be even more fragmented, but the total amount of the M1
strength should still be close to that in the even-even neigh-
bors. Furthermore, the total E1 + M1 strength is fitted with
the combined function ftot = fE1 + f low

E1 + fM1 + fup, where
the parameters of fM1 are kept constant. This corresponds
to a simultaneous fit of all E1 features of the total strength.
Alternatively, the IVGDR region can be fitted first with the
fE1 function (see, e.g., Refs. [37,107]), then keeping its pa-
rameters constant while constraining the remaining LEDR
component. The latter method yields slightly larger χ2 val-
ues than the simultaneous fit. Since both methods provide
integrated strengths well in agreement within the error bars,
we are limiting the analysis to the simultaneous fit of the
total E1 strength with ftot. The data to be fitted are the
Oslo method GSFs and the corresponding (p, p′) strengths for
even-even 112,116,118,120,124Sn. For 122Sn and the odd isotopes
111,113,117,119,121Sn, the Coulomb excitation data for the clos-
est even-even isotopes were used (120,124Sn, 112Sn, 112,114Sn,
116,118Sn, 118,120Sn, and 120Sn, respectively). As the (p, p′)
data demonstrate the same smooth evolution of the IVGDR
with increasing neutron number as the (γ , n) data, while also
being more consistent in the vicinity of Sn, they were preferred
over the (γ , n) strengths for all the considered odd isotopes.

The (p, p′) data have been reported to reveal a peak-like
structure at ≈6.4–6.5 MeV in all studied even-even isotopes
[33]. This feature becomes especially prominent in 124Sn.
The lack of data points at energies below ≈6 MeV did not
allow us to perform a fit of this feature by using the Coulomb
excitation data alone. In general, the energy resolution in
Oslo-type of experiments and relatively large systematic un-
certainties make it difficult to observe such features in the
Oslo data. However, there are some hints of a peak-like feature
at ≈6.4–6.5 MeV in the 124Sn Oslo strength. Also, the Oslo
method GSFs become gradually steeper for heavier Sn iso-
topes, allowing for introducing an additional Gaussian peak to
the fit of the LEDR of the heavier isotopes starting from 118Sn.
Indeed, a double-peaked LEDR yields an improved fit of the
experimental data between ≈5 and 11 MeV for these isotopes
as compared with a single Gaussian peak. For the lighter Sn
isotopes, the second peak is not well defined and, therefore,
was not included in the total fit. All the above-mentioned fit
parameters of the IVGDR, the M1, and the upbend functions
are presented in Table III. The characteristics of the extracted
LEDR components are shown in Table IV.

The systematics of the total integrated strength of the
LEDR in the studied Sn isotopes in terms of the exhausted
fraction of the TRK sum rule [108–110] are shown in
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TABLE III. Parameters used for the description of the IVGDR and the M1 strength in the studied Sn isotopes.

EE1 	E1 σE1 Tf EM1 	M1 σM1 Cup ηup

Nucl. (MeV) (MeV) (mb) (MeV) (MeV) (MeV) (mb) (10−8 MeV−3) (MeV−1)

111Sn 16.15(9) 5.49(31) 264.5(93) 0.67(4) 11.22(24)a 5.15(39)a 1.73(15)a

112Sn 16.14(9) 5.46(31) 265.9(95) 0.70(5) 10.45(43) 4.77(53) 1.77(21)
113Sn 16.14(6) 5.25(23) 274.4(74) 0.75(3) 10.99(20)a 4.72(32)a 1.84(11)a

116Sn 16.09(10) 6.03(35) 251.3(91) 0.43(2) 10.79(41) 6.28(96) 1.70(13)
117Sn 15.98(7) 5.84(26) 257.1(74) 0.38(6) 10.54(12)a 3.86(20)a 2.05(7)a 0.38(10) 0.59(9)
118Sn 15.78(10) 5.50(47) 270.0(153) 0.35(7) 10.26(19) 3.21(34) 2.90(24) 1.84(56) 0.63(8)
119Sn 15.82(6) 5.77(22) 264.0(69) 0.45(9) 10.31(9)a 3.44(16)a 2.16(8)a 1.29(15) 1.20(31)
120Sn 15.82(9) 5.79(39) 262.8(111) 0.48(14) 10.45(18) 3.13(33) 1.97(16) 0.45(7) 0.27(8)
121Sn 15.72(6) 5.86(24) 255.3(66) 0.22(12) 10.08(9)a 3.01(14)a 2.27(11)a 1.27(63) 0.58(22)
122Sn 15.67(3) 5.85(11) 258.7(24) 0.52(3) 9.97(10)a 2.79(15)a 2.32(13)a

124Sn 15.59(7) 5.37(28) 266.8(90) 0.49(4) 9.66(14) 2.42(20) 2.61(16) 3.52(115) 1.67(40)

aFrom systematics.

Fig. 5(a). For the isotopes fitted with double peaks, this
fraction is also shown for the smaller, low-lying and the
larger, higher-lying components separately. The LEDR ex-
tracted according to the above-mentioned procedure appears
to correspond to ≈2%–3% of the TRK sum rule for all the
Sn nuclei considered here. No clear systematic increase of
the total strength with increasing neutron number is observed.
On the contrary, the energy-weighted integrated strengths are
quite similar for all the studied nuclei within the uncertainties,
peaking around 120Sn (≈3% of the TRK sum rule). The Oslo
GSF for 120Sn (normalized independently of the Coulomb
excitation data) is quite close within the uncertainty bands
to the GSFs of the neighboring isotopes. The appearance of
the local maximum is mainly driven by the (p, p′) data which
show slightly larger absolute values in the energy range from
8 to 10 MeV than in the other isotopes.

Considering that the GSFs of the even-even isotopes were
used for constraining the LEDR in the even-odd isotopes, all
of them, as expected, reveal a somewhat averaged behavior
with respect to the even-even neighbors. This is additionally
supported by the Oslo GSFs, demonstrating no clear odd-even

effects and showing a smooth trend from the lightest to the
heaviest nuclei.

D. Discussion and comparison with theoretical predictions
in the literature

Most of the theoretical approaches predict that the low-
lying E1 strength should increase with the proton-neutron
asymmetry parameter, while also not being a function of
the neutron excess alone. How steep and monotonic this
trend is strongly depends on the theoretical framework and
the criteria applied to identify the potential PDR (or LEDR
in general) strength. Specifically for the Sn isotopes, the
microscopic relativistic quasiparticle random-phase approxi-
mation (RQRPA) and relativistic quasiparticle time-blocking
approximation (RQTBA) calculations of Ref. [13], Hartree–
Fock–Bogoliubov plus quasiparticle phonon model (QPM)
calculations of Ref. [111], and the study based on the Vlasov
equation approach of Ref. [112] demonstrate a smooth general
increase of the LEDR strength with increasing neutron excess.
Provided the experimental constraints shown in Fig. 5(a), no

TABLE IV. Parameters used for the description of the low-lying E1 strengths, integrated low-lying E1 strengths, and the corresponding
exhausted fractions of the TRK sum rule in the studied Sn isotopes.

Peak 1 Peak 2

E low
E1 σ low

E1 Clow
E1 E low

E1 σ low
E1 Clow

E1 Integrated strength TRK
Nucl. (MeV) (MeV) (10−7 MeV−2) (MeV) (MeV) (10−7 MeV−2) (MeV mb) (%)

111Sn 8.26(9) 1.23(7) 3.32(23) 31.6(25) 1.92(14)
112Sn 8.24(9) 1.22(8) 3.17(24) 30.1(25) 1.81(14)
113Sn 8.23(6) 1.23(6) 3.27(17) 31.1(18) 1.86(10)
116Sn 8.33(8) 1.29(6) 4.08(25) 39.2(28) 2.29(14)
117Sn 8.18(6) 1.26(5) 4.15(19) 39.2(20) 2.28(11)
118Sn 6.27(18) 0.33(10) 0.40(15) 8.04(21) 1.00(20) 3.71(65) 37.3(55) 2.16(36)
119Sn 6.44(13) 0.56(11) 0.67(35) 8.23(11) 1.06(11) 3.97(41) 42.7(40) 2.45(27)
120Sn 6.59(11) 0.50(9) 0.71(22) 8.42(12) 1.19(10) 4.60(43) 50.1(47) 2.86(26)
121Sn 6.62(9) 0.48(7) 0.77(20) 8.25(9) 1.11(7) 4.20(31) 45.9(33) 2.61(19)
122Sn 6.45(5) 0.43(5) 0.82(16) 8.17(7) 1.00(7) 3.40(20) 38.1(21) 2.15(13)
124Sn 6.49(5) 0.43(5) 1.20(22) 8.20(7) 0.83(12) 2.99(34) 37.3(36) 2.08(20)
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FIG. 5. (a) TRK values and (b) energy centroids for the total
extracted LEDR in Sn isotopes, its lower-lying, and higher-lying
components. Hollow squares correspond to a single Gaussian peak
fit, filled squares correspond (a) to the sum and (b) strength-averaged
centroids of two Gaussian peaks.

claims on any strong dependence of the integrated strength
on increasing neutron number between 111Sn and 124Sn can
be made. A weak dependence, if present, is obscured by a
local peak in strength around 120Sn. Exploiting a single-peak
fit for 118–122,124Sn affects neither the general trend nor the
absolute values of the integrated strength within the limits of
the estimated uncertainties. The choice of the fit for the M1
component was also found to have negligible impact on the
obtained values. For example, a more detailed fit of the M1
strength with three and two Lorentzian functions for 120Sn
and 124Sn, respectively, results only in ≈1% reduction of the
values shown in Fig. 5(a).

A similar local maximum of the integrated strength in
the vicinity of 120Sn has previously been observed within
the random-phase approximation (RPA) approach [38], in-
terrupting an almost linear correlation of the integrated PDR
strength and the neutron skin thickness. This effect was re-
lated to a gradual filling of the 1h11/2 neutron orbital in the
heavier isotopes, suppressing transitions of low multipolarity
within the PDR region. Furthermore, pairing correlation ef-
fects were included in relativistic Hartree–Bogoliubov (RHB)
plus RQRPA calculations [5], which revealed a somewhat
similar local peak at 120–124Sn in the strength evolution. This
was attributed to an interplay between reduced pairing cor-
relations and shell effects when approaching the N = 82
shell closure. A similar pattern emerges in calculations from
a relatively recent study on the isovector and isoscalar re-

sponse in Sn nuclei within the time-dependent Hartree-Fock
(TDHF) approach [113]. The open-shell nucleus 120Sn was
shown to have a larger fraction of the energy-weighted sum
rule exhausted within the PDR region in both the isoscalar
and isovector channels, as compared with the doubly magic
100Sn and 132Sn. Among the studied TDHF density profiles,
120Sn appears to exhibit a slightly more diffuse surface, po-
tentially correlated with the enhancement of the strength in
this nucleus. All of these studies employ an upper limit for
the extraction of the total integrated strength, which com-
plicates a direct quantitative comparison with the present
experimental results. We note that the local maximum of the
strength at 120Sn is a subtle feature considering the uncertain-
ties in the data. However, a theoretical interpretation would
still be important, in particular whether it presents a local
feature based on shell structure or a general phenomenon
in nuclei with sufficient neutron excess. A possible link to
the explanations offered in Refs. [5,113] requires further
investigations.

It is interesting to note that the energy-weighted integrated
strength of the smaller, low-lying component in 118–122,124Sn
increases approximately linear with neutron number [see
Fig. 5(a)]. As mentioned earlier, the feature at ≈6.5 MeV
appearing in the (p, p′) strength in all the studied Sn iso-
topes has, indeed, been noted to become more prominent
toward 124Sn [114]. Nevertheless, this trend is quite subtle,
and the total exhausted strength of this peak-like structure is
limited to only 0.1%–0.5% of the TRK sum rule. A similar
concentration of the isoscalar strength between 5.5 and 7
MeV has been observed earlier in the studies of 124Sn with
the (α, α′γ ) [22] and (17O, 17O

′
γ ) reactions [23]. Combined

with the (p, p′) and (γ , γ ′) data, they provide experimental
evidence of a structural splitting of the LEDR in this nucleus
into a group of lower-lying states of mixed isovector-isoscalar
nature, observed in all the mentioned probes, and higher-lying
states of isovector nature, seen only in the (p, p′) and (γ , γ ′)
experiments. The correspondence with the isoscalar probes
and large ground-state branching ratios observed in (γ , γ ′)
experiments suggest that the lower-energy peak represents the
isovector response of the PDR. The implications of this result
will be further discussed in Ref. [115].

The employed Gaussian fit allows us to easily access the
evolution of the centroid of the LEDR with increasing neutron
number, presented in Fig. 5(b). For 118–122,124Sn, the centroids
of both components are shown together with the strength-
weighted average centroid for the total LEDR. The strength
in all the studied isotopes is concentrated at ≈7.8–8.3 MeV,
while the lower and the higher peaks in 118–122,124Sn show
almost constant centroid energies of ≈6.4–6.5 and ≈8.2 MeV,
respectively. Provided that the centroids of the lower and
higher components are almost unchanged, a mild decrease of
the total LEDR centroid reflects the same strength redistri-
bution as in Fig. 5(a), with gradually more strength grouped
at ≈6.4–6.5 MeV toward 124Sn. The decrease of the LEDR
(PDR) centroid is reproduced in RQRPA [5,13] and QPM
[111] calculations for Sn isotopes, appearing also in isotopic
chains of other elements [5,116]. The observed experimental
trend of Fig. 5(b) contradicts the previously extracted Oslo
systematics of the LEDR centroids in Ref. [34]. This is mainly
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due to the great inconsistency of the photoabsorption data
close to the neutron threshold, which the previous fits in
Ref. [34] heavily relied on.

IV. COMPARISON WITH AB INITIO-BASED
MODEL CALCULATIONS

Nuclear response theory is the most practical tool to
quantify the nuclear strength functions for a wide en-
ergy range. At the simplest level, the response theory is
confined by the RPA or its superfluid extension, QRPA.
Using Feynman diagrams, (Q)RPA is represented by a one-
loop diagram of the two-fermion in-medium propagator,
while in the most fundamental ab initio equation-of-motion
(EOM) framework [117,118], QRPA is obtained by neglect-
ing two-particle-two-hole (2p2h) and higher-rank correlations
in the interaction kernel. In the EOM of Rowe [119],
(Q)RPA is associated with the simplest one-particle-one-hole
(two-quasiparticle) 1p1h (2q) excitation operator, which gen-
erates the excited states by its action on a Hartree-Fock
(Hartree-Fock-Bogoliubov) ground state. (Q)RPA is known to
reproduce the basic properties of giant resonances and soft
modes; however, it fails at describing fine spectral details.
More accurate solutions involve higher complexity (npnh)
correlations in both the excited states and the ground state of
the nucleus.

All approximations beyond (Q)RPA are derivable from
the ab initio EOM for the two-fermion response function
[120,121] by retaining more complex correlations, in par-
ticular, in the dynamical kernel. The leading approximation
beyond (Q)RPA contains the quasiparticle-vibration coupling
(qPVC) in the minimal-coupling scheme, which includes
2q ⊗ phonon configurations in the intermediate two-fermion
propagator. The vibrations (phonons) emerge naturally as cor-
related 2q pairs, with the qPVC vertices as the new order
parameters. This approach admits realistic implementations
that employ effective interactions adjusted in the framework
of density-functional theory. With such interactions, reason-
able phonons can be obtained already within (Q)RPA, and the
qPVC can then be combined with subtraction restoring the
self-consistency of the ab initio framework [122].

The first self-consistent microscopic approach, which in-
cludes qPVC in terms of 2q ⊗ phonon configurations, was
presented in Ref. [123] and applied to the dipole response
of medium-heavy nuclei. This implementation was a major
step toward as a universal theory of nuclear structure rooted
in particle physics, named relativistic nuclear field theory,
and used the effective meson-exchange interaction [124,125].
The approach [123] to the response function was based on a
phenomenological assumption about the leading role of 2q ⊗
phonon configurations and the time-blocking technique [126];
thus identified as the relativistic quasiparticle time-blocking
approximation (RQTBA). In Refs. [120,121] the complete
response theory was obtained via ab initio EOMs, where both
the phenomenological qPVC and time blocking are ruled out
as unnecessary ingredients. The relativistic EOM confined by
the 2q ⊗ phonon (REOM2) configurations with the QRPA
phonons was shown to be essentially equivalent to RQTBA.
However, in contrast with the phenomenological approach,

REOM is an ab initio theory extendable to configurations of
arbitrary complexity. An example of such an extension was
presented as REOM3 accommodating 2q ⊗ 2 phonon config-
urations in Refs. [120,127].

In this work, REOM2-RQTBA was applied to calculations
of the dipole response of the Sn isotopes under study in a
broad energy range up to 25 MeV. The obtained strength
distributions are compared with those of relativistic QRPA
(RQRPA), which is used as a reference case, and to ex-
perimental data, as displayed in Figs. 6 and 7. The NL3∗
meson-exchange interaction [125] was employed in both ap-
proaches and the subtraction [122] is implemented in REOM2.
In the latter, natural-parity phonons up to 15 MeV with J =
[1, 6] and reduced transition probabilities above 5% of the
maximal one for each multipolarity were comprised in the in-
termediate 2q ⊗ phonon propagators. The 2q configurations
were included up to 100 MeV, while the 2q ⊗ phonon ones
were accommodated up to 25 MeV. Calculations with two
values of the smearing parameter �, which is defined below,
� = 20 keV and � = 200 keV are presented.

It is clearly seen from Figs. 6 and 7 that adding 2q ⊗
phonon configurations in RQTBA significantly changes the
strength distribution, as compared with RQRPA. Overall, the
gross structures of the strength become fragmented and a
significant portion moves toward lower transition energies. In
particular, the PDR region below 10 MeV manifests consider-
able structural differences between the RQTBA and RQRPA
approaches. Thus, the spreading of the IVGDR and the PDR
structure occur mainly due to these configurations. In the
paradigm of a self-consistent covariant many-body theory, its
only input is the local meson-exchange interaction between
two nucleons, while all the in-medium many-body correla-
tions are included without changing the parameters of this
interaction, or introducing new ones. Within this paradigm,
the RQTBA strength distribution is a result of the fragmenta-
tion of the RQRPA modes.

This can be understood from the general model-
independent relationships, where the strength function S(ω)
for a given energy (or frequency) ω is defined by Fermi’s
golden rule:

S(ω) =
∑
ν>0

[|〈ν|F †|0〉|2δ(ω − ων ) − |〈ν|F |0〉|2δ(ω + ων )],

(18)

where the summation is performed over all excited states
|ν〉 with transition energy ων = Eν − E0 with E0 being the
ground-state energy. The transition matrix element 〈ν|F †|0〉
for the typical one-body external field operator

〈ν|F †|0〉 =
∑

12

〈ν|F ∗
12ψ

†
2 ψ1|0〉 =

∑
12

F ∗
12ρ

ν∗
21 , (19)

is expressed via the transition densities

ρν
12 = 〈0|ψ†

2 ψ1|ν〉, (20)

which are the weights of the pure particle-hole configurations
ψ

†
2 ψ1 in the single-particle basis {1}, on top of the ground state

|0〉, in the excited states |ν〉, and ψ1 and ψ
†
1 are the nucleonic

field operators. Conventionally, the δ functions in Eq. (19) are
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FIG. 6. Calculated dipole strengths for 112,116,118Sn. (a), (c), (e)
The low-lying E1 transitions computed with the 20-keV (thin solid
line) and 200-keV (thick dashed line) artificial widths are shown up
to 10 MeV. (b), (d), (f) The strengths computed with the 200-keV
artificial width are also shown up to 22 MeV. The blue and orange
bands indicate the corresponding Oslo and (p, p′) data (Bass2020).
Calculations within the RQRPA and the RQTBA are shown with
magenta and violet lines, respectively.

represented by the Lorentz distribution

δ(ω − ων ) = 1

π
lim
�→0

�

(ω − ων )2 + �2
, (21)

so that

S(ω) = − 1

π
lim
�→0

Im�(ω + i�), (22)

where �(ω) is the polarizability of the nucleus:

�(ω) =
∑

ν

[
Bν

ω − ων

− B̄ν

ω + ων

]
, (23)

related to the transition probabilities Bν and B̄ν of absorption
and emission, respectively:

Bν = |〈ν|F †|0〉|2, B̄ν = |〈ν|F |0〉|2. (24)

Therefore, the strength function that quantifies the nuclear
response to the given external field operator F reads

SF (ω) = − 1

π
lim
�→0

Im
∑

121′2′
F12R12,1′2′ (ω + i�)F ∗

1′2′ , (25)

FIG. 7. Same as in Fig. 6 but for 120,122,124Sn. For 122Sn, both
120Sn and 124Sn (p, p′) data are shown.

where the central role in characterizing the nuclear structure
is played by the response function R12,1′2′ (ω), whose spectral
representation is

R12,1′2′ (ω) =
∑
ν>0

[
ρν

21ρ
ν∗
2′1′

ω − ων + iδ
− ρν∗

12 ρν
1′2′

ω + ων − iδ

]
. (26)

The poles of R12,1′2′ (ω) are at the energies ων = Eν − E0 of
the excited states with respect to the ground-state energy and
δ → +0.

Equation (26) is the Fourier transform of the particle-hole
propagator in a correlated medium:

R12,1′2′ (t − t ′) = −i〈T ψ†(1)ψ (2)ψ†(2′)ψ (1′)〉, (27)

where 〈. . .〉 is a shorthand notation for the expectation value
in the ground state and ψ (1), ψ†(1) are the fermionic field
operators in the Heisenberg picture:

ψ (1) ≡ ψ1(t1) ≡ eiHt1ψ1e−iHt1 ,

ψ†(1) ≡ ψ
†
1 (t1) ≡ eiHt1ψ

†
1 e−iHt1 , (28)

where t1 = t2 = t , t1′ = t2′ = t ′, and the fermionic Hamilto-
nian

H =
∑

12

h12ψ
†
1 ψ2 + 1

4

∑
1234

v̄1234ψ
†

1ψ
†

2ψ4ψ3 (29)
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is specified by its one-body h12 and two-body v̄1234 matrix
elements.

The strength distribution for the given external field op-
erator, which, in this work, is the electric dipole operator (μ
denotes the magnetic substate)

F (E1)
1μ = eN

A

Z∑
i=1

riY1μ(r̂i ) − eZ

A

N∑
i=1

riY1μ(r̂i ), (30)

is completely determined by the response function given by
Eq. (26). The number of peaks in the resulting spectrum is
equal to the number of terms in Eq. (26), and this number as
well as the locations of the poles and transition densities are
determined by the correlation content of the theory. The re-
sponse function can be found from the Bethe-Salpeter-Dyson
equation (BSDE), that is, in the operator form,

R(ω) = R0(ω) + R0(ω)[K0 + Kr (ω)]R(ω), (31)

where R0(ω) is the noninteracting particle-hole propagator in
the mean field and the specific forms of the interaction kernels
are given, for instance, in Refs. [121,123]. For the application
discussed in this work, it is essential that the RQRPA strength
is obtained by neglecting completely the Kr (ω) term, which
contains the qPVC correlations and is retained in RQTBA.

In the implementations using physical effective interac-
tions, these interactions play the role of the static kernel
K0, which is the only interaction term in the (R)QRPA. In
this approach, the dipole spectrum is characterized by two
pronounced peaks, one at higher energy and the other at
low energy, and a few less prominent structures. The high-
energy peak is associated with the IVGDR formed by the
out-of-phase oscillations of the proton and neutron Fermi
liquids against each other, which follows from the radial
behavior of the transition densities for this excitation. The
two-quasiparticle content of the transition densities shows a
rather high degree of collectivity when many 2q configura-
tions contribute coherently to the probabilities from Eq. (24).
The low-energy peak, often assigned as the PDR, can be
identified by similar means. Within this framework, it shows
up as a neutron excess oscillation against the isospin-saturated
core, also with some sign of collectivity [5,20].

In comparison to data, the position of the main IVGDR
peak is typically described reasonably well in (R)QRPA,
however, this is often not the case for the PDR. The reason be-
comes evident only when going beyond the simplistic QRPA
and including the frequency-dependent kernel Kr (ω) in the
BSDE [Eq. (31)]. The leading 2q ⊗ phonon configurations
included in REOM2-RQTBA induce a similar fragmentation
of both major peaks, and the resulting fragments overlap in
the energy region between the IVGDR and PDR modes. This
further leads to the same problem of separating the PDR con-
tribution from the low-energy tail of the IVGDR as discussed
earlier in Sec. III B.

According to Eq. (26), adding 2q ⊗ phonon configurations
produces additional terms in the sum on the right-hand side,
i.e., more states in the resulting spectrum than with 2q con-
figurations alone. This is reflected in Figs. 6 and 7 for all
the isotopes under study. The number of additional states is
equal to the number of possible 2q ⊗ phonon combinations

compatible with angular-momentum conservation. Overall,
adding complex configurations leads to a better description
of the data, in particular, the IVGDR width and the PDR
fine structure. The importance of these configurations is es-
pecially evident when comparing the strength distributions
at low energies shown in the left panels of Figs. 6 and 7
obtained with the different values of the smearing parameter
�. It can be seen, for instance, that the low-energy portion
of the RQRPA strength function is the purely artificial tail of
the states located at 8–9 MeV. The finite strength below that
energy originates solely from the smearing. Accordingly, the
strength varies considerably when varying �. In contrast, the
RQTBA strength below the neutron threshold is essentially
physical and the choice of the smearing parameter plays a
minor role. This choice in the low level-density regime is
stipulated by the experimental energy resolution, the finite
level lifetime and missing higher-complexity configurations.
In the context of this work, � = 200 keV is an appropriate
value, and calculations with � = 20 keV are given to illustrate
the fine structure of the strength. Nevertheless, the choice
of this parameter plays a minor role as long as complex
configurations are taken into account, which emphasizes the
importance of these configurations for an adequate description
of the low-energy nuclear strength functions.

To compare the overall behavior of the RQRPA, RQTBA,
and experimental strength distributions on an equal footing,
we extract the energy-weighted sums of the total electric
dipole strength (the M1 component was subtracted from the
experimental strength functions) within three energy ranges,
namely, 4–8 MeV, 4–10 MeV, and 4–Sn, similarly to how
it was done in Ref. [13]. This procedure corresponds to the
second method of quantifying the LEDR contribution men-
tioned in the previous section. The extracted fractions of the
TRK sum rule exhausted in each case are shown in Fig. 8.
As discussed earlier, the experimental LEDR appears to be
concentrated in the vicinity of 8 MeV and, naturally, a large
fraction of the strength is located above this threshold. The
experimental strength between 4 and 8 MeV corresponds to
≈1.2%–1.5% of the TRK sum rule. The monotonic increase
of the RQRPA strength in this energy range is solely due to the
artificial tails of the states at 8-9 MeV with the applied 200-
keV smearing parameter, while the RQTBA strength increases
gradually from ≈0.5%–2.7% of the TRK sum rule. Within the
energy range up to 10 MeV, including most of the LEDR in the
studied nuclei, the experimental strength exhausts ≈3%–4%
of the TRK sum rule (here the IVGDR tail is included in
the sum), in contrast with both RQRPA and RQTBA pre-
dicting a steady, monotonic increase of strength up to ≈7%
in 124Sn. Indeed, both approaches result in larger concentra-
tions of strength in the immediate vicinity of 8–10 MeV as
compared with the experimental strength distribution, grad-
ually increasing with neutron number. Moreover, as clearly
shown in Fig. 8(c), RQRPA and RQTBA yield on average
more strength below the neutron threshold in comparison to
the experimental data, demonstrating steadily decreasing TRK
values toward 124Sn in the even-even isotopes.

The agreement of RQTBA to experimental data, although
improved compared with RQRPA, is still imperfect. This
indicates that some mechanisms of the strength formation

054311-16



SYSTEMATIC STUDY OF THE LOW-LYING ELECTRIC … PHYSICAL REVIEW C 109, 054311 (2024)

FIG. 8. The evolution of the energy-weighted electric dipole
strength extracted from the RQRPA and RQTBA calculations and
the combined experimental Oslo and (p, p′), integrated from 4 MeV
up to (a) 8 MeV, (b) 10 MeV, and (c) Sn.

are still missing to achieve spectroscopic accuracy. A com-
plete response theory should take into account the continuum,
including the multiparticle escape, a more complete set of
phonons (in particular, those of unnatural parity and isospin-
flip), complex ground-state correlations, and in principle
higher-complexity configurations.

The single-particle continuum effect above the particle
emission threshold can be taken into account by the smearing
parameter, as it mainly causes uniform broadening of the
individual peaks. This was quantified by direct calculations
in Ref. [130] that give a 100–200 keV width to character-
ize such a broadening, which is considerably smaller than
the spreading width. The two-fermionic cluster decomposi-
tion of the fully correlated dynamical kernel of the response
function [120] suggests that the next-level complexity nonper-
turbative approximation is the 2q ⊗ 2 phonon or correlated
six-quasiparticle configurations in the intermediate propaga-
tors. The implementation of such configurations is becoming
gradually possible with the increasing computational capa-
bilities [120,127]; however, systematic calculations for long
isotopic chains of medium-heavy nuclei are still computation-
ally demanding. Current efforts on optimizing the numerical

2q ⊗ 2 phonon approach may enable such calculations in the
near future.

V. NEUTRON CAPTURE CROSS SECTIONS

The experimental values of the NLD and GSF extracted
with the Oslo method can further be used to estimate
the radiative neutron-capture cross sections (n, γ ) (NCCSs)
and reaction rates of interest for the astrophysical neu-
tron capture processes. This was done within the statistical
Hauser-Feshbach framework [45] with the TALYS reaction
code (version 1.96) [47,134]. The experimental Oslo method
GSFs were combined with the (p, p′) data at energies above
their range to produce the tabulated E1 strengths used as input
functions. For the M1 input strength function, the (p, p′) M1
data were chosen. For the optical model potential we use
the phenomenological model of Koning and Delaroche [135].
An alternative option provided by TALYS is the semimicro-
scopic Jeukenne-Lejeune-Mahaux model renormalized by the
Bruyères-le-Châtel group [136]. In contrast with the earlier
published cases of 165,166Ho [137] and 185W [76], the results
obtained with both optical model potentials agree well within
the uncertainty bands. Therefore, only calculations performed
with the former model are presented in this work. The result-
ing NCCSs are shown in Fig. 9. The uncertainties due to the
normalization parameters are included in the total uncertainty
bands. The Oslo NCCSs (blue bands) are shown together with
the span of TALYS cross sections, obtained by varying available
GSFs, NLDs, and optical model potentials. In case of the
Sn isotopes, since the radiative NCCS is rather insensitive to
the optical potential and the experimental masses are adopted
in each case, the former two are the major contributors to
the wide spread of TALYS predictions, describing the overall
discrepancies between NLD and GSF options available in
TALYS [47,137]. The cross section obtained with the default
combination of models (constant temperature plus Fermi gas
NLD model, SMLO form of the E1 strength, Koning and
Delaroche global optical model potential) is also shown for
each isotope in Fig. 9.

Even though the 112Sn(n, γ ) 113Sn reaction is of no poten-
tial interest for the astrophysical s process, the comparison of
the Oslo results with experimental (n, γ ) cross sections from
a comprehensive study by Timokhov et al. [128] is still valu-
able. Other experimental data in the keV region are also
available for the neutron capture on the 115–120Sn targets
[see Figs. 9(b)–9(g)], covering almost all Sn isotopes involved
in the s process [50]. As was shown recently by Goriely
et al. [53], the (n, γ ) reactions on 120,121,123Sn [Figs. 9(g)–
9(i)] might be of interest for the intermediate neutron capture
process (i process). All experimental cross sections in Fig. 9
were obtained with the time-of-flight method with neutrons
produced in the 7Li(p, n) 7Be reaction. The cross sections of
Timokhov et al. appear to be in excellent agreement with
the Oslo cross sections for the (n, γ ) reaction on 112Sn,
115Sn, 118Sn, 119Sn, and 120Sn. The Oslo NCCS is systemat-
ically lower for the 116Sn and systematically higher for the
117Sn targets compared with the data by Timokhov et al.,
while still agreeing within the uncertainty bands with the
cross sections by Wisshak et al. [49]. In particular, a good
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FIG. 9. Cross sections (CS) for the (a) 112Sn(n, γ ) 113Sn, (b) 115Sn(n, γ ) 116Sn, (c) 116Sn(n, γ ) 117Sn, (d) 117Sn(n, γ ) 118Sn, (e)
118Sn(n, γ ) 119Sn, (f) 119Sn(n, γ ) 120Sn, (g) 120Sn(n, γ ) 121Sn, (h) 121Sn(n, γ ) 122Sn, and (i) 123Sn(n, γ ) 124Sn reactions. The predictions with
the Oslo method inputs (blue bands) are compared with experimental data by Macklin et al. [48], Timokhov et al. [128], Wisshak et al. [49],
Koehler et al. [50], Nishiyama et al. [129], and the TALYS uncertainty range obtained with different available GSFs, NLDs, and optical model
potentials (beige band).

agreement is achieved with the cross sections by Nishiyama
et al. for the neutron capture on 116–119Sn [129,138]. Overall,
the Oslo results tend to agree within the uncertainty margins
with all other experimental NCCS above neutron energies of
≈20–30 keV. At lower energies, the experimental uncertain-
ties increase, and different datasets demonstrate a wide spread
of cross sections (of the order of ≈100 mb). For the 121,123Sn
targets no experimental data are available and, similarly to the
lighter isotopes, the Oslo results are closer to the bottom part
of the range of TALYS cross sections.

With the radiative NCCS at hand, the corresponding
Maxwellian-averaged cross sections (MACS) can be esti-
mated. The MACS values for the same target nuclei obtained
with the experimental Oslo data are shown in Fig. 10 together
with the span covered by available combinations of TALYS

input models and the TALYS default MACSs. We also compare
our results to the cross sections from the JINA REACLIB
[131] and BRUSLIB [132] libraries, commonly used for astro-
physical network calculations. The available data points from
the KADoNiS database [133] are also shown in Fig. 10. It
is important to note that all cross sections shown in Fig. 10
are stellar MACSs. For the 119Sn and 121Sn target nuclei the
discrepancy between the stellar and laboratory MACSs might
reach up to ≈56% and 20%, respectively, below the thermal
energy of 100 keV [133].

In the majority of considered cases, the recommended
MACSs from the libraries fall well within the uncertainty
bands of the Oslo results. The BRUSLIB MACSs for the
121Sn and 123Sn targets appear to be on average ≈1.2 and
≈2.2 times higher, respectively, compared with the Oslo
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FIG. 10. Maxwellian-averaged cross sections (MACS) for the (a) 112Sn(n, γ ) 113Sn, (b) 115Sn(n, γ ) 116Sn, (c) 116Sn(n, γ ) 117Sn,
(d) 117Sn(n, γ ) 118Sn, (e) 118Sn(n, γ ) 119Sn, (f) 119Sn(n, γ ) 120Sn, (g) 120Sn(n, γ ) 121Sn, (h) 121Sn(n, γ ) 122Sn, (i) and 123Sn(n, γ ) 124Sn reactions.
The predictions with the Oslo method inputs (blue bands) are compared with recommended values from JINA REACLIB [131], BRUSLIB
[132], KADoNiS [133], and the TALYS uncertainty range obtained with different available GSFs, NLDs, and optical model potentials (beige
band).

MACSs for the thermal energies between 10 and 100 keV.
This disagreement stems primarily from the combinations
of the NLD model (Skyrme-Hartree-Fock-Bogoluybov plus
Combinatorial NLDs [139]) and GSF model (Gogny-Hartree-
Fock-Bogoliubov plus QRPA GSF [44]) employed in BRUS-
LIB. The latter model tends to underestimate the E1 strength
distribution in the immediate vicinity of Sn. In general, the
Skyrme-HFB plus combinatorial model reproduces the Oslo
method NLDs quite well for the lighter Sn nuclei (e.g., 116Sn)
and begins to overestimate the Oslo NLD values quite signif-
icantly toward more neutron-rich isotopes. Despite the model
GSF being, on average, lower than the experimental strength,
the net effect of these models combined together leads to the
disagreement visible in Figs. 10(h) and 10(i).

The Oslo MACSs agree quite well within the estimated
uncertainties with the values provided by the KADoNiS
database. Some systematic deviations are observed for the
116Sn and 117Sn targets, similarly to those in the NCCSs. The
source of these deviations in both cases is not immediately
obvious based on the used Oslo input data. The recommended
KADoNiS values at 30 keV for Sn isotopes are largely based
on the cross sections of Macklin et al. [48], Timokhov et al.,
Wisshak et al., Koehler et al. [50], Nishiyama et al., and
are often presented at other kBT values by the average of
evaluations from the ENDF/B-VII.1 [140] and JENDL-4.0
[141] libraries. The uncertainties of these values, estimated
for the majority of Sn isotopes from the deviations of these
two evaluations, might be underestimating the KADoNiS
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FIG. 11. MACS for the 119Sn(n, γ ) 120Sn reaction with and with-
out the low-lying electric dipole strength included. The Oslo results
with the LEDR (blue band) and without (red band) are compared
with the TALYS uncertainty range (beige band) and recommended
values from KADoNiS [133].

systematic errors. The error bands of the Oslo MACSs, includ-
ing all uncertainties due to the normalization of the nuclear
inputs (NLD and GSF), provide far more conservative spans
of the cross sections, nevertheless, considerably constraining
the TALYS uncertainty range.

As mentioned earlier, correct theoretical reproduction of
the LEDR is of importance for astrophysical applications,
in particular involving neutron-rich nuclei. Albeit the LEDR
in the studied stable isotopes exhausts only ≈2%–3% of
the TRK sum rule, it might still noticeably contribute to
the radiative neutron capture rates and cross sections. To
estimate the contribution of the observed LEDR in the Sn iso-
topes to the MACS, we performed TALYS calculations for the
119Sn(n, γ ) 120Sn reaction with the Oslo input GSF of 120Sn
with an artificially subtracted LEDR, extracted according to
the procedure in Sec. III B (see Table IV for the Gaussian
peak parameters). This MACS is compared with the MACS
extracted with the original Oslo GSF of 120Sn in Fig. 11. The
MACS obtained with no LEDR is consistently lower and, on
average, it amounts to ≈80% of the full MACS in the vicinity
of 30 keV. Even though the cross sections overlap within the
estimated uncertainty bands, the 20% decrease is considerable
for the relatively small exhausted fraction of the TRK sum
rule (≈3%). With the current status of available theoretical
frameworks a consistent quantitative assessment of the role
of the LEDR in astrophysical simulations remains a complex,
nontrivial task, encouraging further advances in theoretical
approaches and experimental studies of nuclei beyond the
valley of stability.

VI. ASTROPHYSICAL IMPLICATIONS

To illustrate the impact of the newly determined reaction
rates on some astrophysical applications, we consider the

i-process nucleosynthesis in asymptotic giant branch (AGB)
stars. The AGB phase corresponds to the last evolutionary
stage of ≈1–8 M� stars (see, e.g., Ref. [142]). During this
stage, hydrogen can be engulfed by one of the recurrent con-
vective thermal pulses, leading to a proton ingestion event
(PIE, see, e.g., Refs. [143–146]). During a PIE, protons are
transported downwards in a timescale of about 1 hr and
quickly burnt by the 12C(p, γ ) 13N reaction. The 13N isotope
decays to 13C in a timescale of about 10 min. Then, the
reaction 13C(α, n) 16O is activated, mostly at the bottom of
the pulse, where T � 250 MK. The neutron density goes up to
about 1015 cm−3 which leads to an i-process nucleosynthesis
(see, e.g., Refs. [147–151]). The i-process material is later
dredged up to the stellar surface and expelled through stellar
winds.

Here, we investigated the impact of our new experimentally
constrained 121,123Sn(n, γ ) 122,124Sn reaction rates and corre-
sponding uncertainties on the i-process nucleosynthesis in a
1M� low-metallicity ([Fe/H] = − 2.5) AGB model computed
with the STAREVOL code [53,153,154]. The network consid-
ered comprises 1160 nuclei, linked through 2123 nuclear
reactions (n, p, α captures and α decays) and weak interac-
tions (electron captures, β decays). The rates were extracted
from the BRUSLIB database, the Nuclear Astrophysics Li-
brary of the Université Libre de Bruxelles [155,156] and the
updated experimental and theoretical rates from the NETGEN
interface [132]. Additional information on the stellar physics
ingredients, modeling, and nuclear physics can be found in
Refs. [53,149,150].

Since relatively accurate MACS have been previously
measured for stable Sn isotopes, we only consider here the
uncertainties affecting 121Sn(n, γ ) and 123Sn(n, γ ) reaction
rates. To do so, we first considered their theoretical TALYS

predictions and associated uncertainties. The latter include
both parameter and models uncertainties, as extensively dis-
cussed in Ref. [152]. The impact of uncorrelated parameter
uncertainties has been estimated considering four cases (cases
1–4 in Table V) obtained on the basis of the HFB + com-
binatorial NLD and D1M + QRPA GSF models (note that
similar parameter uncertainties are obtained for different NLD
or GSF models, as discussed in Ref. [152]). The four cases
correspond to the different minimum or maximum possible
combinations for both rates. The impact of correlated nuclear
model uncertainties was investigated by considering the NLD
and GSF models leading to the lower or upper limits of the
TALYS MACSs [beige bands in Figs. 10(h) and 10(i)] and, thus,
the respective reaction rates; these correspond to cases 5–8 in
Table V. Finally, the new experimentally constrained rates are
considered (cases 9–12) and assumed to be uncorrelated. In
total, 12 AGB simulations experiencing a PIE were computed
with these different rate combinations. The associated uncer-
tainty bands are shown in Fig. 12.

As seen in Fig. 13, the impact of 121,123Sn(n, γ ) rate un-
certainties on the i-process nucleosynthesis is local, arising at
Z = 51 (Sb). This is in line with recent results from Ref. [152]
where the relevant reactions for i-process nucleosynthesis in
AGB stars were shown to mainly have a local impact on the re-
sulting chemical abundances. In particular, the 121,123Sn(n, γ )
reactions appear in their Table 1, listing the key uncertain
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TABLE V. Cases considered for the rates of the 121Sn(n, γ ) 122Sn
and 123Sn(n, γ ) 124Sn reactions for the multizone stellar calculations.

121Sn(n, γ ) 122Sn 123Sn(n, γ ) 124Sn

TALYS parameter uncertainties
Case 1 Min Min
Case 2 Max Max
Case 3 Min Max
Case 4 Max Min

TALYS model uncertainties
Case 5 Min
Case 6 Max
Case 7 Min
Case 8 Max

Experiment (this work)
Case 9 Min Min
Case 10 Max Max
Case 11 Min Max
Case 12 Max Min

FIG. 12. Uncertainty bands for the neutron capture rates in the
(a) 121Sn(n, γ ) 122Sn and (b) 123Sn(n, γ ) 124Sn reactions. The blue
band corresponds to the span of experimentally constrained reaction
rates due to uncertainties of the input Oslo NLD and GSF. The
hatched band denotes the span of TALYS rates for all available GSF,
NLD, and optical model potential combinations (model uncertainty).
The purple band is due to the variation of the HFB + combinatorial
NLD and D1M + QRPA GSF model parameters according to the
procedure of Ref. [152] (parameter uncertainty).

FIG. 13. Final surface elemental abundances (after decays) of
multizone AGB stellar models experiencing i-process nucleosynthe-
sis, computed with different combinations of 121,123Sn(n, γ ) rates.
Shown are the [X/Fe] ratios defined as [X/Fe] = log10(NX/NFe )� −
log10(NX/NFe )� with NX the number density of an element X. The
first and second log10 terms refer to the abundances of the model
and the Sun, respectively. (a) Eight theoretical rates combinations
are considered. These are theoretical estimates of parameter and
model uncertainties affecting TALYS predictions of 121Sn(n, γ ) and
123Sn(n, γ ) reaction rates. (b) Same but with the new experimentally
constrained rates from this work.

reactions affecting i-process predictions. The impacted el-
ement, Sb (Z = 51), is produced in different quantities
depending on the strength of the 121,123Sn(n, γ ) reactions,
the latter competing with β-decay (with half-lives of 27
hr and 129 days, respectively). A minimal rate for both
121,123Sn(n, γ ) reactions favors the production of 121,123Sb
through β decay (blue pattern in Fig. 14). By contrast, if the
(n, γ ) rates are maximal, the flow favors the production of
122,124Sn and less of 121,123Sb, which results in lower 121,123Sb
abundances (red pattern in Fig. 14). Globally, TALYS theoret-
ical uncertainties lead to an uncertainty of 0.84 dex in the
final surface Sb abundance (the uncertainty is 0.65 dex for
parameter uncertainties and 0.84 dex for model uncertainties).
It is decreased to 0.27 dex when considering the new experi-
mentally constrained rates (Fig. 13). As shown in Fig. 14, for
the 121Sb (123Sb) isotope, the overall uncertainty is reduced
from 0.75 (0.98) to 0.29 (0.26) dex.

VII. CONCLUSIONS AND OUTLOOK

In this work, a consistent analysis of the 111–113,116–122,124Sn
isotopes with the Oslo method applied to light-particle-
induced reaction data has been presented. The extracted NLDs
demonstrate a clear constant-temperature trend below the neu-
tron separation energy. They appear to be in good agreement
with each other and reproduce the low-lying discrete states
up to ≈2–3 MeV quite well. The Oslo GSFs are fully com-
patible with the available Coulomb excitation (p, p′) data for
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FIG. 14. Same as Fig. 13 but for the isotopic mass fraction X as
a function of the mass number A, around the Sn region.

even-even isotopes 112,116,118,120,124Sn within the uncertainty
bands and demonstrate a smooth evolution of the low-lying
dipole strength with a slight increase of the GSF slope toward
the heaviest studied 124Sn isotope.

Based on the Oslo method and (p, p′) strength distri-
butions, the low-lying E1 strength on top of the IVGDR
was found to be located at ≈7.8–8.3 MeV and exhaust
≈2%–3% of the TRK sum rule for all the studied nuclei.
The observed trend does not reveal any strong dependence on
neutron number, and suggests a local maximum of strength
at 120Sn. The 6.4-MeV component of the LEDR extracted
in 118–122,124Sn demonstrates an approximate dependence
on neutron excess and might potentially be related to a
similar concentration of strength observed in this energy re-
gion in earlier works [22,23], where it was interpreted as
the PDR.

The experimental results have been compared with calcu-
lations of the LEDR in the even-even Sn isotopes within the
RQRPA and RQTBA frameworks. Despite a greatly improved
agreement with the experimental strength distribution within
the PDR and IVGDR regions as compared with the RQRPA
approach, the RQTBA calculations do not reproduce the ex-
perimental TRK values extracted within the same energy
regions. Both the RQRPA and RQTBA predict a clear linear
increase in strength at ≈8−10 MeV toward 124Sn, in contrast

with the experimental estimates that are approximately con-
stant throughout the whole chain of the investigated isotopes.

The Oslo method NLDs and GSFs were further used to
constrain the radiative neutron-capture cross sections and
Maxwellian-averaged cross sections with the reaction code
TALYS. Overall, the obtained values are in good agree-
ment with available experimental data and Maxwellian-
averaged cross sections and reaction rates reported in the
JINA REACLIB, BRUSLIB, and KADoNiS libraries. The
121,123Sn(n, γ ) reaction rates obtained with the Oslo in-
put NLDs and GSFs were found to locally impact the
production of 121,123Sb in the i-process nucleosynthesis in
AGB stars and significantly reduce the available model
and parameter uncertainties for the estimated final surface
Sb abundance.

Despite the relatively small fractions of the TRK sum rule
exhausted in the studied stable Sn isotopes, the low-lying
dipole strength in these nuclei has a noticeable impact on
the estimated reaction cross sections and rates. Further im-
provements in the microscopic calculations of E1 and M1
strength distributions close to the neutron threshold, espe-
cially in neutron-rich nuclei beyond the valley of stability, are
highly desirable for future astrophysical calculations involv-
ing the i- and r-process nucleosynthesis. Moreover, from a
nuclear-structure point of view, further detailed studies of the
underlying structure of the states contributing to the LEDR
strength are called for. In the near future, high-resolution ex-
periments utilizing (d, pγ ) and (p, dγ ) reactions to populate
the same even-even nucleus 118Sn are envisaged to shed new
light on this very intriguing issue.
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