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Background: Low-lying bandhead states in axially prolate deformed odd-odd nuclei have long been described
essentially within the rotor+two-quasiparticle picture. This approach allows one to explain the appearance of
so-called Gallagher-Moszkowski doublets of bandheads with K = �n ± �p, sum and difference of neutron and
proton angular momentum projections on the symmetry axis. According to an empirical rule stated by Gallagher
and Moszkowski the spin-aligned configuration lies lower in energy than the spin-antialigned configuration.
A recent study by Robledo, Bernard, and Bertsch [Phys. Rev. C 89, 021303(R) (2014)] within the Gogny
energy-density functional with self-consistent blocking of the unpaired nucleons showed that calculations fail
to reproduce this rule in about half of the cases, and points to the density-dependent term of the functional as
responsible of this failure.
Purpose: In this paper we aim at pushing further this analysis to exhibit the mechanism underlying the energy
splitting in a Gallagher-Moszkowski doublet.
Method: We work in the framework of the Skyrme energy-density functional approach, including BCS pairing
correlations with self-consistent blocking. We use the SIII parametrization with time-odd terms and seniority
pairing matrix elements extending a previous study of K-isomeric states in even-even nuclei [Phys. Rev. C 105,
044329 (2022)].
Results: We find that the energy splitting results from a competition between the spin-spin, density-dependent,
and current-current terms of the Skyrme energy-density functional.
Conclusions: In doublets where the larger K value is lower in energy the Gallagher-Moszkowski rule is always
satisfied by the SIII Skyrme energy-density functional. In doublets, in contrast, where the smaller K value lies
lower, the energy splittings are calculated to be rather small, and often a disagreement with the Gallagher-
Moszkowski rule occurs.

DOI: 10.1103/PhysRevC.109.054303

I. INTRODUCTION

Deformed doubly-odd nuclei have long been described
within the rotor+two-quasiparticle picture as a rotating core
coupled through the so-called Coriolis term to one neutron
and one proton moving in a spheroidal mean field [1]. Axial
deformation in such nuclei provides K , the projection on the
symmetry axis of the intrinsic angular momentum, as a good
quantum number. In the deformation-alignment scheme, the
core rotates around an axis orthogonal to the symmetry axis of
the nucleus and the projection on the symmetry axis of the to-
tal angular momentum of the nucleus is thus equal to K . More-
over K is the sum of the neutron �n and the proton �p angular
momentum projections on the symmetry axis (see Fig. 1).
Bohr and Mottelson [1] and Peker [2] showed that the ground-
state angular momentum of many deformed odd-odd nuclei
can be accounted for by the coupling of the unpaired proton
and neutron angular momenta. Gallagher and Moszkowski
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then proposed in Ref. [3] a spin-spin coupling rule to deter-
mine whether the lower lying configuration corresponds to
�n + �p or |�n − �p|. According to this rule, the lower-lying
configuration is the one in which spins of the neutron and
the proton are parallel. This rule is remarkably successful as,
even to date, it suffers from only one exception, in the 166Ho
nucleus. As reviewed by Boisson et al. [4], this success was
accompanied by several early theoretical investigations [5–7]
to understand its origin in terms of the residual interaction be-
tween the unpaired neutron and proton in the framework of the
two-quasiparticle+rotor model. About two decades later, Jain
and collaborators provided in Ref. [8] a comprehensive review
of the structure of deformed odd-odd rare-earth nuclei, includ-
ing a systematic analysis of the neutron-proton residual inter-
action in the two-quasiparticle+rotor model. Note however,
that the work published shortly before Ref. [8] by Covello and
collaborators on the tensor contribution to the neutron-proton
residual interaction, in the same two-quasiparticle + rotor
model [9], was not mentioned in Ref. [8]. More recently two
systematic studies of odd-odd nuclei were performed. On the
one hand Robledo, Bernard, and Bertsch [10] investigated
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FIG. 1. Schematic representation of collective R, intrinsic J =
jn + jp, and total I = R + J angular momenta in an axially deformed
odd-odd nucleus within the deformation-alignment scheme.

the Gallagher-Moszkowski splitting with the Gogny energy-
density functional (EDF) with self-consistent blocking. They
identified the density-dependent term of the functional as
being responsible for the disagreement with the Gallagher-
Moszkowski rule where it occurred. On the other hand Ward
and collaborators [11] performed systematic calculations of
ground-state spins and parities of odd-odd nuclei across
the nuclear chart within the macroscopic-microscopic finite-
range droplet model combined with a two-quasiparticle+rotor
model with various residual interactions.

Overall very few EDF based calculations in deformed
odd-odd nuclei have been performed so far. In Ref. [12]
Bennour and collaborators studied the spectroscopic proper-
ties of axially deformed doubly-odd nuclei in the rare-earth
and actinide regions in the two-quasiparticle+rotor picture
with Skyrme-EDF intrinsic solutions. The SIII parametriza-
tion of the effective Skyrme interaction was used to generate
the neutron and proton quasiparticle energies and their inter-
action matrix elements (playing the role of the neutron-proton
residual interaction). More precisely they described the band-
head states of the considered odd-odd nuclei by the creation
of two quasiparticles on the (fully paired) Hartree-Fock-BCS
ground state of a neighboring even-even nucleus. In con-
trast Robledo and collaborators [10] later used the Gogny
EDF with self-consistent blocking (SCB), hence breaking the
time-reversal symmetry at the one-body level. In the present
paper we extend the recent study of two-quasiparticle states
in even-even nuclei [13] within the Skyrme-EDF framework
with BCS pairing and self-consistent blocking to deformed
odd-odd nuclei. Even though several codes based on Skyrme
EDF with superior capabilities already exist [14–16], we are
not aware of any published applications to deformed doubly-
odd nuclei dedicated to the Gallagher-Moszkowski splitting,
neither within the Skyrme nor within the Gogny EDF, after
those of Ref. [10].

In the present work we focus on Gallagher-Moszkowski
doublets and aim at understanding the mechanism of their
energy splitting within the Skyrme-EDF framework with BCS
pairing and self-consistent blocking, pushing further the anal-
ysis performed by Robledo and collaborators [10]. Because

FIG. 2. Portions of the nuclide chart in the vicinity of studied
rare-earth nuclei. Dashed boxes represent odd-odd nuclei for which
too few data are available and are thus not studied here.

we focus on deciphering the microscopic mechanism at work
behind the Gallager-Moszkowski empirical rule, we do not
perform our study on a systematic basis, but in selected
strongly deformed nuclei in two mass regions and for which
sufficient data on Gallagher-Moszkowski doublets are experi-
mentally known:

(i) rare-earth mass region and beyond: odd-odd nuclei
surrounding the even-even 156,158Gd, 174Yb, and 178Hf
nuclei (see Fig. 2);

(ii) actinide mass region between A ≈ 230 and A ≈ 250:
odd-odd nuclei surrounding the even-even nuclei
230,232Th, 240,242Pu, and 250,252Cf (see Fig. 3).

After a brief presentation of the theoretical framework and
calculational details in the next section, we present in Sec. III
the resulting bandhead spectra obtained within self-consistent
blocking for the Gallagher-Moszkowski doublets known ex-
perimentally. Then we show the relevance of perturbative
blocking for the investigation of the splitting mechanism in
Sec. IV. Finally we draw conclusions and give perspectives in
Sec. V.
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FIG. 3. Same as Fig. 2 for the actinide nuclei of interest.

II. THEORETICAL FRAMEWORK AND
CALCULATIONAL DETAILS

All two-quasiparticle states of the considered nuclei are
assumed to have axially symmetric and left-right symmetric
shapes in the intrinsic (body-fixed) frame. They are de-
scribed within the Skyrme+BCS energy-density functional
with self-consistent blocking (of one neutron and one proton
single-particle states) as explained in Ref. [17]. As in a previ-
ous study of K-isomeric two-quasiparticle states [13] we use
the SIII parametrization [18] of the Skyrme energy-density
functional and constant pairing matrix elements (often called
“seniority” or BCS pairing interaction).

Because of the self-consistent blocking, time-reversal sym-
metry is broken at the one-body level and the Kramers
degeneracy is removed in the single-particle energy spectrum.
Moreover, as explained in Refs. [17,19], we work in the “mini-
mal” scheme of the SIII Skyrme parametrization, in which the
only time-odd fields retained in the Hartree-Fock Hamiltonian
are the spin and current vector fields. Including the other
terms would introduce a bias as they are accompanied by
terms involving time-even densities that were not taken into
account in the SIII fitting protocol [18]. In the notation of
the Appendix of Ref. [19] this corresponds to keeping the B3

(current-current) term, B9 (spin-orbit) term, B10,11 (spin-spin)
terms, and B12,13 (density-dependent spin-spin) terms.

The pairing contribution to the energy-density functional
is calculated from the expectation value of the pairing inter-
action in a BCS state including blocking. The parametrization

of the nucleon-number dependence of the pairing matrix el-
ements is the same as in Ref. [17] and the fitting protocol of
their strength is presented in Refs. [13,20]. In this work we use
the same values as in Ref. [20] for the nuclei around A = 178
(174,176,178Lu, 178,180Ta) and the same values as in Ref. [13]
for the actinide nuclei (230,234Pa, 238Np, 242Am and 250Bk).
In the medium-heavy rare-earth nuclei around A = 156, we
adjust the neutron pairing strength parameter Gn to the first 2+
excitation energy in 156Gd, keeping that of protons Gp equal to
0.9 × Gn as done in the other mass regions (see Ref. [20] for
a precise definition of Gn and Gp). This observable is shown
in Ref. [20] to be a relevant measure of pairing correlations
equivalent to the odd-even binding-energy differences. We
find Gn = 17.1 MeV. The BCS equations are then solved
for all single-particle states with a smearing factor f (ei ) =
{1 + exp [(ei − X − λq)/μ]}−1

where ei is the energy of the
single-particle state |i〉, X plays the role of a cutoff factor with
X = 6 MeV, λq is the chemical potential for the charge state
q = n, p, and μ = 0.2 MeV is a diffuseness parameter.

Finally the single-particle states are expanded in a trun-
cated cylindrical harmonic-oscillator basis with parity sym-
metry. In nuclei around A = 178, we use the same basis
parameters as in Ref. [20] and in actinides we take the pa-
rameters of Ref. [13]. Around A = 156, the optimal basis
parameters are found to be b = 0.495 and q = 1.18 in the
notation of Ref. [21], with N0 + 1 = 15 spherical oscillator
major shells. As in Ref. [13] all integrations are performed
by Gauss-Hermite quadratures with 30 mesh points in the z
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direction of the symmetry axis and Gauss-Laguerre quadra-
tures with 15 mesh points in a direction orthogonal to the
symmetry axis.

III. RESULTS FOR BANDHEAD SPECTRA

In this section we report on the bandhead spectra calcu-
lated within the SIII Skyrme energy-density functional with
self-consistent blocking as explained above, and we present
the results by mass region. We report only on experimen-
tally observed Gallagher-Moszkowski doublets, and for each
studied odd-odd nucleus we take the two-quasiparticle Kπ

configuration of the experimental ground state as a reference
state to build the energy spectrum of calculated doublets. For
completeness we also give the lowest-energy calculated band-
head when it is not among observed Gallagher-Moszkowski
doublets.

A. Rare-earth nuclei around A = 156

The odd-odd nuclei surrounding the 156,158Gd isotopes are
described by two-quasiparticle configurations with respect to
the ground state of these even-even nuclei. Sufficient experi-
mental data on Gallagher-Moszkowski doublets are available
in 154,156Eu and 158,160Tb. It is worth noting that the 160Tb
nucleus was studied in Ref. [12], where calculations in the
rotor+two-quasiparticle picture with Skyrme-EDF intrinsic
solutions were compared with experimental data for several
Gallagher-Moszkowski doublets.

First we show in Fig. 4 the neutron and proton single-
particle spectra calculated in the ground state of the 156Gd
nucleus as an example. In the neutron single-particle spec-
trum, the second largest cylindrical harmonic-oscillator
contribution to the 1/2+ state around e = −9 MeV has
[400] ↑ Nilsson quantum numbers, in addition to the
[640] ↑ contribution displayed in Fig. 4. From a theo-
retical point of view we thus expect low-lying bandhead
states (up to about 1 MeV excitation energy) in neigh-
boring odd-odd nuclei with configurations involving on the
one hand the 11/2−[505] ↑, 1/2+ ([640] ↑ or [400] ↑),
3/2+[651] ↑, 3/2−[521] ↑, 5/2+[642] ↑, 5/2−[523] ↓ neu-
tron single-particle states, and, on the other hand, the
5/2+[413] ↓, 5/2−[532] ↑, 3/2+[411] ↑, 7/2+[404] ↓ pro-
ton single-particle states.

154,156Eu nuclei (Z = 63 and N = 91, 93). In panel (a) of
Fig. 5 we display the bandhead spectrum of 154Eu restricted
to the four Gallagher-Moszkowski doublets experimentally
observed. Theoretical excitation energies are all calculated
with respect to the Kπ = 3− state with the configuration
(11/2−[505] ↑)n(5/2+[413] ↓)p, which corresponds to the
experimental ground state. Overall the energy ordering of
calculated doublets follows the expectation from the Koop-
mans approximation, except for the (4+, 1+) doublet built
on the (3/2+[651] ↑)n (5/2+[413] ↓)p configuration, calcu-
lated to lie below the Kπ = 3− reference state. This suggests
that, in the neutron single-particle spectrum, the 11/2−[505]
level should be located above the 3/2+[651] level. While
experimental excitation energies are all below 300 keV, the
calculated bandhead states of the considered doublets, except

FIG. 4. Neutron and proton single-particle energies e (in MeV)
calculated in the ground state of 156Gd. 158Gd. The dominant Nilsson
quantum numbers and the weight of the corresponding contribution
are indicated. Up and down arrows correspond respectively to spin
projections +1/2 and −1/2 (in h̄ unit) on the symmetry axis.

the discrepant one, agree with experimental data within less
than 200 keV, which can be deemed a rather good result.

With the addition of two neutrons to the previous nucleus,
the lowest energy configurations of 156Eu are now expected
to involve the 3/2− or 5/2+ neutron state together with the
5/2− or 5/2+ proton state. The resulting four doublets turn
out to be precisely the ones experimentally observed. They
are displayed in panel (b) of Fig. 5, where the excitation ener-
gies are defined with respect to the experimental ground state
Kπ = 0+ with configuration (5/2+[642] ↑)n (5/2+[413] ↓)p.
Again the calculated excitation energies agree rather well
with the experimental ones, with a discrepancy below 200
keV except for the Kπ = 5− state, which is found to be the
theoretical ground state almost 300 keV below the Kπ = 0+
state. This results from the position of the 5/2− level above the
5/2+ level in the proton single-particle spectrum consistently
with the above discussion for the 154Eu nucleus.

As discussed in Ref. [8], the octupole degree of freedom
is expected to play a role in 154Eu, maybe less so in 156Eu.
However, according to Afanasjev and Ragnarsson [22], the
existence of static octupole deformation in this nucleus (and
neighboring nuclei) is not supported by Woods-Saxon calcu-
lations of polarization energies of octupole-driving orbitals.
Later, systematic axial reflection-asymmetric calculations
within the covariant density functional theory [23] showed
that even-even neighbors of the odd-odd 154,156Eu isotopes
do not have octupole ground-state shape. Finally, a re-
cent global survey of pear-shaped even-even nuclei within
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FIG. 5. Bandhead spectra of 154Eu (a) and 156Eu (b) restricted to Gallagher-Moszkowski doublets experimentally observed. For each
doublet the left level bars correspond to experiment (labeled “Exp.”), while the right ones correspond to the SCB calculations (labeled “Th.
(SCB)”).

nonrelativistic and relativistic EDF approaches [24] lead to
the same conclusion. Even if we did not break intrinsic parity
to incorporate the octupole degree of freedom in the studied
odd-odd nuclei, the basic ingredients for a proper description
of bandhead states of two-quasiparticle character are present
in our approach, especially the “parity” doublets of single-

neutron and single-proton states with �n,p = 3/2 and �n,p =
5/2 giving rise to the (4, 1)± doublets in 154,156Eu and (5, 0)±
in 156Eu.

158,160Tb nuclei (Z = 65 and N = 93, 95). The bandhead
spectrum for the six experimentally observed Gallagher-
Moszkowski doublets in the 158Tb nucleus is displayed in
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FIG. 6. Same as Fig. 5 for the 158Tb (a) and 160Tb (b) nuclei.

Fig. 6. Note that, in 158Tb, the 1/2+ neutron single-particle
state involved in the calculated (2+, 1+) doublet closest to the
experimental one is the 1/2+[640] instead of the 1/2+[400]
proposed in Ref. [25].

The theoretical ground state Kπ = 3− and first excited
bandhead state Kπ = 4+, both involving the 3/2+ proton
single-particle level just above the proton Fermi level of
156Gd, agree very well with the experimental ones. The very
small excitation energy of the 4+ state confirms the quaside-
generacy of the 3/2− and 5/2+ levels seen in the neutron
single-particle spectrum of 156Gd. Moreover the rather good
position of the theoretical (2−, 5−) doublet seems to indicate

a correct shell gap between the 3/2+ and 7/2+ levels in the
proton single-particle spectrum in 156Gd.

In contrast the doublets involving the 11/2− or 1/2+ neu-
tron states are calculated to be too high, which is consistent
with too low 11/2− or 1/2+ levels around −9 MeV in
the neutron single-particle spectrum of 156Gd. Similarly the
(0+, 3+) doublet calculated with a too large excitation energy
suggests that the 3/2+[402] neutron state is too far below the
3/2−[521] state.

The bandhead spectrum for the four experimentally ob-
served Gallagher-Moszkowski doublets in the 160Tb nucleus
is displayed in the bottom panel of Fig. 6. Similarly to what
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has been obtained in the 158Tb nucleus, the ground state is
found to be the 3− state in agreement with experiment, and
the excitation energies of the 4+, 1+, and 1− are in excel-
lent agreement with the experimental ones. Apart from the
(5+, 0+) doublet, for which the discrepancy is of the order
of 600 keV, the remaining excitation energies are reproduced
within less than the typical 200 keV.

The overall picture emerging from the energy spectra of
these odd-odd nuclei around 156,158Gd is that the single-
particle states with the quantum numbers relevant for the
low-lying two-quasiparticle bandhead states and Gallagher-
Moszkowski doublets are present around the neutron and
proton Fermi levels in the region 88 � N � 98 and 62 � Z �
68. However some single-particle hole states appear too high
and are expected to generate bandhead states experimentally
unobserved in the low-lying spectrum of the considered odd-
odd nucleus.

B. Rare-earth nuclei around A = 176

The odd-odd nuclei surrounding 174Yb and 178Hf are de-
scribed by two-quasiparticle configurations with respect to the
ground state of these even-even nuclei. A lot of experimen-
tal data on Gallagher-Moszkowski doublets are available in
172Tm, 174,176,178Lu, and 178,180Ta nuclei.

First we show in Fig. 7 the neutron and proton single-
particle spectra calculated in the ground state of the 174Yb
and 178Hf nuclei. We expect low-lying bandhead states (up
to about 1 MeV excitation energy) in neighboring odd-
odd nuclei with configurations involving on the one hand
the 7/2+[633] ↑, 5/2−[512] ↑, 7/2−[514] ↓, 9/2+[624] ↑
neutron single-particle states, and, on the other hand,
the 7/2−[523] ↑, 1/2+[411] ↓, 7/2+[404] ↓, 9/2−[514] ↑,
5/2+[402] ↑, 1/2−[541] ↓ proton single-particle states.

172Tm and 174Lu nuclei (N = 103 and Z = 69, 71). The
bandhead spectra for the experimentally observed Gallagher-
Moszkowski doublets in the 172Tm and 174Lu nuclei are
displayed in Fig. 8. Theoretical excitation energies of 172Tm
are all calculated with respect to the Kπ = 2− state with
the configuration (5/2−[512] ↑)n(1/2+[411] ↓)p, which cor-
responds to the experimental ground state, whereas in 174Lu
the calculated ground state is the Kπ = 1− state in agree-
ment with experiment with the configuration (5/2−[512] ↑
)n(7/2+[404] ↓)p. Overall the calculated excitation energies
in these two nuclei agree with experimental data within less
than about 200 keV with the notable exception of the (0−, 1−)
doublet in 172Tm with an overestimation of about 450 keV.
The corresponding configuration differs from that of the
ground state by the 1/2−[521] neutron state, which suggests
that this calculated 1/2− neutron state lies too far below the
5/2−[512] state.

176,178Lu (N = 105, 107 and Z = 71) and 178,180Ta nuclei
(N = 105, 107 and Z = 73). The bandhead spectra for the
experimentally observed Gallagher-Moszkowski doublets in
the 176,178Lu and 178,180Ta nuclei surrounding the even-even
178Hf nucleus are displayed in Figs. 9–11.

The 176Lu nucleus is the experimentally most studied one
with 12 observed doublets and with configurations assigned in
Refs. [26,27]. Its ground state with Kπ = 7− is reproduced by

FIG. 7. Same as Fig. 4 for 174Yb and 178Hf.

our calculations. Excellent agreement of calculated excitation
energies with experimental data is obtained for the following
Gallagher-Moszkowski doublets and configurations:

(1+, 8+), (9/2+[624] ↑)n(7/2+[404] ↓)p;

(0+, 7+), (7/2−[514] ↓)n(7/2−[523] ↑)p;

(4−, 3−), (7/2−[514] ↓)n(1/2+[411] ↓)p.

From the agreements for the last two doublets, we can de-
duce that 7/2−[523] and 1/2+[411] proton states are correctly
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FIG. 8. Same as Fig. 5 for the 172Tm and 174Lu nuclei.

located below the 7/2+[404] state. On the neutron side, the
agreement for the first doublet of the above list suggests the
good relative position of the 9/2+[624] state with respect to
the 7/2−[514] state.

In contrast the large overestimation of the excitation ener-
gies for the doublet (7/2−[514] ↓)n(9/2−[514] ↑)p indicates
a too large Z = 72 gap. Moreover the doublets involving
the 5/2+[402] proton state combined with the 7/2−[514] or
9/2+[624] neutron states are calculated to be much too high
above the corresponding experimental ones. This suggests that
the 5/2+[402] proton state is significantly too high above the
9/2−[514] state.

On the neutron side, the large underestimation of the
excitation energies for the (6−, 1−) doublet involving the

5/2−[512] neutron state indicate that this state is too close
below the 7/2−[514] state. When combined with the too high
9/2−[514] proton state, this yields some compensation, hence
a moderate discrepancy for the (7+) excitation energy with
the (5/2−[512])n(9/2−[514])p configuration in 174Lu. In the
same spirit the 3/2−[512] neutron state appears to be too high
above the 9/2+[624] state according to the large overestima-
tion of the excitation energy for the (5−, 2−) doublet in 176Lu
involving this 3/2− neutron state.

Moreover the rather fair agreement for the (4−, 3−) doublet
in 174Lu or 176Lu built on the (1/2−[521])n (7/2+[404])p

configuration suggests a reasonable relative position of the
involved state in the neutron spectrum. Therefore the large
overestimation of the excitation energies for the (5−, 2−) dou-
blet with the (3/2−[512])n(7/2+[404])p configuration and the
(3−, 4−) doublet with the (1/2−[510])n (7/2+[404])p config-
uration can be understood as a too large N = 108 energy gap
(over 1.2 MeV in 174Yb and 178Hf, as can be seen in Fig. 7).

The bandhead spectra of 178Lu and 178,180Ta are shown
in Figs. 10 and 11, respectively. The Gallagher-Moszkowski
doublets considered in these three nuclei involve the same
single-particle states than in 176Lu and lead to the same con-
clusions regarding the relative positions of these states. It
should be noted that in 178Ta the ground state is taken to be
the 7− state as in Refs. [28,29]. The experimental excitation
energies of the 1−, 6− members of the doublet built from the
(7/2−[514])n(5/2+[402])p configuration and of the 8+ mem-
ber of the doublet built from the (7/2−[514])n(9/2−[514])p

configuration are measured with respect to the 7− state,
whereas the 1+ member of the doublet built from the
(7/2−[514])n(9/2−[514])p configuration is estimated, from
systematics, to lie 100 keV above the 7− state by Ref. [29].

Similarly to the conclusion drawn in the end of the previ-
ous subsection, the overall picture emerging from the energy
spectra of the odd-odd nuclei surrounding 174Yb and 178Hf
is that the single-particle states with the quantum numbers
relevant to the low-lying two-quasiparticle bandhead states
and Gallagher-Moszkowski doublets are present around the
neutron and proton Fermi levels in the region 100 � N � 108
and 68 � Z � 78. However, the level density in the proton
spectrum is a bit too low and the 5/2− neutron hole is a bit
too high.

C. Actinides between A = 230 and A = 250

The considered odd-odd actinides are neighbors of the
230,232Th, 240,242Pu, and 250Cf even-even nuclei. The single-
particle spectra of 230Th, 240Pu, and 250Cf are displayed in
Figs. 12 and 13. The neutron spectrum in this Th isotope has
the remarkable feature of a quasi-degeneracy of three states
around the Fermi level, namely 5/2+[633], 3/2 + [631], and
5/2−[752]. It is worth noting that the first two of these
quasidegenerate levels are involved in the 229mTh clock iso-
mer. Moreover a large shell gap of the order of 1 MeV is
obtained for N = 142 and an even larger gap of about 1.5
MeV appears for N = 152 in 250Cf.

Some neutron single-particle states with high � quan-
tum numbers are found near the Fermi level of the above
even-even nuclei, namely � = 7/2 states near N = 146 and
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FIG. 9. Same as Fig. 5 for the 176Lu nucleus.

FIG. 10. Same as Fig. 5 for the 178Lu nucleus.

states with � = 9/2 and 11/2 near N = 152. On the proton
side, the largest � value found near the Fermi level of the
above Th and Pu isotopes is 5/2, whereas, for the Cf isotopes,
states with � = 7/2 are found just above Z = 98. This is
why 250Bk has a couple of Gallagher-Moszkowski doublets
involving a state with a rather large K quantum number up
to 7 (see below), in contrast to the other studied odd-odd
nuclei.

Contrary to the mass region of 154,156Eu for which no
octupole deformation is found in the ground state of neighbor-
ing even-even nuclei, even-even 224–228Th isotopes are known
to exhibit signatures of reflection-asymmetric ground-state
shape (see, for example Ref. [30]) and the Skyrme EDF calcu-
lations of Ref. [24] predict octupole deformation in even-even
220–228Th isotopes. Therefore the odd-odd nuclei studied in the
present work are likely to also exhibit octupole deformation
in the observed Gallagher-Moszkowski doublets. However
the breaking of intrinsic-parity symmetry to incorporate the
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FIG. 11. Same as Fig. 5 for 178Ta and 180Ta nuclei. In 178Ta the ground state of taken to be the 7− state as in Refs. [28,29] and we use the
excitation energy of the 1+ isomer estimated from systematics 100 keV given by Ref. [29].

octupole degree of freedom is beyond the scope of our calcu-
lations.

230,234Pa nuclei. Figure 14 shows the spectra of these
two protactinium isotopes. Note that the calculated doublet
(2+, 1+) in 230Pa is built on the (3/2−[741] ↑)n (1/2−[530] ↑
)p configuration and agrees well with experimental data
which had been tentatively interpreted as a (3/2−[501] ↑
)n(1/2−[530] ↑)p configuration in Ref. [31]. In the neutron
single-particle spectrum of 230Th, a 3/2−[501] ↑ neutron
hole state lies about 0.5 MeV below the 3/2−[741] state

and does not appear in Fig. 12. Therefore the configura-
tion (3/2−[501] ↑)n(1/2−[530] ↑)p is expected to yield much
larger excitation energies for the members of the correspond-
ing (2+, 1+) doublet.

Among the selected Gallagher-Moszkowski doublets in
these two isotopes of Pa, the Kπ quantum numbers of the
calculated lowest-lying state agree with experiment. More-
over, apart from two cases, namely the (0−, 1−) and (2+, 3+)
doublets, the calculated excitation energies agree very well
with experiment, within about 100 keV at most. The largest
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FIG. 12. Same as Fig. 4 for the 230Th nucleus.

discrepancy between theory and experiment is obtained for
the (0−, 1−) doublet with an overestimation of the excitation
energies of about 1 MeV in 230Pa and about 250 keV in 234Pa
and the (2+, 3+) doublet in 230Pa with an overestimation of
about 300 to 400 keV. Since the excitation energies of the
doublets involving the 1/2−[530] proton single-particle states
other than (2+, 3+) [e.g., the (2−, 3−) Gallagher-Moszkowski
doublets in 230Pa] are well reproduced, the above overesti-
mation is essentially caused by the 1/2+[631] neutron state
clearly too far above the neutron Fermi level of 230Th. As this
is less so in 234Pa, we can ascribe this to an overestimated
N = 142 shell gap.

238Np and 240,242,244Am nuclei. Figure 15 shows the spec-
tra of these doubly odd nuclei around A = 240. Note that
in 242Am the ground state (not reported in Fig. 15) is the
1− member of the Kπ = 0− band, so we have set the ex-
citation energy of the 0− state to the experimental value
(44.092 keV) and placed all the other calculated states in
the 242Am spectrum with respect to the calculated Kπ = 0−
state.

In 238Np we find the experimentally observed (2−, 3−)
doublet about 200 keV below the (3+, 2+) doublet involv-
ing the 2+ experimental ground state. The configurations of
these two doublets differ by the proton states 5/2−[523] ↓
and 5/2+[642] ↑, which have the same � quantum number
but opposite parities, the 1/2+[631] neutron blocked state
being common to these two doublets. As shown by Fig. 13,
the 5/2−[523] state is calculated to be of hole character in
240Pu whereas the 5/2+[642] state is of particle character. This
explains why the (2−, 3−) doublet lies below the (3+, 2+)
doublet in 238Np. Therefore these two � = 5/2 proton states
are inverted in the calculated single-particle spectrum. This

FIG. 13. Same as Fig. 4 for the 240Pu and 250Cf nuclei. In 240Pu,
the second largest component of the 1/2− proton state is also given,
below the dominant one.

interpretation is supported by the reverse ordering of the
(2−, 3−) and (3+, 2+) doublets, based on the above config-
urations, observed in 242Am. Despite this inversion of the
5/2+[642] and 5/2−[523] states in the proton single-particle
spectrum, the calculated energy splitting in the above (2−, 3−)
and (3+, 2+) doublets agrees very well with experiment in the
nuclei where they are observed, namely 238Np and 240,242Am.

Another large discrepancy is observed in the 242Am
for the (2−, 3−) doublet based on the (1/2+[620] ↑)n

(5/2−[523] ↓)p configuration, with an overestimation of the
experimental excitation energies of both members of the dou-
blet by about 1 MeV. Because these excitation energies are
compared with those of the (0−, 5−) doublet which involves
the same 5/2−[523] proton state and because the 1/2+[620]
neutron state in the (2−, 3−) doublet is calculated to lie
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FIG. 14. Same as Fig. 5 for the 230,234Pa nuclei.

above the N = 152 shell gap (see the neutron single-particle
spectrum of 250Cf in Fig. 13), we deduce that the result-
ing disagreement is attributable to an overestimation of the
N = 152 gap. The inversion of the 5/2+[642] and 5/2−[523]
states across the proton Fermi level in a neighboring Pu nu-
cleus makes thus more favorable to form a (2−, 3−) doublet
with the proton state 5/2+[642] of particle character and a
1/2− neutron near the Fermi level of 240Pu. As displayed in
Fig. 13, the nearest 1/2− neutron state is 1/2−[501], just be-
low the N = 142 shell gap. Blocking this neutron state and the
5/2+[642] proton eventually gives a (2−, 3−) doublet with an
excitation energy of a little bit less than 300 keV, hence much
lower than the one based on the proposed (1/2+[620] ↑)n

(5/2−[523] ↓)p configuration. Not surprisingly it is also cal-
culated to lie well below the (2+, 3+) doublet based on
the (1/2−[501] ↓)n (5/2−[523] ↓)p, as a consequence of the

inversion of the two 5/2 proton states. However, it is re-
markable that the energy splittings in the (2−, 3−) doublets
built on (1/2−[501] ↓)n(5/2+[642] ↑)p and (1/2+[620] ↑)n

(5/2−[523] ↓)p are virtually the same. Part of the reason
could be that both configurations lead to spin antialignment
in the 3− state.

250Bk nucleus. The spectrum of this nucleus is shown
in Figure 16, with an energy scale much less compressed
than in previous spectra. This nucleus is particularly inter-
esting because it has one more neutron than the “deformed
magic number” N = 152 so that the unpaired (blocked) neu-
tron state falls into a region of very high level density as
one can infer from the neutron single-particle level spec-
trum of 250Cf in Fig. 13. In contrast the proton level density
just below the Z = 98 gap in the single-particle spectrum is
low. Therefore many configurations can be expected to yield
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FIG. 15. Same as Fig. 5 for the 238Np and 240,242,244Am nuclei.

Gallagher-Moszkowski doublets at low excitation energies, so
that comparison with experiment will prove to be a demanding
test of the model.

The experimentally observed doublets all involve a neutron
state just above the N = 152 shell gap, namely 1/2+[620],
3/2+[622], and 7/2+[613] (they are among the five levels
grouped near e = −5 MeV in the single-particle spectrum
of 250Cf). On the proton side, the observed doublets involve
either the 3/2−[521] state (of hole character in 250Cf) or the

7/2+[633] state (of particle character in 250Cf). Among these
doublets, the lowest lying one includes the ground state 2− of
250Bk and is interpreted as a (1/2+[620] ↑)n (3/2−[521] ↑)p

two-quasiparticle configuration. Although Fig. 16 seems to
exhibit large discrepancies between theory and experiment
for some states, our calculations reproduce extremely well the
excited 2− state among the nine considered excited states and
produce the eight other excited states with less than 350 keV
excitation energy.
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FIG. 16. Same as Fig. 5 for the 250Bk nucleus.

Moreover, the largest discrepancy between the experimen-
tal excitation energy and the calculated one is about 200 keV.
It occurs in the (4+, 3+) and (7+, 0+) doublets, whereas in the
other doublets the discrepancy is below 80 keV or so, which
would look very good at the scale of the previous spectra.
The particularly low excitation energies of these doublets
make less justified the conclusions that can be drawn about
the energy width of the Z = 98 gap because beyond mean-
field correlations could have an effect of the same order of
magnitude as the above discrepancies. However, the energy
difference between the (4+) and (7+) states being well repro-
duced, we can deduce that the (small) energy spacing between
the 1/2+[620] and 7/2+[613] neutron single-particle states is
correct.

IV. GALLAGHER-MOSZKOWSKI ENERGY SPLITTING

We now focus on the energy splitting �EGM in Gallagher-
Moszkowski doublets studied in the previous section.
We recall that it is defined as the difference between the
excitation energies of the spin-antialigned and spin-aligned
configurations, �EGM = E↑↓ − E↑↑, and that it should be
positive according to the Gallagher-Moszkowski rule [3].
This quantity strongly depends on the two-quasiparticle
configuration on which the doublet is built and is a relative
excitation energy, so we expect it to be weakly dependent

of the potential discrepancies between the calculated and
measured energy spectra of odd-odd nuclei.

A. Self-consistent blocking

The �EGM values resulting from the self-consistent block-
ing calculations reported in the previous section are displayed
in the column “SCB” of Table I.

The first global observation that can be made relates to
the sign of the calculated �EGM values. For the lighter rare-
earth nuclei considered in this work, from 154Eu to 172Tm,
the calculated Gallagher-Moszkowski energy splittings are all
positive except in four cases. Out of these four exceptions
three correspond to a very small value of |�EGM| < 3 keV
and one (in 158Tb) is such that |�EGM| ≈ 25 keV. One can
thus conclude that our calculations are in an overall qualita-
tive agreement with the empirical rule in all five investigated
nuclei. More quantitatively this corresponds to an about 80%
of agreement with experiment. In contrast, in the other studied
rare-earth-and-beyond nuclei, from 174Lu to 180Ta, we find
eight cases with �EGM � 0 out of 24 experimentally observed
doublets in these Lu and Ta nuclei, hence a percentage of
agreement of about 66% in this mass region. Finally, in the
studied actinides, from 230Pa to 250Bk, the sign of the energy
splitting �EGM is much better reproduced than in the Lu
and Ta doublets, with only four discrepant cases out of a
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TABLE I. Energy difference �EGM between spin-antialigned and spin-aligned states of Gallagher-Moszkowski doublets. The column
labeled “Total” corresponds to �E (pert)

GM whereas the contributions �E (t0 )
GM, �E (t3 )

GM, �E (t1+t2 )
GM , and �E (W )

GM defined in Eqs. (3a) to (3d) are reported
in the four preceding columns. Experimental data are taken from references quoted in the last column. In 178Ta the ground state of taken to be
the 7− state as in Refs. [28,29] and we use the excitation energy of the 1+ isomer estimated from systematics 100 keV given by Ref. [29].

�EGM (keV)

Perturb.

Nucleus Configuration (K↑↑, K↑↓)π t0 t3 t1 + t2 W Total SCB Exp. Refs.

154Eu (11/2−[505] ↑ 93%)n(5/2+[413] ↓ 84%)p (3, 8)− 281.1 −140.1 −135.4 47.3 53.0 21.7 145.3 [32–34]
154Eu (3/2+[651] ↑ 35%)n(5/2+[413] ↓ 83%)p (1, 4)+ 117.9 −64.3 −42.2 0.7 12.1 −2.8 131.905
154Eu (3/2−[521] ↑ 55%)n(5/2+[413] ↓ 83%)p (1, 4)− 119.4 −41.9 −42.5 0.0 35.0 18.9 152.459
154Eu (3/2−[521] ↑ 54%)n(3/2+[411] ↑ 58%)p (3, 0)− 290.4 −155.0 74.5 9.3 219.3 203.8 39.7488
156Eu (5/2+[642] ↑ 53%)n(5/2+[413] ↓ 84%)p (0, 5)+ 183.6 −96.1 −75.5 12.6 24.6 −0.8 145.682 [35]
156Eu (3/2−[521] ↑ 56%)n(5/2+[413] ↓ 83%)p (1, 4)− 119.4 −42.5 −42.5 0.0 34.5 20.4 127.441
156Eu (5/2+[642] ↑ 53%)n(5/2−[532] ↑ 60%)p (5, 0)− 336.5 −154.5 139.4 4.5 325.9 264.6 68.1036
156Eu (3/2−[521] ↑ 56%)n(5/2−[532] ↑ 60%)p (4, 1)+ 123.8 −46.9 45.3 −3.4 118.8 94.6 116.154
158Tb (3/2−[521] ↑ 55%)n(3/2+[411] ↑ 59%)p (3, 0)− 299.2 −160.5 74.7 8.5 221.9 207.5 110.3 [25]
158Tb (5/2+[642] ↑ 53%)n(3/2+[411] ↑ 59%)p (4, 1)+ 110.0 −46.1 19.2 −4.1 79.1 56.8 123.86
158Tb (11/2−[505] ↑ 92%)n(3/2+[411] ↑ 60%)p (7, 4)− 162.4 −64.8 25.3 −12.5 110.4 90.8 107.01
158Tb (3/2+[402] ↓ 74%)n(3/2+[411] ↑ 60%)p (0, 3)+ 286.1 −152.6 −75.7 −32.7 25.1 −25.4 181.9
158Tb (1/2+[640] ↑ 25%)n(3/2+[411] ↑ 58%)p (2, 1)+ 48.2 −23.4 4.6 4.1 33.5 17.7 60.9
158Tb (3/2−[521] ↑ 54%)n(7/2+[404] ↓ 87%)p (2, 5)− 101.2 −39.5 −27.1 10.5 45.1 32.6 108
160Tb (3/2−[521] ↑ 55%)n(3/2+[411] ↑ 59%)p (3, 0)− 299.2 −161.7 74.7 8.5 220.7 210.3 79.0925 [36]
160Tb (5/2−[523] ↓ 73%)n(3/2+[411] ↑ 59%)p (1, 4)− 141.5 −56.2 −43.3 −16.3 25.7 8.6 193.855
160Tb (5/2+[642] ↑ 52%)n(3/2+[411] ↑ 59%)p (4, 1)+ 110.0 −46.7 19.2 −4.1 78.5 54.7 74.6254
160Tb (5/2+[642] ↑ 52%)n(5/2+[413] ↓ 83%)p (0, 5)+ 185.8 −99.0 −75.3 11.6 23.1 −2.6 203.371
172Tm (5/2−[512] ↑ 73%)n(1/2+[411] ↓ 65%)p (2, 3)− 400.9 −208.0 −80.4 58.6 171.1 92.9 62.529 [37]
172Tm (1/2−[521] ↓ 54%)n(1/2+[411] ↓ 64%)p (1, 0)− 242.0 −122.7 45.6 17.0 181.9 171.1 68.108
172Tm (5/2−[512] ↑ 73%)n(7/2−[523] ↑ 77%)p (6, 1)+ 143.2 −57.2 51.6 −6.2 131.4 106.7 133.862 [38]
174Lu (5/2−[512] ↑ 72%)n(7/2+[404] ↓ 92%)p (1, 6)− 139.0 −56.7 −55.7 −2.5 24.1 9.1 170.83 [39]
174Lu (7/2+[633] ↑ 71%)n(7/2+[404] ↓ 92%)p (0, 7)+ 197.3 −106.6 −99.5 6.2 −2.6 −29.3 150.242
174Lu (1/2−[521] ↓ 51%)n(7/2+[404] ↓ 92%)p (4, 3)− 86.6 −37.4 12.8 8.0 70.0 55.1 67.697
174Lu (5/2−[512] ↑ 72%)n(9/2−[514] ↑ 87%)p (7, 2)+ 257.5 −99.5 67.4 −4.6 220.8 151.3 104.1
176Lu (7/2−[514] ↓ 86%)n(7/2+[404] ↓ 91%)p (7, 0)− 305.6 −163.1 180.5 10.7 333.7 314.6 236.908 [40]
176Lu (7/2−[514] ↓ 85%)n(9/2−[514] ↑ 86%)p (1, 8)+ 487.9 −251.9 −246.8 8.9 −1.9 −145.4 293.482
176Lu (9/2+[624] ↑ 83%)n(7/2+[404] ↓ 91%)p (1, 8)+ 269.0 −141.7 −137.8 19.9 9.3 −39.7 86.0468
176Lu (7/2−[514] ↓ 86%)n(5/2+[402] ↑ 69%)p (1, 6)− 159.1 −69.0 −61.8 −11.6 16.6 4.6 177.357
176Lu (5/2−[512] ↑ 70%)n(7/2+[404] ↓ 91%)p (1, 6)− 139.0 −57.7 −55.7 −2.5 23.1 7.7 127.911
176Lu (7/2−[514] ↓ 86%)n(1/2−[541] ↓ 33%)p (4, 3)+ 42.7 −23.3 18.1 6.3 43.8 37.0 99.162
176Lu (1/2−[510] ↑ 65%)n(7/2+[404] ↓ 91%)p (3, 4)− 117.6 −49.1 −2.5 2.8 68.9 49.3 129.779
176Lu (7/2−[514] ↓ 87%)n(1/2+[411] ↓ 61%)p (4, 3)− 267.5 −123.0 34.3 8.1 186.9 130.5 120.506
176Lu (9/2+[624] ↑ 83%)n(5/2+[402] ↑ 70%)p (7, 2)+ 141.8 −59.7 38.1 −3.0 117.1 86.9 132.323
176Lu (3/2−[512] ↓ 71%)n(7/2+[404] ↓ 91%)p (5, 2)− 139.2 −58.5 42.6 2.3 125.5 90.9 194.861
176Lu (1/2−[521] ↓ 49%)n(7/2+[404] ↓ 91%)p (4, 3)− 86.6 −37.9 12.8 8.0 69.5 52.5 49.642
176Lu (7/2−[514] ↓ 86%)n(7/2−[523] ↑ 76%)p (0, 7)+ 292.8 −152.7 −140.3 15.0 14.8 −41.4 217.5
178Lu (9/2+[624] ↑ 82%)n(7/2+[404] ↓ 91%)p (1, 8)+ 264.8 −139.0 −134.6 20.8 12.0 −38.3 187 [28,41]
178Ta (7/2−[514] ↓ 86%)n(5/2+[402] ↑ 67%)p (1, 6)− 159.1 −69.6 −60.8 −10.9 17.8 6.2 188.1 [28,42]
178Ta (7/2−[514] ↓ 86%)n(9/2−[514] ↑ 86%)p (1, 8)+ 478.3 −247.9 −237.9 10.5 3.0 −141.0 100 [29]
180Ta (9/2+[624] ↑ 81%)n(7/2+[404] ↓ 90%)p (1, 8)+ 264.8 −140.4 −134.6 20.8 10.6 −36.9 177.87 [43]
180Ta (9/2+[624] ↑ 82%)n(9/2−[514] ↑ 85%)p (9, 0)− 310.9 −151.9 173.5 −10.8 321.7 264.1 30.58
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TABLE I. (Continued.)

�EGM (keV)

Perturb.

Nucleus Configuration (K↑↑, K↑↓)π t0 t3 t1 + t2 W Total SCB Exp. Refs.

180Ta (7/2−[514] ↓ 86%)n(9/2−[514] ↑ 85%)p (1, 8)+ 478.3 −251.0 −237.9 10.5 −0.2 −138.4 195.57
180Ta (9/2+[624] ↑ 83%)n(5/2+[402] ↑ 66%)p (7, 2)+ 138.6 −59.4 37.3 −3.2 113.3 80.9 202.49
180Ta (5/2−[512] ↑ 68%)n(7/2+[404] ↓ 90%)p (1, 6)− 140.5 −60.6 −55.3 −4.3 20.3 3.7 151.43
230Pa (5/2−[503] ↓ 52%)n(1/2−[530] ↑ 24%)p (2, 3)+ 54.3 −23.8 −4.1 −16.7 9.7 5.4 148 [31,44]
230Pa (3/2+[631] ↑ 33%)n(1/2−[530] ↑ 24%)p (2, 1)− 358.2 −204.0 5.1 71.1 230.3 169.7 259
230Pa (5/2+[633] ↓ 57%)n(1/2−[530] ↑ 24%)p (2, 3)− 125.0 −57.6 −4.0 1.0 64.4 42.4 109
230Pa (1/2+[631] ↓ 29%)n(1/2−[530] ↑ 24%)p (0, 1)− 214.5 −111.7 −3.3 −59.9 39.5 −27.9 139
230Pa (1/2−[501] ↓ 37%)n(1/2−[530] ↑ 24%)p (0, 1)+ 105.8 −59.1 −2.0 −7.1 37.6 25.5 201
230Pa (3/2−[741] ↑ 29%)n(1/2−[530] ↑ 21%)p (2, 1)+ 122.6 −47.4 3.1 3.6 81.8 43.4 138
234Pa (7/2−[743] ↑ 52%)n(1/2−[530] ↑ 22%)p (4, 3)+ 149.9 −61.1 2.6 −2.3 89.1 52.4 73.92 [45,46]
234Pa (1/2+[631] ↓ 30%)n(1/2−[530] ↑ 22%)p (0, 1)− 225.3 −120.9 −3.2 −60.1 41.1 −10.0 92.38 [45–47]
238Np (1/2+[631] ↓ 33%)n(5/2+[642] ↑ 38%)p (2, 3)+ 110.4 −46.0 −17.9 2.5 49.0 25.2 86.6738 [48]
238Np (1/2+[631] ↓ 33%)n(5/2−[523] ↓ 69%)p (3, 2)− 89.5 −37.1 16.6 1.2 70.3 47.8 46.8325
238Np (1/2+[631] ↓ 32%)n(1/2−[530] ↑ 21%)p (0, 1)− 252.6 −135.5 −3.1 −59.1 55.0 −10.7 155.735
240Am (1/2+[631] ↓ 34%)n(5/2−[523] ↓ 69%)p (3, 2)− 89.5 −37.6 16.7 1.2 69.8 47.9 53 [49]
240Am (1/2−[501] ↓ 43%)n(5/2−[523] ↓ 69%)p (3, 2)+ 66.1 −31.7 7.7 −1.5 40.6 34.9 43
242Am (5/2+[622] ↑ 46%)n(5/2−[523] ↓ 68%)p (0, 5)− 158.7 −75.8 −60.3 −32.8 −10.2 −59.7 4.508 [50]
242Am (1/2+[631] ↓ 33%)n(5/2−[523] ↓ 68%)p (3, 2)− 90.0 −37.9 16.3 1.4 69.8 47.2 48.48
242Am (1/2+[631] ↓ 32%)n(5/2+[642] ↑ 36%)p (2, 3)+ 111.2 −46.6 −17.5 2.0 49.1 24.7 32.49
242Am (1/2+[620] ↑ 37%)n(5/2−[523] ↓ 69%)p (2, 3)− 142.9 −70.5 −2.8 −1.9 67.7 32.9 28.42
242Am (1/2−[501] ↓ 43%)n(5/2+[642] ↑ 36%)p (2, 3)− 52.0 −27.1 −5.2 1.4 21.0 21.9 28.42
242Am (1/2−[501] ↓ 43%)n(5/2−[523] ↓ 68%)p (3, 2)+ 65.5 −31.8 7.8 −1.6 39.9 33.6 −36
244Am (7/2+[624] ↓ 75%)n(5/2−[523] ↓ 68%)p (6, 1)− 389.2 −219.3 145.5 33.5 348.9 315.5 177.2 [51,52]
250Bk (1/2+[620] ↑ 38%)n(3/2−[521] ↑ 30%)p (2, 1)− 204.2 −105.6 4.4 33.8 136.7 97.1 103.83 [53]
250Bk (1/2+[620] ↑ 38%)n(7/2+[633] ↑ 52%)p (4, 3)+ 91.2 −38.2 2.6 −0.3 55.3 39.6 80.06
250Bk (7/2+[613] ↑ 51%)n(7/2+[633] ↑ 53%)p (7, 0)+ 82.5 −36.7 34.0 −4.3 75.5 59.6 129.94
250Bk (7/2+[613] ↑ 51%)n(3/2−[521] ↑ 30%)p (5, 2)− 109.1 −55.7 36.0 14.0 103.4 97.1 48.94
250Bk (3/2+[622] ↓ 45%)n(7/2+[633] ↑ 52%)p (2, 5)+ 111.4 −47.2 −30.1 1.6 35.7 19.5 104.64

total of 25 experimentally observed doublets (84% of agree-
ment), slightly better than in the lighter studied rare-earth
nuclei.

Another global observation about the calculated energy
splittings relates to their amplitude. In the majority of cases
we obtain �EGM between 0 and 100 keV, but it can reach
300 keV in doublets with a large difference in K values. The
cases breaking the Gallagher-Moszkowski rule correspond to
|�EGM| � 50 keV except for one doublet (1+, 8+) in three
nuclei (176Lu, 178,180Ta) for which �EGM ≈ −140 keV.

To better understand these observations and try to unravel
the mechanism of energy splitting in Gallagher-Moskkowski
doublets within the Skyrme energy-density functional frame-
work, we consider a perturbative approach to blocking.

B. Perturbative blocking

Perturbative blocking corresponds to performing one
Hartree-Fock-BCS iteration with blocking on top of the

converged ground-state solution of a neighboring even-even
nucleus (called a “core”). Therefore there is some arbitrariness
in the choice of this even-even core among four possible
neighboring even-even nuclei. Because we selected the stud-
ied odd-odd nuclei as being neighbors of chosen even-even
ones, as shown in Figs. 2 and 3, we decide to choose the cores
among these doubly even nuclei. Table II lists the retained
even-even cores.

The observable we are studying is essentially dependent on
the neutron and proton single-particle wave functions involved
in the blocked configuration. Indeed we find that, assuming
perturbative blocking,

�EGM = 〈np|V̂Sk|ñp〉, (1)

where V̂Sk is the Skyrme effective potential (including the
density-dependent term with the nucleon density of the core),
|n〉 is the blocked neutron single-particle state, |p〉 is the time
reversal of the proton blocked state and |ñp〉 = |np〉 − |p n〉.
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TABLE II. List of the retained even-even core for
each studied odd-odd nucleus.

Odd-odd nuclei Even-even core

154,156Eu 156Gd
158,160Tb 158Gd
172Tm, 174,176Lu 174Yb
178Lu, 178,180Ta 178Hf
230Pa 230Th
234Pa 232Th
240Am 240Pu
242,244Am 242Pu
250Bk 250Cf

Therefore we expect that the dependence of the perturbatively
calculated �EGM on the core is weak.

First we check whether calculations with perturbative
blocking on top of the mean field of a neighboring even-
even nucleus lead to an energy splitting, denoted by �E (pert)

GM ,
comparable to the one obtained with self-consistent block-
ing, denoted by �E (SCB)

GM . Table I displays the �EGM values
obtained with perturbative (in the column labeled “Total”)
and self-consistent blocking (in the column labeled “SCB”)
for all the 70 Gallagher-Moszkowski doublets considered in
the present work, and Fig. 17 shows the correlation plot of
�E (pert)

GM and �E (SCB)
GM for all these doublets as well as the lin-

ear regression equation and correlation coefficient. The latter
is found to be almost equal to 1, whereas three outliers are

FIG. 17. Correlation plot of �E (SCB)
GM as a function of �E (pert)

GM

for the 70 Gallagher-Moszkowski doublets considered in the present
work. The correlation coefficient of the linear regression is denoted
by “corr”.

clearly visible in the plot. These outliers correspond precisely
to the (1+, 8+) doublet in the three aforementioned nuclei
176Lu and 178,180Ta. Moreover the intercept in the equation of
linear regression is calculated to be about −33 keV, which
means that the �EGM value calculated with self-consistent
blocking tends to be a bit smaller than the one obtained
with perturbative blocking. Thus in most cases �E (SCB)

GM and
�E (pert)

GM have the same sign and order of magnitude, and the
discrepancies occur in doublets for which the splitting is small
(below a few tens of keV). This statistic analysis establishes
the relevance of perturbative calculations to investigate the
mechanism of Gallagher-Moszkowski splitting. This will be
done in the next subsection through an analysis of the con-
tributions to �EGM from the various terms of the Skyrme
energy-density functional.

C. Mechanism of the Gallagher-Moszkowski splitting

We now address the mechanism by which the
Gallagher-Moszkowski energy splitting �EGM occurs in
the perturbative-blocking framework. In the Appendix we
derive the following expressions of the contributions of the
Skyrme EDF to �EGM:

�E (pert)
GM = �E (t0 )

GM + �E (t3 )
GM + �E (t1+t2 )

GM + �E (W )
GM , (2)

where

�E (t0 )
GM = −t0 x0

∫
d3r sn · sp, (3a)

�E (t3 )
GM = − t3

6

∫
d3r ρα sn · sp, (3b)

�E (t1+t2 )
GM = (t1 + t2)

∫
d3r jn · jp, (3c)

�E (W )
GM = W

∫
d3r (sn · ∇ × jp + sp · ∇ × jn). (3d)

By definition sn and sp are the neutron and proton local spin
densities of the neutron-spin-up–proton-spin-up configuration
(which is thus spin aligned). Similarly jn and jp are the neu-
tron and proton local current densities in this configuration.
Therefore the central �E (t0 )

GM and density-dependent �E (t3 )
GM

zero-range contributions have the signs of −t0x0 and −t3, re-
spectively. According to the values of the SIII parameters, one
always has �E (t0 )

GM > 0 and �E (t3 )
GM < 0. The signs of �E (t1+t2 )

GM

and �E (W )
GM , in which t1 + t2 > 0 and W > 0, depend, in

contrast, on the spin and orbital contents of the blocked
states.

The numerical results for the various contributions to
�EGM in the perturbative-blocking calculations are displayed
in Table I, and are compared with the Gallagher-Moszkowski
energy splittings obtained with self-consistent blocking. Sev-
eral systematic trends in perturbative results emerge from the
large number of considered doublets:

(i) �E (t0 )
GM and �E (t3 )

GM are the largest two contributions in
absolute value and are related by �E (t0 )

GM ≈ −2 �E (t3 )
GM,

so that the sum of these two contributions is al-
ways positive, of the order of �E (t0 )

GM + �E (t3 )
GM ≈ 50 to

150 keV.
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(ii) The �E (t1+t2 )
GM contribution is positive whenever the

spin-antialigned configuration corresponds to the
smaller of the two K values; in other words, when the
lower-lying configuration has the larger K value.

(iii) The �E (W )
GM contribution is small (less than 25 keV

in absolute value) in most configurations, with ten
exceptions only for which |�E (W )

GM | ranges from about
35 to 70 keV.

The first two points can be substantiated by the correlation
plots of Fig. 18.

The main conclusion from these observations is that the
Gallagher-Moszkowski rule is always satisfied in doublets
for which the spin-aligned configuration corresponds to the
larger K value. This is so because the t1 + t2 (central gradient)
positive contribution adds up to the zero-range contributions,
and is not counterbalanced by the too small spin-orbit contri-
bution.

It is possible to go further in the analysis of the contribu-
tions to �EGM of each term of the Skyrme effective potential
if we approximate the neutron spin-up state |n〉 and proton
spin-up state |p〉 of the corresponding blocked levels (see their
definition in the Appendix) by the dominant axially deformed
harmonic-oscillator basis state characterized by the Nilsson
quantum numbers Nq, nz,q, �q, and 	q. Under this approxi-
mation we establish in the Appendix that

(i) �E (t0 )
GM and �E (t3 )

GM are respectively proportional to and
of the sign of −t0x0	n	p and − t3

6 	n	p;
(ii) �E (t1+t2 )

GM is proportional to and of the sign of (t1 +
t2)�n�p;

(iii) �E (W )
GM is proportional to and of the sign of W (�n −

�p)Ipn, where Ipn is an integral over R+ involving
products of generalized Laguerre polynomials and
their first derivatives defined by Eq. (A24b).

Because x0 > 0 and the t0 term of the Skyrme ef-
fective potential is the dominant and attractive term, it
always tends to satisfy the Gallagher-Moszkowski rule. The
density-dependent term being repulsive, it always tends to
counterbalance the �E (t0 )

GM term as already noticed by Robledo,
Bernard, and Bertsch within the Gogny EDF [10].

Moreover K↑↑ = �n + �p + 1 while K↑↓ = �n − �p. If
�n and �p have the same sign, then |K↑↓| < |K↑↑| and
�E (t1+t2 )

GM > 0. In other words, the sign of �E (t1+t2 )
GM is the

sign of 	kn	kp , where kn and kp are such that �kn > 0 and
�kp > 0. This explains the above conclusion that our calcula-
tions comply with the Gallagher-Moszkowski rule in doublets
for which the larger |K| value occurs in the spin-aligned
configuration. In addition, this explains why �E (t1+t2 )

GM is very
small in absolute value (a few keV) for doublets involving
blocked states with � = 1/2 and large for doublets in which
�n and �p are large. The magnitude of �E (t1+t2 )

GM also de-
pends on the overlap of neutron and proton wave functions.
Because of the large �q values involved and because neu-
trons and protons spatial wave functions are the same in
the (7/2−[514] ↓)n(9/2−[514] ↑)p configuration, the energy
splitting in the (1, 8)+ doublet is thus negative and especially

FIG. 18. Same as Fig. 17 for the correlation between �E (t0 )
GM and

�E (t3 )
GM (upper panel), and between �E (t1+t2 )

GM and �E (SCB)
GM (lower

panel).

large in absolute value. It amounts to �E (t1+t2 )
GM ≈ −240 keV

in 176Lu and 178,180Ta nuclei.
Finally, as shown in the Appendix, the spin-orbit contribu-

tion �E (W )
GM is difficult to analyze because it strongly depends

on the nodal and azimuthal structure of the blocked neutron
and proton wave functions. Its sign cannot be simply related
to the sign of �n − �p [see Eq. (A27)], so we do not comment
on it further.
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V. CONCLUSIONS AND PERSPECTIVES

Within the Skyrme energy-density functional approach,
including BCS pairing correlations with self-consistent
blocking, we calculate the total energy of 70 Gallagher-
Moszkowski doublets of bandheads in rare-earth nuclei
around mass numbers A ≈ 156 and 176 as well as in ac-
tinide nuclei around mass numbers A ≈ 230, 240 and 250.
Each bandhead state is described as a one-neutron, one-proton
blocked configuration, and axial and intrinsic parity symme-
tries are assumed. We use the SIII Skyrme parametrization in
the particle-hole channel and the seniority pairing interaction.
The strengths of the latter interaction for neutrons and for pro-
tons are adjusted using the procedure described in Ref. [20]
and successfully applied in two-quasiparticle K isomers of
actinides in Ref. [13].

First we analyze the bandhead spectra of ten rare-earth
and seven actinide odd-odd nuclei by comparison with exper-
imental data. To determine the level scheme of these nuclei
from the total energies calculated for each bandhead state,
we calculate the excitation energy of a given bandhead state
with respect to the experimental lowest-lying bandhead state.
All calculated doublets but two are obtained with a two-
quasiparticle configuration identical with the one proposed
in the literature to interpret the experimental data. The two
exceptions are the (2+, 1+) doublet of 158Tb with a cal-
culated configuration (1/2+[400])n (3/2+[411])p instead of
(1/2+[620])n(3/2+[411])p, and the (2+, 1+) doublet of 230Pa
with a calculated configuration (3/2−[741])n (1/2−[530])p

instead of (3/2−[501])n (1/2−[530])p. Moreover the typical
discrepancy between the calculated and experimental excita-
tion energies is of the order of 100 to 200 keV, which shows
the overall relevance of the calculated single-particle spectra.
However there are a few exceptions with large discrepan-
cies which are interpreted by misplaced single-particle states.
These occur in particular, but not only, around an exceeding
shell gap, such as the N = 142 and N = 152 gaps in actinides.
Also an inversion of 5/2+ and 5/2− proton states is observed
across the Z = 94 gap.

Then we focus on the energy difference �EGM between the
two members of a Gallagher-Moszkowski doublet and address
the mechanism in the Skyrme-EDF framework by which the
Gallagher-Moszkowski rule operates. To do so, we first es-
tablish the relevance of a study based on calculations with
perturbative blocking as compared to self-consistent block-
ing and then analyze the contributions to �EGM from the
time-odd part of the Skyrme SIII energy-density functional,
namely the central zero-range �Et0 term, the central gradi-
ent �E (t1+t2 )

GM term, the central zero-range density-dependent
�E (t3 )

GM term, and the zero-range spin-orbit �E (W )
GM term. Given

the signs of the involved SIII parameters, we show that the
Gallagher-Moszkowski rule is always satisfied in doublets
for which the spin-aligned configuration corresponds to the
larger K value. This is so because the �E (t1+t2 )

GM contribution
is positive in that case and adds up to the zero-range contribu-
tions, and is not counterbalanced by the too small spin-orbit
contribution. More precisely, we find that �E (t0 )

GM and �E (t3 )
GM

are the largest two contributions in absolute value and are

approximately related by �E (t0 )
GM ≈ 2 �E (t3 )

GM, so that the sum
of these two contributions is always positive, of the order
of �E (t0 )

GM + �E (t3 )
GM ≈ 50 to 150 keV. They can be counter-

balanced, and sometimes exceeded in absolute value, by the
�E (t1+t2 )

GM contribution only when the spin-aligned member
of a doublet corresponds to the lower of the two K val-
ues. This mechanism can be anticipated from the dominant
Nilsson quantum numbers of the two-quasiparticle configura-
tion of the doublet, when the involved single-particle wave
functions are not too much fragmented in the cylindrical
harmonic-oscillator basis. If �q[Nqnz,q�q] denote the Nilsson
quantum numbers of the dominant contribution to the charge
state q, with �q > 0 by definition, then cases likely to break
the Gallagher-Moszkowski rule are such that (i) 	n	p < 0,
where 	q = �q − �q is the spin projection on the symmetry
axis, and (ii) �n�p is large (this product is always positive or
vanishing by definition of �q).

While the above conclusions are derived from the Skyrme
SIII parametrization, a similar study using other parametriza-
tions could be attempted to highlight the interplay between the
various terms entering the Skyrme EDF. Indeed, in the above
perturbative approach, the contributions to �EGM arise from
the time-odd terms of the Skyrme EDF and are proportional
to combinations of the Skyrme parameters for fixed local
densities. Moreover we recall that the s · T terms, involving
the spin-kinetic T local density in the notation of Ref. [54],
the

∑
μ,ν J2

μν terms, involving the spin-current Jμν local den-
sity, and the s · �s terms are neglected in our so-called
“minimal” scheme (as explained in Refs. [17,19]). There-
fore different Skyrme parametrizations might yield different
competition mechanisms between the time-odd terms. A com-
parative study of various Skyrme energy-density functionals
would thus allow to potentially reveal general features of the
Gallagher-Moszkowski energy splitting with the Skyrme-EDF
approach. It is worth mentioning that a similar detailed work,
pushing further the analysis made by Robledo, Bernard, and
Bertsch [10], is in principle possible for Gogny-type energy-
density functionals if the Gogny effective potential is broken
down into partial-wave terms. Indeed in such an expansion,
the S-wave terms would include the central zero-range t0
and t3 terms of the Skyrme effective potential, whereas the
P-wave terms would include the central gradient t1 + t2 SIII
term and the zero-range spin-orbit term. It would then be
interesting to compare with the corresponding Skyrme terms
and to quantify the contribution to �EGM of D-wave terms and
beyond.

In the framework of mean-field type of approaches, the
present study has two main limitations: the nuclear shapes are
restricted by intrinsic axial and parity symmetries on the one
hand, and particle-number nonconserving treatment of pairing
correlations on the other hand. Indeed some nuclei fall in mass
regions of observed octupole deformation, essentially the
A ≈ 230 nuclei considered here. The case of 154Eu is unclear
as this nucleus does exhibit parity doublet bands but static
octupole deformation is not supported according to Ref. [22].
However, octupole vibrations should play a role in the low-
energy structure of this odd-odd nucleus [8]. In contrast,
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no triaxial static deformation is expected in the considered
sample of nuclei. Therefore a natural extension of the present
study is to repeat the above analysis with axial and reflection-
asymmetric Skyrme-EDF solutions. Regarding the treatment
of pairing correlations, it is known that particle-number non-
conserving Bogoliubov approach, including its presently used
BCS approximation, fail in weak pairing regimes. This hap-
pens in particular in BCS calculations with the blocking
procedure because the blocked energy levels are excluded
from pairing correlations. This calls for a particle-number
conserving description of multiquasiparticle states, such as the
particle-number projection [55–61], an equation-of-motion
method for the pairing-density matrix operators in Heisenberg
representation [62], or a multiparticle-multihole configuration
mixing [63–65].

More generally the coupling of single-particle and col-
lective motions is not taken into account in our approach
and contributes in the structure of low-lying states of odd-
odd nuclei. That is especially true for K = 0 states. They
deserve to be addressed to assess their potential role in
the Gallagher-Moszkowski splitting mechanism. This could
be done in a fully microscopic way within the generator
coordinate method based on symmetry-restored mean-field
intrinsic states based on the Gogny EDF [66,67], the Skyrme
EDF [68–70], the covariant density functional theory [71–73],
or in an ab initio framework [74], but this is challenging
from the computational point of view. A simpler approach
would be a semimicroscopic framework relying on the Bohr-
Mottelson unified model in which the intrinsic wave function
would be, for example, of the Hartree-Fock-Bogoliubov
type (at the price of some redundancy in the collective
variables). This framework would allow to incorporate at
once the core polarization in the intrinsic wave functions
and the particle-rotation, particle-vibration, rotation-vibration
couplings, hence restoring intrinsic symmetry breaking in
a less demanding way than in the fully microscopic
approach.

Finally, despite the above mentioned limitations, the
present work, through the evidenced mechanism of Sec. IV,
may serve to put constraints on the parameters entering the
time-odd terms of the Skyrme energy-density functional.
Moreover the study of excitation energies of nuclear states
of multiquasiparticle nature, as done in this paper, may pro-
vide information on the ordering of the single-particle levels
which is important to identify the location of deformed
magic numbers. This is especially relevant in the rare-earth
region to locate waiting points in the nucleosynthesis r
process.
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APPENDIX: DERIVATION OF THE GALLAGHER-
MOSZKOWSKI ENERGY SPLITTING

IN SKYRME EDF

Let us denote by {|ψ (q)
k 〉, |ψ (q)

k
〉, k = 1, 2, . . . } the single-

particle (canonical) basis for the charge state q = n (neutrons)
or p (protons) in the Skyrme-Hartree-Fock-BCS ground state
solution of the underlying even-even (N − 1, Z − 1) nucleus.
The state |ψ (q)

k
〉 is the time-reversed partner of |ψ (q)

k 〉. By
convention, the quantum number �k is the positive eigenvalue
in h̄ unit of Ĵz (projection on the z axis of the total angular
momentum) for the eigenstate |ψ (q)

k 〉, hence

Ĵz

∣∣ψ (q)
k

〉 = �k

∣∣ψ (q)
k

〉
and Ĵz

∣∣ψ (q)
k

〉 = −�k

∣∣ψ (q)
k

〉
. (A1)

Owing to time-reversal symmetry, the local spin density
s(e−e)

q (r) in the ground state of this even-even nucleus van-
ishes:

s(e−e)
q (r) =

∑
k>0

v2
k

([
ψ

(q)
k

]†
(r) σ

[
ψ

(q)
k

]
(r)

+ [
ψ

(q)
k

]†
(r) σ

[
ψ

(q)
k

]
(r)

) = 0, (A2)

where [ψk](r) is the spinor at the space point of coordinate
vector r associated with the state |ψk〉, v2

k are the BCS oc-
cupation probabilities such that

∑
k>0 v2

k = N − 1 or Z − 1
according to the charge index q, and σ = (σx, σy, σz ) is the
triplet of Pauli matrices.

In the odd-odd nucleus (N , Z) described by perturbative
blocking, the local spin density s(o−o)

q (r) takes the simple form

s(o−o)
q (r) = s(e−e)

q (r) + s(iq )
q (r) = s(iq )

q (r), (A3)

where the index iq of the blocked state denotes either an
index kq, hence �iq > 0, or the time-reversed partner kq so

that �iq < 0. The individual local spin density s(iq )
q (r) is the

contribution from the unpaired, blocked state |ψ (q)
iq

〉

s(iq )
q (r) = [

ψ
(q)
iq

]†
(r) σ

[
ψ

(q)
iq

]
(r). (A4)

Because of the time-odd character of the spin density, we have

s(kq )
q (r) = −s(kq )

q (r). (A5)

It is worth recalling that, by definition of the local spin density,
the integral over space of its component along the z axis
(nucleus’s symmetry axis) is twice the expectation value of
the projection Ŝz of the spin angular momentum (in h̄ unit)∫

d3r s
(iq )
z,q (r) = 2

〈
ψ

(q)
iq

∣∣̂Sz

∣∣ψ (q)
iq

〉
. (A6)

Let us call |q〉 the state among the Kramers degenerate pair
of states |ψ (q)

kq
〉 and |ψ (q)

kq
〉 such that 〈q|̂Sz|q〉 > 0. The actual

blocked state of charge q is thus either |q〉 or its time-reversed
partner |q〉. Then we call sq the local spin density of the state
|q〉. Regardless of the �n and �p quantum numbers, we thus
have by construction 〈n|̂Sz|n〉 × 〈p|̂Sz|p〉 > 0. According to
Ref. [17], this leads to

∫
d3r sn · sp > 0. In the Gallagher-

Moszkowski doublet built from the neutron |ψ (n)
in

〉 and proton

|ψ (p)
ip

〉 blocked states, the spin-aligned configuration has a

054303-20



GALLAGHER-MOSZKOWSKI SPLITTING IN DEFORMED … PHYSICAL REVIEW C 109, 054303 (2024)

total local spin density s↑↑ = sn + sp or s↓↓ = −s↑↑, while the
spin-antialigned configuration has a total local spin density
s↑↓ = sn − sp or s↓↑ = −s↑↓. As will be clear below, both
cases of spin alignment and spin antialignment lead to the
same expression of �EGM because of its bilinear character.
We thus choose the combinations s↑↑ and s↑↓. Similar ex-
pressions can be derived for the current density, defined for
a single-particle state |ψ (q)

iq
〉 by

j(iq )
q (r) = Im

([
ψiq

]†
(r)∇[

ψiq

]
(r)

)
. (A7)

We have j↑↑ = jn + jp in the spin-aligned configuration, and
j↑↓ = jn − jp. For the Skyrme EDF in the minimal scheme
(see Sec. II) we thus obtain the following expression of �EGM

in such a perturbative-blocking approach:

�EGM =
∫

d3r [(B10 + B12 ρα ) (s2
↑↓ − s2

↑↑) − B3 (j2
↑↓−j2

↑↑)]

+ B9 (s↑↓ · ∇ × j↑↓ − s↑↑ · ∇ × j↑↑)]. (A8)

After substitution of the spin-aligned and spin-antialigned
local spin and current densities the energy splitting �EGM

becomes

�EGM =−4
∫

d3r [(B10 + B12ρ
α ) sn · sp − B3 jn · jp]

− 2 B9

∫
d3r (sn · ∇ × jp + sp · ∇ × jn). (A9)

The energy-density functional coupling constants B3, B9, B10,
and B12 are related to the Skyrme SIII parameters by (see
Table IX of Ref. [19] or Ref. [54], with x1 = x2 = 0, x3 = 1)

B3 = 1

4
(t1 + t2), B9 = −W

2
,

B10 = 1

4
t0x0, B12 = 1

24
t3. (A10)

This leads to

�EGM = �E (t0 )
GM + �E (t3 )

GM + �E (t1+t2 )
GM + �E (W )

GM (A11)

where

�E (t0 )
GM = −t0 x0

∫
d3r sn · sp, (A12a)

�E (t3 )
GM = − t3

6

∫
d3r ρα sn · sp, (A12b)

�E (t1+t2 )
GM = (t1 + t2)

∫
d3r jn · jp, (A12c)

�EW = W
∫

d3r (sn · ∇ × jp + sp · ∇ × jn). (A12d)

It is possible to go further in the analysis of the contribu-
tions to �EGM of each term of the Skyrme effective potential
if we approximate the neutron spin-up state |n〉 and proton
spin-up state |p〉 of the corresponding blocked levels (see their
definition above) by the dominant axially deformed harmonic-
oscillator basis state:

|q〉 = ∣∣ψ (q)
iq

〉 ≈ C(q)
iq

|Nqnz,q�q	q〉 (q = n or p), (A13)

where C(q)
iq

is the expansion coefficient and by definition
	q = 1/2. It is worth recalling that either iq = kq, in which
case �iq = �q + 	q > 0, or iq = kq, in which case �iq =
�q + 	q < 0. The Nilsson quantum numbers Nq, nz,q, �q,
and 	q of the dominant harmonic-oscillator basis state in the
actual neutron and proton blocked states, together with the
weights |C(q)

iq
|2, are given in Table I. The wave function of the

spatial part |Nnz�〉 of the harmonic-oscillator basis state in
cylindrical coordinates (ρ, ϕ, z) is given by

�Nnz�(ρ, ϕ, z) = N H̃nz (ξ ) L̃(|�|)
nr

(η) ei�ϕ, (A14)

where ξ = βzz, η = (β⊥ρ)2, 2nr + |�| = N − nz, H̃n(ξ ) =
e−ξ 2β2

z /2 Hn(ξ ), L̃(|�|)
nr

(η) = e−η/2η|�|/2L(|�|)
nr

(η), and N is a
real normalization coefficient. Because 〈	|σz|	〉 = 	 and
〈	|σx|	〉 = 〈	|σy|	〉 = 0, we can thus deduce the following
approximate expression for the local spin density associated
with the single-particle state |q〉 of Eq. (A13):

s(iq )
q (r) = ∣∣C(q)

iq

∣∣2(NqH̃nz,q (ξ )L̃(|�|)
nr,q

(η)
)2

	q ez, (A15)

where ez is the unit vector of the symmetry axis. The gradient
of the harmonic-oscillator wave function �Nnz�(r), expressed
in the orthonormal cylindrical basis {eρ, eϕ, ez}, is given
by

∇�Nnz�(r) =N ei�ϕ

[
H̃nz (ξ )

∂L̃(|�|)
nr

∂ρ
eρ

+ i�

ρ
H̃nz (ξ ) L̃(|�|)

nr
(η) eϕ

+ ∂H̃nz

∂z
L̃(|�|)

nr
(η) ez

]
, (A16)

therefore the local current density associated with the single-
particle state |q〉 is orthoradial and reads

j(iq )
q (r) = ∣∣C(q)

iq

∣∣2 Nq �q Fq(ρ, z) eϕ, (A17)

where

Fq(ρ, z) = 1

ρ

[
H̃nz,q (ξ ) L̃

(|�q|)
nr,q (η)

]2
. (A18)

As mentioned, above the single-particle |q〉 is the one among
the Kramers degenerate pair of states |ψ (q)

kq
〉 and |ψ (q)

kq
〉 such

that 〈q|̂Sz|q〉 > 0, therefore we expect that 	q > 0. We can
deduce that, in the approximation of Eq. (A13), �E (t0 )

GM and
�E (t3 )

GM are proportional to 	n	p (expected to be positive):

�E (t0 )
GM ≈ − t0x0

∣∣C(n)
in

∣∣2 ∣∣C(p)
ip

∣∣2
	n 	p

π (NnNp)2

βzβ
2
⊥

×
∫ +∞

−∞
dξ

[
H̃nz,n (ξ ) H̃nz,p (ξ )

]2

×
∫ +∞

0
dη

[
L̃(|�n|)

nr,n
(η)L̃(|�p|)

nr,p (η)
]2

(A19)
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and

�E (t3 )
GM ≈ − t3

6

∣∣C(n)
in

∣∣2 ∣∣C(p)
ip

∣∣2
	n 	p

π (NnNp)2

βzβ
2
⊥

×
∫ +∞

−∞
dξ

∫ +∞

0
dη

[
H̃nz,n (ξ ) H̃nz,p (ξ )

]2

× [
L̃(|�n|)

nr,n
(η)L̃(|�p|)

nr,p (η)
]2

ρα (r); (A20)

whereas �E (t1+t2 )
GM is proportional to �n�p:

�E (t1+t2 )
GM ≈ (t1 + t2)

∣∣C(n)
in

∣∣2 ∣∣C(p)
ip

∣∣2
�n �p

(NnNp)2

2βzβ
2
⊥

×
∫ +∞

−∞
dξ

[
H̃nz,n (ξ ) H̃nz,p (ξ )

]2

×
∫ +∞

0

dη

η

[
L̃(|�n|)

nr,n
(η)L̃(|�p|)

nr,p (η)
]2

. (A21)

To complete this Appendix we also derive the approximate
expression of the spin-orbit contribution �E (W )

GM . To do so
we need to calculate the curl of the current density (A17) in
cylindrical coordinates,

∇ × j(iq )
q (r) = ∣∣C(q)

iq

∣∣2 N 2
q �q

[
1

ρ

∂

∂ρ
(ρ Fq) ez − ∂Fq

∂z
eρ

]
,

(A22)

where Fq was defined by Eq. (A18). The dot product of ∇ ×
j (q)
iq

with the spin density thus involves only the z component,
and we obtain

�E (W )
GM ≈W

∣∣C(n)
in

∣∣2 ∣∣C(p)
ip

∣∣2 2π (NnNp)2

βz

×
∫ +∞

−∞
dξ

[
H̃nz,n (ξ )H̃nz,p (ξ )

]2

× (	n�p Inp + 	p�n Ipn), (A23)

where

Inp =
∫ +∞

0
dη

[
L̃(|�n|)

nr,n
(η)

]2 ∂

∂η

[
L̃

(|�p|)
nr,p (η)

]2
, (A24a)

Ipn =
∫ +∞

0
dη

[
L̃

(|�p|)
nr,p (η)

]2 ∂

∂η

[
L̃(|�n|)

nr,n
(η)

]2
. (A24b)

Using integration by parts we can relate Ipn and Inp as

Ipn + Inp = −[
L̃(|�n|)

nr,n
(0) L̃

(|�p|)
nr,p (0)

]2
(A25)

and then bring �E (W )
GM to the form

�E (W )
GM ≈W

∣∣C(n)
in

∣∣2 ∣∣C(p)
ip

∣∣2 2π (NnNp)2

βz

×
∫ +∞

−∞
dξ

[
Hnz,n (ξ ) Hnz,p (ξ )

]2

× {
(	p�n − 	n�p) Ipn

− 	n�p
[
L̃(|�n|)

nr,n
(0) L̃

(|�p|)
nr,p (0)

]2}
, (A26)

with L̃(|�|)
nr

(0) = δ�0 hence �L̃(|�|)
nr

(0) = 0. Finally, because
	q is expected to be positive, we have 	n = 	p = 12 and we
can simplify �E (W )

GM as

�E (W )
GM ≈W

∣∣C(n)
in

∣∣2 ∣∣C(p)
ip

∣∣2 π (NnNp)2

βz

× (�n − �p) Ipn

∫ +∞

−∞
dξ

[
Hnz,n (ξ ) Hnz,p (ξ )

]2
.

(A27)

Given that W > 0, the sign of �E (W )
GM is the sign of (�n −

�p)Ipn and depends on the quantum numbers �n, �p as well
as nr,n and nr,p through Ipn. The integral Ipn can be analytically
calculated but gives a very complicated function of �n, �p,
nr,n, and nr,p. Therefore the sign of �E (W )

GM is strongly depen-
dent on the nodal and azimuthal structure of the proton and
neutron wave functions.
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