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Extended interacting boson model with configuration mixing description for 98Mo
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An extended version of the interacting boson model (IBM), encompassing two-particle–two-hole (2p-2h)
excitations originating from below a valence shell and one-particle–one-hole (1p-1h) excitations extending to
the upper next-nearest major shell, is developed to investigate cross-shell excitation effects in the transitional
nucleus 98Mo. This extended IBM framework is utilized to reproduce experimentally observed properties such
as low-lying positive-parity level energies, B(E2) values, and the electric quadrupole moment of the 2+

1 state,
ρ2(E0, 0+

2 → 0+
g ), as well as the strength functions of the isoscalar giant monopole resonance (ISGMR) and

the isoscalar giant quadrupole resonance (ISGQR) in 98Mo. It is shown that the extended consistent-Q IBM,
incorporating configuration mixing of both 2p-2h excitations from below the valence shell and 1p-1h excitations
to the upper next-nearest major shell, describes the low-lying structural properties and the ISGMR and ISGQR
strength distributions of 98Mo quite well, with the ISGMR and the ISGQR strength distributions comparable to
the results of the self-consistent quasiparticle random-phase approximation with Skyrme interactions.
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I. INTRODUCTION

It is evident that, besides the collective model [1], the inter-
acting boson model (IBM) has been successful in describing
low-lying spectra of medium- and heavy-mass nuclei [2,3].
Configuration-mixing (CM) schemes based on the IBM that
include multiple two-particle and two-hole (2p-2h) excita-
tions from below a valence shell have also been successfully
established [4,5] in elucidating intruder states and shape coex-
istence phenomena for nuclei near to a closed shell [6]. On the
other hand, the dynamical symmetry of the three-dimensional
harmonic oscillator (3D-HO) can be extended from the U(3)
group to a noncompact Sp(3,R) group to accommodate multi-
ple one-particle–one-hole (1p-1h) excitations. Actually, such
1p-1h excitations are included in the nuclear shell model when
cross-shell terms of the quadrupole operators are taken into
account, while those cross-shell terms are neglected in valence
shell model calculations and the original IBM. The symplectic
extension in the collective model framework was made by
Rosensteel and Rowe in the later seventies [7]. The link be-
tween the Sp(3,R) collective model with a natural extension
of the Elliott SU(3) shell model was also clearly established
[8].

Inspired by the Sp(3,R) collective model [7] and the recent
work on the ab initio Sp(3,R) symmetry-adapted no-core shell
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model calculations for light nuclei [9–11], very recently, a
similar multishell extension of the consistent-Q (CQ) formal-
ism of the IBM has been made [12], in which a series of
1p-1h excitations to the upper next-nearest major shell with
the 1p-1h pairs being approximated as bosons is taken into
account. The extended IBM was applied to describe low-lying
excitations, the isoscalar monopole resonance (ISGMR), and
the isoscalar quadrupole resonace (ISGQR) of 152Sm. The
results show that the widely populated ISGMR and ISGQR
strengths of 152Sm cannot be well reproduced by the model.
In this work, the previous multishell extension [12] of the CQ-
IBM with further configuration mixing of 2p-2h excitations
from below the valence shell is applied to the transitional
nucleus 98Mo.

II. THEORETICAL FRAMEWORK

The extended CQ-IBM Hamiltonian is written as

Ĥ =
1∑

k=0

P̂N+2k Ĥ0,k P̂N+2k + P̂N+2ĤmixP̂N + P̂N ĤmixP̂N+2

+ εS n̂S + εD n̂D + a L̂ · L̂, (1)

with

Ĥ0,k = δk1� + εd,k n̂d − κk Q̂(k) · Q̂(k), (2)

where k labels the 2k-particle and 2k-hole excitations in an
even-even nucleus considered; P̂N+2k is the projection op-
erator independent of the S and D bosons, which projects
into the N + 2k configuration of s and d bosons; n̂d = d† · d̃
(n̂S = S†S and n̂D = D† · D̃) are the number operators of the
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d bosons (the S and D bosons), respectively; εd,k are the
single-particle energies of the s and d bosons in the N + 2k
configurations; εS and εD are the single-particle energies of
the S and D bosons; κk (k = 0 or 1) are the quadrupole-
quadrupole interaction strengths;

Q̂μ(k) = α(D†
μ + D̃μ) + Q̂(0)

μ (k) + Q̂(1)
μ (k), (3)

in which α is a dimensionless parameter,

Q̂(0)
μ (k) = d†

μs + s†d̃μ + χk (d† × d̃ )(2)
μ , (4)

Q̂(1)
μ (k) = D†

μS + S†D̃μ + χ ′
k (D† × D̃)(2)

μ , (5)

Ĥmix = gs(s
† 2 + s2) + gd (d† · d† + d̃ · d̃ ), (6)

in which gs and gd are the N and N + 2 configuration mixing
parameters; � = �0 + εs,1(N + 2), with �0 being the energy
required to excite two particles from the nearest lower shell
resulting in 2p-2h excitations and εs,1 being the single-particle
energy of the s-bosons in the N + 2 configuration; and the last
L̂ · L̂ term in Eq. (1) is added to get a better fit to the low-lying
level energies. The S and D bosons are approximations from
1p-1h pairs with one particle in the upper next-nearest shell
and one hole in the valence shell [12], of which the single-
particle energies are expressed as

εS = ε
(0)
S + 2 h̄ω, εD = ε

(0)
D + 2 h̄ω, (7)

with 2h̄ω = 82 A1/3 MeV, which gives 2h̄ω = 17.786 MeV
for 98Mo. It is clearly shown in the IBM-CM calculations
[4,5] that the projection operator P̂N+2k in the first term of
Eq. (1) is used to define different shapes characterized by
the k-dependent model parameters of Ĥ0,k related to the nor-
mal (k = 0) and intruder (k = 1) configurations. Since the
dimensionless parameter α in the 1p-1h pair mixing term
α(D†

μ + D̃μ) shown in Eq. (3) has nothing to do with the
normal (k = 0) and intruder (k = 1) configurations, like the
εS n̂S + εD n̂D term in the Hamiltonian (1), the dimensionless
parameter α in the 1p-1h pair mixing term α(D†

μ + D̃μ) shown
in Eq. (3) should be independent of k. Moreover, the s† 2 + s2

and d† · d† + d̃ · d̃ terms in Ĥmix are equivalent to the effective
monopole-pairing and quadrupole-pairing interactions of the
particle pairs in the valence shell with the hole pairs in the
lower nearest shell. Therefore, gs < 0 may be more appro-
priate. Nevertheless, as analytically verified for the U(5) and
O(6) limit cases [13], the eigenenergies of the Hamiltonian
(1) are independent of the sign of gs and gd , which may be
the reason for assuming gs > 0 and gd > 0 instead in previous
studies [4–6,14,15]. Similarly, gs = gd = g > 0 is taken in the
present fitting scheme. The Hamiltonian (1) with no 2p-2h
configuration mixing and no distinction of the S and D bosons
from the s and d bosons is reduced to the hydrodynamic limit
[16–18] of the symplectic collective model [7].

As shown in our previous work [12], there is less con-
tribution from configurations of 2nh̄ω excitations above the
valence shell for n � 2 to the eigenstates of the model. In this
work, we only consider 1p-1h excitations with approximately
2h̄ω in energy to the upper next-nearest major shell in the
configuration mixing scheme of the valence shell with 2p-2h
excitations from below the valence shell in the extended CQ-
IBM framework. The Hamitonian (1) is diagonalized in the
SO(3) coupled U(6) ⊃ U(5) ⊃ O(5) ⊃ SO(3) basis of the s
and d bosons and that of the S and D bosons with

|N + 2k, nd ν η Ld ; N , nD νD LD; L M〉
=

∑
Md , MD

〈Ld Md , LD MD|L M〉

× |N + 2k, nd ν η Ld Md ; N , nD νD LD MD〉 (8)

for k = 0 or 1 and N = 0 or 1, where N (N ) is the total
number of s and d bosons (S and D bosons); nd (nD), νd (νD),
and Ld (LD) are the number of the d bosons (D bosons), the
seniority number of the d bosons (D bosons), and the angular
momentum quantum number of the d bosons (D bosons),
respectively; η is the O(5) ⊃ O(3) branching multiplicity la-
bel; and 〈Ld Md , LD MD|L M〉 is the SO(3) Clebsch-Gordan
coefficient. Configuration mixing of more S and D bosons
with N � 2 is not considered in this work due to the fact that
the N � 2 contribution to the low-lying states of the model
is negligible [12].

The E2 transition operators in the present model are
taken as

Tμ(E2) =
1∑

k=0

q2,k P̂N+2k Q̂μ(k) P̂N+2k, (9)

with the quadrupole operator Q̂μ(k) shown in Eq. (3), in
which the parameter α is mainly determined by the ISGQR,
where q2,k is the effective charge related parameter for each
configuration. Similarly, the E0 transition operator is taken as

T (E0) =
1∑

k=0

β0,kP̂N+2k n̂s P̂N+2k + β(S† + S). (10)

In the present calculation, q2,0 = q2,1 = q2 and β0,0 = β0,1 =
β0 are taken to reduce the number of free parameters. In
Eq. (11), β0 is fixed by the experimentally known B(E0; 0+

2 →
0+

g ) strength, while β is mainly determined by the ISGMR
strength distribution.

III. THE MODEL FIT TO 98Mo

Experimentally known positive-parity level energies
below the 6+

1 level at 2.343 MeV, B(E2) values, the electric
quadrupole moment of the first 2+ state, ρ2(E0, 0+

2 → 0+
g ),

TABLE I. Model parameters (in MeV) for 98Mo, where κ1 = κ0, the dimensionless parameters χ1 = χ0 = χ ′
1 = χ ′

0 and α, and the effective
charge parameters q2 and β0 and β used in Eqs. (9) and (10), respectively.

εd,0 = 1.164 κ0 = 0.0069 χ0 = −0.164 εd,1 = 0.499 � = 0.374 g = 0.07 a = 0.005
ε

(0)
S = −1.586 ε

(0)
D = −4.586 α = 3.88 q2 = 0.1015 e b β0 = 0.011 e b β = 0.686 e b
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FIG. 1. Experimentally identified 17 positive-parity level ener-
gies (in MeV) below 2.343 MeV of 98Mo fitted by the present model,
where the left (blue) levels are those observed in experiments [25],
and the right (red) levels are those obtained from the present model.

and the ISGMR and ISGQR strength distributions of
98Mo are systematically fitted by the present model. In
the previous IBM configuration-mixing calculations for
98Mo, the Hamiltonian is diagonalized within the IBM-II

([Nπ ] ⊕ [Nπ + 2]) ⊗ [Nν] subspace with Nπ = 1 and Nν = 3
[14] or equivalently in the IBM [N] ⊕ [N + 2] subspace
with N = 4 [15]. In the present work, the extended CQ-IBM
calculation, including both the 2p-2h excitations from below
the valence shell and the 1p-1h excitations to the upper
next-nearest shell, is performed. Namely, the Hamiltonian (1)
is diagonalized within the V ⊗ [N = 0] ⊕ V ⊗ [N = 1]
subspace with the basis vectors shown in Eq. (8), where
V = [N] ⊕ [N + 2], with N = 4.

In order to further reduce the number of parameters, κ1 =
κ0 and χ ′

1 = χ ′
0 = χ1 = χ0 are set. Since the parameters α,

εS , εD, and β are sensitive to the ISGMR and ISGQR strength
functions, while the parameter χ0 is sensitive to the electric
quadrupole moment Q(2+

1 ), the model parameters are deter-
mined by a best fit to the low-lying level energies, the ISGMR
and ISGQR strength functions, and the electric quadrupole
moment Q(2+

1 ). During the fit, the effective-charge-related
parameters q2 and β0 are fixed by the experimental value
of B(E2, 2+

1 → 0+
g ) and 103 ρ2(E0, 0+

2 → 0+
g ) [19], respec-

tively, while χ0 is mainly determined by the experimental

value of Q(2+
1 ). The parameters produced from the best fit are

provided in Table I. In the IBM, the nuclear shape in each con-
figuration is mainly determined by the ratio εd,k/κk for given
χk in the CQ formalism [20,21]. Therefore, only εd,0/εd,1

measures the shape difference of the normal [N] configuration
from that of the intruder [N + 2] configuration in the present
fitting scheme. It should be noted that � = 0.374 MeV
is determined from the best fit to the low-lying level energies,
which is far less than the excitation energy of two protons
from below the Z = 40 subshell used in the previous analysis
[14,15]. The � value of the present fit, which is smaller
than that used the previous analysis [14,15], is equivalently
due to stronger attractive monopole pairing in the [N + 2]
configuration being adopted with larger |εs,1| in the present
calculation, where εs,1 < 0 is assumed. Except that the shape
of the normal configuration determined by the present and
previous calculations are quite similar, which is almost spher-
ical, the major difference of the present fitting results from
those of previous calculations lies in the fact that the shape
of the intruder [N + 2] configuration is still near to the U(5)
(spherical) point with εd,1/κ1 = 72.32 and χ1 = −0.164 in
the present model in contrast to that mixed with an oblate
deformed shape with εd,1/κ1 = 34.817 and χ1 = 1.5 shown
in Ref. [15]. The ratio εd,0/εd,1 = 2.33 obtained from the
present fitting scheme indicates that the shape of the intruder
[N + 2] configuration in the present model is a little away
from the U(5) (spherical) towards slightly prolate deformed
with χ1 = −0.164.

As mentioned previously, the parameters α, εS , εD, and
the E0 effective charge parameter β shown in Eq. (10)
are sensitive to and mainly determined by the ISGMR and
ISGQR strength functions of the excitation energy Ex defined
by [22,23]

Sλ(Ex ) = �

2π

∑
ξ

(2λ + 1)|〈ξ ; λ||T (Eλ)||0〉|2
(Ex − Eξ )2 + �2

4

, (11)

where |0〉 stands for the ground state, |ξ ; λ〉 stands for Lπ =
λ+ excited states of the model with the corresponding en-
ergy Eξ , and the folding width � = 2.5 MeV [24] is used.
The fitting to the experimental data of λ = 0 and λ = 2
strength functions of 98Mo yields α = 3.88, ε

(0)
S = −1.586

MeV, ε
(0)
D = −4.586 MeV, and β = 0.686 e b.

TABLE II. B(E2, Li → Lf ) values (in W.u.), where ∗ indicates that the corresponding value is fixed according to the experimental data.
Specifically, q2 and β0 are fixed by B(E2, 2+

1 → 0+
g ) and 103 ρ2(E0, 0+

2 → 0+
g ) [19] shown in the last row of the Table, respectively, and χ0 is

fixed by the electric quadrupole moment Q(2+
1 ) (in e b).

Expt. [25] Present model Expt. [25] Present model

2+
1 → 0+

g 20.1 (4) 20.1∗ 2+
3 → 4+

1 14.4 (4) 2.84

4+
1 → 2+

1 42.3 0.9
−0.8 42.16 2+

2 → 0+
g 1.02 0.15

−0.12 0.004

6+
1 → 4+

1 10.1(4) 53.23 2+
3 → 0+

g 0.032 0.007
−0.006 1.36

2+
1 → 0+

2 9.7 1.0
−2.5 4.21 2+

3 → 2+
1 3.0 (7), 1.07(2) [26] 0.00

2+
2 → 0+

2 2.3 0.5
−0.4, 4.69 (1) [26] 0.01 2+

2 → 2+
1 48 9

−8, 4.66 (4) [26] 41.97

2+
3 → 0+

2 7.5 0.6
−0.5 15.93 4+

1 → 2+
2 15.2 3.3

−3.0, 3.73 (2) [26] 0.07

Q(2+
1 ) −0.26 (9), −0.045 (23) [26] −0.045∗ 0+

2 → 0+
g 27.3 (11) 27.3∗
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FIG. 2. The λ = 0 and λ = 2 strength distributions of 98Mo, where the blue dots with error bars are the experimental data extracted from
Refs. [27,28], the (red) dashed curves are the results of the self-consistent quasiparticle random-phase approximation (QRPA) approach with
Skyrme interactions provided by the authors of Ref. [24], and the (black) solid curves are produced from the present model.

As shown in Fig. 1, except for the 4+
4 and 2+

4 level en-
ergies being about 357 and 285 keV too high in the present
model, respectively, which also leads to the ordering of the 2+

4
and 0+

4 levels reversed in the present model, and the energy
gap between the 2+

5 and 0+
3 levels being about 660 keV too

large in comparison to the experimental data, all the other
experimentally observed positive-parity level energies below
2.343 MeV are well fit. The root-mean-square deviation of the
model fitting to the 17 positive-parity level energies shown in
Fig. 1 is 203.1 keV.

Table II provides the B(E2) values of 98Mo obtained from
the present model with the model parameters thus fixed, in
which only experimentally known B(E2) values are shown.
Except for B(E2, 6+

1 → 4+
1 ), of which the present model

result is about 5 times larger than the corresponding exper-
imental value, the overall data pattern of the fitting results
follows that of the experimental data. It should be noted
that the B(E2, 6+

1 → 4+
1 ) value obtained from the present

model is very close to that calculated from a similar IBM
configuration-mixing scheme shown in Ref. [26]. Moreover,
B(E2, 2+

2 → 2+
1 ) obtained in the present model is very close

to the previous experimental value, while B(E2, 4+
1 → 2+

2 ) is
close to the experimental result provided in Ref. [26]. It is
obvious that the recent experimental Q(2+

1 ) value [26] differs
noticeably from the previous one [25]. The systematic present
model fit prefers to the Q(2+

1 ) result shown in Ref. [26] with a
slightly prolate deformed shape, to which the χ0 value of the
present model is fixed.

Figure 2 provides the ISGMR and ISGQR strength func-
tions fitted by the present model in comparison to the results
of the self-consistent quasiparticle random-phase approxima-
tion (QRPA) approach with Skyrme interactions [24]. It is
shown that, though the results of the present model are still
insufficient in widths, the present extended IBM calculation in
taking account of the 2p-2h configuration mixing can produce
the ISGMR and ISGQR strength distributions with the results
similar to those of the QRPA [24]. To demonstrate the 2p-2h
configuration mixing effect on the strength functions, both the
λ = 0 and λ = 2 strength functions produced from the present
model are compared with the corresponding ones produced
from the same model with the same parameters in the [N]

configuration but without the 2p-2h configuration and the
mixing. It is shown that the λ = 0 strength function in the
present model and that in the same model with the same
parameters in the [N] configuration but without the 2p-2h
configuration and the mixing are almost the same, while the
width of the the λ = 2 strength function in the present model
is a little larger as shown in Fig. 3, which indicates that the
2p-2h configuration mixing makes the λ = 2 strength distribu-
tion a little broadening, but keeps the λ = 0 strength function
almost unchanged. It should be noted that the results of the
present model without the 2p-2h configuration and the mixing
is used for comparison only, of which the low-lying spectrum
becomes incomparable to the experimental result.

It can be observed from Eqs. (8) and (10) that the contribu-
tion to the λ = 0 strength function is mainly from the reduced
matrix element

〈N + 2k, nd ν η 0; N = 1, 0 0 0; 0||S†||N
+ 2k, nd ν η 0; N = 0, 0 0 0; 0〉, (12)

with k = 0 only, because the ground state is normal config-
uration dominated, which answers why the λ = 0 strength
function in the present model and that in the same model

FIG. 3. The λ = 2 strength distribution of 98Mo, where the (red)
dotted curve is the result of the present model with the same param-
eters in the [N] configuration but without the 2p-2h configuration
and the mixing, the (black) solid curve is produced from the present
model as shown in Fig. 2, and the experimental data (blue dots with
error-bars) are also shown for comparison.
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TABLE III. (N + 2k; N = 0) and N = 1 configuration contributions to the excited states of 98Mo in the present model.

Configuration 0+
g 0+

2 0+
3 2+

1 2+
2 2+

3 4+
1 4+

2 6+
1

υ(N ) 0.672 410 0.300 641 0.093 491 0.264 928 0.057 558 0.601 917 0.300 641 0.672 410 0.012 686
υ(N + 2) 0.327 488 0.699 257 0.906 343 0.734 462 0.941 768 0.397 719 0.699 257 0.327 488 0.986 677
υ(N = 1) 0.000 102 0.000 102 0.000 166 0.000 610 0.000 674 0.000 364 0.000 102 0.000 102 0.000 637

without the 2p-2h configuration and the mixing are almost
the same. Similarly, the contribution to the λ = 2 strength
function is mainly from the reduced matrix elements

α 〈N + 2k, nd ν η 0; N = 1 1 1 2;

2||D†||N + 2k, nd ν η 0; N = 0, 0 0 0; 0〉. (13)

Though the contribution from the reduced matrix elements
〈N + 2, nd ν η 0; N = 1 1 1 2; 2||D†||N + 2, nd ν η 0; N =
0, 0 0 0; 0〉 are suppressed due to the ground state being
normal configuration dominated, the contribution from
Eq. (13) with k = 1 and α = 3.88 to the λ = 2 strength
function is non-negligible due to α being large for 98Mo,
which answers why the width of the λ = 2 strength function
shown in Fig. 3 is a little larger in the present model with the
2p-2h configuration mixing.

The centroid energy Ec of the ISGMR or ISGQR,
defined by

Ec = m1/m0, mk =
∫ Eb

Ea

EkSλ(E )dE , (14)

is also calculated, where [Ea, Eb] is taken to be that used in
the experimental analysis [27,28]. The present model yields
EGMR

c = 16.32 MeV and EGQR
c = 14.41 MeV, which are

close to the experimental results shown in Refs. [27,28] with
EGMR

c,exp = 16.2 ± 0.2 MeV and EGQR
c,exp = 14.2 ± 0.1 MeV.

The reduced matrix element of the mixing term in the
Hamiltonian (1) between the N = 0 configuration and the
N = 1 configuration is given by

− κ0α〈N + 2k, n′
d τ ′ η′ L; N = 0, 0 0 0; L‖(Q̂(0)(k) · D̃ + D̃ · Q̂(0)(k))‖N + 2k, nd τ η L0; N = 1, 1 1 2; L〉

= −κ0α〈N + 2k, nd τ η L0; N = 1, 1 1 2; L‖(Q̂(0)(k) · D† + D† · Q̂(0)(k))‖N + 2k, n′
d τ ′ η′ L; N = 0, 0 0 0; L〉

= −2κ0α〈N + 2k, n′
d τ ′ η′ L‖Q̂(0)(k)‖N + 2k, nd τ η, L0〉 ∼ −0.054(N + 2k), (15)

with N = 4 for k = 0 or 1 and for a given angular momentum
quantum number L, which shows that the mixing between the
N = 0 and N = 1 configurations is very small for 98Mo.
Similarly, the order of magnitude of reduced matrix elements
of the mixing term between the N = 1 and N = 2 config-
urations is quite the same. Moreover, one can deduce that
reduced matrix elements of the mixing term −κ0α

2(D† · D† +
D̃ · D̃) between the N = 0 and N = 2 configurations is
about −2κ0α

2 ≈ −0.21 MeV for 98Mo, which is also negligi-
ble in comparison to the 4h̄ω energy gap between the N = 0
and N = 2 configurations. Hence, the truncation with N �
1 made in this work is justified.

Table III provides (N + 2k; N = 0) and N = 1 configu-
ration contributions to the excited states defined by

υ(N + 2k, Lξ ) =
∑

ρ

|〈N + 2k; N = 0, ρ, L|Lξ 〉|2 (16)

and

υ(N = 1, Lξ ) =
1∑

k=0

∑
ρ

|〈N + 2k; N = 1, ρ, L|Lξ 〉|2,
(17)

where ρ stands for all the additional quantum numbers
needed, |Lξ 〉 is the ξ th excited state of the model with angu-
lar momentum quantum number L, and |N + 2k; N , ρ, L〉
are the SO(3) coupled basis vectors shown in Eq. (8). It is

clearly shown that the (N + 2k; N = 0) configuration always
dominates in the excited states of the model. There is only
0.01–0.06% contribution from the N = 1 configuration to
the low-lying states listed in Table III. Hence, the low-lying
spectrum below 2h̄ω in energy is almost decoupled from the
upper part of the spectrum containing 1p-1h excitations when
κ0α is small. Therefore, the mixing terms between the N = 0
and N = 1 configurations can also be neglected when κ0α is
small, which makes the Hamiltonian (1) in the V ⊗ [N =
0] ⊕ V ⊗ [N = 1] subspace block-diagonalized to simplify
the diagonalization process. Though the configuration mixing
with the 1p-1h excitations almost does not alter the properties
of the low-lying states in the present model, it is essential for
elucidating the ISGMR and ISGQR phenomena.

IV. CONCLUSIONS

In summary, the multishell extension of the CQ-IBM with
2p-2h excitations from the lower nearest shell and 1p-1h
excitations to the upper next-nearest major shell guided by
the Sp(3,R) structure is made to elucidate cross-shell excita-
tion effects of both the low-lying spectrum and the ISGMR
and ISGQR in the transitional nucleus 98Mo. The extended
IBM is applied to fit the experimentally known low-lying
positive-parity level energies up to 2.343 MeV, B(E2) values,
the electric quadrupole moment Q(2+

1 ), ρ2(E0, 0+
2 → 0+

g ),
and the ISGMR and ISGQR strength functions of 98Mo. It
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is shown that, though the widths of the ISGMR and ISGQR
peaks obtained in the present model are still insufficient, the
extended consistent-Q IBM with configuration mixing of both
2p-2h excitations from the lower nearest shell and 1p-1h ex-
citations to the upper next-nearest major shell describes the
low-lying structural properties and the ISGMR and the IS-
GQR strength distributions of 98Mo fairly well with the results
of the ISGMR and the ISGQR strength distributions compara-
ble to those of the QRPA with Skyrme interactions [24]. While
the incorporation of configuration mixing involving 1p-1h ex-
citations is crucial for understanding the ISGMR and ISGQR
phenomena, its impact on the properties of low-lying states
within the current model can be neglected. Specifically, the
spectrum below 2h̄ω in energy remains largely unaffected and
appears almost disconnected from the upper spectrum, which
includes 1p-1h excitations, when κ0α is small. Consequently,
the mixing terms between the N = 0 and N = 1 config-
urations in the Hamiltonian in this case can be neglected,
simplifying the diagonalization process of the Hamiltonian (1)
within the V ⊗ [N = 0] ⊕ V ⊗ [N = 1] subspace through

block diagonalization. Furthermore, in addition to the config-
uration mixing with multiple 2p-2h excitations from below the
valence shell, exploring the extension of the IBM-II frame-
work to incorporate both neutron and proton types of S and
D bosons in the upper next-nearest shell appears to be a
promising avenue for further investigation.
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APPENDIX: MATRIX ELEMENTS IN THE U(6) ⊃ U(5) ⊃ O(5) ⊃ SO(3) BASIS

Since we adopt the U(6) ⊃ U(5) ⊃ O(5) ⊃ SO(3) basis in the calculation, matrix elements of the n̂d or n̂D operator can easily
be read out from the coupled basis (8) for given nd and nD, while n̂s = N + 2k − n̂d when it is projected into N + 2k subspace
and n̂S = 1 − n̂D in the N = 1 configuration. Using the Racah factorization lemma [29], we have that

〈N ′ n′
d τ ′ η′ L′‖d†‖N nd τ η L〉 = √

N + 1

〈
N, 1
nd 1

∣∣∣∣ N + 1
nd + 1

〉〈
nd , 1
τ 1

∣∣∣∣nd + 1
τ ′

〉〈
τ 1

η, L 1

∣∣∣∣ τ ′

η′, L′

〉
δN ′ N+1δn′

d nd +1, (A1)

where after the
√

N + 1 factor on the right-hand side of Eq. (A1), the first, the second, and the third factors are the elementary
Wigner coefficient of U(6) ⊃ U(5), U(5) ⊃ O(5), and O(5) ⊃ SO(3), respectively, which have already been known [30–32].
The same equation applies to reduced matrix elements of the D† operator in its own basis as well. In the calculation, the relations

〈N ′ n′
d τ ′ η′ L′‖d̃‖N nd τ η L〉 = (−1)L−L′

√
2L+1
2L′+1 〈N nd τ η L‖d†‖N ′ n′

d τ ′ η′ L′〉 (A2)

and 〈
τ ′ 1

η′, L′ 2

∣∣∣∣ τ

η, L

〉
= (−1)L−L′

√
dim(τ )(2L′ + 1)

dim(τ ′)(2L + 1)

〈
τ 1

η, L 2

∣∣∣∣ τ ′

η′, L′

〉
(A3)

may be used, in which

dim(τ ) = (τ + 1)(τ + 2)(2τ + 3)/6 (A4)

is the dimension of the O(5) irrep (τ, 0).
Accordingly, the reduced matrix elements of Q̂(0)(k) in its own basis are given by

〈N + 2k n′
d τ ′ η′ L′‖Q̂(0)(k)‖N + 2k nd τ η L〉

=
〈

τ 1
η, L 1

∣∣∣∣ τ ′

η′, L′

〉(√
(N + 2k − nd )(nd + 1)

〈
nd , 1
τ 1

∣∣∣∣nd + 1
τ ′

〉
δn′

d ,nd +1

+
√

(N + 2k − nd + 1) nd

√
dim(τ )

dim(τ ′)

〈
nd − 1 1

τ ′ 1

∣∣∣∣nd

τ

〉
δn′

d ,nd −1

)

+ χk ndδn′
d ,nd

∑
τ ′′η′′L′′

(−1)L′+L′′√
5(2L + 1)

{
L′ 2 L′′

2 L 2

}〈
nd − 1 1
τ ′′ 1

∣∣∣∣nd

τ ′

〉〈
nd − 1 1
τ ′′ 1

∣∣∣∣nd

τ

〉〈
τ ′′ 1

η′′, L′′ 2

∣∣∣∣ τ

η, L

〉〈
τ ′′ 1

η′′, L′′ 2

∣∣∣∣ τ ′

η′, L′

〉
(A5)
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for k = 0 or 1, which applies to evaluate reduced matrix elements of the Q̂(1)(k) operator in its own basis as well. Using the
Wigner-Racah calculus, we have that

〈N + 2k n′
d τ ′ η′ L‖Q̂(0)(k) · Q̂(0)(k)‖N + 2k nd τ η L〉

=
∑

n′′
d ,τ ′′,η′′,L′′

(−1)L′′−L

√
2L′′ + 1

2L + 1
〈N + 2k n′

d τ ′ η′ L‖Q̂(0)(k)‖N + 2k n′′
d τ ′′ η′′, L′′〉

× 〈N + 2k n′′
d τ ′′ η′′, L′′‖Q̂(0)(k)‖N + 2k nd τ η L〉, (A6)

which also applies to evaluate reduced matrix elements of the Q̂(1)(k) · Q̂(1)(k) operator in its own basis. Similarly, we also have
that

〈N + 2k n′
d τ ′ η′ L′

0; N n′
d1 τ ′

1 L′
1; L‖Q̂(0)(k) · Q̂(1)(k)‖N + 2k nd τ η L0; N nd1 τ1 L1; L〉

= (−1)L′
1+L0+L

√
(2L′

0 + 1)(2L′
1 + 1)

{
L0 L1 L

L′
1 L′

0 2

}
〈N + 2k n′

d τ ′ η′ L′
0‖Q̂(0)(k)‖N

+ 2k nd τ η L0〉〈N n′
d1 τ ′

1 L′
1‖Q̂(1)(k)‖N nd1 τ1 L1〉, (A7)

〈N + 2k n′
d τ ′ η′ L‖[Q̂(0)(k) · D̃ + D̃ · Q̂(0)(k)]‖N + 2k nd τ η L0; 1 1 1 2; L〉

= 〈N + 2k nd τ η L0; 1 1 1 2; L‖[Q̂(0)(k) · D† + D† · Q̂(0)(k)]‖N + 2k n′
d τ ′ η′ L〉

= 2〈N + 2k n′
d τ ′ η′ L‖Q̂(0)(k)‖N + 2k nd τ η, L0〉, (A8)

and

〈N + 2k n′
d τ ′ η′ L; 0 0 0 0; L‖[Q̂(1)(k) · D̃ + D̃ · Q̂(1)(k)]‖N + 2k nd τ η L0; 1 1 1 2; L〉 = 0. (A9)

In calculating reduced matrix elements of the T (E2) operator, we also need

〈N + 2k n′
d τ ′ η′ L′

0; N n′
d1 τ ′

1 L′
1; L′‖Q̂(0)(k)‖N + 2k nd τ η L0; N nd1 τ1 L1; L〉

= (−1)L′
1+L1+L

√
(2L′

0 + 1)(2L + 1)

{
L′ L1 L′

0

L0 2 L

}

×〈
N + 2k n′

d τ ′ η′ L′
0

∥∥Q̂(0)(k)‖N + 2k nd τ η L0〉δn′
d1

nd1
δτ ′

1τ1δL′
1L1 , (A10)

〈N + 2k n′
d τ ′ η′ L′

0; N n′
d1 τ ′

1 L′
1; L′‖Q̂(1)(k)‖N + 2k nd τ η L0; N nd1 τ1 L1; L〉

= (−1)L′+L0+L1

√
(2L′

1 + 1)(2L + 1)

{
L′ L0 L′

1

L1 2 L

}
〈N n′

d1 τ ′
1 L′

1‖Q̂(1)(k)‖N nd1 τ1 L1〉δn′
d nd δτ ′ τ δL′

0L0 , (A11)

〈N + 2k n′
d τ ′ η′ L′

0; N ′ n′
d1 τ ′

1 L′
1; L′‖(D̂† + D̃)‖N + 2k nd τ η L0; N nd1 τ1 L1; L〉

= (−1)L′+L0+L1

√
(2L′

1 + 1)(2L + 1)

{
L′ L0 L′

1

L1 2 L

}
〈N ′ n′

d1 τ ′
1 L′

1‖(D̂† + D̃)‖N nd1 τ1 L1〉δn′
d nd δτ ′ τ δL′

0 L0 . (A12)

B(E2; Lξ → L′
ξ ′ ) and electric quadrupole moment Q(Lξ ) are given by

B(E2; Lξ → L′
ξ ′ ) = (q2)2 2L′ + 1

2L + 1
|〈L′

ξ ′ ||Q̂||Lξ 〉|2 (A13)

and

Q(Lξ ) =
√

16π
5 q2〈LL, 20|LL〉〈Lξ ||Q̂||Lξ 〉, (A14)

respectively, where the SO(3) reduced matrix element is defined in terms of the SO(3) Clebsch-Gordan coefficient.
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