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Solutions of three-particle Faddeev equations above the breakup threshold via separable expansions
of two-particle resolvents in a basis of two-particle pseudostates
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A separable expansion of the two-particle free resolvent in terms of two-particle pseudostates is used to convert
Alt-Grassberger-Sandhas (AGS) integral equations into a set of effective two-body equations in spectator degrees
of freedom. The resulting effective two-body equations are much like the multichannel Lippmann-Schwinger
(LS) equations of inelastic scattering with real, energy independent, nonsingular potential matrices. Hence, they
are more conducive to computations than the effective equations that ensue in the conventional approach based
on separable expansions of two-particle transition operators. In particular, the problem of moving singularities
of the conventional approach is avoided. The effective propagator matrix is complex and nondiagonal, and
exhibits simple-pole singularities in diagonal elements corresponding to open rearrangement channels. These
singularities can be handled by simple subtraction procedures well known from two-particle scattering. After
regularization of the kernel, the set of coupled LS-type equations in the spectator momenta are solved rather
straightforwardly via the Nyström method in which the integrals over spectator momenta are discretized using
suitable quadrature rules. Solutions of effective two-body equations are then used to calculate the breakup
amplitudes using the well-known relationship between rearrangement and breakup amplitudes. This proposed
method has been tested on two models: (i) particle-dimer collisions in a three-boson model with s-wave separable
pair potentials and (ii) an s-wave benchmark model with local pair potentials of the n + d collisions. Calculations
reported in the present article show that rather accurate results for elastic and breakup amplitudes can be obtained
with pseudostates generated from a relatively small number of local basis functions in momentum space.
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I. INTRODUCTION

In the context of Faddeev formalism of three-particle
dynamics [1–5], the important role played by separable ap-
proximations [6–8] and expansions [9–13] of two-particle
interactions is well known. For potentials representable as
finite-rank expansions, the Alt-Grassberger-Sandhas (AGS)
equations can be converted into Lippmann-Schwinger (LS)
type multichannel integral equations in the spectator mo-
menta [3–5]. In fact, in early phases of three-particle computa-
tions, this was, if not the only, the standard scheme to solve the
Faddeev or AGS equations in momentum space (see, e.g., [14]
and references therein). Computational implementation of
the effective two-body integral equations of this approach,
however, is impeded by the moving logarithmic singulari-
ties [4,5,15] in the effective interaction matrix. The usual
method of quadrature discretization for integral equations can
not be used because delicate and tedious handling [15,16]
of these singularities is required. Nevertheless, this approach
might still be more suitable for certain problems, although
other approaches like the finite-difference [17,18] or finite
element [19] methods for the differential form of Faddeev
equations or numerical multivariable methods for the AGS
integral equations in momentum space [15,20] dominate the
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current computational scene. Of course, mention must also
be made of other rigorous non-Faddeev methods which are
directly based on the Schrodinger equation [21–23].

That a similar scheme of reduction of three-particle dy-
namics into effective two-body form is possible with the use
of separable expansions of the two-particle free resolvent is
perhaps not appreciated commonly. Just as separable expan-
sions of two-particle potentials lead to separable expansions
of two-particle transition operators, finite-rank expansions of
the two-particle free resolvents give rise to finite-rank sep-
arable expansions for the two-particle resolvents (without,
however, having to approximate the two-particle interaction).
It turns out that the effective two-body equations that result
from using the separable expansions of the two-particle resol-
vents in AGS-like equations are easier to deal with. In fact,
they are more like the multichannel Lippmann-Schwinger
(LS) equations of inelastic collisions. The effective interaction
matrix is real, energy independent, and free of singularities.
The purpose of the present contribution is to explore this
approach formally and computationally.

In a precursor form of this idea, two particle-Hamiltonian
was approximated by its projection on a finite-dimensional
approximation space, giving rise to (approximate) bound
states and positive-energy pseudostates embedded in the con-
tinuum. The corresponding resolvent has a separable form
in terms of bound states and pseudostates, with continuum
replaced by a discrete sum over pseudostates. This idea
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was used in the context of the coupled-reaction-channels
(CRC) ansatz and in AGS equations with very satisfactory re-
sults [22–24]. That breakup amplitudes can be computed from
a discretization of two-particle continua via pseudostates is
especially remarkable. The approximation of the two-particle
resolvent in this manner, however, is somewhat simplistic,
because both interaction and kinetic energy of the two-particle
system is approximated by their projections. More sophis-
ticated schemes of approximating two-particle resolvents
exist [25,26].

One possible scheme would be to use the projection of
the free resolvent on the finite-dimensional approximation
space, but leave the potential intact. Note that two-particle
kineticenergy is not projected by itself, rather it is the two-
particle free resolvent that is replaced by its projection. The
corresponding two-particle resolvent (with original potential)
has a rank-N separable form, but with a nondiagonal matrix
representation [25,26]. By expressing the projector in terms
of bound and pseudostates, bound state poles can be local-
ized in the diagonal elements. In the present contribution,
this resolvent expansion is used in two off-shell transformed
versions of the AGS equations to derive effective two-body in-
tegral equations in spectator momenta. The resulting effective
two body equations resemble multichannel LS equations of
inelastic scattering. The potential matrix is real and energy
independent. But the propagator term is nondiagonal, energy
dependent, and complex, and exhibits a simple-pole singu-
larity as spectator momenta go through on-shell momenta of
the open rearrangement channels. If no is the number of open
rerarrangement channels at a given total energy, the on-shell
transition matrix of the effective two-body problem is no × no.
The corresponding S matrix is not unitary, because flux loss
into breakup is not explicitly represented. In effect, the prop-
agator term absorbs the flux that would go into breakup. In
other words, information about breakup is buried in half-off-
shell behavior of the effective two-body transition matrix.
To recover the breakup information, I use the well-known
relationship between breakup and rearrangement transition
operators, which in effect is equivalent to the integral formula
for the breakup amplitude in terms of scattering state.

This approach is much like the resolvent approximations
used in Refs. [27,28], where, however, a complete discretiza-
tion is performed by projecting not only the two-particle (free
and full) resolvents, but the free spectator resolvent as well. In
the present case, I leave out the spectator degree of freedom
as the scattering variable to be treated separately through any
one of a large list of computational methods well known from
two-body applications (see, e.g., Refs. [4,5,26,29]).

This article is organized as follows: Section II intro-
duces the notation, kinematics, channel structure, and the
two-particle bases to be used to generate the two-particle
pseudostates. Section III is devoted to a discussion of sepa-
rable expansions of two-particle resolvents. Formal aspects of
the proposed approach is developed in Sec. IV. Section IV A is
devoted to the review of Faddeev-AGS and Faddeev-Lovelace
equations. Modified versions of AGS equations are introduced
in Sec. IV B and then used in Sec. IV C to derive effective two-
body equations. The procedure used to calculate the breakup
amplitudes is outlined in Sec. IV D. Computational details and

results are reported in Sec. V. Finally, concluding remarks are
made in Sec. VI.

II. THE THREE-PARTICLE SYSTEM

The three-particle system considered in this work consists
of three identical particles whose total interaction is pairwise
additive. The pair potentials are restricted to act only on the
s-wave states of the pairs. In addition, only states of zero total
orbital angular momentum are considered. The particle (nu-
cleon) mass and h̄ are set to unity and fm is taken as the unit
of length. The nucleon mass adopted yields the conversion
factor 1 fm−2 = 41.47 MeV.

Two models are considered:

(i) The particle-dimer collision in a system of three
spinless bosons. The pair potential is taken to be sep-
arable with the parameters as given in [23] and with
dimer binding energy equal to binding energy of the
deuteron.

(ii) A model of the n + d scattering that is frequently used
in the literature as benchmark for the testing of three-
particle methods [17–19,21,22].

The formal structure of the proposed method of discretiza-
tion will be developed and explicated for the n + d model. The
equations for the bosonic particle-dimer model are obtained
by removing all references to spin from the equations of the
n + d model.

A. Kinematics, spin states, and channels

The standard three-particle notation [4,5] will be used
throughout this article. The Jacobi coordinates for the arrange-
ment α are denoted by xα and yα , with the corresponding
reduced masses being μα and να , respectively. Here yα is
the relative coordinate of the pair (βγ ), and yα the relative
position of the third (spectator) particle α with respect to the
center of mass of the pair (βγ ). The momenta conjugate to xα

and yα are pα and qα , respectively.
The total Hamiltonian H of the system in the center-

of-mass frame is given as H = H0 + V . Here, H0 is the
kinetic energy operator, and V the total interaction which
is pairwise additive. H0 can be decomposed as H0 = kα +
Kα , where kα = p2

α/(2μα ), and Kα = q2
α/(2να ), α = 1, 2, 3.

Its eigenstates are the plane-wave states |pαqα〉. Restrict-
ing the present consideration to three-particle states of zero
total orbital angular momentum and s-wave two-particle
states, the only partial wave states of interest are |pαqα〉 =
(4π )−1

∫
dp̂α

∫
dq̂α |pαqα〉, which are normalized as 〈pαqα |

p′
αq′

α〉 = δ(p − p′) δ(q − q′)/(p2q2). It is convenient, espe-
cially in dealing with three identical particles, to use the
notation |pq〉α to stand for |pα = p, qα = q〉. For instance, if
one denotes with P123 and P132 the cyclic permutation opera-
tors of particle labels, then P123|pq〉1 = |pq〉2 and P132|pq〉1 =
|pq〉3 in this notation.

The internal Hamiltonian for the pair α is hα = kα + vα ,
where vα is the spin-dependent potential between particles β

and γ . For the present study, the pair interaction vα is assumed
to operate only on s-wave states. Letting s (= 0 or 1) and
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i (= 0 or 1), denote, respectively, the spin and isospin of a
two-nucleon subsystem, the spin-isospin states for the αth
rearrangement may be written as | sSiI 〉α , where s (i) is
the spin (isospin) of the pair α and S (= 1/2 or 3/2) the
total spin, and I (= 1/2) the total isospin for the n + d col-
lision. With restriction to s waves, the Pauli principle requires
s + i = 1. Therefore, notation for the spin-isospin states for
rearrangement α can be simplified as |sS〉α , with isospin
quantum numbers suppressed. The spin/isospin recoupling
coefficients �S

ss′ =2 〈sS|s′S〉1 are �
1/2
11 = 0.25, �

1/2
00 = 0.25,

�
1/2
01 = �

1/2
10 = −0.75 for the doublet total spin state, and

�
3/2
11 = −0.5 for the quartet total spin state.
In this notation, the pair interaction vα has the form

vα =
∑

sS

|sS 〉α vαs α〈sS| . (1)

The present study uses vα1 (spin-triplet) and vα0 (spin-singlet)
of the so-called Malfliet-Tjon I-III model [15] whose form
and parameters are given in Ref. [19], which has been de-
nominated as a benchmark model for testing computational
methods. In this model, the spin-triplet potential supports just
one bound state (deuteron) |ϕd〉 with energy εd .

The energy spectrum of the two-particle system is
discretized by projection onto a finite-dimensional L2 ap-
proximation subspace sα which is spanned by a suitable
and sufficiently large set of basis functions |uαn〉, n =
1, 2, . . . , Nα . Let πα denote the projector onto sα . For a
given spin-isospin state of the two-particle subsystem, the
eigenstates of the projected two-particle Hamiltonian h̃αs =
παhαsπα are denoted by |φsn〉α , n = 1, 2, . . . , Nα . The cor-
responding energy eigenvalues are εsn. For the spin-triplet
case (s = 1), the lowest state (n = 1) corresponds to the
deuteron bound state. It is assumed that approximation basis
is large enough so that deuteron bound state |ϕd〉α is described
accurately. That is, |φ11〉α = |ϕd〉α and ε11 = εd . The remain-
ing states |φ1n〉α, n = 2, . . . , Nα have positive energies and
are referred to as pseudostates embedded in the continuum.
For the spin-singlet case, states |φ0n〉α, n = 1, 2, s, Nα are all
pseudostates.

The rearrangement-channel Hamiltonian is Hα (≡ Kα +
h̃α ). Restricting the present treatment to states of zero to-
tal orbital angular momentum, the eigenstates of Hα are
the direct-product states | φsn〉α ⊗ |q〉α ⊗ |sS〉α with energies
Eαsnq = εsn + 3q2/4. Alternative notation | φsn q sS 〉α will
also be used for these channel states. Only the channel state
with n = 1, s = 1 represents a physical channel while all the
rest are pseudochannels embedded in the continuum which
simulate the breakup channel.

Let us denote the state space associated with the spectator
particle by Sα , on which the identity operator is Iα . The direct
product sα ⊗ Sα gives the computational space Sα for the
rearrangement channel α. Projector �α onto Sα is then given
by the direct product πα ⊗ Iα . For the subspace of Sα with
total spin S, the explicit form of the projector is given by

�S
α =

∑
s,n

∫
q2dq |φsnqsS〉α α〈φsnqsS| . (2)

As part of the notational convention, two-particle operators
on sα are denoted by lower case letters, while capital letters are
used for their extension to the three-particle space Sα . In this
notation, e.g., Vα = vα ⊗ Iα .

Final states in the breakup channel are eigenstates of H0 :
|pq〉α ⊗ | sS 〉α for which an alternative notation is |pqsS〉α .
Of course, breakup can as well be described in terms of
continuum states |p(+)qsS〉α of Hα . These continuum states
satisfy

|p(+)qsS〉α = Wα |pqsS〉α = (I + G0 Tα ) |pqsS〉α (3)

where Wα is the two-particle wave operator, Tα the two-
particle transition operator, and G0(z) = (z − H0)−1 the free
resolvent.

The channel external interactions V α are defined by V α =
H − Hα . In the discussion of three-particle theory, the fol-
lowing resolvent operators will also be encountered: G(z) =
(z − H )−1, Gα (z) = (z − Hα )−1, gα (z) = (z − hα )−1, and
g0α (z) = (z − kα )−1, α = 1, 2, 3. The rearrangement-channel
resolvent Gα (E + i0) in total spin state S has the spectral
decomposition

GS
α (E + i0) =

∫
q2dq

|ϕd qsd S 〉α α〈ϕd qsd S |
E − εd − (q2/2ν1) + i0

+
∑

s

∫
p2d p

∫
q2dq

× |p(+)qsS 〉α α〈p(+)qsS |
E − (p2/2μ1) − (q2/2ν1) + i0

. (4)

where sd = 1.

B. Expansion basis and pseudostates for the two-particle
subsystems

The two-particle pseudostates are generated using a basis
with local support in momentum space. In this contribu-
tion, the primitive basis {uαi(pα )} consists of local piecewise
quadratic (LPQ) polynomials [30] defined over a grid in rel-
ative momentum p of the two-body system. A cutoff value
pmax is introduced for pα . The computational interval [0, pmax]
is partitioned into Ip subintervals (finite elements), and a set
of 2Ip − 1 quadratic local-interpolation functions ζi(p) are
defined on this grid. Note that the grid does not have to be
evenly distributed.

Let {P1, P2, . . . , PIp+1} be the set of break points for a
partition of the interval [0, pmax] into Ip finite elements. Here
P1 = 0 and PIp+1 = Pmax. The midpoint of the ith finite ele-
ment [Pi, Pi+1] is denoted Pi+1/2, i = 1, 2, . . . , I1. Collecting
and ordering the break points and midpoints of all the fi-
nite elements together, I form the set {p1, p2, . . . , pÑ } of
grid points, where Ñ = 2Ip + 1, pN = pmax, and p2i−1 =
Pi, p2i = Pi+1/2, for i = 1, . . . , Ip. This set (to be referred
to as the grid) provides the setting for the definition of the
p basis {ζn(p)}. Each basis function ζn(p) will be centered at
its corresponding grid point pn and will satisfy the cardinal
property ζn(pm) = δnm, n, m = 1, 2, . . . , Ñ .

These local piecewise quadratic polynomials are best de-
scribed in terms of a local variable ξ , defined separately for
each finite element. The finite element [Pi, Pi+1] is mapped
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to [−1, 1] via ξ = (2q − Pi − Pi+1)/(Pi+1 − Pi ). In terms of
the local variable s, the basis functions associated with the
breakpoints read

ζ2i−1(p) =
⎧⎨
⎩

−ξ (1 − ξ )/2 for Pi < p < Pi+1,

ξ (1 + ξ )/2 for Pi−1 < p < Pi,

0 otherwise,

for i = 1, 2, . . . , Ip + 1; while the functions associated with
the midpoints of finite elements have the form

ζ2i(p) =
{

1 − ξ 2 for Pi < p < Pi+1,

0 otherwise,

for i = 1, 2, . . . , I . These functions are depicted, e.g., in
Ref. [31], where they have been used to discretize the mo-
mentum space in the context of a time-dependent wave-packet
calculation. They have finite support: the ones associated with
breakpoints (nodes) are nonzero over two finite elements,
while those associated with midpoints of the finite elements
are nonzero over one finite element.

The two-particle expansion bases are then defined as
ui(pα ) = ζi+1(pα )/pα i = 1, N , where N = 2Ip − 1. Note
that the local functions associated with the first and last grid
points (namely ζ1 and ζÑ have been removed.

Although the local basis {ui(pα )} is not orthonormal, the
pseudostates generated in terms of it are orthonormal by con-
struction.

Note that the spectrum of pseudostate energies can be
varied by changing the approximation subspace sα . Hence,
the pseudostates do not represent an invariant property of the
two-particle system. Nevertheless, a given set of pseudostates
carry information about the continuum of the two-particle
system. For a given number of grid points (and hence a given
number of basis functions), the spectrum of pseudostate ener-
gies can be adjusted by changing the distribution of grid points
over the computational interval [0, pmax] as deemed necessary.

Although piecewise quadratic basis functions were pre-
ferred in the present study, other classes of local interpolation
bases (such as piecewise linear, cubic Hermite, cubic spline)
or even other types of local bases (like distributed Gaussians)
could be used as well. The author’s experience with the the
local quadratic basis to discretize the momentum variables has
been rather satisfactory in such scattering applications as the
time-dependent wave-packet propagation [31–33] and in the
context of multivariable discretization needed for the solution
of two- and three-dimensional LS equations without angular
momentum decomposition [26,29].

III. SEPARABLE EXPANSIONS FOR THE TWO
PARTICLE RESOLVENT

In the most straightforward use of pseudostates, the two-
particle resolvent gα is approximated by

gα ≈ πα (zπα − παhαπα )−1πα . (5)

That is, in the spectral decomposition, the integral over con-
tinuum states is replaced by a discrete sum over pseudostates.

Gα (E + i0) is then approximated as

GS
α (E + i0) ≈ [

E + i0 − �S
αHα�S

α

]−1

=
∑

s

∑
n

∫
q2dq

|φsnqsS 〉α α〈φsnqsS |
E − εsn − (q2/2ν1) + i0

.

(6)

This type of approach has been used in the CRC ansatz and in
the AGS equations with satisfactory results [22–24].

Other resolvent approximations are possible on the finite
subspace sα spanned by the the two-particle pseudostates. For
example, the two-particle free resolvent g0α can be approxi-
mated by its projection onto the two-particle approximation
space sα:

g̃0α = παg0απα,=
∑

n

∑
n′

|φn〉 (g̃0α )nn′ α〈φn′ |, (7)

where the matrix g̃0α is given by

(g̃0α )nn′ =α 〈φn|g0α|φn′ 〉α =
∫

p2 d p
φαn(p) φαn′ (p)

z − p2/(2μ)
. (8)

The corresponding two-particle resolvent g̃α is the solution
of the resolvent LS equation g̃α = g̃0α + g̃0α vα g̃α . For the
two-particle spin state s, one finds that

g̃αs = g̃0α [g̃0α − g̃0αvαsg̃0α]−1g̃0α (9)

In explicit form

g̃αs =
∑

n

∑
n′

|φns〉α (g̃αs)nn′ α〈φn′s|, (10)

where the matrix g̃αs is defined by

g̃αs = [
g̃−1

0α − vαs
]−1

(11)

with (vαs)nn′ =α 〈φns|vαs|φn′s〉α .
The channel resolvent Gα (E + i0) is then approximated as

GS
α (E + i0) ≈

∑
s

∑
n

∑
n′

∫
q2dq |φsnqsS 〉α

× (g̃αs(E
+
q ))nn′ α〈φsn′qsS |, (12)

where E+
q stands for z = E − q2/(2να ) + i0.

Equation (12) represents the separable expansion of the
two-particle resolvent that will be used in the present study
to derive effective two-body equations for the spectator de-
grees of freedom. Note that bound states appear as simple
poles in corresponding diagonal elements of g̃αs, while pseu-
dostates do not give rise to any singularities. This last point
is an interesting aspect of the present approach. It is to be
contrasted with Eq. (6) where pseudostates give rise to singu-
larities which in turn define pseudo-rearrangement channels.
In Eq. (12), the effective propagator g̃αs(E+

q ) is nondiagonal,
complex, and energy dependent, while vertex states are real.
For values of Eq in the immediate vicinity of the bound-
state energies, the usual pole behavior is recovered in the
corresponding diagonal element. Of course, g̃αs(E+

q ) could be
brought into diagonal form, but at the price of making the
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vertex states energy dependent and complex. This is not de-
sirable because it would mean back to the problem of moving
logarithmic singularities that one would like to avoid.

Other separable expansions of g0α can be gener-
ated via one-sided projections παg0α and g0απα . An
even more efficient scheme is the symmetric construction
g0α πα [ πα g0α πα ]−1 πα g0α . This last type of projection is
called inner projection in quantum chemistry literature [34].
The use of the inner projection approximation for g0α in
the resolvent equation gα = g0α + g0α vα gα produces a sep-
arable expansion that is equivalent to the application of a
Schwinger-like variational principle on the approximation
subspace sα [25,26]. The corresponding approximation for the
rearrangement channel resolvent would read

GS
α (E + i0) ≈

∑
s

∑
n

∑
n′

∫
q2dq g0α (E+

q ) |φsnqsS 〉α

× [
�−1

αs (E+
q )

]
nn′ α〈φsn′qsS | g0α (E+

q ),

(13)

where

[�αs(E
+
q ) ]nn′ = α〈φn|g0α (E+

q )|φn′ 〉α
− α〈φn| g0α (E+

q )vαs g0α (E+
q ) |φn′ 〉α .

This would definitely be a better approximation to GS
α (E +

i0) than the one in Eq. (12). However, the vertex states
g0α (E+

q ) |φsnqsS 〉α of this separable expansion are complex
and energy dependent due to the presence of g0α , and that
feature makes Eq. (13) less desirable for use in the AGS
equations. When Eq. (13) is used in AGS equations to derive
effective two-body equations, the elements of the effective
potential matrix would involve integrals with moving loga-
rithmic singularities, just as in the standard approach with
separable potentials. Therefore, the resolvent expansion given
in Eq. (12) is preferred in the present work.

IV. THEORETICAL DEVELOPMENT

A. Review of Faddeev formalism: AGS and Lovelace equations

For a collision starting in rearrangement 1, the Alt-
Grassberger-Sandhas (AGS) version of Faddeev equations [1]
for rearrangement transition operators read [3]

Uβ1 = δ̄β1G−1
0 +

3∑
γ=1

δ̄βγ Tγ G0 Uγ 1, (14)

where δ̄βα = 1 − δβα . and Tγ is the transition operator for the
pair potential Vγ . With β = 1, 2, 3, the above equations form
a closed set of equations for U11, U21, and U31. The breakup
transition operator is then given as

U01 = G−1
0 + T1G0 U11 + T2G0 U21 + T3G0 U31, (15)

which can also be reexpressed as

U01 = G−1
0 δγ 1 + (I + Tγ G0)Uγ 1 = G−1

0 δγ 1 + W †
γ Uγ 1, (16)

where γ can be 1, 2, or 3, and the subsystem wave operator
Wγ is the solution of Wγ = I + G0VγWγ and satisfies Wγ =

I + G0Tγ = I + GγVγ . Note that, the G−1
0 term in Eq. (14)

does not contribute to the on-shell breakup amplitudes.
Another version of Faddeev equations that has received

lesser attention in applications is the Lovelace equations (for
the post-form transition operators) [2]:

U (+)
1β = V 1 +

3∑
γ=1

U (+)
1γ G0Tγ δ̄γ β . (17)

The post and AGS forms of the rearrangement operators are
related by Uβα = δ̄βα G−1

α + U (+)
βα . Lovelace equations have

the same kernel as the AGS equations, but the driving term
differs. The solution of Lovelace equations can be obtained
from those of the AGS equations by a quadrature [23]:

U (+)
β1 = V (β )

3∑
γ=1

[δβγ + G0Tγ G0Uγ ,1 ], (18)

where the term in the parentheses is the wave operator for
the γ th Faddeev component of the full scattering state with
initial arrangement (1). As such, this equation is nothing but
the integral formula for the rearrangement operator U (+)

β1 , viz.,

U (+)
β1 |�1〉 = V β |�〉, with |�〉 standing for the full scattering

state for a collision starting in the initial state |�1〉 in rear-
rangement (1).

The post form of the breakup transition operator is defined
as

U (+)
01 = V + V G(z)V 1, (19)

and satisfies U (+)
01 = W †

β U (+)
β1 , with β = 1, 2, or 3, in analogy

with Eq. (16).
For the three-nucleon case, taking rearrangement 1 as the

reference rearrangement, the properly antisymmetrized form
of rearrangement transition operators are

U = U11 + P132 U21 + P123 U31, (20)

U(+) = U (+)
11 + P132 U (+)

21 + P123 U (+)
31 . (21)

The antisymmetrized versions of AGS and Lovelace equa-
tions become

U = (P123 + P132) G−1
0 + (P123 + P132) T1 G0 U, (22)

U(+) = (P123 + P123)V 1 + U(+)(P123 + P132) G0 T1 . (23)

Here it is tacitly assumed that these equations will be used in
conjunction with channel states that are antisymmetric under
P23. In analogy with Eq. (14), solution of Eq. (19) can be
constructed from the solution of Eq. (18) :

U(+) = V 1 (I + P123 + P123)(I + G0 T1 G0 U). (24)

As all rearrangements are indistinguisable from the initial
rearrangement (taken as 1) and since there is just one channel
state in each rearrangement of the three-nucleon system, the
antisymmetric combination of rearrangement amplitudes will
be referred to as the elastic amplitude.
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Properly antisymmetrized transition operators into the
breakup channel are given as

Ubup = W †
1 U = (I + T1 G0) U, (25)

U(+)
bup = W †

1 U(+) = (I + T1 G0) U(+), (26)

where I dropped from Ubup a term that vanishes for on-shell
breakup amplitudes.

B. Off-shell transformed AGS equations

To facilitate the use of separable expansions of the two-
particle resolvents in three-particle context, I introduce the
following off-shell transformed forms of the rearrangement
operators:

Aβα = Vβ G0 Uβα and Tβα = Uβα G0 Vα . (27)

For a collision starting in rearrangement 1, the AGS equa-
tions for these off-shell modified rearrangement operators
become

Aβ1 = Vβ δ̄β1 +
3∑

γ=1

Vβ δ̄βγ Gγ Aγ 1, (28)

Tβ1 = δ̄β1 V1 +
3∑

γ=1

δ̄βγ Vγ Gγ Tγ 1 . (29)

Operators Aβ1 and Tβ1 are half-on-shell equivalent to Uβ1.
These operators and the above equations have been discussed
in some detail in Ref. [35] and have been used for compu-
tations in Ref. [23]. Some insight into the nature of these
equations can be gained by considering the wave-function
counterparts of Eqs. (28) and (29). Letting |�1〉 denote the
initial state, the wave-function equations are

∣∣ψF
β

〉 = |�1〉 δβ1 +
3∑

γ=1

Gβ Vβ δ̄βγ

∣∣ψF
γ

〉
, (30)

|�β〉 = |�1〉 δβ1 +
3∑

γ=1

Gβ δ̄βγ Vγ |�γ 〉 . (31)

Note that {|ψF
1 〉, |ψF

2 〉, |ψF
3 〉, } are the Faddeev components

and Eq. (30) represents the original Faddeev equations. On the
other hand, |�1〉, |�2〉, and |�3〉, are each equal to the total
scattering state. Thus, as yβ → ∞, the asymptotic form of
Faddeev component |ψF

β 〉 yields the on-shell matrix elements
of Aβ1, while the asymptotic analysis of |�β〉 produces on-
shell matrix elements of Tβ1.

Introducing the antisymmetrized versions of these opera-
tors via

A = A11 + P132 A21 + P123 A31, (32)

T = T11 + P132 T21 + P123 T31, (33)

one finds that

A = V1 G0 U and T = U G0 V1 . (34)

The antisymmetrized AGS equation, Eq. (22), is now replaced
by

A = V1 (P123 + P132) + V1 (P123 + P132) G1 A, (35)

T = (P123 + P132)V1 + (P123 + P132)V1 G1 T. (36)

These equations are of the Lipmmann-Schwinger form and
are especially suitable for use in conjunction with separable
approximations or expansions of the two-particle resolvent
G1. Note that interaction terms V1 (P123 + P132) and (P123 +
P132)V1 are transposes of each other. On-shell matrix elements
of A, T, and U are equal by definition. On the other hand, U+

can be obtained from A via

U(+) = V 1 (I + P123 + P123)(I + G1 A), (37)

which amounts to a rewriting of Eq. (24) using A = V1 G0 U.
The antisymmetrized versions of wave-function Eqs. (30)

and (31) read

|ψF 〉 = |�1〉 + G1 V1(P123 + P123)|ψF 〉, (38)

|�〉 = |�1〉 + G1 (P123 + P123)V1|�〉, (39)

where |ψF 〉 is the antisymmetrized Faddeev component and
|�〉 is the antisymmetrized total scattering state.

C. Effective two-body equations

In the proposed approach, separable expansion of G1 given
in Eq. (12) is used in Eqs. (35) and (36) to obtain

AS
sn,11(q, q̄11) = VS

sn,11(q, q̄11)

+
∑
s′n′n′′

∫
q′2dq′VS

sn,s′n′ (q, q′)

× (g̃1s′ (E+
q ))n′n′′AS

s′n′′,11(q′, q̄11), (40)

TS
sn,11(q, q̄11) = VS

11,sn(q̄11, q)

+
∑
s′n′n′′

∫
q′2dq′VS

s′n′,sn(q′, q)

× (g̃1s′ (E+
q ))n′n′′TS

s′n′′,11(q′, q̄11), (41)

for the half-off-shell amplitudes AS
sn,11(q, q̄11) and

TS
sn,11(q, q̄11) defined by

AS
sn,11(q, q̄11) = 1〈φsnqsS| A |φ11q̄11s0S〉1,

TS
sn,11(q, q̄11) = 1〈φsnqsS| T |φ11q̄11s0S〉1, (42)

where s0 = 1, φ11 = ϕd , q̄11 = [4(E − ε11)/3]1/2. The mo-
mentum value q̄11 is the incident spectator momentum.
Eqs. (40) and (41) are much like multichannel LS equa-
tions (in spectator degrees of freedom) with the potential
matrix

VS
sn,s′n′ (q, q′) = 1〈φsnqsS|V1 (P123 + P132)|φs′n′q′s′S〉1 . (43)

Note that the effective potential matrix of the T-
equation is the transpose of the effective potential
matrix of the A equation, i.e., 1〈φnsqsS|(P123 +
P132)V1|φn′s′q′s′S〉1 = 1〈φn′s′q′s′S|V1(P123 + P132)|φnsqsS〉1.
Thereby, TS

sn,11(q, q̄11) = AS
11,sn(q̄11, q). Thus, the physical
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on-shell amplitudes AS
11,11(q̄11, q̄11) and TS

11,11(q̄11, q̄1)
are the same, but off-shell amplitudes AS

sn,11(q, q̄11) and
TS

sn,11(q, q̄11) differ. This is in line with the observation made
after Eqs. (30) and (31), namely, that A is linked with the
antisymmetrized Faddeev component, whereas T has to do
with the antisymmetrized total scattering state.

The on-shell matrix element AS
11,11(q̄11, q̄11) is referred to

as the elastic amplitude and denoted as Ael. The normalization
convention used is such that the elastic amplitude at total
energy E = εd + q̄2

11/(2ν1) is given in terms of phase shift
δ as

Ael = AS
11,11(q̄11, q̄11) = − tan δ eiδ

πν1q̄11
. (44)

The corresponding S-matrix element is Sel = e2iδ . Similar
statements hold for Tel ≡ TS

11,11(q̄11, q̄11).
The kernels of Eqs. (40) and (41) have a simple-pole sin-

gularity at q′ = q11, corresponding to the antisymmetrized
elastic channel. After an appropriate regularization of this
fixed-point singularity as described in Ref. [36], effective
two-body equations are solved by quadrature discretization
(Nyström method) [37]. It is remarkable that there are no
poles corresponding to pseudochannels. That is, the on-shell
A and T matrices are 1 × 1. Since the potential matrix is real,
flux loss into the breakup channel must take place through
the propagator term g̃αs(z). All amplitudes AS

sn,11(q, q̄11) and
TS

sn,11(q, q̄11) other than AS
11,11(q̄11, q̄11) and TS

sn,11(q̄11, q̄11)
are non-physical amplitudes which, however, carry informa-
tion about transitions into the breakup channel. In contrast,
in the pseudostate discretization of the AGS equations via
Eq. (6) [23], every energetically accessible pseudostate gives
rise to a pseudochannel, and on-shell A and A matrices are
No × No, where No is the number of open pseudochannels.

Elastic amplitude can also be calculated as the on-shell
matrix element of U(+), viz.,

U(+)S
sn,11(q, q̄11) = 1〈φsnqsS| U(+) |φ11q̄11s0S〉1 .

One can construct it using the solution of Eq. (40) in Eq. (37):

U(+)S
sn,11(q, q̄11) = V(+)S

sn,11(q, q̄11)

+
∑
s′n′n′′

∫
q′2 dq′ V(+)S

sn,s′n′ (q, q′)

× (g̃1s′ (E+
q ))n′n′′ AS

s′n′′,11(q′, q̄11), (45)

where V(+)S
sn,s′n′ (q, q′)=1〈φsnqsS|V 1(I+P123+P132)|φs′n′q′s′S〉1.

D. Computation of breakup amplitudes

The connection between Ubup and U, as given in Eq. (25),
leads us to define a breakup operator Abup via

Abup = T1 G0 U . (46)

In view of Eqs. (22) and (25), one finds that

Abup = (I + T1 G0) A = W †
1 A . (47)

The on-shell matrix element of the operator Abup is the so-
called single component breakup amplitude that comes out
from the asymptotic analysis of the antisymmetrized Faddeev

component |ψF 〉. Using Eq. (22) in Eq. (25), one finds that the
total breakup amplitude can be expressed as

Ubup = U + Abup = (I + P123 + P132) Abup . (48)

On the other hand, in analogy with Eq. (26), if one defines
another breakup operator Tbup via

Tbup = W †
1 T = (I + T1 G0) T, (49)

one finds that its relation to Ubup is given by Tbup =
Ubup G0 V1. That is, Ubup and Tbup are half-onshell equivalent.
Therefore,

Abup |φ11q̄11s0S〉1 = T1 G0 T |φ11q̄11s0S〉1 . (50)

Nyström solutions of Eqs. (40) and (41) produce, respec-
tively, AS

sn,11(q, q̄11) and TS
sn,11(q, q̄11) for values of q on a

quadrature grid. Let AsS
bup(θ ) denote the single-component

breakup amplitude for transition into the final breakup state
|p q sS〉1 from the initial state |ϕd q̄11 s0S〉1, i.e., AsS

bup(θ ) =
1〈pqsS |Abup |φ11q̄11s0S〉1. This amplitude can be constructed
via Eq. (47):

AsS
bup(θ ) = 1〈pqsS |(I + T1 G0) �S

1 A |φ11q̄11s0S〉1, (51)

where p and q can take values subject to E = p2 + 3q2/4 =
εd + 3 q̄2

11/4 and hyperspherical angle θ is defined by p =√
E cos θ . As the solution of Eq. (40) produces only the

matrix elements AS
sn,11(q, q̄11), the operator A in Eq. (47) has

to be approximated by �S
1 A. The amplitude Abup(θ ) is then

given as

AsS
bup(θ ) =

∑
n

φsn(p) AS
sn,11(q, q̄11)

+
∑

n′
1〈p| t1s(Eq) g0(Eq) |φsn′ 〉1 AS

sn′,11(q, q̄11) .

(52)

where t1s(Eq) is the two-particle t-operator for the pair poten-
tial v1s at the two-particle energy Eq = E − 3q2/4.

On account of Eq. (50), the amplitude AsS
bup can also be

constructed from the solution of Eq. (41):

AsS
bup(θ ) =

∑
n′

1〈p| t1s(Eq) g0(Eq) |φsn′ 〉1 TS
sn′,11(q, q̄11) .

(53)

In view of Eq. (22) and in analogy to Eq. (37), the solutions
U(+)sS

sn′,11(q, q̄11) of the Lovelace equation provide yet another

route to the breakup amplitude. Defining A(+)
bup (≡ T1 G0 U(+)

bup ),
one finds

A(+)sS
bup (θ ) =

∑
n′

1〈p| t1s(Eq) g0(Eq) |φsn′ 〉1 U(+)sS
sn′,11(q, q̄11) .

(54)

In the computational implementations of Eqs. (52)–(54),
the two-particle transition operator t1s(Eq) is constructed via
the Schwinger variational principle using the pseudostate

054004-7
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basis. The desired matrix element becomes

1〈p| t1s(Eq) g0(Eq) |φsn′ 〉1

=
∑

n′′
1〈p| v1s |φsn〉1 (d1s)nn′′ 1〈φsn′′ | v1s g0(Eq) |φsn′ 〉1,

(55)

where

(d−1
1s )nn′ =1 〈φsn| v1s − v1s g0(Eq) v1s |φsn′ 〉1 . (56)

V. CALCULATIONS AND RESULTS

A. Details about computational implementation

In the present article, elastic amplitudes are calculated
three ways, namely, by solving the integral Eqs. (40) and
(41) to obtain AS

11,11(q̄11, q̄11) and TS
11,11(q̄11, q̄11), respec-

tively, and by using the solution of Eq. (40) in Eq. (45) to
obtain U(+)S

11,11. Amplitudes AS
11,11(q̄11, q̄11) and TS

11,11(q̄11, q̄11)
come out numerically equal within the machine accuracy,
while U(+)S

11,11 results are in general more accurate. Similarly,
Eqs. (52), (53), and (54) provide three distinct routes to the
breakup amplitudes, with the results being of very similar
quality (although not identical).

Usually a division of the computational interval [0, pmax]
into 40–50 finite elements provided sufficient accuracy. The
cutoff value pmax = 12 fm−1 for the two-particle momentum
p proved adequate. A typical p grid for Elab = 14.1 MeV, con-
sists of 41 finite elements with the grid points distributed as
[0(14)0.45], [0.45(12)1.0], [1.0(5)1.6], 1.6(4)2.5], [2.5(3)
4.0], [4.0(3)12.0], where [a(n)b] means that the interval [a, b]
is divided into n equal finite elements. This gives rise to
N = 81 local piecewise quadratic (LPQ) basis functions in
the p variable. In the present work, for a given basis size
N , all the pseudostates were included in the expansion of the
two-particle resolvent.

The coupled set of effective two-body equations, Eqs. (40)
or (41), contain only fixed-point singularities, which are first
regularized using a multichannel version of the Kowalski-
Noyes method [36]. The resulting set of nonsingular equa-
tions are then solved by quadrature discretization. A cutoff
qmax is introduced for the upper limit of the q integrals. The
value qmax = 8.0 fm−1 was found to be adequate. The inter-
val [0, qmax] is divided into a number of subintervals, and a
Gauss-Legendre rule is applied on each subinterval. Typically
a total of 150 quadrature points used for the variable q. Thus,
for the calculations of the doublet state of the n + d model
with N = 81, the dimension of the linear system of complex
equations that results from the Nyström method is 24300.

In Eq. (8) and in Eqs. (52)–(56), matrix elements like
α〈φn|g0α|φn′ 〉α〈φsn|v1sg0(Eq)|φsn′ 〉 and 〈φsn|v1sg0(Eq)v1s|φsn′ 〉
imply integrals with fixed-point singularities over the two-
particle momentum. These are first regularized by subtraction.
The nonsingular integrals are then performed using a com-
posite Gauss-Legendre quadrature over the computational
interval [0, pmax], typically using 16 points per finite element
interval.

The amplitude commonly used in the litera-
ture [17,18,21,27,38] to present breakup results is denoted

FIG. 1. Real and imaginary parts of the elastic S matrix Sel vs
the incident spectator momentum q̄11 (in units of fm−1) for the
three-boson model with separable pair potential. Results obtained via
Eq. (40) are compared with the reference (Faddeev) results obtained
from the accurate solutions of the Faddeev-AGS equations via the
standard scheme for separable pair potentials. The number of basis
functions used in Eq. (40) ranges from 61 to 111, depending on the
the incident momenta.

ĀsS
bup(θ ) and is related to the breakup amplitude ASs

bup(θ ) by

ĀsS
bup(θ ) = 4π

3
√

3
q̄0 κ4 eiπ/4 AsS

bup(θ ), (57)

where E = κ2 = p2 + 3q2/4 and p = κ cos θ . Ā(+)sS
bup (θ ) is

defined similarly.

B. Calculations for particle-dimer collision in a three boson
model with separable pair potential

First tests of the proposed method were made on the
bosonic particle-dimer collision model. The separable pair
potential used is the same one as in Ref. [23]. As is well
known, this model can be solved to arbitrary level of accuracy
within Faddeev formalism. My reference (Faddeev) results for
the separable-potential model were obtained by solving the
effective two-body equations of the standard Faddeev-AGS
approach via the Schwinger variational principle with the lo-
cal piecewise quadratic (LPQ) basis and with careful attention
paid to logarithmic singularities. In Fig. 1, real and imaginary
parts of Sel obtained with a basis of local piecewise quadratic
functions are compared with reference results for a wide range
of incident spectator momenta q̄11 (in units of fm−1). Collision
energies Elab in Fig. 1 range from 0 to about 186 MeV. The
number of LPQ basis functions used to generate this plot
was 61 for q11 < 0.5, 85 for 0.5 < q11 < 1.4, and 111 for
q11 > 1.4. Agreement with reference results over this rather
large range of collision energies is quite satisfactory.

Table I gives the numerical comparison for Sel obtained
at two collision energies using different number of basis
functions. In this table, results designated as A are from the
solution of Eq. (40), while results labeled by U+ are obtained
using Eq. (45), which is equivalent to the integral formula for
the elastic amplitude in the post form. Both sets of results
compare favorably with essentially exact results of Faddeev
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TABLE I. Elastic S matrix for the particle-dimer collision in the
three-boson model with separable pair potentials. Results obtained
with various pseudostate bases at two collision energies are tabulated.
Entries labeled with A are from solution of Eq. (40), while entries
labeled with U(+) are from Eq. (45). The entries labeled as LPQ N
in the table have been calculated using N local piecewise quadratic
(LPQ) basis functions. Reference results labeled as Faddeev refer to
the accurate solutions of the Faddeev-AGS equations via the standard
scheme for separable pair potentials.

Elab (MeV) Basis Method |Sel| Re(δ)

14.1 LPQ 51 A 0.8450 164.95
U(+) 0.8549 166.07

LPQ 61 A 0.8460 166.58
U(+) 0.8539 166.08

LPQ 71 A 0.8638 166.15
U(+) 0.8544 166.08

LPQ 91 A 0.8511 166.20
U(+) 0.8536 166.32

Faddeev 0.8558 166.11
42.0 LPQ 61 A 0.4469 127.76

U(+) 0.4643 124.52
LPQ 71 A 0.4787 126.79

U(+) 0.4637 124.51
LPQ 81 A 0.4874 125.50

U(+) 0.4637 124.58
LPQ 91 A 0.4838 124.62

U(+) 0.4621 124.54
LPQ 101 A 0.4752 123.98

U(+) 0.4643 124.59
Faddeev 0.4664 124.54

calculation. The agreement is usually slightly better for the
results of U+ calculations.

Figure 2 shows the breakup amplitudes Ābup(θ ) at Elab =
14.1 MeV, obtained with a finite element basis consisting
of 91 local piecewise quadratic (LPQ) functions. This LPQ
basis is defined on a division of the interval [0, pmax] into
46 subintervals. Figure 2(a) shows the breakup amplitudes
Ābup(θ ) obtained via Eq. (52). On the scale of these graphs,
the results of the present approach are almost indistinguish-
able from the essentially exact Faddeev results, except for
the behavior near θ = 90 degrees. Also there are some slight
oscillations at lower values of θ . Such oscillations have also
been observed in connection with the full L2-discretization

FIG. 3. Real and imaginary parts of the breakup amplitude
Ābup(θ ) vs θ (in degrees) at Elab = 42 MeV for the three-boson model
with the separable pair potential. (a) Ābup(θ ) via Eq. (52). (b) Ābup(θ )
via Eq. (53). The number of basis functions is 101.

approach of Ref. [27] where a somewhat ad hoc averaging
procedure was performed to smooth the results.

Figure 2(b) shows Ābup(θ ) obtained from Eq. (53) and

Fig. 2(c) gives Ū(+)
bup (θ ) obtained from Eq. (54). These two

sets of results are not identical, but are nearly the same. If
they are plotted on the same graph, they are right on top of
each other on the scale of these graphs. This is not surprising
because they are both extracted from the total scattering state:
Eq. (53) entails the asymptotic form of the total scattering
state, whereas Eq. (54) amounts to using the integral for-
mula. In contrast, Eq. (52) refers to the asymptotic form of
the Faddeev component. Comparison of Figs. 2(b) and 2(c)
with Fig. 2(a) indicates that the discrepancy near 90 degrees
in Fig. 2(a) is cured, but there are slightly more oscillations in
Fig. 2(b) or Fig. 2(c).

Figures 3 and 5 present similar results for Elab = 42 MeV.
Breakup amplitudes from Eq. (52) are in excellent agreement
with Faddeev results, except for angles near 90 degrees. As
before, use of Eq. (53) or Eq. (54) corrects the problem near
90 degrees, but oscillations below 40 degrees become more
pronounced.

C. Calculations for the n + d model

Calculations of the inelasticity and phase shift parameters
of the elastic channel in the spin-doublet and spin-quartet
cases are presented in Tables II and III, respectively. Results
obtained via Eqs. (40) and (45) with different sizes of the LPQ
basis are compared with the results available in the literature
for two collision energies [17,18,21,24,38]. Agreement with
benchmark results is very satisfactory. Note that in general
the U(+) results are slightly more accurate than the A results.

FIG. 2. Real and imaginary parts of the breakup amplitude Ābup(θ ) vs θ (in degrees) at Elab = 14.1 MeV for the three-boson model with the
separable pair potential. The breakup amplitudes obtained from present approach with a basis of 91 local piecewise quadratic (LPQ) functions
are compared to the reference Faddeev results: (a) Ābup(θ ) from Eq. (52), (b) Ābup(θ ) from Eq. (53), and (c) Ā

(+)
bup (θ ) from Eq. (54).
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TABLE II. Real part of phase shift δ and |Selas| for the n-d model
in the spin-doublet case at two collision energies. Results obtained
with various pseudostate bases are compared with the results re-
ported in the literature. The number N of local piecewise quadratic
basis functions (LPQ) used in a particular calculation is designated
as LPQ N in the table. Other details are the same as in Table I.

Elab (MeV) Basis Method |Sel| Re(δ)

14.1 LPQ 51 A 0.4855 105.02
U(+) 0.4634 105.41

LPQ 61 A 0.4541 104.92
U(+) 0.4630 105.42

LPQ 71 A 0.4631 105.74
U(+) 0.4637 105.37

LPQ 81 A 0.4635 105.21
U(+) 0.4630 105.38

Ref. [38] 0.4648 105.48
Ref. [17] 0.4649 105.47
Ref. [18] 0.4648 105.40
Ref. [21] 0.4645 105.53
Ref. [24] 0.4658 105.30

42.0 LPQ 61 A 0.5107 39.30
U(+) 0.5040 41.20

LPQ 71 A 0.4923 39.95
U(+) 0.5037 41.23

LPQ 81 A 0.4874 40.78
U(+) 0.5032 41.20

LPQ 91 A 0.4909 41.41
U(+) 0.5033 41.18

Ref. [38] 0.5024 41.34
Ref. [17] 0.5022 41.34
Ref. [18] 0.5021 41.21
Ref. [21] 0.5022 41.37
Ref. [24] 0.5030 41.24

The breakup amplitudes Ā1,3/2
bup in the quartet spin-state are

presented in Figs. 4 and 5. Results from Eqs. (52) and (53)
compare favorably with benchmark results of Ref. [38]. I do
not separately show the results obtained via Eq. (54) because
they are almost identical to the results obtained via Eq. (53).

It should be noted that, in the quadrature grid employed
for the q variable, the quadrature point nearest to the limit-
ing value of

√
(4E/3) corresponds to about θ = 89 degrees,

which is the highest value of θ for which ĀsS
bup is naturally

available in the present approach. Therefore in these graphs
the data for ĀsS

bup and Ū(+)sS
bup stops at about 89 degrees.

FIG. 4. Real and imaginary parts of the breakup amplitude
Ābup(θ )1,3/2 vs θ (in degrees) at Elab = 14.1 MeV for the n + d model
in the spin-quartet state. (a) Ābup(θ )1,3/2 via Eq. (52). (b) Ābup(θ )1,3/2

via Eq. (53). The number of basis functions is 91.

TABLE III. Real part of phase shift δ and |Selas| for the n-d model
in the spin-quartet case. Other details are the same as in Table II.

Elab (MeV) Basis Method |Sel| Re(δ)

14.1 LPQ 51 A 0.9540 70.16
U(+) 0.9779 68.81

LPQ 61 A 1.0026 68.76
U(+) 0.9780 68.84

LPQ 71 A 0.9691 68.58
U(+) 0.9755 68.89

LPQ 81 A 0.9832 69.04
U(+) 0.9785 68.91

LPQ 91 A 0.9803 68.73
U(+) 0.9782 68.79

LPQ 101 A 0.9790 68.76
U(+) 0.9794 68.83

Ref. [38] 0.9782 68.95
Ref. [17] 0.9782 68.93
Ref. [18] 0.9781 68.78
Ref. [21] 0.9782 68.96
Ref. [24] 0.9772 68.84

42.0 LPQ 61 A 0.9528 35.91
U(+) 0.9053 37.59

LPQ 71 A 0.9106 35.96
U(+) 0.9033 37.68

LPQ 81 A 0.8838 36.57
U(+) 0.9031 37.60

LPQ 91 A 0.8753 37.64
U(+) 0.9041 37.57

LPQ 101 A 0.8819 37.87
U(+) 0.9012 37.60

Ref. [38] 0.9035 37.71
Ref. [17] 0.9034 37.70
Ref. [18] 0.9031 37.66
Ref. [21] 0.9033 37.71
Ref. [24] 0.9030 37.60

As in the three-boson separable-potential model, the Ā1,3/2
bup

results from Eq. (52) exhibit some discrepancy near the 90-
degree limit. This difficulty with θ = π/2 has been noted
in other approaches [17,18,27] as well. In the present case,
calculation of Ā1,3/2

bup from Eq. (53) or calculation of Ū(+)1,3/2
bup

from Eq. (54) appears to cure this problem to a large extent,
but oscillations in other regions become more pronounced.

FIG. 5. Real and imaginary parts of the breakup amplitude
Ābup(θ )1,3/2 vs θ (in degrees) at Elab = 42.0 MeV for the n + d model
in the spin-quartet state. (a) Ābup(θ )1,3/2 via Eq. (52). b) Ābup(θ )1,3/2

via Eq. (53). Number of basis functions is 101.
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FIG. 6. Real and imaginary parts of the doublet breakup ampli-
tude Ābup(θ )0,1/2 vs θ (in degrees) at Elab = 14.1 MeV for the n + d
model. (a)Ābup(θ )0,1/2 via Eq. (52). (b) Ābup(θ )0,1/2 via Eq. (53).
Number of basis functions is 81.

Figures 6 and 7 present breakup amplitudes Ā0,1/2
bup and

Ā(1,1/2
bup in the spin-doublet state at Elab = 14.1 MeV, re-

spectively. Finally, breakup results for the doublet state at
Elab = 42 MeV are presented in Fig. 8. Figure 8(a) shows
Ā0,1/2

bup while Fig. 8(b) shows Ā0,1/2
bup . Results obtained via both

Eqs. (52) and (53) have been plotted on the same figure.
They are nearly indistinguishable on the scale of these graphs.
Overall, the observations and remarks made in connection
with the quartet state also hold for the doublet case.

VI. CONCLUDING REMARKS

In the present work, AGS equations have been converted
into LS-type effective two-body integral equations by using
the separable expansion of the two-particle resolvent in a basis
of pseudostates. These effective equations in the spectator mo-
menta have more favorable properties than their counterparts
that emanate from the use of separable expansions of two-
particle transition operators in the AGS equations. Namely,
the effective matrix interaction is real, energy independent,
and free of any singularities. Therefore, it becomes possible
to use any one of the standard techniques available for solving
multichannel two-body LS equations [26,29,39].

Kernels of Eqs. (40) and (41) have simple poles only at
two-particle bound states. For the model problems considered
in this study, there is just one pole corresponding to the elastic
channel. Handling of this singularity in the kernel and the
selection of the quadrature grid for the Nyström method are
thereby rather straightforward. However, due to the structure
of the effective two-body propagator, introduction of K-matrix
versions of Eqs. (40) and (41) is not computationally favor-
able. Therefore the Nyström method has been applied directly
to Eqs. (40) and (41), giving rise to a linear system of complex

FIG. 7. Real and imaginary parts of the doublet breakup ampli-
tude Ābup(θ )1,1/2 vs θ (in degrees) at Elab = 14.1 MeV for the n + d
model. (a) Ābup(θ )1,1/2 via Eq. (52). (b) Ābup(θ )1,1/2 via Eq. (53).
Number of basis functions is 81.

FIG. 8. Real and imaginary parts of the doublet breakup am-
plitudes at Elab = 42 MeV for the n + d model. (a) Ābup(θ )0,1/2,
(b) Ābup(θ )1,1/2. The number of basis functions is 81.

equations. In contrast, in the alternative approach studied in
Ref. [23], where the effective two body equations result from
use of Eq. (6), the effective propagator matrix (i) has a diag-
onal structure with diagonal terms being of the free-resolvent
form, and (ii) exhibits simple poles for both elastic and open
pseudochannels. These features make the regularization of
the kernel and selection of a q-quadrature grid somewhat
more involved, but the introduction of K-matrix equations is
straightforward and leads to a linear system of real equations.
Overall, for a given pseudostate basis, the present approach
requires more computational resources, but produces slightly
more accurate results than the alternative approach studied in
Ref. [23].

In the final analysis it is the nature of the two-particle
approximation space sα that is ultimately responsible for the
success of the present approach as well as the successes of the
alternative approaches studied Refs. [23,24]. In this respect it
is critical that the primitive basis through which sα is specified
is chosen in the two-particle momentum space and has local
compact support. Finite-element bases defined over an uneven
momentum grid allow for efficient representation of breakup
configurations. The p grids used in the present calculations are
denser in the interval 0 < p <

√
E/(2μ) than the rest. This

feature makes it possible to obtain excellent results with 40–
50 finite elements. Note that the transformation from primitive
basis to pseudostate basis is performed solely for the purpose
of isolating the open-channel singularities of the effective
propagator in the corresponding diagonal elements.

Although the results obtained in this study were obtained
by solving Eqs. (40) and (41) via quadrature discretization
of the spectator momentum q, there are a large number of
other possibilities. For example, the Bateman method could
be considered in place of the Nyström method in order to
reduce the computational burden somewhat. Of course, an
L2-basis discretization of the q variable is also a possibility.
For instance, a Schwinger-type variational method could be
used with a local basis in the q variable. In fact, one could
invoke any one of a plethora of methods that exist for mul-
tichannel matrix LS equations in the literature [26,29,39].
A collection of projection/variational methods in the spirit
of L2 discretization with local momentum bases have been
studied and tested in Refs. [26,29]. Especially some of the
resolvent expansions studied in Ref. [29] may be relevant in
the present context. If the propagator of the effective two-body
equations is approximated by its projection in an L2 subspace
for the spectator, then the resulting computational scheme
would amount to a complete L2 discretization of the AGS
equations, very similar to the approach taken in Refs. [27,28].
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