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The S-matrix which satisfies the unitarity, giving the poles as random-phase approximation (RPA) excited
states, is derived using the extended Jost function within the framework of the RPA theory. An analysis on the
correspondence between the component decomposition of the RPA strength function by the eigenphase shift
obtained by diagonalization of the S-matrix and the S- and K-matrix poles was performed in the calculation of
the 16O quadrupole excitations. The results show the possibility that the states defined by the eigenphase shift
can be expressed as RPA-excited eigenstates corresponding to the S-matrix poles in the continuum region.
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I. INTRODUCTION

In nuclear physics, which is a finite quantum many-body
system, there are mainly two phenomena called “resonance.”
One is the “resonance” that occurs in nuclear reactions and the
other is the “resonance” that refers to a collective excitation
of the nuclear structure (e.g., the giant resonance). Originally,
“resonance” was referred to a vibration phenomenon in clas-
sical mechanics in which the amplitude of a vibrating body
increases when it is stimulated by an external vibration equal
to its eigenfrequency. The term “collective vibration mode”
in nuclear structures is sometimes called “resonance,” e.g.,
the giant resonance, because it is considered to be analogous
to “resonance” in classical mechanics. Such quantum states
are generally represented by a linear combination of several
different quantum states and are known as metastable states.
In scattering theory, a resonance as a metastable state appears
as a peak with width in the cross section, etc., and the peak
energy and width are considered to be given by the real and
imaginary parts of the poles of the S-matrix on the complex
energy plane, respectively. This is due to the fact that the
resonance formula, such as the so-called Breit-Wigner type,
has been derived from models which reproduce the resonance
state, and it has been confirmed that the resonance energy
and width are given by the real and imaginary parts of the
S-matrix poles. However, it is not strictly guaranteed that
the real part of the poles of the S-matrix coincides with the
resonance peak of the cross section, etc., due to the proper-
ties of the S-matrix as a multivalued function of energy [1].
Moreover, due to the special quantum transition to continuum
states and interference effects such as the Fano effect [2], the
cross section can become concave or asymmetric shape near
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the real part of the poles of the S-matrix. Another way of
determining the resonance state (resonance energy) is to use
the K-matrix; it is known that the poles of the K-matrix give
the stationary wave solution of the Schrödinger equation for
one-dimensional scattering problems. The K-matrix is defined
as a Hermite matrix and its poles appear on the real axis of
the complex energy. The phase shift can be defined using the
S-matrix. When analyzing resonances using the phase shift δ,
it is considered that the presence of a resonance significantly
increases the phase shift δ near the resonance energy and that
the phase shift crosses δ = π

2 at the resonance energy. The
poles of the K-matrix are equal to the energy at which δ = π

2 .
The K-matrix can be represented using the S-matrix, but the
poles of each can be related to each other or independent [1].
Therefore, there are still many unclear aspects of resonance in
terms of its definition and classification.

The Jost function is a function of complex energy given
as the coefficient which connects the regular and irregular so-
lutions in the fundamental differential equation of a quantum
system based on the Hamiltonian of the system, such as the
Schrödinger equation. It is known that the Jost function can
be used to define the S-matrix, and that the zeros of the Jost
function on the complex energy plane provide the complex
eigenvalues of the system as the poles of the S-matrix. The
Jost function was originally formulated for the single-channel
system [3], but it can also be defined for multi-channel sys-
tems [4–6], since the Jost function can be given as a coefficient
function which connects the regular and irregular solutions
in systems where the fundamental equation is given by the
differential equation. In Ref. [5] we extended the Jost function
within the framework of the Hartree-Fock-Bogoliubov (HFB)
method. By focusing on S- and K-matrix poles in nucleon
scattering targeting open-shell nuclei, we have attempted to
analyze and classify the resonances. As a result, it is found that
in nucleon scattering within the framework of HFB theory,

2469-9985/2024/109(5)/054304(16) 054304-1 ©2024 American Physical Society

https://orcid.org/0000-0002-2732-676X
https://orcid.org/0000-0002-9356-4483
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.109.054304&domain=pdf&date_stamp=2024-05-03
https://doi.org/10.1103/PhysRevC.109.054304


MIZUYAMA, DIEU THUY, AND NHAN HAO PHYSICAL REVIEW C 109, 054304 (2024)

there exist “shape resonances” formed by centrifugal force
potentials and two types of “quasiparticle resonances” caused
by pair-correlation effects. In such “resonance states,” the S-
and the K-matrix poles are found to exist simultaneously.
However, the S- and K-matrix poles can exist independently,
in which case the behavior of the scattering wave function
is not characteristic of a resonant state, especially inside the
nucleus. In Ref. [6], the Jost function was further extended
within the framework of random-phase approximation (RPA)
theory (hereafter this extended method will be referred to
as the Jost-RPA method), and applied to the calculation of
the E1 excitation modes of 16O. As a result, the poles cor-
responding to collective excitation modes such as the giant
resonance were successfully found on the complex energy
plane.

The S-matrix can be defined by using the Jost function
due to the fact that the wave function obtained by multiply-
ing the regular solution of the system by the inverse of the
Jost function satisfies the scattering boundary conditions. In
Ref. [6], it was shown that the poles of the inverse matrix
of the Jost function (the zero point of the determinant of
the Jost function) in the representation of the Green function
which gives the RPA response function correspond to the peak
of the strength function of the E1 excitation mode, but the
representation of the S-matrix using the Jost function has not
been explicitly shown. If we focus only on the asymptotic of
the wave function and the definition of the Jost function, then
it is most natural to consider that the S-matrix is defined as the
Jost function (J (−)) as the coefficient of the outgoing wave
multiplied by the inverse of the Jost function as the coefficient
of the incoming wave (J (+)) as J (+)−1J (−). However, the
S-matrix defined in this way does not satisfy unitarity. It is
essential to define the S-matrix which satisfies unitarity to
analyze and discuss the classification of resonances using S-
and K-matrices. The S-matrix which satisfies unitarity can be
diagonalised to define eigenphase shifts. It may be possible to
examine the detailed properties of a physical quantity (such as
RPA strength functions, transition densities, wave functions,
etc.) by decomposing it into “states” defined by the eigen-
phase shift [4,7–9].

In this paper, we first present how to define and derive
the S-matrix which satisfies unitarity in the Jost-RPA method
(Sec. II A). Then, we show how to decompose the RPA
strength function by the states defined for each eigenphase
shift obtained by diagonalization the S-matrix in Sec. II B.
However, the eigenphase shift does not necessarily corre-
spond to the RPA eigenstates, since the original S-matrix
is made to give boundary conditions that connect to free
particle states at r → ∞ (scattering boundary conditions).
Therefore, in Sec. II C, we propose how to give the eigenphase
shifts corresponding to the RPA eigenstates. In Sec. II D,
the expression of the formulas for the explicit treatment of
isospin dependence is explained. In Sec. II E, the S-matrix
poles and eigenphase shift transition densities for isoscalar
and isovector modes (which are obtained independently when
the Coulomb interaction is neglected) are described. In
Sec. III, we present numerical results of the application of the
method developed in this paper to the quadrupole excitation
16O.

TABLE I. Ground-state properties of 16O: Bound single-particle
levels (unit:MeV) and the r.m.s. radius (unit:fm) for neutron and
proton.

Neutron Proton

Hole states

s1/2 −36.17 −31.16
p3/2 −21.31 −16.84
p1/2 −16.38 −11.95

Particle states

d5/2 −6.81 −2.95
s1/2 −4.90 −1.43

r.m.s. radius√
〈r2〉 2.41 2.46

II. THEORY

A. Derivation of the S-matrix in the Jost-RPA

As shown in Ref. [6], the Jost function J (±) in the ex-
tended Jost function method within RPA theory (Jost-RPA
method) is defined as the coefficient function which connects
�(r) and �(±) as

�(r)T = 1
2 (J (+)�(−)T + J (−)�(+)T ), (1)

where �(r) and �(±) are the regular and irregular solutions of
the coordinate space representation RPA simultaneous differ-
ential equations, respectively. When the configuration number
of the particle-hole excitation in the RPA is given by N =
Nn + Np, where Nn and Np are the configuration numbers for
neutrons and protons, respectively, �(r), �(±), and J (±) are
given in a 2N × 2N matrix form. Factor 2 is due to the fact
that the positive and negative energy solutions exist correlated
with each other. For example, a particle-hole excitation con-
figuration of 16O quadrupole excitation is shown in Table II.
In this case, Nn = 8 and Np = 8 for neutrons and protons,
respectively, which means N = Nn + Np = 16.

TABLE II. RPA configuration for the Jπ = 2+ excitations of 16O.

q = n or p α (l j) (l j)−1 εα

1 p3/2 (p1/2)−1 −16.38
2 f5/2 (p1/2)−1 −16.38
3 f5/2 (p3/2)−1 −21.31

n 4 f7/2 (p3/2)−1 −21.31
5 p1/2 (p3/2)−1 −21.31
6 p3/2 (p3/2)−1 −21.31
7 d3/2 (s1/2)−1 −36.17
8 d5/2 (s1/2)−1 −36.17

9 p3/2 (p1/2)−1 −11.95
10 f5/2 (p1/2)−1 −11.95
11 f5/2 (p3/2)−1 −16.84

p 12 f7/2 (p3/2)−1 −16.84
13 p1/2 (p3/2)−1 −16.84
14 p3/2 (p3/2)−1 −16.84
15 d3/2 (s1/2)−1 −31.16
16 d5/2 (s1/2)−1 −31.16
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From the asymptotic in the limit of r → ∞ satisfied by the
irregular solutions, it seems that J (+)−1J (−) can be defined
as an S-matrix if the scattering wave function �(+) is defined
as

�(+)T ≡ 1
2 [�(−)T + (J (+)−1J (−) )�(+)T]; (2)

however, J (+)−1J (−) does not satisfy the unitarity (which the
S-matrix must satisfy in the scattering problem).

To solve this problem, we first focus on the process of
deriving the RPA Green’s function in the Jost-RPA method.

The RPA Green’s function in the Jost-RPA framework is
represented by

G (±)(r, r′) = ∓i
2m

h̄2 [θ (r − r′)�(±)(r)K(J (±)−1)�(r)T(r′)

+ θ (r′ − r)�(r)(r)(J (±)−1)TK�(±)T(r′)]. (3)

K is a diagonal matrix with the momentum component,
where the momentum component is expressed as k1,α =√

2m
h̄2 (eα + E ) or k2,α =

√
2m
h̄2 (eα − E ) corresponding to the

positive or negative energy solution, respectively, where eα is
the hole state energy and E is the excitation energy of the
system, α is the subscript which represents the p-h excitation
configuration shown in Table II.

The conditions for the Green’s function to be given in the
form Eq. (3) require that Eqs. (A.6) and (A.7) given in the
Appendix of Ref. [6] are satisfied. Therefore, the Jost function
satisfies the following equation:

±1

i

[
�(±)(r)K(J (±)−1)

∂�(r)T(r)

∂r

−�(r)(r)(J (±)−1)TK∂�(±)T(r)

∂r

]
= −1, (4)

and

[�(±)(r)K(J (±)−1)�(r)T(r)

−�(r)(r)(J (±)−1)TK�(±)T(r)] = 0. (5)

Substituting the relationship between regular and irregular
solutions (which is the definition of the Jost function) into
these equations and considering the limit of r → ∞, one can
obtain the following equation:

K 1
2 (J (±)−1)(J (∓) )K− 1

2

= [
K 1

2 (J (±)−1)(J (∓) )K− 1
2
]T

. (6)

This formula shows that the left-hand side is a symmetric
matrix, which we define as the “S-matrix” (although this is not
the S-matrix which satisfies the unitarity used in the scattering
problem) as

S(K) ≡ K 1
2 J (+)−1J (−)K− 1

2 = ST(K). (7)

Note that the S-matrix defined by multiplying K 1
2 and K− 1

2

from both sides in this way is sometimes called the “flux
adjusted S-matrix” [4], and an “adjust factor” for mass must
also be applied to define the S-matrix if the mass of the
particle changes depending on the channel.

Using this S with the symmetric property and the regular
and irregular solutions redefined as

�̂
(r)T

(K) = K
1
2 �(±)T(K)

= 1
2 [J (+)�̂

(−)T
(K) + J (−)�̂

(+)T
(K)], (8)

�̂
(±)T

(K) = K 1
2 �(±)T(K), (9)

the Green’s function Eq. (3) can be expressed as

G (+)(r, r′) = −i
m

h̄2 [θ (r − r′)�̂
(+)

(r)�̂
(−)T

(r′)

+ θ (r′ − r)�̂
(−)

(r)�̂
(+)T

(r′)

+ θ (r′ − r)�̂
(+)

(r)S�̂
(+)T

(r′)]. (10)

Since “the unitarity which the S-matrix must satisfy” and
the “analytic continuation between Riemann sheets of the
complex energy plane” are closely related, we next show the
properties of the complex conjugate of the Green’s function.
In RPA theory, it is considered to have analytic continua-
tion with various Riemann sheets where resonances exist at
branch-cut lines above various thresholds in the positive and
negative energy regions, respectively. To express explicitly
the contributions and correlations relating to the positive and
negative energy solutions in the expression of the Green’s
function, we make the following equation transformations.

When K1 and K2 are N × N diagonal matrices with
k1,α and k2,α as matrix components, respectively, and K is
represented as

K =
(
K1 0
0 K2

)
, (11)

we represent �̂
(±)

as

�̂
(±) = (̂φ

(±1)
φ̂

(±2)
), (12)

where φ̂
(±1)

and φ̂
(±2)

are 2N × N matrices. The Jost function
can also be expressed as

J (±) =
(
J (±)

11 J (±)
12

J (±)
21 J (±)

22

)
, (13)

and the “S-matrix” is expressed as

S =
(
S11 S12

S21 S22

)
, (14)

with

S11 = K
1
2
1

(
J (+)

11 − J (+)
12 J (+)−1

22 J (+)
21

)−1

× (
J (−)

11 − J (+)
12 J (+)−1

22 J (−)
21

)
K− 1

2
1 , (15)

S12 = K
1
2
1

(
J (+)

11 − J (+)
12 J (+)−1

22 J (+)
21

)−1

× (
J (−)

12 − J (+)
12 J (+)−1

22 J (−)
22

)
K− 1

2
2 , (16)

S21 = K
1
2
2 J

(+)−1
22

(
J (−)

21 − J (+)
21 K− 1

2
1 S11K

1
2
1

)
K− 1

2
1 , (17)

S22 = K
1
2
2 J

(+)−1
22

(
J (−)

22 − J (+)
21 K− 1

2
1 S12K

1
2
2

)
K− 1

2
2 . (18)
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The det J (+) which gives the poles of the S-matrix can be
expressed as

det J (+) = det J (+)
22 det

(
J (+)

11 − J (+)
12 J (+)−1

22 J (+)
21

)
(19)

= det J (+)
11 det

(
J (+)

22 − J (+)
21 J (+)−1

11 J (+)
12

)
. (20)

In particular, the complex energy E satisfying

det
(
J (+)

11 − J (+)
12 J (+)−1

22 J (+)
21

) = 0 (21)

gives the S-matrix pole in the positive energy region.
By using this representation, the Green’s function is

represented as

G (+)(r, r′) = −i
m

h̄2 [θ (r − r′ )̂φ
(+1)

(r )̂φ
(−1)T

(r′)

+ θ (r′ − r )̂φ
(−1)

(r )̂φ
(+1)T

(r′)

+ θ (r − r′ )̂φ
(+2)

(r )̂φ
(−2)T

(r′)

+ θ (r′ − r )̂φ
(−2)

(r )̂φ
(+2)T

(r′)

+ φ̂
(+1)

(r)S11φ̂
(+1)T

(r′)

+ φ̂
(+1)

(r)S12φ̂
(+2)T

(r′)

+ φ̂
(+2)

(r)S21φ̂
(+1)T

(r′)

+ φ̂
(+2)

(r)S22φ̂
(+2)T

(r′)]. (22)

In the RPA theory, solutions are symmetrically given between
the positive and negative energy regions, so the analytic con-
tinuation of the Riemann sheets of the complex energy plane
is also symmetric between the positive and negative energy
regions. Therefore, the properties of complex conjugation re-
lated to the analytic continuation in the positive energy region
are presented below.

In the positive energy region (Re E > 0), when Re E �
−eαc (αc is a certain configuration), the momentum have the
following properties:

k1,α (E∗) =
{

k∗
1,α (E ) for α � αc

−k∗
1,α (E ) for α > αc

, (23)

k2,α (E∗) = −k∗
2,α (E ) for all α(∈ 1, 2, · · · N ). (24)

Although trivial, these properties of momentum indicate that
on the real axis of complex energy E , k1,α for α > αc and
k2,α are pure imaginary numbers and k1,α for α � αc is a real
number.

To express the nature of the complex conjugation of �̂
(±)

as a function of complex energy E , the column components of

φ̂
(±1)

in Eq. (12) are delimited by αc as

φ̂
(±1) = (̂φ

(±1c)
φ̂

(±1d )
), (25)

where φ̂
(±1c)

and φ̂
(±1d )

are 2N × αc and 2N × (N − αc) ma-
trices, respectively.

Due to the properties of momentum given by Eqs. (23) and

(24), the complex conjugate of �̂
(±)

as a function of complex
energy E is given by

�̂
(±)∗

(E∗) = (̂φ
(±1)∗

(E∗) φ̂
(±2)∗

(E∗)), (26)

with

φ̂
(±1c)∗

(E∗) = φ̂
(∓1c)

(E ), (27)

φ̂
(±1d )∗

(E∗) = φ̂
(±1d )

(E )iηd , (28)

φ̂
(±2)∗

(E∗) = φ̂
(±2)

(E )iη, (29)

where η is a N × N diagonal matrix with (−)l (α)
as a matrix

element (l (α) is the particle angular momentum number of
a particle-hole excitation configuration component α), and
ηd is the same, but (N − αc) × (N − αc) diagonal matrix for
α > αc.

Also the complex conjugate of the regular solution �̂
(r)

(E )
is given by

�̂
(r)∗

(E∗) = (̂φ
(r1)∗

(E∗) φ̂
(r2)∗

(E∗)), (30)

with

φ̂
(r1) = (̂φ

(r1c)
φ̂

(r1d )
), (31)

and

φ̂
(r1c)∗

(E∗) = φ̂
(r1c)

(E ), (32)

φ̂
(r1d )∗

(E∗) = φ̂
(r1d )

(E )iηd , (33)

φ̂
(r2)∗

(E∗) = φ̂
(r2)

(E )iη. (34)

By applying these properties of solutions to the definition
of the Jost function, we can obtain the complex conjugation
properties of the “S-matrix.” To show the complex conjugate
nature of the “S-matrix,” S11, S12, and S21 are divided into
block matrices bounded by α = αc as follows:

S11 =
(
Scc

11 Scd
11

Sdc
11 Sdd

11

)
, S12 =

(
Scd

12

Sdd
12

)
, (35)

S21 = (
Sdc

21 Sdd
21

)
, (36)

where Scc
11 is the αc × αc matrix, Scd

11 is the αc × (N − αc)
matrix, Sdc

11 is the (N − αc) × αc matrix, Sdd
11 is the (N −

αc) × (N − αc) matrix, Scd
12 is the αc × N matrix, Sdd

12 is the
(N − αc) × N matrix, Sdc

21 is the N × αc matrix, and Sdd
21 is

the N × (N − αc) matrix.
To distinguish between above-threshold terms, below-

threshold terms and their correlated terms in the “S-matrix.”
The block matrices are then further rearranged as

S =
(
Scc Scd

Sdc Sdd

)
, (37)

Scc ≡ Scc
11 (αc × αc matrix),

Scd ≡ (
Scd

11 Scd
12

)
(αc × (2N − αc) matrix),

Sdc ≡
(
Sdc

11

Sdc
21

)
((2N − αc) × αc matrix),

Sdd ≡
(
Sdd

11 Sdd
12

Sdd
21 Sdd

22

)
((2N − αc) × (2N − αc) matrix).

(38)

The complex conjugates of these rearranged block matrices
are given as

S∗
cc(E∗) = S−1

cc (E ), (39)

054304-4



EIGENPHASE SHIFT DECOMPOSITION OF THE … PHYSICAL REVIEW C 109, 054304 (2024)

S∗
cd (E∗) = −S−1

cc (E )Scd (E )ĩη, (40)

S∗
dc(E∗) = −ĩηSdc(E )S−1

cc (E ), (41)

S∗
dd (E∗) = η̃Sdd (E )̃η − η̃Sdc(E )S−1

cc (E )Scd (E )̃η, (42)

respectively, where η̃ is the (2N − αc) × (2N − αc) diagonal
matrix which is defined by

η̃ =
(

ηd 0
0 η

)
. (43)

If the irregular solution is also rearranged as

�̂
(±) = (̂φ

(±c)
φ̂

(±d )
), (44)

with

φ̂
(±c) ≡ φ̂

(±1c)
, (45)

φ̂
(±d ) ≡ (̂φ

(±1d )
φ̂

(±2)
), (46)

(note that φ̂
(±c)

and φ̂
(±d )

are 2N × αc and 2N × (2N − αc)
matrices, respectively), then the Green’s function Eq. (22) can
be expressed as

G (+)(r, r′) = −i
m

h̄2 [θ (r − r′ )̂φ
(+c)

(r )̂φ
(−c)T

(r′)

+ θ (r′ − r )̂φ
(−c)

(r )̂φ
(+c)T

(r′)

+ θ (r − r′ )̂φ
(+d )

(r )̂φ
(−d )T

(r′)

+ θ (r′ − r )̂φ
(−d )

(r )̂φ
(+d )T

(r′)

+ φ̂
(+c)

(r)Sccφ̂
(+c)T

(r′)

+ φ̂
(+c)

(r)Scd φ̂
(+d )T

(r′)

+ φ̂
(+d )

(r)Sdcφ̂
(+c)T

(r′)

+ φ̂
(+d )

(r)Sdd φ̂
(+d )T

(r′) ], (47)

and its complex conjugate is given by

G (+)∗(r, r′; E∗) = i
m

h̄2 [θ (r − r′ )̂φ
(−c)

(r )̂φ
(+c)T

(r′)

+ θ (r′ − r )̂φ
(+c)

(r )̂φ
(−c)T

(r′)

−θ (r − r′ )̂φ
(+d )

(r )̂φ
(−d )T

(r′)

− θ (r′ − r )̂φ
(−d )

(r )̂φ
(+d )T

(r′)

+ φ̂
(−c)

(r)S−1
cc φ̂

(−c)T
(r′)

+ φ̂
(−c)

(r)S−1
cc Scd φ̂

(+d )T
(r′)

+ φ̂
(+d )

(r)SdcS−1
cc φ̂

(−c)T
(r′)

− φ̂
(+d )

(r)Sdd φ̂
(+d )T

(r′)

+ φ̂
(+d )

(r)SdcS−1
cc Scd φ̂

(+d )T
(r′) ]. (48)

Using the properties of the Green’s function, the S-matrix, and
the complex conjugate of the irregular solution shown above,
one can obtain the “imaginary” part of the Green’s function as

1

2i
[G (+)(r, r′; E ) − G (+)∗(r, r′; E∗)]

= −2m

h̄2 ψ̂
(+c)

(r; E )ψ̂
(+c)†

(r′; E∗), (49)

with ψ̂
(+c)

(r) which is defined as

ψ̂
(+c)

(r; E ) ≡ 1
2 [̂φ

(−c)
(r; E ) + φ̂

(+c)
(r; E )Scc(E )

+ φ̂
(+d )

(r; E )Sdc(E )], (50)

where this wave function is given as the 2N × αc matrix. The

complex conjugate of ψ̂
(+c)

(r) can be expressed as

ψ̂
(+c)†

(r; E∗) = 1
2 [̂φ

(+c)T
(r; E ) + S−1

cc (E )̂φ
(−c)T

(r; E )

+S−1
cc (E )Scd (E )̂φ

(+d )T
(r; E )], (51)

due to the complex conjugation properties of S and irregular
solutions.

Equations (7) and (39) show that Scc is a unitary matrix
and satisfies S†

ccScc = SccS†
cc = 1 where 1 is an αc × αc unit

matrix.
Since ψ̂

(−c)
is defined by ψ̂

(−c) ≡ ψ̂
(+c)∗

(E∗), ψ̂
(−c)

can be
expressed as

ψ̂
(−c)T

(r; E ) = ψ̂
(+c)†

(r; E∗) (52)

= 1
2 [̂φ

(+c)T
(r; E ) + S−1

cc (E )̂φ
(−c)T

(r; E )

+S−1
cc (E )Scd (E )̂φ

(+d )T
(r; E )], (53)

therefore one can find that ψ̂
(+c)

and ψ̂
(−c)

are related as

ψ̂
(+c)T

(E ) = Scc(E )ψ̂
(−c)T

(E ). This is the same relationship
as that between the scattering wave function and the S-matrix
in the scattering problem.

As shown in Ref. [6], the RPA response function R(r, r′; E )
is expressed using a 2N-dimensional vector �ϕ(r) defined
by the hole state wave function and a Green’s function
G (+)(r, r′; E ) as

R(r, r′; E ) = �ϕT(r)G (+)(r, r′; E )�ϕ(r′). (54)

Applying Eq. (49) to the definition of the strength function
SF (E ) for the external field f (r) expressed using the RPA
response function R(r, r′; E ), the strength function can be
expressed as

SF (E ) = − 1

π
Im

∫∫
drdr′ f (r)R(r, r′; E ) f (r′)

=
[√

1

π

2m

h̄2

∫
dr �ϕT(r) f (r)ψ̂

(+c)
(r; E )

]

×
[√

1

π

2m

h̄2

∫
dr′ψ̂

(+c)†
(r′; E∗) f (r′)�ϕ(r′)

]
. (55)

From the above, we can say that in the framework of RPA

theory, ψ̂
(±c)

is the scattering wave function representing the
transition to continuum including resonant states, and Scc is
the S-matrix which satisfies the unitarity.
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B. Eigenphase shift decomposition of the RPA strength
function and transition density

If we define the transition density �ρ(±)T(r; E ) as an αc-
dimensional vector as

�ρ(±)(r; E ) ≡
√

1

π

2m

h̄2 ψ̂
(±c)T

(r; E )�ϕ(r), (56)

then it can be found that the strength function Eq. (55) can be
expressed as

SF (E ) =
∫

dr f (r)�ρ(+)†(r; E∗)
∫

dr′ f (r′)�ρ(+)(r′; E ) (57)

=
αc∑

α=1

∫
dr f (r)ρ (+α)∗(r; E∗)

∫
dr′ f (r′)ρ (+α)(r′; E )

(58)

by using the transition density, where ρ (+α) is a component for
α of the transition density vector �ρ(+). Therefore, the strength
function on the real axis of the complex excitation energy E
can be expressed as

SF (E ) =
αc∑

α=1

∣∣∣∣∫ dr f (r)ρ (+α)(r; E )

∣∣∣∣2

. (59)

The relationship between �ρ(+) and �ρ(−) is given by

�ρ(+)(r; E ) = Scc(E )�ρ(−)(r; E ) (60)

= Scc(E )�ρ(+)∗(r; E∗), (61)

using the S-matrix.
The S-matrix Scc, which is a unitary matrix, can be diago-

nalised using the unitary matrix defined by U its eigenvectors
as

Scc = USδU†, (62)

where Sδ is a diagonal matrix with the complex eigenvalues
of Scc as matrix elements, and since | det Sδ| = 1, Sδ can be
expressed as

Sδ =

⎛⎜⎜⎜⎜⎜⎝
e2iδ1

e2iδ2 0
. . .

0 . . .

e2iδαc

⎞⎟⎟⎟⎟⎟⎠, (63)

with δα which is so-called as the eigenphase shift.
If the “eigenphase transition density” �ρ(±)

δ (r; E ) is defined
by the unitary transformation as

�ρ(±)
δ (r; E ) ≡ U†�ρ(±)(r; E ), (64)

note that the vector component of �ρ(±)
δ , ρ

(+α)
δ , is a linear

combination of the vector component of �ρ(±), ρ (±α), and the
coefficients are given by the matrix components of the unitary
matrix U†, which diagonalizes the S-matrix Scc.

The strength function with ρ
(+α)
δ is just an expression in

which ρ (+α) is replaced by ρ
(+α)
δ in Eq. (59) as

SF (E ) =
αc∑

α=1

∣∣∣∣∫ dr f (r)ρ (+α)
δ (r; E )

∣∣∣∣2

, (65)

because the unitary transformation Eq. (64) does not change
the strength function.

The T-matrix T cc and K-matrix Kcc are defined by using
the S-matrix Scc as

T cc(E ) = i

2
(Scc(E ) − 1), (66)

Kcc(E ) = i(Scc(E ) + 1)−1(Scc(E ) − 1), (67)

the component for α of the diagonalized T-matrix T δ and K-
matrix Kδ are therefore expressed by using the eigenphase
shift as

Tδα
(E ) = −eiδα sin δα, (68)

Kδα
(E ) = − tan δα. (69)

C. Eigenphase shift corresponding to RPA eigenstate

In the RPA theory, collective excitation modes of nuclei,
such as giant resonances, are thought to be caused by the
effects of residual interaction. As given in Ref. [6], the Hamil-
tonian of the RPA equation as a simultaneous differential
equation in coordinate space representation is given by

H = − h̄2

2m

∂2

∂r2
1 + VMF + V res, (70)

where the Hamiltonian is given by the 2N × 2N matrix form,
VMF is the mean field part which is given as the diagonal
matrix, and V res is the residual interaction. When the Hamil-
tonian is decomposed as

H = HMF + V res, (71)

with

HMF = − h̄2

2m

∂2

∂r2
1 + VMF, (72)

and SMF is defined as the S-matrix calculated using HMF.
S (1) is defined by

S (1) ≡ SccS†
MF. (73)

The excited states of the system obtained by RPA theory are
the eigenstates of the Hamiltonian H, which are created by the
superposition of the basis defined by the HMF (particle-hole
excited state configurations) with the effect of the residual
interaction V res. Based on this and the discussion in Ref. [1],
we can assume that the RPA eigenstates are the S (1) poles
and that the strength function, by its definition, reflects the
S (1) poles in its peak structure. The poles of the K(1) defined
using S (1) can be interpreted as the RPA eigenvalues as a
Sturm-Liouville problem and obtained on the real axis of
energy as the energy when the eigenphase shift δ(1) becomes
π/2, obtained by diagonalizing S (1). As stated in Ref. [1],
although the S- and K-matrices are related to each other, their
poles are not guaranteed to exist at the same time and to have
a one-to-one correspondence. However, the existence of poles
of the K-matrix corresponding to the poles of the S-matrix is
a condition for the resonance property to be satisfied.

If �ρ(+)
δ(1) is defined as

�ρ(+)
δ(1) ≡ U (1)†�ρ(+)

, (74)
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using U (1)†, which diagonalizes S (1) as

S (1) = U (1)S (1)
δ U (1)†, (75)

since U (1) is a unitary matrix, then the RPA strength function
which is represented by Eq. (57) can be expressed as

SF (E ) =
∫

dr f (r)�ρ(+)†
δ(1) (r; E∗)

∫
dr′ f (r′)�ρ(+)

δ(1) (r′; E ). (76)

D. Isoscalar and Isovector strength

So far, for simplicity, the isospin dependence has not been
specified, but the strength function, which clearly shows the
isospin dependence, is expressed as

SF,ττ ′ (E ) =
∫

dr f (r)�ρ(+)†
τ (r; E∗)

∫
dr′ f (r′)�ρ(+)

τ ′ (r′; E ),

(77)

with

�ρ(±)
τ (r; E ) ≡

√
1

π

2m

h̄2 ψ̂
(±c)T

(r; E )�ϕτ (r), (78)

where �ϕτ for τ = n, p are a 2N-dimensional vector defined by
the hole-state wave function ϕ

(q=n,p)
α as

�ϕn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝ϕ
(n)
1
...

ϕ
(n)
Nn

⎞⎟⎠
⎛⎜⎝ϕ

(n)
1
...

ϕ
(n)
Nn

⎞⎟⎠
⎛⎜⎝0

...

0

⎞⎟⎠⎛⎜⎝0
...

0

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �ϕp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝0
...

0

⎞⎟⎠
⎛⎜⎝0

...

0

⎞⎟⎠
⎛⎜⎝ϕ

(p)
1
...

ϕ
(p)
Nn

⎞⎟⎠
⎛⎜⎝ϕ

(p)
1
...

ϕ
(p)
Nn

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (79)

and the ones for τ = 0 (isoscalar) and τ = 1 (isovector) are
defined by

�ϕ0 ≡ �ϕn + �ϕp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝ϕ
(n)
1
...

ϕ
(n)
Nn

⎞⎟⎠⎛⎜⎝ϕ
(n)
1
...

ϕ
(n)
Nn

⎞⎟⎠⎛⎜⎝ϕ
(p)
1
...

ϕ
(p)
Np

⎞⎟⎠
⎛⎜⎝ϕ

(p)
1
...

ϕ
(p)
Np

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(80)

and

�ϕ1 ≡ �ϕn − �ϕp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝ϕ
(n)
1
...

ϕ
(n)
Nn

⎞⎟⎠
⎛⎜⎝ϕ

(n)
1
...

ϕ
(n)
Nn

⎞⎟⎠
−

⎛⎜⎝ϕ
(p)
1
...

ϕ
(p)
Np

⎞⎟⎠
−

⎛⎜⎝ϕ
(p)
1
...

ϕ
(p)
Np

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (81)

E. Decomposition of Isoscalar (IS) and Isovector (IV) modes
in the absence of Coulomb interaction

Decompose �ρ(±)
τ (r; E ), given as an αc-dimensional vector

in Eq. (78), as

�ρ(±)
τ =

⎛⎜⎜⎜⎜⎜⎝
�ρ(±1)

τ

�ρ(±2)
τ

...

�ρ(±αc )
τ

⎞⎟⎟⎟⎟⎟⎠ =
(

�ρ(±n)
τ

�ρ(±p)
τ

)
, (82)

where �ρ(±q)
τ (for q = n or p) is the α

(q)
c -dimensional vector

which is defined by

�ρ(±q)
τ =

⎛⎜⎜⎜⎜⎜⎝
�ρ(±1)

τ

�ρ(±2)
τ

...

�ρ(±α
(q)
c )

τ

⎞⎟⎟⎟⎟⎟⎠, (83)

with αc = α(n)
c + α

(p)
c . Scc, given as an αc × αc matrix, is

similarly decomposed as

Scc =
(Snn

cc Snp
cc

S pn
cc S pp

cc

)
, (84)

where Snn
cc , Snp

cc , S pn
cc , and S pp

cc are α(n)
c × α(n)

c , α(n)
c × α

(p)
c ,

α
(p)
c × α(n)

c , and α
(p)
c × α

(p)
c matrices, respectively.

Since Scc is defined as in Eq. (38) using S11 and S11 is
expressed as in Eq. (15), we obtain

Snn
cc =

[(
M(+)

nn − M(+)
np M(+)−1

pp M(+)
pn

)−1

× (
M(−)

nn − M(+)
np M(+)−1

pp M(−)
pn

)]
cc

, (85)

Snp
cc =

[(
M(+)

nn − M(+)
np M(+)−1

pp M(+)
pn

)−1

× (
M(−)

np − M(+)
np M(+)−1

pp M(−)
pp

)]
cc

, (86)

S pn
cc =

[(
M(+)

pp − M(+)
pn M(+)−1

nn M(+)
np

)−1

× (
M(−)

pn − M(+)
pn M(+)−1

nn M(−)
nn

)]
cc

, (87)
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S pp
cc =

[(
M(+)

pp − M(+)
pn M(+)−1

nn M(+)
np

)−1

× (
M(−)

pp − M(+)
pn M(+)−1

nn M(−)
np

)]
cc

, (88)

where M(±)
qq′ is the block matrices of M(±) which is defined

by

M(±) ≡ K
1
2
1

(
J (±)

11 − J (+)
12 J (+)−1

22 J (±)
21

)
K− 1

2
1 . (89)

The complex energy satisfying det M(+) = 0 gives the poles
of Scc, and det M(+) can also be expressed as

det M(+)

= det M(+)
pp det

(
M(+)

nn − M(+)
np M(+)−1

pp M(+)
pn

)
(90)

= det M(+)
nn det

(
M(+)

pp − M(+)
pn M(+)−1

nn M(+)
np

)
. (91)

When there is no Coulomb interaction, the isospin symme-
try leads to

�ρ(±n)
n = �ρ(±p)

p , (92)

�ρ(±n)
p = �ρ(±p)

n , (93)

M(+)
nn = M(+)

pp , (94)

M(+)
np = M(+)

pn ; (95)

therefore, we have the relation for the isoscalar and isovector
transition density as

�ρ(±n)
0 = �ρ(±p)

0 , (96)

�ρ(±n)
1 = −�ρ(±p)

1 . (97)

Using these relations, we can obtain

�ρ(+q)
0 (r; E ) = (

Snn
cc (E ) + Snp

cc (E )
)�ρ(−q)

0 (r; E ), (98)

�ρ(+q)
1 (r; E ) = (

Snn
cc (E ) − Snp

cc (E )
)�ρ(−q)

1 (r; E ), (99)

and also

Snn
cc ± Snp

cc

= [(M(+)
nn ± M(+)

np )−1(M(−)
nn ± M(−)

np )]cc. (100)

The poles of Snn
cc ± Snp

cc can be represented by the zeros of

det(M(+)
nn ± M(+)

np ) = 0 (101)

on the complex energy plane.
Expressing the isospin dependence explicitly, Eqs. (74) and

(75) are expressed in block matrix form as(
�ρ(+n)

δ(1α),τ

�ρ(+p)
δ(1β ),τ

)
=

(
U (1)†

nα U (1)†
pα

U (1)†
nβ U (1)†

pβ

)(
�ρ(+n)

τ

�ρ(+p)
τ

)
(102)

and (
S (1)

nn S (1)
np

S (1)
pn S (1)

pp

)

=
(
U (1)

nα U (1)
nβ

U (1)
pα U (1)

pβ

)(
S (1α)

δ 0

0 S (1β )
δ

)(
U (1)†

nα U (1)†
pα

U (1)†
nβ U (1)†

pβ

)
.

(103)

When there is no Coulomb interaction, we can obtain the
isoscalar and isovector eigenphase transition density for S (1)

as

�ρ(+n)
δ(1α),0 = (

U (1)†
nα + U (1)†

pα

)�ρ(+n)
0 , (104)

�ρ(+n)
δ(1α),1 = (

U (1)†
nα − U (1)†

pα

)�ρ(+n)
1 , (105)

from Eq. (102), and also we can obtain

S (1)
nn ± S (1)

np = U (1)
nαS

(1α)
δ

(
U (1)†

nα ± U (1)†
pα

)
(106)

from Eq. (103). These results show that when diagonalizing
S (1), the eigenphase shift δ(1α) with U (1)†

nα = U (1)†
pα gives the

Isoscalar mode and the eigenphase shift δ(1α) with U (1)†
nα =

U (1)†
pα gives the Isovector mode. Each mode is obtained in-

dependently when there is no Coulomb interaction. When a
Coulomb interaction is taken into account, the isospin sym-
metry is broken, so the isoscalar and isovector modes are
not independent solutions to each other. However, from the
discussion in the absence of the Coulomb interaction, the
eigenphase shift obtained by diagonalizing S (1) can be inter-
preted as corresponding to the poles of S (1) which are given
by zeros of the Jost function on the complex energy plane.

III. RESULTS AND DISCUSSIONS

In the numerical calculations in this paper the same model
and parameters as in Ref. [6] are used for the Woods-Saxon
potential and the residual interaction. The target nucleus was
also chosen as a relatively light spherical nucleus, 16O as
before, to understand the details of the method and to proceed
with the analysis. In this paper, the RPA quadrupole excitation
is calculated by adopting f (r) = r2 as the external field; the
distinction between isoscalar (IS) and isovector (IV) modes is
given by the sign of the hole state vector, as given in Eqs. (80)
and (81). The ground state properties, the single particle levels
and r.m.s. radius for neutron and proton of 16O are shown
in Table I. The configuration of the quadrupole excitations
of 16O and subscription α which is used to describe the ma-
trix elements of the Jost function are shown in Table II. A
minor change regarding the numerical solution method from
Ref. [6], but the Newton-Raphson method [4,10] is adopted in
this paper to solve Eq. (21) and find the S-matrix poles on the
complex energy plane.

In the top and middle panels of Fig. 1, the RPA isoscalar
and isovector strength functions are shown by the blue and
red solid curves, respectively. The dashed curve shows the
RPA strength function calculated by ignoring the residual in-
teraction between neutrons and protons. To compare the peak
structures of the solid and dashed strength functions in the
energy region above 20 MeV, the dashed strength functions
were multiplied by 0.05 (top panel) and 0.4 (middle panel).
The bottom panel of Fig. 1 shows the S-matrix poles and their
trajectories obtained by solving Eq. (21). The trajectories were
obtained by varying the constants multiplied by the residual
interaction in the same way as done in Ref. [6]. Depending
on the poles, the Riemann sheet to which the poles belong is
different; the values of the S-matrix poles and the Riemann
sheets to which they belong are shown in Table III.
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TABLE III. Values of the S-matrix poles shown in the bottom panel of Fig. 1. “Sheet” is the Riemann sheet on which the poles are found.
The energy regions given in parentheses are the branch-cut lines of analytical continuation on the real axis with the first Riemann sheet. The
“origin” gives the configuration of the single-particle excitation of the poles, calculated with f1 = f2 = 0.0.

S-matrix pole [MeV]

f1 = f2 = 1.0 f1 = 1.0, f2 = 0.0 f1 = f2 = 0.0
Sheet (branch-cut [MeV]) No. (◦ in Fig. 1) (× in Fig. 1) (• in Fig. 1) Origin

Sheet 1 (11.95 � E � 16.38) — — — — —
Sheet 2 (16.38 � E � 16.84) (a) 16.76 − i0.11 25.62 − i1.10 25.65 − i1.05 π [ f7/2 ⊗ (p3/2)−1]
Sheet 3 (16.84 � E � 21.31) — — — — —
Sheet 4 (21.31 � E � 31.16) (b) 27.02 − i1.50 26.91 − i0.77 26.89 − i0.70 ν[ f7/2 ⊗ (p3/2)−1]

(c) 28.48 − i0.57 28.78 − i0.17 28.21 π [d5/2 ⊗ (s1/2)−1]
(d) 30.47 − i0.66 30.01 − i0.19 29.36 ν[d5/2 ⊗ (s1/2)−1]

Sheet 5 (31.16 � E � 36.17) (e) 34.75 − i0.59 34.91 − i0.37 34.69 − i0.26 π [d3/2 ⊗ (s1/2)−1]
Sheet 6 (36.17 � E ) (f) 36.61 − i0.42 36.67 − i0.10 36.36 − i0.001 ν[d3/2 ⊗ (s1/2)−1]

Basically, isoscalar (IS) and isovector (IV) modes are ex-
citation modes caused by neutron-proton coupling. Therefore,
there is no distinction between IS and IV modes in the strength
function indicated by the dashed curve in the upper and mid-
dle panels, and it can be easily confirmed that the S-matrix
poles marked with cross (×) symbols in the bottom panel
correspond to the peaks of the strength function indicated by
the dashed curve.

However, in RPA calculations considering neutron-proton
coupling, it is known that IS and IV modes are mixed when the
neutron and proton density distributions are different. (Mixing
of IS and IV modes occurs even in Z = N nuclei, such as
16O, due to isospin symmetry breaking by the presence of the
Coulomb interaction [11].) It is therefore difficult to find a
clear correspondence between the poles and the peaks of the
RPA strength function, except for a pole (a), which are clearly
isolated from the other poles. For Z = N nuclei, the IS and
IV modes can be obtained as independent solutions without
mixing if the Coulomb interaction is neglected. Figure 2 is
the same as Fig. 1 but ignoring the Coulomb interaction.
Using Eq. (101), the S-matrix poles can also be obtained
independently for the IS and IV modes. The results of Fig. 2
and Table IV show that (a′), (c′), and (e′) are the poles of
the IS mode and (b′), (d′), and (f′) are the poles of the IV
mode. (a′) and (b′), (c′) and (d′), and (e′) and (f′) are IS and
IV modes, respectively, originating from the same state due
to the effect of residual interaction. In other words, in the

case of a pair of poles (a′) of an IS mode and a pole (b′) of
an IV mode, for example, the origin of both poles is a pole
at 26.89 − i0.70 MeV. First, this becomes a pole existing at
26.90 − i0.77 MeV due to the effect of residual interaction
between homologous nucleons. This is then further split into
an independent IS-mode pole (17.33 − i0.19 MeV) and an
IV-mode pole (27.86 − i1.11 MeV) by the effect of residual
interaction between neutrons and protons.

Comparing the positions of the S-matrix poles indicated
by open circle symbols (◦) in Fig. 2 and the peaks of the
strength function represented by solid curves, it seems that
the real part of the S-matrix poles generally corresponds to
the peaks of the strength function, except the IS mode (c′). A
comparison of the S-matrix poles in Figs. 1 and 2 shows that
there is a correspondence. In the presence of the Coulomb
interaction, the origin pole separates into two poles due to
isospin symmetry breaking, as shown in Fig. 1 and Table III.
In the example of the previous pair (a′) and (b′), the origin pole
at 26.89 − i0.70 MeV separates into 25.65 − i1.05 MeV and
26.89 − i0.70 MeV poles, which become pole (a) and pole
(b), respectively, due to residual interaction.

However, as discussed in Refs. [1,2], it does not always
guarantee that the position of the real part of the S-matrix
poles in general reflects or corresponds to the position of
the peak of a physical quantity such as the cross section or
strength function. This is because the Jost function is es-
sentially a multivalued function of complex energy, so there

TABLE IV. Almost the same table as Table III for Fig. 2. The “mode” shown in the last column indicates the excitation mode (IS: Isoscalar
or IV: Isovector) for each pole.

S-matrix pole [MeV]

f1 = f2 = 1.0 f1 = 1.0, f2 = 0.0 f1 = f2 = 0.0
Sheet (branch-cut [MeV]) No. (◦ in Fig. 2) (× in Fig. 2) (• in Fig. 2) Origin Mode

Sheet 1 (16.38 � E � 21.31) (a′) 17.33 − i0.19 26.90 − i0.77 26.89 − i0.70 [ f7/2 ⊗ (p3/2)−1] IS
Sheet 2 (21.31 � E � 36.17) (b′) 27.86 − i1.11 IV

(c′) 29.14 − i0.54 30.02 − i0.20 29.36 [d5/2 ⊗ (s1/2)−1] IS
(d′) 30.50 − i0.65 IV

Sheet 3 (36.17 � E ) (e′) 36.20 − i0.35 36.68 − i0.11 36.36 − i0.001 [d3/2 ⊗ (s1/2)−1] IS
(f′) 36.92 − i0.42 IV
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FIG. 1. The isoscalar and isovector RPA strength functions for
the quadrupole excitation of 16O were shown by the solid blue and
red curves in the top and middle panels, respectively. The dashed line
shows the RPA strength function calculated with κnp = 0, multiplied
by factors 0.05 and 0.4 in the top and middle panels, respectively. The
trajectories of poles [(a)–(f)] obtained by solving Eq. (21) varying the
constant parameters f1 and f2 multiplied to the residual interaction
are shown in the bottom panel. The open circle (◦), cross (×), and
filled circle (•) symbols show the position of poles which are calcu-
lated by the RPA (i.e., f1 = 1, f2 = 1), RPA with κnp = 0 ( f1 = 1,
f2 = 0) and unperturbed( f1 = 0, f2 = 0) solutions, respectively (see
Table III).

can be energy shifts caused by the nature of the multival-
ued function, and if several poles exist in close proximity
to each other, there is a superposition of the contributions of
the individual poles. There are also background contributions
arising from nonresonant continuum state contributions, be-
cause interference effects, including Fano effects, also affect
the peak structure. Furthermore, there is a mixture of IS and
IV modes, so it is not easy to derive conclusions about the
correspondence between the peak structure of the strength
function and the S-matrix poles and their contributions.

The Gamow shell model [12,13] and the complex scaling
method [14,15] exist as methods which can decompose the
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FIG. 2. The same figure with Fig. 1 but calculated without
Coulomb interaction. The trajectories of poles are calculated by
solving Eq. (101), the positive and negative signs for the isoscalar
and isovector modes, respectively (see Table IV).

contribution of the S-matrix poles in the strength function and
cross section. Further extension of the method is underway to
apply these methods to our Jost function method. In this paper,
we attempt the alternative way for the detailed analysis.

In the previous section of this paper, we derived the
S-matrix which satisfies the unitarity associated with the
description of the RPA strength function within the frame-
work of RPA theory using the Jost function. The S-matrix
which satisfies unitarity can be diagonalised using the unitary
matrices as shown in Eq. (75), which provides the eigen-
phase shifts. Since the unitary transformation is an isometric
transformation, the unitary matrix, which diagonalizes the
S-matrix, can decompose the RPA intensity function into
components for each eigenphase shift without changing its
magnitude. The poles of the K-matrix, defined using the S-
matrix, appear on the real axis of energy and are equal to the
energy at which the eigenphase shift crosses π/2, referred to
as the eigenvalue of the Sturm-Liouville problem.

Eigenphase shifts δ(1)
α obtained by diagonalizing S (1) are

shown in the bottom panel of Fig. 3. The first and third rows

054304-10



EIGENPHASE SHIFT DECOMPOSITION OF THE … PHYSICAL REVIEW C 109, 054304 (2024)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

δ(1)
5

S
tr

en
gt

h 
S

F
,0

 [f
m

4 /M
eV

]

δ(1)
1

δ(1)
2

δ(1)
3

δ(1)
4

IS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5
16O, Jπ=2+

S
tr

en
gt

h 
S

F
,1

 [f
m

4 /M
eV

]

δ(1)
1

δ(1)
2

δ(1)
3 δ(1)

4

IV

0

π/4

π/2

3π/4

π

 15  20  25  30  35  40

δ(1)
1

δ(1)
2

δ(1)
3

δ(1)
4

δ(1)
5

E
ig

en
ph

as
e 

sh
ift

 δ
(1

)
α

Re E [MeV] (with Im E=0)

(a)
(b)

(c)
(d)

(e)
(f)

(i) (ii) (iii) (iv) (v)

S-matrix and K-matrix poles

FIG. 3. Eigenphase shift δ(1)
α obtained by diagonalizing the S (1)

matrix using Eq. (75) (bottom panel) and decomposition of the RPA
strength function by the eigenphase shift components (second and
third panels). [(a)–(f)] in the upper figure are the S-matrix poles
shown in Fig. 1 and Table III. The imaginary part of the poles is
represented by error bars. [(i)–(v)] show the positions of the K-matrix
poles appearing on the real axis of energy. The energy of the K-
matrix pole is equivalent to the energy when the eigenphase shift
δ(1)
α crosses π/2 (see Table V).

of the figure show the strength function decomposed into
the components giving the eigenphase shifts using Eq. (76).
In the top panel of Fig. 3, the S-matrix poles [(a)–(f)] are
shown with their imaginary parts represented by error-bars,
since it is known that the real part of the S-matrix pole is
the resonance energy and the imaginary part is the half-width
if it is an isolated pole. [(i)–(v)] show the location of the
K-matrix poles on the real axis of energy. As is clear from
the derivation of the S-matrix in the previous section, the
size of the S-matrix depends on the energy region of the
Riemann sheet shown in Table III. For example, in the energy
region of Sheet 2 (16.38 � E � 16.84 MeV), the S-matrix is

TABLE V. Values of the K-matrix poles and corresponding
eigenphase shifts shown in Figs. 3–6.

No. Eigenphase K-mat. pole Corr. mode
[MeV] S-mat.

with Coulomb

(i) δ
(1)
1 16.78 (a) IS

(ii) δ
(1)
1 27.27 – ind.

(iii) δ
(1)
1 28.05 (c)

(iv) δ
(1)
3 30.31 (d)

(v) δ
(1)
4 36.80 (e),(f)

without Coulomb

(i′) δ
(1)
1 17.40 (a′) IS

(ii′) δ
(1)
1 27.23 – ind.

(iii′) δ
(1)
1 28.72 (c′) IS

(iv′) δ
(1)
3 30.86 (d′) IV

(v′) δ
(1)
4 35.95 (e′) IS

(vi′) δ
(1)
6 37.27 (f′) IV

a 4 × 4 matrix because α = 1, 2, 9, and 10 are open in the
configuration channels given in Table III. In the case of Sheet
4 (21.31 � E � 31.16 MeV), the S-matrix is a 4 × 4 matrix
because α = 1–6, 9–14 channels are open. Energy regions are
indicated by dotted vertical lines in Fig. 3. Despite the fact that
the eigenphase shift is obtained by diagonalizing S-matrices
of different sizes in each energy region, the eigenphase shift
is obtained as a function of energy, which is continuously
connected at the boundaries of the energy region. The com-
ponents of the strength function per eigenphase shift are also
obtained as a function of continuous energy at the boundaries
of the energy region, and the sum of all those components
reproduces the total strength function (shown as gray-filled
area). Note that the “total strength function” is the same as
the strength function which can be obtained by using the
cRPA method [16]. The same figure as Fig. 3 but calculated
without Coulomb interaction is shown in Fig. 4. To show the
first quadrupole exited state clearly, the magnified view of the
energy region from 16 to 19 MeV of Figs. 3 and 4 are shown
in Figs. 5 and 6, respectively.

If the Coulomb interaction is neglected, then the eigen-
phase shifts shown in Fig. 4 can be obtained independently
for the IS and IV modes using Eq. (106). As a result, it can
be seen that δ

(1)
1 , δ

(1)
4 , and δ

(1)
5 are the eigenphase shifts of

the IS mode, while δ
(1)
2 , δ

(1)
3 , and δ

(1)
6 are those of the IV

mode. These results are also consistent with the results of the
component decomposition of the strength function which are
shown above the eigenphase shifts. The energy at which the
eigenphase shift crosses π/2 is the K-matrix pole; it is known
that if the S-matrix pole is given by a single pole, the energy

derivative dδ(1)
α

dE of the phase shift corresponds to the imaginary
part of the pole (resonance width) at the energy at which the
phase shift crosses π/2. It is therefore reasonable to consider
(ii′) shown in Fig. 4 as an independent K-matrix pole which
is not associated with the S-matrix pole. For the K-matrix
poles, except for (ii′), the correspondence with the S-matrix
poles can be found from the difference in energy positions and
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FIG. 4. The same figure as Fig. 3 but calculated without
Coulomb interaction.

modes. The results of the correspondence are summarized in
the lower half of Table V.

As seen in Fig. 6, the eigenphase shift δ
(1)
1 gives a very

large strength function of the IS first quadrupole excited state
around E = 17.40 MeV of the K-matrix pole (i′); the value
of the imaginary part of the S-matrix pole corresponding to
δ

(1)
1 (given in Table IV shows that the width of this peak is

0.38 MeV (= 0.19 × 2). In contrast, despite the presence of
the corresponding S-matrix pole (c′) for the K-matrix pole
(iii′), δ

(1)
5 makes only a minor contribution to the strength

function of the IS mode around the energy of (iii′) E = 28.72
MeV. Near this energy, the main contribution is given by the
eigenphase shift δ

(1)
5 (nonresonant continuum state), which

has no K-matrix pole and is close to zero. However, the basic
shape of the strength function near the K-matrix pole (iii′)
is given by the strength function component contributed by
δ

(1)
1 . The shape of this strength function δ

(1)
1 component is

asymmetric, which means that quantum interference effects
such as the Fano effect may exist. The Fano effect (or Fano
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FIG. 5. Magnified view of the energy region from 16 to 19 MeV
in Fig. 3.

resonance) is known as a special quantum interference effect
that is universal to quantum many-body systems and is known
in atomic physics as the effect that causes autoionization
phenomena [17–20]. As far as the RPA strength function
is concerned, its contribution is very small and negligible
compared to the first excited state, but as the K-matrix pole
(iii′) is a state with a corresponding S-matrix pole (c′), it is
expected to give a clear contribution to quantities related to
the scattering cross section such as the imaginary part of the
T-matrix. However, as our numerical calculations and analysis
in this paper focus on the RPA strength function, we can only
point out the possible existence of the Fano effect.

The δ
(1)
2 component in Fig. 4 is considered to correspond to

the S-matrix pole (b′) because it gives the IV mode contribu-
tion from the strength function, but there is no corresponding
K-matrix pole. Therefore, the S-matrix pole (d′) is considered
to be an independent S-matrix pole which forms the first
peak of the IV mode around E = 27 MeV, but without a
corresponding K-matrix pole.
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The eigenphase shifts δ
(1)
3 and δ

(1)
6 give the K-matrix poles

(iv′) and (vi′) with corresponding IV-mode S-matrix poles (d′)
and (f′), respectively. These are then the dominant components
of the peaks of the IV strength function near the respective
K-matrix poles.

The K-matrix pole (v′) given by δ
(1)
4 has a corresponding

S-matrix pole (e′) of the IS mode, forming a sharp IS mode
strength function peak which seems to be embedded in the
background of the nonresonant continuum state produced by
δ

(1)
5 . The δ

(1)
4 component of the IS strength function also ex-

hibits a very asymmetric shape. It is possible that the Fano
effect exists in this case as well, and if it exists, it needs to be
clarified in future studies, including what specific phenomena
it may be related to.

The transition density of the eigenphase shift component
can be calculated using Eq. (74). Figures 7 and 8 show the
transition densities of the eigenphase shift components which
give their K-matrix poles at the K-matrix pole energy. The
transition densities when neglecting the Coulomb interaction
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associated with Figs. 4 and 6 are shown in the right-hand
panels of Figs. 7 and 8. Note that the absolute square of
the eigenphase shift component of the transition density
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integrated with respect to r gives the eigenphase shift com-
ponent of the strength function in Figs. 3 and 4, and the sum
of all the eigenphase shift components gives the total strength
function, by definition [Eq. (76)].

The transition densities of the δ
(1)
1 component of the K-

matrix pole (i′) in Fig. 7, the δ
(1)
3 component of (iv′) and the

δ
(1)
6 component of (vi′) in Fig. 8 does not have nodes and has

a peak near or slightly outside the surface of the nucleus. This
shows that the density distribution of neutrons and protons
in the nucleus is collectively vibrating, which is one of the
typical properties of so-called collective vibration modes.

Since δ
(1)
1 component of (i′) has only the IS transition den-

sity amplitude and δ
(1)
3 component of (iv′) and δ

(1)
6 component

of (vi′) only the IV transition density amplitude, respectively,
this means that (i′) is an IS collective vibration mode and (iv′)
and (vi′) are IV collective vibration modes.

The δ
(1)
1 component of the transition density at the K-

matrix pole (ii′) is the transition density with an independent
K-matrix pole, the δ

(1)
1 component of (iii′) and the δ

(1)
4 com-

ponent of (v′) with corresponding S-matrix poles (c′) and
(e′), respectively. All these transition densities give contri-
butions to the IS mode strength function only. Despite the
δ

(1)
1 component of (iii′) and the δ

(1)
4 component of (v′) having

corresponding S-matrix poles (c′) and (e′), respectively, the
transition densities have nodes and do not show clear char-
acteristics of collective vibration modes. In particular, even
though the δ

(1)
4 component of (v′) gives a sharp peak in the

shape of the strength function of the IS mode, indicating the
possible existence of a clear resonance, the behavior of the
transition density does not show any characteristic of collec-
tive vibration modes. This could be due to the possibility that
resonance and collective mode do not necessarily coincide,
or it could be caused by special quantum interference effects
such as the Fano effect. This may need to be clarified in future
research.

Although δ
(1)
2 and δ

(1)
5 are eigenphase shifts which do not

give K-matrix poles, they make the main contribution to the
IV and IS strength functions near the energies of the K-matrix
poles (ii′) and (iii′), respectively. The transition densities of
δ

(1)
2 and δ

(1)
5 at energies of the K-matrix poles (ii′) and (iii′)

are shown in the right-hand panels of Fig. 9. The eigenphase
shift δ

(1)
2 corresponds to the corresponding S-matrix pole (b′),

although it does not have a K-matrix pole, and gives the
main contribution to the first peak of the IV strength function
around 27 MeV, whose transition density exhibits the charac-
teristics of the IV type collective vibration. The eigenphase
shift δ

(1)
5 has neither K-matrix poles nor S-matrix poles but

makes the main contribution to the IS strength function above
20 MeV, and its transition density shows typical nonresonant
continuum state properties with nodes and widely spread am-
plitudes outside the nucleus.

Based on the knowledge gained from the analysis of cal-
culations ignoring the Coulomb interaction that has been
carried out so far, the analysis of the RPA strength func-
tion including the Coulomb interaction will be carried out
from here onwards. The difference caused by the presence or
absence of the Coulomb interaction is the change in the single-
particle level structure of neutrons and protons due to isospin
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FIG. 9. The δ
(1)
2 and δ

(1)
5 components of the transition densi-

ties (IS and IV modes) at K-matrix poles (ii), (iii), (ii′), and (iii′),
respectively.

symmetry breaking and the associated change in density dis-
tribution, and the mixing of IS and IV modes caused by it.
Comparing the strength functions in Figs. 3 and 4, it can
be seen that the IS and IV strength functions each contain
a mixture of eigenphase shift components which were not
present when the Coulomb interaction was ignored. There are
also significant changes in the peak structure of the strength
function associated with changes in the eigenphase shift.

When the Coulomb interaction is ignored, the sharp peak
of the IS strength function, which was formed around E = 36
MeV with the contribution of the eigenphase shift δ

(1)
4 , is split

into two peaks. Focusing on the change in the eigenphase shift
δ

(1)
4 shown in the bottom panels of Figs. 3 and 4, δ

(1)
4 couples

with δ
(1)
3 and δ

(1)
6 and the K-matrix pole (v′) that existed below

the E = 36.17 MeV threshold disappears. A new K-matrix
pole (v) is then formed near the K-matrix pole (vi′) which was
formed by δ

(1)
6 when the Coulomb interaction was ignored.

The eigenphase shift δ
(1)
4 then gives contributions to both IS

and IV strength. In fact, the transition density of δ
(1)
4 at the

K-matrix pole (v), shown on the left-hand side of Fig. 8,
now has contributions to both IS and IV modes. The peak
around E = 35 MeV of the IS strength function is then formed
by the independent S-matrix pole (e), which no longer has
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a corresponding K-matrix pole. A new peak around E = 35
MeV also appears in the IV strength function, which is formed
by the independent S-matrix pole (e) and is caused by the
coupling of the eigenphase shift δ

(1)
3 with δ

(1)
4 . The fact that

the eigenphase shift δ
(1)
3 is coupled to δ

(1)
4 can be seen from

the transition densities. The transition density of δ
(1)
3 in the

K-matrix pole (iv) shown in the left-hand panel of Fig. 8 now
includes characteristics of the transition density of δ

(1)
4 in (v′)

in the right-hand panel, which gives contributions to both IS
and IV strength.

The new peak around E = 28 MeV in the IV strength func-
tion is caused by the contribution of the eigenphase shift δ

(1)
1 .

This is because δ
(1)
1 couples with δ

(1)
2 , so that δ

(1)
1 now gives

a contribution to the IV strength. Conversely, by coupling δ
(1)
2

with δ
(1)
1 , δ

(1)
2 also makes the contribution to the IS strength

when there is the Coulomb interaction, whereas originally
it only made the contribution to the IV strength when there
was no Coulomb interaction. The same can be seen from the
δ

(1)
1 and δ

(1)
2 transition densities shown in Figs. 8 and 9. The

effect of the Coulomb interaction on the eigenphase shift δ
(1)
5

component, which is the main component of the IS strength in
the energy region above 20 MeV, is very small. It can be seen
from the δ

(1)
5 transition density shown in Fig. 9 that it hardly

changes at all.
The effect of the Coulomb interaction on the IS strength

created by the eigenphase shift δ
(1)
1 , which appears as a large

and sharp peak at the lowest energy [K-matrix poles (i) and
(i′)] shown in Figs. 6 and 5, is mainly in peak energy and
width. As far as Fig. 5 is concerned, there is a slight mixing
of the IV mode associated with the coupling with δ

(1)
1 , but

the mixing effect with the IV mode is small because it is
isolated away from the other poles. The transition density
(Fig. 7) shows no effect of the mixing of IV modes on this
pole, only the characteristics of the IS collective vibration
mode.

IV. SUMMARY AND CONCLUSION

In this paper, we first derived the S-matrix which satisfies
the unitarity using the Jost function extended within RPA
theory. Considering the properties required to derive the RPA
Green’s function in Ref. [6] and the symmetric properties of
the RPA Green’s function and wave functions in complex
energy space in the definition of the RPA strength function,
we were able to obtain the “definition of the S-matrix with
Jost function” [Eqs. (15) and (38)] which satisfies the unitarity
and its associated “scattering wave function” [Eq. (50)]. The
S-matrix which satisfies the unitarity can be diagonalized by
using the unitary matrices, and the diagonal components of
the diagonalized S-matrix are expressed in terms of eigen-
phase shifts. However, the original S-matrix gives a scattering
boundary condition where the scattering wave function leads
through the S-matrix to a free particle state at r → ∞ (the
boundary condition imposed to obtain irregular solutions).
Since RPA theory describes the excited states of the system
in terms of the superposition of particle-hole configurations
defined by the mean-field caused by the effects of the residual
interaction, Eq. (73) was adopted as the definition of the

S-matrix from the idea of the two-potential problem to give
the eigenphase shift meaning to describe the RPA excited
states.

Applying this method to the quadrupole excitation of the
16O, the strength function was then decomposed into com-
ponents for each eigenphase shift, and the correspondence
between the eigenphase shift components of the strength
function and the S-matrix poles and eigenphase shifts was
analyzed. The results show that the components of the RPA
strength function corresponding to the eigenphase shift ob-
tained by diagonalizing the S-matrix given by Eq. (73)
correspond to the S-matrix poles found on the complex energy
plane as the zeros of the determinant of the Jost function.
Even though the peaks of the strength function correspond
to S-matrix poles, there are not necessarily corresponding
K-matrix poles, and there are also independent S-matrix poles
that do not have K-matrix poles. Also, in the case of poles
with simultaneous S- and K-matrix poles, if the eigenphase
shift component of the strength function corresponding to the
pole exhibits an asymmetric shape, such that the presence
of special interference effects such as Fano resonances is
suspected, the transition density of that component does not
have the characteristics of a collective mode.

The Fano effect is a special quantum interference effect
which occurs when a bound or resonant state is coupled to
a continuum, and is known in atomic physics as the effect re-
sponsible for the phenomenon of autoionization. In Ref. [1], it
is shown that in nucleon-nucleus scattering, even in a resonant
state where the S- and K-matrix poles exist simultaneously,
the scattering wave function loses its resonant feature (i.e., the
feature that the scattering amplitude is enhanced inside the nu-
cleus) due to the presence of the Fano effect. If a mechanism
such as the Fano effect exists in RPA excited states, then it
is possible that the transition density loses its collective mode
character due to this effect. It remains possible, however, that
the (resonance) states defined by the S- and K-matrix poles
are an independent concept and not directly related to the
RPA collective mode. To clarify this point, the further study is
needed.

It is known that the solutions of the IS and IV modes can
be obtained independently in RPA theory for Z = N nuclei
such as 16O if the Coulomb interaction are neglected, and it
is confirmed that the Jost function, its determinant and the
S-matrix derived in this paper can also be divided into IS
and IV modes, respectively. Comparing calculations with and
without the Coulomb interaction, it can be seen that they cause
various effects, such as the coupling of the eigenphase shifts
of the IS and IV modes, the disappearance of the K-matrix
poles, and the creation of new peaks in the strength function
and the splitting of the originally existing peak due to these
effects. The eigenphase shift component of the transition den-
sity corresponding to a given S-matrix pole is found to give
contributions to both IS and IV modes, as the S-matrix pole
can no longer be divided into IS and IV modes when the
Coulomb interaction is present.

Judging comprehensively from these analyses, the eigen-
phase shifts obtained by diagonalizing the S-matrix derived
in this paper can be considered to represent the “RPA excited
states” corresponding to the S-matrix poles.
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