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Uncertainty quantification of mass models using ensemble Bayesian model averaging
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Developments in the description of the masses of atomic nuclei have led to various nuclear mass models
that provide predictions for masses across the whole chart of nuclides. These mass models play an important
role in understanding the synthesis of heavy elements in the rapid neutron capture (r) process. However, it
is still a challenging task to estimate the size of uncertainty associated with the predictions of each mass
model. In this work, a method called ensemble Bayesian model averaging (EBMA) is introduced to quantify
the uncertainty of one-neutron separation energies (S1n) which are directly relevant in the calculations of
r-process observables. This Bayesian method provides a natural way to perform model averaging, selection,
and uncertainty quantification, by combining the mass models as a mixture of normal distributions whose
parameters are optimized against the experimental data, employing the Markov chain Monte Carlo method using
the no-u-turn sampler. The EBMA model optimized with all the experimental S1n from the AME2003 nuclides
are shown to provide reliable uncertainty estimates when tested with the new data in the AME2020.
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I. INTRODUCTION

Since the first introduction of the nuclear liquid drop
model, the theoretical description of nuclear masses has seen
great progress, which gave rise to many related but differ-
ent approaches. It is now possible to describe the ground
state properties of nuclei across the chart of nuclei with
theories of different scales: Macroscopic-microscopic theo-
ries such as the finite-range droplet model (FRDM) [1,2],
Weizsäcker-Skyrme (WS) models [3–6], microscopically in-
spired Duflo-Zucker models [7], and more microscopic
theories such as nuclear density functional theory (DFT) with
different interactions or energy density functionals (EDFs)
[8–10].

Among the theoretical models that describe various aspects
of nuclear structure, reactions, and decays, global mass mod-
els play an important role in understanding the origin of heavy
elements in the Universe via the rapid neutron capture (r)
process [11–13]. This is because the nuclear masses determine
the Q value (energy release or absorption) of nuclear reactions
and decays and are always required for the calculation of the
relevant rates. The masses of the vast majority of neutron-rich
nuclei relevant to the r process have yet to be experimen-
tally studied; therefore, theoretical predictions of the masses
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must be used instead. This means that the mass models used
in nucleosynthesis studies may have a significant impact on
the prediction of abundance patterns and kilonova lightcurves
[14,15].

One of the challenges in understanding the impact of
mass models on nucleosynthesis is that, in general, uncer-
tainty estimates associated with the theoretical masses are
not available. Although there has been an effort to quan-
tify the uncertainty in microscopic theories [16,17], the mass
models that are commonly used in nucleosynthesis studies,
especially macroscopic-microscopic and phenomenological
models, do not come with a quantified prediction uncertainty.
The root-mean-square (RMS) error of each mass model can be
calculated with respect to the observations, but it most likely
underestimates the uncertainty where there is no data (see
Fig. 1). This poses a challenge in quantifying the uncertainty
in the r-process nucleosynthesis that arises from uncertain
nuclear masses.

As the next-generation radioactive isotope beam facili-
ties allow us to gain access to more neutron-rich isotopes,
it will become possible to test the performances of mass
models in extremely neutron-rich regions of the chart
of nuclides. It would be ideal to have a method that
can continuously incorporate new experimental results, test
agreement to theoretical predictions, and update their asso-
ciated uncertainties in extrapolation to further neutron-rich
regions.
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FIG. 1. Comparison of one-neutron separation energies (S1n) predicted by each mass model used in this study and the experimental masses
from the AME2020 [18], relative to the predictions of the FRDM2012 for (a) Z = 28 (Ni), (b) Z = 50 (Sn), and (c) Z = 64 (Gd) isotopes. The
mass models and references are listed in Sec. II C.

In this work, we will apply a method called ensemble
Bayesian model averaging (EBMA) introduced by Ref. [19] to
combine available experimental data and multiple theoretical
mass models, as well as to quantify the mass uncertainty.
This method models an ensemble of theoretical mass models
as a mixture of normal distributions, whose parameters are
estimated based on the observations. EBMA combines model
selection, averaging, and uncertainty quantification in a single
framework. Although we focus on theoretical one-neutron
separation energies (S1n) in this work, this Bayesian method
is quite general and can potentially be applied to other nuclear
physics observables. We note, however, that the application
of this method to quantities such as reaction and decay rates
relevant to the r process will require further investigations,
due to the smaller number of models available and the fact that
the rates can vary by orders of magnitudes between nuclei.

Recently, data-driven modeling of nuclear masses using
machine learning techniques has gained popularity [20–29].
Especially, Refs. [22,23] applied Bayesian model averaging
(BMA, see Sec. II A) to nuclear mass models for the first
time, opening up the possibility to perform probabilistic anal-

yses on competing mass models (see Sec. II B 4 for further
discussions). One of the advantages of probabilistic mod-
els is the ability to achieve high accuracy while providing
uncertainty estimates. Although there have been attempts to
construct physically interpretable models [27], it is generally
challenging to gain insight into the underlying physics from
machine learning models. Nevertheless, the advantages of
machine learning models are that they can be created rapidly
and often achieve similar performance to state-of-the-art the-
oretical models. Although they may not necessarily be able
to predict new or unknown physics, the flexibility of the
models may allow us to combine known physics in poten-
tially novel ways that are difficult to produce through standard
modeling.

The purpose of this study is not to create another mass
model or to improve existing ones with machine learning.
Rather, the aim is to investigate how well an ensemble of the-
oretical models can reproduce experimental data and quantify
the performance of each model in the ensemble. This also
quantifies the uncertainty in extrapolating the experimental
data. Our approach should be considered as a method for
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model averaging, selection, and uncertainty quantification,
using only existing theoretical models.

This paper is divided into the following sections: in Sec. II,
we discuss the details of the EBMA method and the numerical
experiment where we construct EBMA models; in Sec. III, we
discuss the results of the different approaches for constructing
EBMA models and the details of the quantified uncertainties
for one neutron separation energies (S1n); finally, we summa-
rize the work presented in the paper and describe possible
future developments in Sec. IV.

II. METHOD

A. Bayesian model averaging

Bayesian model averaging (BMA) is applicable when more
than one statistical model that describes the data reasonably
well is available, and one wishes to account for the uncertainty
in the analysis arising from conditioning on a single model.
BMA computes a weighted average of the probability density
functions (PDFs), weighted by the posterior probability of the
“correctness” of each model given the training data. Following
the description in Refs. [19,30], the posterior distribution of
the observable of interest � (in our case, it correponds to one-
neutron separation energies S1n), defined by BMA, is

p(�|D) =
K∑

k=1

p(�|Mk, D) p(Mk|D), (1)

where p(�|Mk, D) is the posterior PDF of the observable of
interest based on a single statistical model Mk , and p(Mk|D)
is the corresponding posterior model probability, which rep-
resents how well the model Mk fits the data D. The posterior
model probabilities can be considered as weights, since their
sum is equal to 1.

B. Ensemble Bayesian model averaging

One of the limitations in the applicability of the BMA
method is that the participating models themselves must be
probabilistic. In nuclear physics, most models are not proba-
bilistic. Therefore, we need to extend the BMA framework to
handle such models. Raftery et al. [19] introduced the EBMA
method, which computes the weighted average of an ensemble
of bias-corrected models, as a finite mixture of normal distri-
butions. In the EBMA framework, the predictive model is

p(�|m1, . . . , mK ) =
K∑

k=1

wk gk (�|mk ), (2)

where � is again the quantity of interest (in our case S1n

of some nucleus), wk is the weight of the model k, whose
posterior represents the probability of the model k being the
best one, based on the observed data D. Model prediction
mk can be a vector or scalar. In our case, it is a vector of
theoretical S1n values predicted by the mass model k. Since
the size of the weight represents the posterior probability of
the model being the best one, even if the ensemble includes
an extremely inaccurate model, its effect on the predictive
distributions of EBMA will be quite small, since an extremely
small weight would be assigned to the model. gk (�|mk ) is a

normal PDF with its mean defined by the model prediction mk

and the standard deviation σk:

gk (�|mk ) = N
(
�

∣∣mk, σ
2
k

)
. (3)

Although one needs to be cautious of overfitting, the mean
of the normal PDF mk may be replaced by the bias-corrected
model predictions, which are discussed in more detail in the
following section. In the original EBMA by Raftery et al. [19],
a constant standard deviation was used across all the models
in the ensemble; however, we take it as model dependent
(denoted by the subscript k), which is a more natural way to
construct a mixture model.

1. Bias correction

In constructing EBMA models, although not strictly nec-
essary, Ref. [19] suggests linearly correcting the bias in the
prediction of each model, prior to Bayesian inference of
weights and standard deviations. This means replacing mk in
Eq. (3) with ak + bkmk , where ak is the intercept coefficient,
bk is the slope coefficient, and mk is the prediction of the
model k. In our case, this corresponds to linearly correcting a
vector of theoretical S1n values predicted by each mass model.
The original prediction of the model k corresponds to ak = 0
and bk = 1.

Although the bias correction may provide one way to
fine-tune the predictions of theoretical models (for more so-
phisticated approaches of correcting mass models, see, e.g.,
Ref. [22]) in case the model was constructed based on an older
set of experimental data, or the predictions for the nuclei of
interest are known to systematically deviate from the experi-
mental results, we note that the use of bias correction can lead
to overfitting. We investigate the effect of bias correction in
Sec. III D. Throughout the manuscript, we do not apply bias
correction unless explicitly noted otherwise.

2. Bayesian inference

The parameters of interest in our statistical inference are
the weights wk (k = 1, . . . , K ) and the standard deviations
σk (k = 1, . . . , K ) of the normal distributions that correspond
to each of the theoretical mass models in the ensemble.
Therefore, prior distributions for these parameters must be
specified. In general, we try to choose the prior distributions
to be as weakly informative as possible. For the weights, since
they have to sum up to one (

∑K
k=1 wk = 1), we model the

parameters with a Dirichlet distribution of order K , which
naturally meets this requirement. Dirichlet distribution of or-
der K has hyperparameters αk (k = 1, . . . , K), thus, the prior
distribution is expressed as

p(w1,w2, . . . , wK )

= Dirichlet(w1,w2, . . . , wK |α1, α2, . . . , αK ). (4)

We set all the concentration parameters of the Dirichlet dis-
tribution to 1, which makes the prior distribution uniform for
all weights w1, . . . ,wK , to represent the belief that we do not
know which model would perform best. The prior distribu-
tions for the standard deviations are chosen to be exponential
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distributions with the rate parameters equal to 1, which has
been suggested to be one of the weaker priors [31].

The likelihood of the normal mixture model is defined as

L
(
w1, . . . , wK , σ 2

1 , . . . , σ 2
K

)
=

∏
(N,Z )

(
K∑

k=1

wkgk (�(N,Z )|mk,(N,Z ) )

)
, (5)

where � is again the quantity of interest (in our case S1n),
and mk is the model predictions (a vector of S1n predicted
by the mass model k). The subscript (N, Z ) represents pairs
of neutron number N and proton number Z of the nuclei
where experimental values exist. In practice, the logarithm of
likelihood (log-likelihood) is often used for computation to
avoid numerical problems.

With the prior distributions and the likelihood function, it
is now possible to formulate the posterior distributions for the
parameters of the EBMA model,

p(w, σ2|D) ∝ L(w, σ2) p(w) p(σ2), (6)

where w = w1, . . . ,wK , σ2 = σ 2
1 , . . . , σ 2

K , and D denotes ob-
servational (experimental) data. The prior distributions are
denoted as p(w) and p(σ2), respectively.

3. Predictive variance

In EBMA models, the uncertainty of the quantity of inter-
est can be interpreted in the form of variance of the posterior
predictive distribution. Based on Ref. [19] but reflecting the
fact that our σk depends on model k, the predictive variance
can be written as

Var(�|m1, m2, . . . , mK )

=
K∑

k=1

wk

(
(mk ) −

K∑
i=1

wi(mi )

)2

+
K∑

k=1

wkσ
2
k , (7)

where the first term corresponds to the spread of predic-
tions by the member mass models of the ensemble, and the
second term corresponds to the expected deviation from the
observations of each mass model, weighted by the posterior
weights. If bias-corrected models predictions are used, then
mk is replaced by ak + bkmk .

4. Differences to related works and discussion of models

It is worth discussing the key differences between our
framework and related studies that use the BMA method,
namely Refs. [22,23,32–34]. In their BMA framework, the
uncertainty quantification of the considered mass models is
performed by constructing Gaussian process (GP) emulators,
which learn the corrections to the mass models from the
residuals with respect to the observed values. Therefore, the
quality of the prediction and the corresponding uncertainty
mainly depend on the performance of the GP emulator. The
BMA weights are calculated either based on some criteria
such as nuclei being bound or the performances of each mass
model on the test data. One of the drawbacks of this method is
that the derived weights are point estimates, and the resulting
BMA uncertainty is a deterministic weighted average of the

GP uncertainties. Furthermore, one has to be cautious when
performing extrapolations using GPs, since an unconstrained
GP converges to its mean with fixed uncertainty away from
the data [35,36].

However, the EBMA framework keeps the point predic-
tions of the mass models in the ensemble. Instead, the weights
and variances associated with each mass model are modeled
probabilistically based on the experimental data. The proba-
bilistic distributions are reflected onto the resulting predictive
uncertainty through the Bayesian framework. This framework
directly uses the predictions of each mass model that con-
stitute the EBMA model; therefore, the local trend of the
predictions remains unchanged.

One of the shortcomings of the current method is that
inference of posterior weights is performed assuming that
all observed data points are equally relevant. In the case of
uncertainty quantification of mass models for neutron-rich
nuclei, for example, one may wish to estimate the weights
by focusing on the data for neutron-rich nuclei. However, this
may pose a trade-off since the weights are better estimated
using all available data, while only using data in a specific
region may better capture the local performances of the mass
models. The concept of such location- (input domain-) de-
pendent weights is referred to as “Bayesian model mixing”
or BMM, put forward by Refs. [37,38]. Recently, Ref. [29]
applied BMM to nuclear mass models, using weights defined
as a Dirichlet distribution. They modeled location-dependent
(local) weights by designing the hyperparameter α for the
Dirichlet distribution to be location-dependent. Another point
is that they directly combined the predictions of the mass
models, whereas in the current work the mass models are
treated as components of a normal mixture model.

Further technical development would be required to incor-
porate location-dependent weights into the averaging of mass
models, which will be investigated in the future. In this work,
we provide a general methodology for averaging nuclear mass
models. The dependence of uncertainty on location is assumed
to be represented by the spread of the predictions of different
mass models, as shown in Fig. 1.

C. Setup of a numerical experiment

In the numerical experiments discussed in the current
work, all probabilistic models have been implemented using
PyMC [39], which is a probabilistic programming language
written in Python. PyMC offers an implementation of a
highly efficient sampler called no-u-turn-sampler (NUTS),
which adaptively tunes the parameters associated with the
Hamiltonian (or Hybrid) Monte Carlo method [40,41].
Conventionally, parameter estimation in mixture models is
performed with the expectation maximization (EM) algorithm
to avoid the so-called “label switching problem” [42,43]. The
label switching problem arises in mixture models such as
EBMA models, since the likelihood [Eq. (5)] remains un-
changed under permutation of the labels (k = 1, . . . K) of
the mixture components gk (�|mk ). This makes the analy-
sis of the posterior distributions challenging. Although, the
EM algorithm does not guarantee convergence to the global
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optimal weights and variances, especially in high-dimensional
problems.

Furthermore, MCMC methods would be able to provide
much more complete information on the posterior distribu-
tions. In our numerical experiments, we did not find evidence
of a label switching problem due to employing the MCMC
method. This is most likely because, in our normal mixture
models, the means of the normal distributions are always
specified by the predictions of bias-corrected mass models,
which works as an identifiability constraint.

The quantity of interest in our study is the one-neutron
separation energy (S1n), which is directly relevant to the
r process. This is because in nucleosynthesis calculations
(post-processing of hydrodynamical simulations), photodis-
sociation rates (denoted as λ(γ ,n) below), for example, are
calculated from the neutron capture rate via detailed balance:

λ(γ ,n) = 〈σv〉(n,γ )
G(N, Z )G(1, 0)

G(N + 1, Z )

(
A

A + 1

)3/2

×
(

mukT

2π h̄2

)3/2

exp

(
−S1n(N + 1, Z )

kT

)
, (8)

where 〈σv〉(n,γ ) is the velocity-integrated neutron capture
cross section for a nucleus with N neutrons and Z protons
(A ≡ N + Z), G(N, Z ) is the partition function for the nucleus
(N, Z ) (G(1, 0) is the partition function for neutron), mu is the
mass of a nucleon, and T is the temperature of the environ-
ment. This shows that in addition to astrophysical conditions
such as temperature T , the uncertainty in the reverse reac-
tion rate, consequently the uncertainty of the final abundance
pattern, arises from the nuclear physics inputs such as the in-
tegrated neutron capture cross section 〈σv〉(n,γ ), the partition
functions G(N, Z ), and one-neutron separation energies S1n.
Note that the calculations of other reaction and decay rates
are also dependent on the nuclear structure and masses.

The mass models included in our ensemble are the
Duflo-Zucker mass model with 29 parameters (DZ29) [7],
FRDM2012 [2], HFB31 [10], KUTY05 [44], ETFSI2 [45],
and WS4 [6]. These models were chosen based on their
popularity in r-process studies as well as the public avail-
ability of the data. When multiple versions of the same type
of mass model are available, a newer version was selected.
The included mass models are largely phenomenological in
nature, and little has been investigated regarding uncertainty
quantification.

In some of our numerical experiments, we take the S1n

values from the AME2020 [18] as experimental data. When
evaluating the quality of uncertainty estimates for unseen data,
we use the S1n values from the AME2003 [46] for construct-
ing our models (we refer to them as “training data”) and
then test them with the new data in the AME2020. In the
AME2020, 318 new S1n measurements with Z = 16–105 are
available compared to the AME2003. The new data points in
the AME2020 compared to the AME2003 are shown in Fig. 2.

We consider four different ways to categorize the S1n data.
The first category is the data for the whole chart of nuclides,
which employs all the available experimental data in Z = 16–
105 at once. The second and third are data for each isotopic
and isotonic chain, respectively. This focuses on the evolution

FIG. 2. Comparison of the AME2003 data with the latest
AME2020 data for one-neutron separation energies S1n, illustrated
on the chart of nuclides. The blue squares show the new S1n data in
the AME2020 that did not exist in the AME2003. The S1n values
listed in the AME2003 are shown in orange color, aside from the
stable nuclides, shown in black.

of the S1n values as a function of proton and neutron number
(isotopic and isotonic, respectively). The other category is
isobaric (equal mass number A), which is relevant to the trend
of β-decay Q values.

The main reason for considering EBMA models for each
isotopic, isotonic, or isobaric chain is because it would also
allow assessment of how well each mass model performs in
different regions of the chart of nuclides. By reviewing the
theoretical descriptions of the best performing models, i.e.,
models with largest weights, we may potentially gain insight
into what is required for the more precise modeling of nuclear
masses. However, we note that optimizing the parameters
to capture the local trend may cause overfitting. Especially,
when EBMA models are constructed for each chain across
the chart of nuclides, the total number of parameters is signif-
icantly more than in the case where a single EBMA model
is constructed using the S1n values for the whole chart of
nuclides. Therefore, a careful assessment of the quality of the
uncertainty estimate is necessary. We will also investigate this
aspect in Sec. III.

Except for Sec. III D where the effect of bias correction
is investigated, EBMA models are constructed without bias
correction (denoted as “raw”) for the S1n values predicted by
each mass model.

III. RESULTS AND DISCUSSION

A. Comparison with experimental data

To investigate the performance of the EBMA model in
reconstructing the experimental S1n values, an EBMA model
was constructed using the S1n data of all the nuclei with
16 � Z � 105 from the AME2020 (referred to as the “whole
chart EBMA model”). The whole chart EBMA model was
constructed without bias correction of the mass models (raw).
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TABLE I. 95% posterior highest density intervals (HDI) of the
EBMA weights and standard deviations (variances), fitted with all
the AME2020 S1n data in 16 � Z � 105 (referred to as “whole chart”
in the text). For the columns “Weight” and “Standard deviation”, the
values in the parenthesis denote an interval with the value on the left
being the lower bound and on the right being the upper bound. σRMS

[defined in Eq. (9)] shows the root-mean-square error of each mass
model with respect to the same AME2020 data. Bias correction of
mass models was not performed (raw).

Mass model Standard σRMS

(raw) Weight deviation [MeV]

WS4 [6] (0.459, 0.596) (0.183, 0.214) 0.239
FRDM12 [2] (0.143, 0.251) (0.129, 0.174) 0.312
DZ29 [7] (0.113, 0.229) (0.125, 0.245) 0.271
KUTY05 [44] (0.034, 0.130) (0.140, 0.322) 0.753
HFB31 [10] (0.000, 0.027) (0.183, 0.214) 0.428
ETFSI2 [45] (0.000, 0.027) (0.026, 0.761) 0.828

Table I lists the 95% posterior highest density intervals
(HDIs), which are the narrowest intervals that include 95% of
the posterior distributions, of the whole chart EBMA model.
The posterior weight, which can be interpreted as the prob-
ability of the model being the best one, is the largest for
the WS4 model, followed by FRDM2012 and DZ29. Further
analysis of the weights is provided in Sec. III B.

The nominal predictions of the EBMA model are taken
as the mode of the posterior predictive distributions of S1n.
The posterior distributions of weights and standard deviations
σk [Eq. (3)] are determined from the AME2020 data through
Bayesian inference. Since the AME2020 values are used both
for fitting and evaluation of the performance, this analysis
reveals how well the EBMA method can reproduce known
experimental data using the constituent mass models.

Figure 3 shows the deviations of the modes of the EBMA
poterior predictive for S1n from the AME2020 values. The
root-mean-square error (σRMS) shown in the figure is defined
as

σRMS =
√∑

(N,Z )

(
SAME2020

1n (N, Z ) − SModel
1n (N, Z )

)2

NAME2020
, (9)

where (N, Z ) represents pairs of neutron number N and pro-
ton number Z of nuclei in the AME2020 whose S1n values
are used for the fit. NAME is the total number of such nu-
clei (NAME2020 ≡ ∑

(N,Z )). For the EBMA model shown in
Fig. 3, which took into account the nuclei with 16 � Z � 105,
NAME2020 = 2021. SAME2020

1n (N, Z ) and SModel
1n (N, Z ) are the

S1n values for a nucleus (N, Z ) from the AME2020 and the
mode of the posterior predictive distribution of S1n given by
a EBMA model (or the nominal prediction of a specific mass
model in Table I), respectively.

The value of σRMS of the whole chart EBMA model
[Fig. 3(a)] shows a slightly better σRMS (0.229 MeV) than
the best performing model, which is the WS4 model [6] with
σ WS4

RMS = 0.239 MeV (see Table I). As shown in Fig. 3(b),
while the constructed EBMA model is largely based on the
WS4 model, the contribution of the other mass models in the
ensemble is present throughout the chart of nuclides.

FIG. 3. Deviation and root-mean-square (RMS) error σRMS

[MeV] of the neutron separation energies S1n reconstructed by
the EBMA model whose parameters are optimized using the
whole AME2020 data (Whole chart raw EBMA), compared to the
AME2020 data themselves (a), and the differeces of the predictions
of the EBMA model from the WS4 model, which is the model in
the ensemble with the largest weight (b). “raw” indicates that bias
correction was not performed for the models in the ensemble.

B. Parameters in the EBMA models

As shown in Table I, the top three mass models in the
size of weight corresponds to the models with the smallest
σRMS with respect to the AME2020. Interestingly, while σRMS

of the HFB31 model is significantly smaller than KUTY05
or ETFSI2, the assigned weight is one of the smallest. This
implies that, although HFB31 can reproduce the experimental
S1n values relatively well, the addition of the mass model does
not necessarily contribute to improving the overall fit to the
experimental data.

Table I also shows that the standard deviations (variances)
of the normal distributions in the mixture model do not corre-
spond to the σRMS values. This is because EBMA is a normal
mixture model, that is, a weighted sum of normal distributions
whose parameters are inferred simultaneously based on the
experimental data, while σRMS is calculated separately for
each model.

To investigate the weights in EBMA, in addition to the
whole chart EBMA model discussed above, EBMA models
were further constructed for:

(1) each isotopic chain,
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(2) each isotonic chain, and
(3) each isobaric chain,

respectively, using the AME2020 S1n data with the raw mass
models.

The colors in Fig. 4 show the mass model with the largest
MAP value (maximum a posteriori; mode of posterior dis-
tribution) of weight within the ensemble for each isotopic
[Fig. 4(a)], isotonic [Fig. 4(b)], and isobaric chain [Fig. 4(c)].
The color scale represents the value of the MAP value of the
weight. Weight can be understood as the posterior probability
of the mass model being the best [19], based on the training
using the AME2020 data.

In Fig. 4, especially for the isotopic [Fig. 4(a)] and isotonic
[Fig. 4(b)] EBMA models, clustering of the same models in
specific regions is visible. For the isotopic EBMA models,
it can be seen that the FRDM2012 model tends to have the
largest weights just below the proton magic numbers Z = 50
and 82. The presence of the DZ29 model is also notable in
59 � Z � 71 for odd proton numbers and in 91 � 95. The
WS4 model has largest weights at various locations on the
chart of nuclides. For the isotonic EBMA models, the most
notable trend is the presence of the DZ29 model just above
the neutron magic number N = 82. It can also be seen that
the KUTY05 model is much more present across the chart
of nuclides compared to the isotopic case. However, such
clustering of specific model is less visible in the isobaric case.

This analysis shows that, by inferring the weights, it is pos-
sible to quantify the performance of each mass model in the
ensemble in different regions of the chart of nuclides. Some
mass models have been shown to perform better than others
in reproducing experimental S1n values in specific regions.
By further analyzing the well performing models, it may be
possible to gain insight into what theoretical description of the
nuclei can effectively reliably reproduce and predict nuclear
masses in different parts of the chart of nuclides.

C. Uncertainty quantification with EBMA

One of the main goals of this study is to quantify the uncer-
tainty of theoretical S1n values when a variety of mass models
are available. EBMA estimates it by creating a weighted
average of a collection of mass models based on the per-
formance of each model during the training. In the EBMA
model, predictive uncertainty includes not only the spread of
the forecasts among the members of the ensemble, but also
takes into account the weighted variance of each member
model according to the performance during the training [19].

1. Size of uncertainty estimates

Figure 5 shows the size of the 68% HDI, which is roughly
analogous to the ±1σ interval of the normal distribution.
EBMA models were fitted for the whole chart of nuclides
[Fig. 5(a)], each isotopic chain [Fig. 5(b)], each isotonic chain
[Fig. 5(c)], and each isobaric chain [Fig. 5(d)], respectively.
Bias correction was not performed for the mass models in the
ensemble (raw). Figure 6 also shows the 68% HDIs, focusing
on the Z = 28 (nickel), Z = 50 (tin), and Z = 64 (gadolin-
ium) isotopes, compared to the mass models (gray dashed

FIG. 4. Maximum a posteriori (MAP) values of the largest
weight in the EBMA ensemble determined from the AME2020 data
for each (a) isotopic chain, (b) isotonic chain, and (c) isobaric chain.
“raw” indicates that bias correction was not performed for the models
in the ensemble.

lines) shown in Fig. 1, relative to the nominal predictions of
the FRDM2012 model. Figures 6(a)–6(c) show the EBMA
models fitted for the whole chart of nuclides and each isotopic
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FIG. 5. The sizes of 68% highest density intervals (HDIs) of the EBMA models across the chart of nuclides, fitted with the AME2020 S1n

data for (a) the whole chart of nuclides, (b) each isotopic chain, (c) each isotonic chain, and (d) each isobaric chain. The area enclosed by the
black contour shows where the AME2020 data exist. The charts with isotonic and isobaric fits are truncated at large neutron number and mass
number, respectively, because there are not enough data points within the chains to determine the EBMA parameters. “raw” indicates that bias
correction was not performed for the models in the ensemble.

chain and Figs. 6(d)–6(f) show the models for each isotopic
chain and each isobaric chain for the same set of nuclei. The
fits are performed using the AME2020 data, and predictions
are made for all the nuclei available in all the member mass
models within the ensemble. In all cases, it can be seen that
the size of the uncertainty is more constrained where the data
exist (black contour in Fig. 5 and black triangles in Fig. 6),
but increases towards the edge of the chart of nuclides. This
is especially visible in the neutron-rich direction, where many
of the nuclear masses are yet to be experimentally measured.
This is a reflection of the fact that the predictions of the mass
models that make up the ensemble start to diverge as we move
further away from the last data point, as shown in Fig. 1.

Comparing the four plots in Fig. 5, the increase in the size
of uncertainty in the neutron-rich region is the smallest for
the fit using the whole chart of nuclides [Fig. 5(a)]. This is
because the weights for the whole chart EBMA model are
determined using all available data, whereas for each isotopic,
isotonic, and isobaric chain, the weights are determined only
from the data in each chain. The smaller number of training
data points (experimental S1n values) in each chain also re-
sults in larger uncertainties for reproducing the experimental
values, compared to the fit with the whole chart data.

As shown in Fig. 6, for some isotopic chains, the uncer-
tainty estimates are different between different types of fits.
Especially, for Z = 50 isotopes, it can be seen in Fig. 6(b) that
the uncertainty estimated by the whole chart EBMA model
constantly falls below 0 (the predictions by FRDM2012) be-
yond N = 90, while the isotopic EBMA model is dominated
by FRDM2012. It is not yet possible to experimentally test

the predictions for such neutron-rich nuclei. However, differ-
ences in the predictions in neutron-rich regions may have a
significant impact on the prediction of observables from the r
process such as the abundance pattern.

2. Quality of uncertainty estimates

We now investigate the quality of the uncertainty estimate.
For this purpose, we construct EBMA models and quantify
the prediction uncertainties using the S1n data for nuclei with
16 � Z � 105 from the AME2003 [46] (we will refer to the
data as “training data”), then evaluate the quality of the un-
certainties based on the new S1n data in the AME2020 [18].
In the AME2020, there are 318 S1n values newly registered
since the AME2003. Bias correction was not performed for
the mass models in the ensemble (raw).

Figure 7 shows the distribution of the new S1n data relative
to the sizes of uncertainties given by the EBMA models fitted
with the data for the whole chart of nuclides [Fig. 7(a)],
each isotopic chain [Fig. 7(b)], isotonic chain [Fig. 7(c)], and
isobaric chain [Fig. 7(d)]. Note that the number of new data
points included in the fit (n in Fig. 7) is not necessarily 318
for some cases. This is because at the edge of the chart of
nuclides, there are fewer experimental data points and the pos-
terior weights do not converge for some chains. Such chains
were excluded from the fits. The summary of the analysis
is shown in the upper half of Table II. In the following, we
describe our analysis and findings.

The size of the estimated uncertainty is represented by the
68% highest density interval (HDI0.68), which is the narrowest
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FIG. 6. Trends of the sizes of 68% highest density intervals of the EBMA models compared to the predictions by the FRDM2012 model
for the S1n values in the Z = 28 (Ni) (a), (d), Z = 50 (Sn) (b), (e), and Z = 64 (Gd) (c), (f) isotopic chains, similar to Fig. 1. Panels (a)–(c)
show the EBMA models fitted with the AME2020 S1n data for the whole chart of nuclides (orange) and each isotopic chain (blue), and panels
(d)–(f) show the models for each isotonic chain (green) and each isobaric chain (red). The solid lines associated with the bands show the
modes of the predictive distributions. The gray dashed lines are the mass models shown in Fig. 1. “raw” indicates that bias correction was not
performed for the models in the ensemble.

interval that contains 68% of the distribution, of the posterior
predictive distribution of the S1n values. To investigate how
the new experimental S1n values are distributed relative to
the predicted HDI0.68, we define δ, which represents an ex-
perimental S1n value normalized by the size of HDI0.68. Let
hlow and hup represent the lower and upper boundaries of the
HDI0.68, respectively, then

δ = S1n − hlow

hup − hlow
− 0.5, (10)

where 0.5 is subtracted to symmetrize the distribution around
0. This means that δ = −0.5 and 0.5 correspond to the S1n

values at the lower and upper boundaries of the HDI0.68,
respectively.

HDI2020∗
0.68 in Fig. 7 and Table II shows the average size of the

68% intervals for the new data in the AME2020 (denoted as
2020∗). On average, the whole chart EBMA model provides
the most constrained size of the uncertainty of 0.480 MeV.
Table II also shows the root-mean-square errors of the modes
of the posterior predictive distributions of S1n given by the
EBMA models from the experimental S1n values from the
AME2003 (σ 2003

RMS), similarly to Eq. (9). While the models

fitted for each isotopic/isotonic/isobaric chain exhibit smaller

σ 2003
RMS values, the sizes of HDI2020∗

0.68 are larger than the whole
chart EBMA model. This is because the EBMA models are
constructed and fine-tuned for each chain, which also means
that the total number of parameters across the chart is sig-
nificantly larger than the fitting of the whole chart with a
single EBMA model. At the same time, the parameters for
each chain are inferred from a smaller number of data points
compared to the whole chart EBMA model; therefore, the
parameters are less sharply determined. This suggests that the
large total number of parameters of the EBMA models con-
structed for individual chains across the chart of nuclides may
lead to overfitting. However, also considering the associated
uncertainty, the overfitting may partially be mitigated by the
increased uncertainty through the Bayesian framework. We
will further investigate this issue below.

Insets of Fig. 7 show that the distribution of the training
S1n values from the AME2003 around the center of HDI0.68

approximately follows a normal distribution. Performing a
similar fit to the new data in the AME2020, we obtain the
approximate 68% interval of the distribution of the new ex-
perimental S1n values in the AME2020 around the center of
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FIG. 7. Distributions of the new data points in the AME2020 compared to the AME2003, with respect to the 68% HDIs predicted by the
EBMA models fitted with the AME2003 data for (a) the whole chart of nuclides, (b) each isotopic chain, (c) each isotonic chain, and (d) each
isobaric chain. The definition of δ is given in Eq. (10). “raw” indicates that bias correction was not performed for the models in the ensemble.

HDI0.68, which is denoted as 2σ 2020∗
fit . Comparing the sizes

of HDI2020∗
0.68 and 2σ 2020∗

fit for the whole chart EBMA model,
it can be seen that the sizes are comparable, which shows that
this EBMA model can appropriately estimate the uncertainty

for the new data. However, the sizes of HDI2020∗
0.68 for the

other EBMA models are larger than 2σ 2020∗
fit , indicating that

the uncertainty estimates are inflated (underconfident). The

tendency of inflated uncertainty for the EBMA with individual
chains can also be seen from the comparison of the corre-

sponding quantities for the AME2003 training data (HDI2003
0.68

and 2σ 2003
fit ), shown in Table II.

This observation is further supported by looking at the ra-
tios of the S1n values that fall within HDI0.68 for the AME2003
and the new data in the AME2020, also shown in Table II

TABLE II. Quantities that characterize the uncertainty estimates and their quality for different EBMA models, which are fitted to the S1n

data for nuclei with 16 � Z � 105 from the AME2003. σRMS is the root-mean-square error calculated similarly to Eq. (9), HDI0.68 is the
average size of the 68% highest density intervals, 2σfit is the spread of the experimental S1n values around the center of HDI0.68 approximated
by a normal distribution, and the HDI0.68 coverage is the ratio of experimental S1n values that fall within HDI0.68. The superscripts “2003” and
“2020∗” denote the AME2003 data and the new data in the AME2020 (absent in the AME2003), respectively. The upper half shows the results
without bias correction (raw) and the lower half with bias correction (corrected).

σ 2003
RMS HDI2003

0.68 2σ 2003
fit HDI2003

0.68 HDI2020∗
0.68 2σ 2020∗

fit HDI2020∗
0.68

EBMA model [MeV] [MeV] [MeV] coverage [%] [MeV] [MeV] coverage [%]

Whole chart (raw) 0.239 0.466 0.448 71.5 0.480 0.485 69.5
Isotopic (raw) 0.218 0.562 0.401 85.1 0.610 0.507 75.3
Isotonic (raw) 0.201 0.598 0.368 92.5 0.708 0.464 82.7
Isobaric (raw) 0.219 0.746 0.411 95.6 0.824 0.512 89.6

Whole chart (corrected) 0.238 0.466 0.449 71.3 0.480 0.490 70.1
Isotopic (corrected) 0.206 0.517 0.373 84.4 0.706 0.664 72.4
Isotonic (corrected) 0.134 0.370 0.219 89.8 0.658 0.627 68.3
Isobaric (corected) 0.170 0.618 0.310 95.4 0.804 0.614 82.1
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as the HDI2003
0.68 coverage and the HDI2020∗

0.68 coverage, respec-
tively. Except for the whole chart EBMA model, the coverages
significantly exceed 68% for both data sets. Comparing the
coverages of HDI2003

0.68 and HDI2020∗
0.68 , except for the whole chart

EBMA, the coverages of HDI2020∗
0.68 are smaller than HDI2003

0.68 .
This points to the fact that the quality of uncertainty estimates
does not extrapolate well for the EBMA models constructed
for individual chains. In other words, this can be seen as a
symptom of overfitting to the training data.

From this analysis, it can be concluded that the uncer-
tainty estimates of the whole chart EBMA have desirable
properties and extrapolate well to the new data in the
AME2020. However, the EBMA models constructed for each
isotopic/isotonic/isobaric chain tend to overfit the AME2003
data and at the same time provide underconfident uncertainty
estimates. However, it is intriguing that the isotonic EBMA
model resulted in the smallest values of σ 2003

RMS, σ 2003
fit , and

σ 2020∗
fit . This suggests the possibility that focusing on the

isotonic chain may potentially provide a reliable way to ex-
trapolate the S1n values if overfitting can be avoided and the
size of the uncertainty estimate can be appropriately con-
trolled. We note that the new data in the AME2020 lie just
outside the AME2003 data, as shown in Fig. 2. Therefore,
these results may not hold in a more neutron-rich region. Fur-
ther development of the EBMA method will be carried out to
put more emphasis on the neutron-rich nuclei. Without abun-
dant data in the neutron-rich region, alternative constraints
may also be necessary, e.g., the r-process observables, which
are known to involve neutron-rich nuclei.

D. Bias corrected EBMA models

As discussed in Sec. II B, Ref. [19] suggests a linear bias
correction of each model, prior to inference of the EBMA
weights and standard deviations. This means determining the
bias correction coefficients ak and bk for each model, where
ak is the intercept (offset) and bk is the slope. ak + bkmk

is then the prediction of the bias-corrected model based on
the mass model k. In our case, mk is a vector of theoretical
S1n values for the whole chart of nuclides or a specific iso-
topic/isotonic/isobaric chain, predicted by the model k.

The simplest approach to determine ak and bk is to per-
form linear regression, as shown in Ref. [19]. Another way to
determine these parameters ak and bk is by Bayesian linear re-
gression and taking the maximum a posteriori (MAP) values,
which would be a slightly more probabilistic treatment. In our
case, the two approaches yield virtually identical values. The
coefficients determined for each mass model using the entire
AME2003 data are shown in Table III, for example. It can be
seen that for some mass models, the coefficients ak deviate
from 0.

The summary of the models that quantify the quality of the
uncertainty estimates is shown in the lower half of Table II. As
expected with further calibration (bias correction) of the mass
models in the ensemble, the values of σ 2003

RMS decreased com-
pared to the raw EBMA models. For the bias-corrected whole
chart EBMA model, since the corrections made by the coef-
ficients for the dominating mass models (WS4, FRDM2012,
and DZ29) are small, as shown in Table III, the difference

TABLE III. Bias-correction coefficients determined for different
mass models from the MAP values of Bayesian linear regression
(labeled as “BLR MAP”) and usual linear regression (labeled as
“LR”), respectively, using all of the available (whole chart) one-
neutron separation energy (S1n) data from the AME2003 [46]. ak and
bk are the coefficients for offset (intercept) and slope, respectively,
for mass model k. The values are rounded to two digits.

ak bk

Mass model BLR MAP LR BLR MAP LR

WS4 −0.01 −0.01 1.00 1.00
FRDM12 0.12 0.12 0.99 0.99
DZ29 −0.10 −0.10 1.01 1.01
KUTY05 −0.06 −0.06 1.01 1.01
ETFSI2 0.38 0.38 0.95 0.95
HFB31 0.30 0.30 0.96 0.96

from the raw model is smaller compared to other EBMA
models. For the bias-corrected EBMA models for individ-
ual chains, indications of inflated uncertainty estimates are
still present, following the same argument given for the raw
EBMA models in the previous section.

A notable difference from the raw EBMA models is the
more significant decrease in HDI2020∗

0.68 coverage from the
HDI2003

0.68 coverage for the EBMA models for individual chains,
indicating further overfitting problems.

In conclusion, since the linear bias correction further facil-
itates overfitting in the EBMA models for individual chains,
which was already not as reliable as the whole chart EBMA
model as discussed in Sec. III C, and does not have a signifi-
cant effect on the whole chart EBMA model, the use of linear
bias correction would not be recommended.

E. Effect of the choice of mass models in the ensemble

So far we have only considered the ensemble consisting
of the mass models listed in Table I, which are some of the
most popular models in the r-process studies. Nevertheless, it

TABLE IV. 95% posterior highest density intervals (HDI) of the
EBMA weights and standard deviations (variances) without the WS4
model in the ensemble, fitted with all the AME2020 S1n data in
16 � Z � 105 (whole chart), similarly to Table I. For the columns
“Weight” and “Standard deviation”, the values in the parenthesis
denote an interval with the value on the left being the lower bound
and on the right being the upper bound. σRMS [defined in Eq. (9)]
shows the root-mean-square error of each mass model with respect
to the same AME2020 data, identical to Table I. Bias correction of
mass models was not performed (raw).

Mass model Standard
(raw) Weight deviation σRMS [MeV]

DZ29 (0.360, 0.484) (0.207, 0.248) 0.271
FRDM12 (0.273, 0.383) (0.144, 0.175) 0.312
KUTY05 (0.119, 0.230) (0.158, 0.243) 0.753
HFB31 (0.030, 0.089) (0.128 0.264) 0.428
ETFSI2 (0.002, 0.030) (0.029, 0.663) 0.828
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TABLE V. Similar table to Table II, but for the whole chart EBMA model based on the ensemble without WS4. It shows the quantities
that characterize the uncertainty estimates and their quality for different EBMA models, which are fitted to the S1n data for nuclei with
16 � Z � 105 from the AME2003. σRMS is the root-mean-square error calculated similarly to Eq. (9), HDI0.68 is the average size of the 68%
highest density intervals, 2σfit is the spread of the experimental S1n values around the center of HDI0.68 approximated by a normal distribution,
and the HDI0.68 coverage is the ratio of experimental S1n values that fall within HDI0.68. The superscripts “2003” and “2020∗” denote the
AME2003 data and the new data in the AME2020 (absent in the AME2003), respectively.

σ 2003
RMS HDI2003

0.68 2σ 2003
fit HDI2003

0.68 HDI2020∗
0.68 2σ 2020∗

fit HDI2020∗
0.68

EBMA model (no WS4) [MeV] [MeV] [MeV] coverage [%] [MeV] [MeV] coverage [%]

Whole chart (raw) 0.257 0.495 0.479 71.5 0.506 0.542 66.7

is possible to consider ensembles of any combination of mass
models, and it is important to understand how the choice of
models in the ensemble affects the uncertainty estimates.

In the case where an ensemble of mass models includes
models with poor performance in reproducing the experimen-
tal values, in general, one can expect that such models will
be assigned small weights, as seen for the weight of ETFSI2
shown in Table II, for example. This is because the likelihood
[Eq. (5)] evaluates how well each mass model reproduces the
experimental data. Models with small weights have a small ef-
fect on quantified uncertainty, as models in the ensemble have
contributions to the uncertainty proportional to the weights, as
shown in the expression of predictive variance [Eq. (7)].

As for the removal of models with large weights, the effect
is not trivial. Since the WS4 model has the largest contribution
to the whole chart EBMA model we have considered so far,
we will investigate how the EBMA model is affected by re-
moving the WS4 model from the ensemble. From this we aim
to gain insight into the effect of the choice of mass models.
Based on the quality of uncertainty estimates investigated in
Secs. III C 2 and III D, we limit ourselves to the whole chart
EBMA model without bias correction.

In order to compare with the inferred EBMA parameters
shown in Table I, a new whole chart EBMA model was
constructed using the same AME2020 data in 16 � Z � 105,
using an ensemble without the WS4 model. The 95% HDIs
for the posterior weights and standard deviations are shown
in Table IV, in order of the size of the posterior weights. It
can be seen that the assignment of the weights is somewhat
more democratic, without the dominant WS4 model. It is also
notable that the DZ29 model now has the largest weight, while
it previously had the third largest weights in the ensemble with
WS4. This implies that DZ29 and WS4 may have provided
somewhat similar predictions of S1n, while the performance
of WS4 is consistently better with respect to the experimental
data; therefore, WS4 had absorbed the possible contribution
of DZ29.

Similarly to the Sec. III C 2, we now construct the whole
chart EBMA model with the AME2003 S1n data and test the
quality of uncertainty estimates using the new data in the
AME2020. The summary of performance is shown in Table V,
again focusing on 68% highest density intervals (HDI0.68) of
the predictive distributions of S1n. In terms of reproducing
the experimental values in the AME2003 (the training data),
σ 2003

RMS is 0.257 MeV, increasing from the 0.239 MeV with the
ensemble with WS4. It is still an improvement over individual
mass models, since the root-mean-square error of DZ29 is

0.274 MeV, which is the smallest in the current ensemble.
Although the sizes of both HDI2003

0.68 and 2σ 2003
fit are also about

0.3 MeV larger than those with the ensemble with WS4, the
coverage of HDI2003

0.68 is the same (71.5%), showing that the
quality of the uncertainty estimates for the training data is still
adequate.

We now look at the quality of uncertainty estimates for
the new data in the AME2020. A notable difference from
the case with the ensemble with WS4 is that 2σ 2020∗

fit , the
average size of the deviation from the center of HDI2020∗

0.68 ,

is significantly larger than the size of HDI2020∗
0.68 , resulting in

the coverage of HDI2020∗
0.68 of 66.7%. The decrease in coverage

from the AME2003 data is also greater than in the case with
the ensemble with WS4, suggesting that the performance of
extrapolation in uncertainty estimates is slightly degraded.
However, considering that the ideal coverage is 68%, overall
quality of the uncertainty estimates is still decent.

We again note that the new data in the AME2020 lie just
outside of the available data in the AME2003, therefore, the
current results may not apply to the extrapolation to the more
neutron-rich region. With this in mind, the current results
show that, while the removal of the best-performing mass
model WS4 slightly degrades the performance in extrapolat-
ing the uncertainty estimates of S1n, the whole chart EBMA
model still provides decent uncertainty estimates. This in turn
suggests that, although a small root-mean-square error does
not necessarily mean a large contribution to the ensemble,
as shown from the weights of HFB31, including performant
mass models would likely contribute to constraining the size
of uncertainty and improving the quality in extrapolation of
uncertainty estimates. It would also be recommended to in-
clude a wide range of models in the ensemble, even when
some of the models are similar in nature, since it is difficult
to guess the possible contributions of each model. If there are
models with similar but less performant predictions, then their
contributions should automatically be absorbed by the more
performant models.

IV. CONCLUSIONS

We have explored the possibility of quantifying the un-
certainty of theoretical one-neutron separation energies (S1n)
when a variety of mass models are available, using the EBMA
method. The EBMA method creates a weighted average of
theoretical mass models as a mixture of normal distribu-
tions, whose weights and standard deviations are estimated
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by MCMC using the NUTS from experimental S1n data. The
resulting weights and standard deviations are expressed as
distributions. The distributions of the EBMA parameters are
then used to estimate the uncertainty in S1n.

EBMA models have been constructed in four different
ways of fitting the experimental data, namely, the whole chart
of nuclides, each isotopic chain, each isotonic chain, and each
isobaric chain. The mass models included in the ensemble
were WS4, DZ29, KUTY05, HFB31, and ETFSI2, which are
some of the most popular choices of mass models in r-process
studies. For the whole chart EBMA model, WS4 was shown
to have a dominant contribution.

Quality of uncertainty estimates has been examined by
constructing EBMA models with the data from the AME2003
and testing the extrapolation performance on the new data
from the AME2020. Our analysis shows that the whole chart
EBMA model provides reliable uncertainty estimates.

The EBMA models constructed with the data for each iso-
topic, isotonic, and isobaric chain were shown to exhibit signs
of underconfidence and overfitting. However, the weights in
the EBMA models for individual chains, especially the iso-
topic and isotonic EBMA models, show which mass models
perform well in different parts of the chart of nuclides, po-
tentially giving insight into what theoretical descriptions of
nuclei are effective in different regions.

Effect of linear bias correction of each mass model was
examined, which was found to facilitate the overfitting of the
EBMA models constructed for individual chains, and has little
effect on the whole chart EBMA model. Therefore, linear bias
correction is not recommended in general.

Effect of choices of mass models included in the ensemble
was investigated by removing WS4, which was the domi-
nant model in the original ensemble. It was found that the
quality of uncertainty estimates provided by the whole chart
EBMA model slightly degrades, but still decent. On the basis

of the results and the general structure of the EBMA, it is
recommended that a wide range of mass models be included
for more reliable and constrained extrapolation of uncertainty
estimates.

We note the performance of EBMA on extrapolation of
uncertainty estimates has only been tested with the new data
in the AME2020, which lie just outside the AME2003 data.
In order for the EBMA method to gain more validity in the
neutron-rich region, improvements of the method that put
more emphasis on the neutron-rich region will be necessary.
Alternatively, inferring the weights from the r-process ob-
servables may be considered, since the r process is known to
involve extremely neutron rich nuclei.
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