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Impact of tensor couplings with scalar mixing on covariant energy density functionals
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The recent pioneering campaigns conducted by the Lead Radius Experiment (PREX) and the Calcium Radius
Experiment (CREX) Collaborations have uncovered major deficiencies in the theoretical description of some
fundamental properties of atomic nuclei. Following a recent refinement to the isovector sector of covariant energy
density functionals by Reed et al. [Phys. Rev. C 109, 035803 (2024)], we present here additional improvements
to the functional by including both tensor couplings and an isoscalar-isovector mixing term in the scalar sector.
Motivated by the distinct surface properties of calcium and lead, we expect that the tensor terms that generate
derivative couplings will help break the linear correlation between the neutron skin thickness of these two nuclei.
Moreover, the addition of these new terms mitigates most of the problems identified by Reed et al. in describing
the properties of both finite nuclei and neutron stars. While significant progress has been made in reconciling the
PREX-CREX results without compromising other observables, the final resolution awaits the completion of a
proper calibration for this new class of functionals. We expect that powerful reduced basis methods used recently
to create efficient emulators will be essential to accomplish this task.
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I. INTRODUCTION

More than three decades ago Donnelly, Dubach, and Sick
suggested that measuring the parity violating asymmetry in
elastic electron scattering may provide a model-independent
determination of the neutron distribution of atomic nuclei [1].
Given that the nuclear charge distribution has been mapped
with exquisite precision via parity conserving electron scat-
tering, measuring the parity violating asymmetry offers the
possibility for a model independent determination of the neu-
tron skin thickness of a variety of nuclei. The neutron skin
thickness is defined as the difference between the neutron and
proton rms radii: Rskin =Rn−Rp. Besides its intrinsic value
as a fundamental nuclear structure observable, the neutron
skin thickness of 208Pb has been shown to correlate strongly
to the pressure of pure neutron matter in the vicinity of
nuclear matter saturation density [2,3]. This implies that an
accurate measurement of the neutron skin thickness of 208Pb
has also important implications on the structure of neutron
stars [4,5].

First proposed in 1999 and recently completed, the Lead
Radius Experiment (PREX) at the Thomas Jefferson National
Accelerator Facility (JLab) conducted two campaigns to de-
termine the neutron skin thickness of 208Pb to be R208

skin =
0.283 ± 0.071 fm [6–8]. By capitalizing on the strong cor-
relation between R208

skin and the slope of the symmetry energy
L at saturation density, a large value of L= (106 ± 37) MeV
was reported [9]. By itself, this result suggests that the
symmetry energy is stiff, indicating a rapid increase in pres-
sure with increasing density. Conceptually, the symmetry
energy may be approximately regarded as the energy re-
quired to convert symmetric nuclear matter into pure nuclear
matter, although a more precise definition will be provided
below.

Shortly after the second PREX campaign ended, the Cal-
cium Radius Experiment (CREX) at JLab was completed [10].
Based on the strong correlation predicted in certain models
between the neutron skin thickness of 48Ca and the corre-
sponding neutron skin thickness of 208Pb, it was anticipated
that 48Ca will also display a relatively thick neutron skin.
For example, exploiting the strong correlation displayed by
a certain class of covariant energy density functionals (EDFs)
between the neutron skin thickness of 48Ca and 208Pb, it was
predicted that R 48

skin = (0.229 ± 0.035) fm [11]. Instead, the
CREX Collaboration reported the significantly smaller value
of R 48

skin = (0.121 ± 0.035) [10], where the error includes both
experimental and theoretical uncertainties. This unexpected
result caused a stir in the nuclear physics community.

In an effort to find a resolution to the CREX-PREX
“dilemma,” several theoretical approaches have unsuccess-
fully attempted to reconcile these two measurements [12–20].
A common thread that has emerged from these studies sug-
gests that accommodating the large value of R208

skin within the
constraints imposed by other nuclear observables—primarily
the electric dipole polarizability and now also the neutron skin
thickness of 48Ca—is enormously challenging. In fact it has
been suggested that, due to the large error bars reported by
the PREX Collaboration, it is doubtful that the neutron skin
thickness of 208Pb will provide any meaningful constraint on
modern energy density functionals [13]. In this paper we ex-
plore the impact of expanding the relatively simple isovector
sector of an existing class of covariant EDFs.

Following the recent work of Reed and collaborators [21],
we include the isovector-scalar δ meson, as it was shown to
have a significant impact on the neutron skin thickness of both
48Ca and 208Pb. However, due to the large isovector couplings
adopted in such a work, the equation of state (EOS) of neutron
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rich matter became very stiff at the densities of relevance to
the structure of neutron stars. This led to predictions of large
neutron star radii and tidal deformabilities, in disagreement
with observations reported by both the NICER instrument
[22,23] and the LIGO-Virgo Collaboration [24,25]. Besides
its drawbacks at high densities, the strong isovector couplings
of the models generate large density fluctuations in the nuclear
interior that are not observed in the experimentally determined
charge density. To mitigate some of these issues brought upon
by the large couplings, we enlarge the isovector sector by
including—in addition to the Yukawa coupling of the δ-meson
to the nucleon—a mixed isoscalar-isovector coupling in the
scalar sector [18–20], a quartic ρ-meson self-interaction term
[26], as well as tensor couplings in the vector channel [27,28].

The main motivation for adding the tensor terms stems
from the unique nucleon and meson spatial distributions in
48Ca and 208Pb. Given that both the proton and neutron distri-
butions are smoother in lead than in calcium, this behavior is
also reflected in the resulting meson fields. Consequently, one
anticipates that the tensor couplings—which involve deriva-
tives of the vector fields—will have a stronger effect in 48Ca
than in 208Pb. Indeed, the hope is that such derivative (or
“gradient”) terms will break the strong correlation between
the neutron skins of calcium and lead. As we will show below,
adding a tensor interaction in the ω-meson channel indeed
affects the neutron skin of calcium more than the one in
lead. Unfortunately, improving the neutron skins comes at the
expense of affecting other ground state properties, hence the
need for an entirely new calibration of the model parameters.
Although such a preliminary calibration will be attempted
here, a full Bayesian analysis is deferred to a forthcoming
work, where we will bring to bear the full power of reduced
basis methods [29]. In summary, the goal of this paper is

threefold: (a) to showcase a new covariant EDF with a more
sophisticated isovector sector, (b) to derive a new set of Kohn-
Sham equations to re-calibrate the model parameters, and (c)
to illustrate the positive impact that this new class of EDFs
have in reproducing observables in both finite nuclei and
neutron stars.

The paper is organized as follows. In Sec. II we introduce
the significantly augmented Lagrangian density and derive
the associated mean field equations for both finite nuclei and
infinite nuclear matter. We then proceed on Sec. III to explore
the individual effect of the various new terms and culminate
by showing the overall impact of the new Lagrangian density
on the CREX-PREX observables as well as on the properties
of neutron stars. We conclude on Sec. IV with a summary of
the important findings and prospects for a robust calibration
of the model parameters.

II. FORMALISM

A. New covariant density functional

In the framework of covariant density functional theory
(DFT), the underlying degrees of freedom are nucleons in-
teracting via the exchange of mesons and the photon. In
the particular version of covariant DFT used here [4,26,30–
40], the effective Lagrangian density results from the sum
of the three contributions: (a) a noninteracting term L0, (b)
a Yukawa term L1 that couples the various mesons to the
appropriate nucleon densities, and (c) a term L2 containing
both unmixed and mixed meson self-interactions. That is,

L = L0 + L1 + L2. (1)

The free Lagrangian density includes the kinetic energy
and mass term for the various constituents:

L0 = ψ̄ (i∂μγ μ−M )ψ + [
1
2 (∂μφ)(∂μφ)− 1

2 m2
s φ

2
] − [

1
4VμνV μν − 1

2 m2
vVμV μ

]
+ [

1
2 (∂μδ)(∂μδ)− 1

2 m2
δ (δ · δ)

] − [
1
4 bμν · bμν − 1

2 m2
ρ (bμ · bμ)

] − 1
4 Fμ νFμ ν, (2)

where γ μ are the Dirac matrices and

Vμ ν = ∂μVν − ∂νVμ, (3a)

bμ ν = ∂μb ν − ∂νbμ, (3b)

Fμ ν = ∂μAν − ∂νAμ. (3c)

In the above expressions, ψ is the isodoublet nucleon field, Aμ the photon field, and φ, Vμ, δ, and bμ represent the
isoscalar-scalar σ -meson, the isoscalar-vector ω-meson, the isovector-scalar δ-meson, and the isovector-vector ρ-meson fields,
respectively.

In turn, the Yukawa component of the Lagrangian density is given by

L1 = ψ̄

[
gsφ+gδδ· τ

2
−

(
gvγ

μ + fv
σ μν

2M
∂ν

)
Vμ−

(
gργ

μ + fρ
σ μν

2M
∂ν

)
bμ · τ

2
− e

2
γ μAμ(1+τ3)

]
ψ, (4)

where σ μν = i[γ μ, γ ν]/2, τ is the vector containing the three Pauli matrices, and τ3 is its z component. Relative to the
Lagrangian density introduced in Ref. [4], the above Lagrangian density includes three additional Yukawa terms: one scalar
gδ and two tensor couplings fv and fρ .

Lastly, we display the Lagrangian density containing both unmixed and mixed meson self interactions. That is,

L2 = − 1
3!κ (gsφ)3 − 1

4!λ(gsφ)4 + 1
4!ζ

(
g2

vVμV μ
)2 + 1

4!ξ
(
g2

ρbμ · bμ
)2 − �s

(
g2

δδ · δ
)
(gsφ)2 + �v

(
g2

ρbμ · bμ
)(

g2
vVμV μ

)
. (5)

045807-2



IMPACT OF TENSOR COUPLINGS WITH SCALAR MIXING … PHYSICAL REVIEW C 109, 045807 (2024)

We observe that, while minimal changes were made to the
isoscalar sector [36], the isovector sector was significantly
enhanced. In addition to the “standard” Yukawa coupling gρ

and the mixed term �v, three additional parameters have been
included: gδ , ξ , and �s. However, it is important to note that
L2 incorporates only a subset of all possible meson self-
interactions up to fourth order in the fields. Yet, the quartic
self-interaction terms ζ and ξ are crucial in softening the
EOS at high densities. Indeed, it has been shown that it is
possible to build different models that reproduce the same
observed properties at normal nuclear densities, but which
yield maximum neutron star masses that differ by more than
one solar mass [26].

B. Mean field approximation

The field equations derived from the Lagrangian density
given above may be solved exactly in the mean-field approx-
imation [40–42]. For static and spherically symmetric ground
states, these equations have been known for several decades.
However, when dealing with the extended Lagrangian density
that includes both isovector-scalar and tensor terms, detailed

derivations are scarce. To address this gap, we provide a
comprehensive derivation for future reference, commencing
with the meson field equations.

1. Meson field equations

In the mean-field approximation, the meson-field operators
are replaced by their classical expectation values [34], which
for a static and spherically symmetric ground state imply the
following simplifications:

φ(x) → 〈φ(x)〉 = φ0(r), (6a)

V μ(x) → 〈V μ(x)〉 = gμ0V0(r), (6b)

δa(x) → 〈δa(x)〉 = δa3δ0(r), (6c)

bμ
a (x) → 〈bμ

a (x)〉 = gμ0δa3b0(r), (6d)

Aμ(x) → 〈Aμ(x)〉 = gμ0A0(r). (6e)

In turn, these classical meson fields satisfy Klein-Gordon
equations containing both non-linear meson interactions and
ground-state baryon densities as source terms. That is,

(
m2

s − ∂2

∂r2
− 2

r

∂

∂r

)
�0(r) = g2

s

[
ρs0(r) − 1

2
κ �2

0(r) − 1

6
λ�3

0(r) − 2�s�
2
0(r)�0(r)

]
,

(
m2

v − ∂2

∂r2
− 2

r

∂

∂r

)
W0(r) = g2

v

[
ρv0(r) − 1

2M

fv

gv

(
2

r
+ ∂

∂r

)
ρt0(r) − 1

6
ζW 3

0 (r) − 2�vB2
0(r)W0(r)

]
,

(
m2

δ − ∂2

∂r2
− 2

r

∂

∂r

)
�0(r) = g2

δ

[
1

2
ρs1(r) − 2�s�

2
0(r)�0(r)

]
,

(
m2

ρ − ∂2

∂r2
− 2

r

∂

∂r

)
B0(r) = g2

ρ

[
1

2
ρv1(r) − 1

4M

fρ
gρ

(
2

r
+ ∂

∂r

)
ρt1(r) − 1

6
ξ B3

0(r) − 2�vW
2

0 (r)B0(r)

]
, (7)

where we have defined �0 =gsφ0, W0 =gvV0, �0 =gδδ0,
and B0 =gρb0. The subscripts (s, v, t) denote scalar, vec-
tor, and tensor Lorentz indices and (0, 1) refer to isoscalar
(proton-plus-neutron) and isovector (proton-minus-neutron)
combinations, respectively. The Coulomb field A0 satisfies
the much simpler Poisson’s equation with the proton vector
density acting as the source term. That is, ∇2A0(r)=−eρp(r).

2. Dirac equation

Besides the various self-interacting terms appearing in
Eq. (7), scalar, vector, and tensor densities also act as source
terms for the meson fields. These are given by

ρs(r) =
∑
nκ

2 j + 1

4π r2

(
g2

nκ (r) − f 2
nκ (r)

)
, (8a)

ρv(r) =
∑
nκ

2 j + 1

4π r2

(
g2

nκ (r) + f 2
nκ (r)

)
, (8b)

ρt(r) =
∑
nκ

2 j + 1

4π r2

(
2gnκ (r) fnκ (r)

)
, (8c)

where gnκ and fnκ are upper and lower components of the
Dirac spinor. For spherically symmetric ground states, these

can be written in terms of spin-spherical harmonics as follows:

U nκm(r) = 1

r

(
gnκ (r)Y+κ m(r̂)

i fnκ (r)Y−κ m(r̂)

)
, (9)

where n is a radial quantum number and the spin-spherical
harmonics Yκ m(r̂) are obtained by coupling the orbital an-
gular momentum l to the intrinsic nucleon spin to obtain a
total angular momentum j and magnetic quantum number m.
As such, from the generalized angular momentum quantum
number κ , the total angular momentum j and corresponding
orbital angular momentum l are obtained as follows:

j = |κ| − 1

2
, l =

{
κ if κ > 0,

−(1 + κ ) if κ < 0,
(10)

Note that the orbital angular momentum of the upper and
lower components differ by one unit, indicating that the orbital
angular momentum is not a good quantum number—even for
spherically symmetric ground states.

The Dirac Hamiltonian contains scalar, vector, and tensor
terms of both isoscalar and isovector nature. That is,

Ĥ = α · p + β(M − S(r)) + V (r) + i γ · r̂ T (r), (11)
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where

S(r) = �0(r) ± 1

2
�0(r), (12a)

V (r) = W0(r) ± 1

2
B0(r) + eA0(r)

(1+τ3)

2
, (12b)

T (r) = 1

2M

[
fv

gv

dW0(r)

dr
± 1

2

fρ
gρ

dB0(r)

dr

]
. (12c)

Here the upper sign is for protons and the lower sign for
neutrons. Now using the spherical symmetry of the problem,
one derives a set of first order, coupled differential equations:

(
d

dr
+ κ

r
+ T (r)

)
gnκ (r) − (E + M − S(r) − V (r)) fnκ (r) = 0, (13a)

(
d

dr
− κ

r
− T (r)

)
fnκ (r) + (E − M + S(r) − V (r))gnκ (r) = 0. (13b)

Finally, note that gnκ (r) and fnκ (r) satisfy the following
normalization condition:∫ ∞

0

(
g2

nκ (r) + f 2
nκ (r)

)
dr = 1. (14)

From Eq. (8), this implies that both proton and neutron vector
densities are conserved, namely, their corresponding integrals
yield the number of protons Z and the number of neutrons
N , respectively. In contrast, neither the scalar nor the tensor
densities are conserved.

3. Ground state properties

Solving the field equations self-consistently results in sin-
gle particle energies and associated Dirac orbitals from which
ground state densities and form factors may be extracted, so
that they can then be compared against experimental data.
The total energy of a system consisting of Z protons and N
neutrons is obtained from the stress-energy-momentum tensor
T αβ by integrating over all space. That is,

E (Z, N ) =
∫

T 00(r)d3r. (15)

The total energy of the system may be expressed as a
sum of its nucleonic Enuc and mesonic contributions Emesons.
The nucleonic contribution is simply obtained by adding the
contribution from each single-particle orbital, namely,

Enuc =
occ∑
nκ

(2 jκ + 1)Enκ . (16)

For doubly magic or semimagic nuclei, all individual orbitals
are completely filled. However, in cases in which the orbitals
are partially filled, a filling fraction must be specified. In turn,
the contribution of the photon and the various meson fields to
the total energy can be assessed in terms of their individual
contributions. Following Ref. [29] we write

Emesons = 4π

∫ ∞

0
(εσ +εω+εδ+ερ +εγ +εσδ+εωρ )r2dr,

(17)
where the individual contributions are given by the following
expressions:

εσ (r) = +1

2
�0(r)ρs0(r) − κ

12
�3

0(r) − λ

24
�4

0(r), (18a)

εω(r) = −1

2
W0(r)ρv0(r)

+ 1

4M

fv

gv
W0(r)

(
2

r
+ ∂

∂r

)
ρt0(r) + ζ

24
W 4

0 (r), (18b)

εδ (r) = +1

4
�0(r)ρs1(r), (18c)

ερ (r) = −1

4
B0(r)ρv1(r)

+ 1

8M

fρ
gρ

B0(r)

(
2

r
+ ∂

∂r

)
ρt1(r) + ξ

24
B4

0(r), (18d)

εγ (r) = −1

2
eA0(r)ρvp(r), (18e)

εσδ (r) = −�s�
2
0(r)�2

0(r), (18f)

εωρ (r) = +�vW
2

0 (r)B2
0(r). (18g)

Relative to the expressions given in Ref. [29], we find
several additional contributions due to the inclusion of (a)
the isovector δ meson, with both a Yukawa coupling to the
nucleon and a coupling to the isoscalar σ meson, (b) a quartic
self-interaction term for the ρ meson, and (c) both isoscalar
and isovector tensor terms. Finally, the total binding energy of
the system is obtained by removing the nucleon rest mass and
adding a center-of-mass correction. That is,

B(Z, N ) = E (Z, N ) + Ecm − (Z + N ) M, (19)

where we have adopted a center-of-mass correction obtained
from a harmonic oscillator approximation [43]:

Ecm = − 3
4 41 A−1/3 MeV. (20)

We note that the choice of the center-of-mass energy is
not unique. However, after careful comparison against other
schemes as suggested in [44], we notice a difference in the
binding energy per nucleon of at most 0.019 MeV for 40Ca
and as little as 0.0034 MeV for 208Pb. Hence, we defer a
detailed discussion of this topic to the future when a full scale
calibration may include lighter nuclei, such as 16O.

Besides the single-particle Dirac orbitals, one can extract
ground state scalar, vector, and tensor densities, as defined
in Eqs. (8). In particular, charge and weak-charge densities
may be compared directly to experiment by folding the self-
consistently obtained proton and neutron vector densities with
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suitable nucleon form factors that account for the finite nu-
cleon size. Particularly useful to compare against experiment
are a few of the low moments of the spatial distribution which,
using the charge distribution as an example, are given by

R 2
ch = 1

Z

∫
r2ρch(r)d3r → 3

5
c2 + 7

5
(πa)2, (21a)

R 4
ch = 1

Z

∫
r4ρch(r)d3r → 3

7
c4 + 18

7
(πa)2c2

+31

7
(πa)4. (21b)

The arrows in the above expressions indicate exact ex-
pressions in the case that the density may be represented
as a two-parameter symmetrized Fermi distribution [45,46],
with c defined as the half-density radius and a as the sur-
face diffuseness. Thus, for a heavy nucleus such as 208Pb,
two measurements of the form factor may be sufficient to
accurately describe its spatial distribution of charge and weak
charge [46].

C. Infinite nuclear matter

The aim of a robust energy density functional is to de-
scribe nuclear observables ranging from the properties of
finite nuclei to the structure of neutrons stars. To do so, one
must supplement the framework provided in the previous sec-
tion with one that computes the equation of state of infinite
nuclear matter as a function of the total baryon density of
the system ρ =ρp+ρn and the neutron proton asymmetry
α= (ρn−ρp)/ρ. For isolated neutron stars, the characteristic
Fermi temperature is much larger than the actual temperature

of the star, so it is appropriate to construct a zero-temperature
equation of state. In this way, all intensive quantities in the
system, such as the energy density and the pressure, depend
only on ρ and α. Hence, by varying the neutron proton asym-
metry, one can account for the equation of state of symmetric
nuclear matter (α=0) and pure neutron matter (α=1). In
turn, the EOS of neutron star matter is obtained by demanding
chemical (or “beta”) equilibrium that consists on finding the
absolute ground state of the system at a given density. That
is, the EOS in chemical equilibrium is obtained by computing
the optimal value of α that minimizes the total energy of the
system at a given density.

In the stellar core where the system is spatially uniform, the
meson fields become independent of all spatial coordinates so
all derivatives vanish in this limit. Relative to Eqs. (7), the
meson field equations simplify considerably; one obtains

m2
s �0 = g2

s

[
ρs0 − 1

2κ �2
0 − 1

6λ�3
0 − 2�s�

2
0�0

]
,

m2
vW0 = g2

v

[
ρv0 − 1

6ζW 3
0 − 2�vB2

0W0
]
,

m2
δ�0 = g2

δ

[
1
2ρs1 − 2�s�

2
0�0

]
,

m2
ρB0 = g2

ρ

[
1
2ρv1 − 1

6ξ B3
0 − 2�vW

2
0 B0

]
. (22)

Given that the tensor terms appearing in Eq. (4) involve
derivatives of the vector fields, these terms vanish in infinite
nuclear matter, so their impact on the EOS is indirect, namely,
only through the calibration of the entire set of parameters to
the properties of finite nuclei.

We now proceed to compute the EOS of infinite nu-
clear matter—the relation between the energy density and
the pressure—in terms of the stress-energy-momentum tensor
T αβ . That is,

ε = ε(ρp) + ε(ρn) + 1

2

m2
s

g2
s

�2
0 + 1

2

m2
v

g2
v

W 2
0 + 1

2

m2
δ

g2
δ

�2
0 + 1

2

m2
ρ

g2
ρ

B2
0 + κ

6
�3

0 + λ

24
�4

0 + ζ

8
W 4

0 + ξ

8
B4

0 + �s�
2
0�

2
0 + 3�vB2

0W 2
0 ,

P = P(ρp) + P(ρn) − 1

2

m2
s

g2
s

�2
0 + 1

2

m2
v

g2
v

W 2
0 − 1

2

m2
δ

g2
δ

�2
0 + 1

2

m2
ρ

g2
ρ

B2
0 − κ

6
�3

0 − λ

24
�4

0 + ζ

24
W 4

0 + ξ

24
B4

0 − �s�
2
0�

2
0 + �vB2

0W 2
0 .

(23)

The nucleonic contributions to the energy density may be computed from the standard expression for a free Fermi gas:

ε(ρ) = 1

π2

∫ kF

0
k2

√
k2 + M 2dk = M4

8π2

[
xFyF

(
x2

F + y2
F

) − ln(xF + yF)
]
,

P(ρ) = 1

3π2

∫ kF

0

k4

√
k2 + M 2

dk = M4

8π2

[
2

3
x3

FyF − xFyF + ln(xF + yF)

]
, (24)

where the scaled Fermi momentum, Fermi energy, and num-
ber density are given by

xF ≡ kF

M
, yF ≡

√
1 + x2

F, and ρ = k3
F

3π2
. (25)

It is important to note that the formalism implemented here is
such that both Eqs. (23) and (24) are fully consistent with the
Hugenholtz–van Hove theorem [47,48], which demands that
the pressure, energy density, baryon density, and Fermi energy
satisfy the relation P + ε = ρEF.

We conclude this section by identifying some bulk proper-
ties of infinite nuclear matter that offer valuable insights into
the underlying dynamics. To start, we expand the energy per
nucleon in even powers of the neutron-proton asymmetry α.
That is,

E

A
(ρ, α) −M ≡ E (ρ, α) = ESNM(ρ) + α2S(ρ) + O(α4),

(26)
where ESNM(ρ)=E (ρ, α=0) is the energy per nucleon of
symmetric nuclear matter (SNM) and the symmetry energy
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S(ρ) represents the first-order correction to the symmetric
limit. Note that no odd powers of α appear in the expansion
since in the absence of electroweak interactions the nuclear
force is assumed to be isospin symmetric. By the same token,
the energy of pure neutron matter may be written as

EPNM(ρ) = E (ρ, α=1) = ESNM(ρ) + S(ρ) + · · · . (27)

Although there is a priori no reason to neglect the higher order
terms in Eq.(27), for certain classes of density functionals the
symmetry energy seems to be a good approximation to the
energy cost required to convert symmetric nuclear matter into
pure neutron matter, namely,

S(ρ)≈ (EPNM(ρ) − ESNM(ρ)). (28)

However, while the validity of this relation is easily verified
when both protons and neutrons behave as noninteracting
Fermi gases [49], there is no guarantee that the approximation
will remain valid in the presence of interactions.

The separation of the energy per nucleon as in Eq. (26)
is useful because symmetric nuclear matter is sensitive to
the isoscalar sector of the density functional which is well
constrained by the properties of stable nuclei. In contrast,
the nuclear symmetry energy quantifies the cost of having
excess neutrons (or protons) and it is therefore highly sensitive
to the less constrained isovector sector. Further, it is useful
to characterize the EOS in terms of a few bulk parameters
defined at saturation density. Although not directly measur-
able, these bulk parameters are often strongly correlated to
some fundamental experimental observables. By performing
a Taylor series expansion around nuclear matter saturation
density ρ0, one obtains [50]

ESNM(ρ) = ε0 + 1
2 K0 x2 + · · · , (29a)

S(ρ) = J + L x + 1
2 Ksymx2 + · · · , (29b)

where x= (ρ − ρ0)/3ρ0 is a dimensionless parameter that
quantifies the deviations of the density from its value at sat-
uration. Here ε0 and K0 represent the energy per nucleon
and the incompressibility coefficient of SNM. Notably, the
linear term in this expression is absent because the pressure
of symmetric nuclear matter vanishes at saturation. When
examining the corresponding values for the symmetry energy,
it is conventional to denote these quantities by J and Ksym.
However, unlike the case of symmetric nuclear matter, the
slope of the symmetry energy L does not vanish. In fact,
assuming the validity of the so-called parabolic approximation
outlined in Eq. (28), the slope of the symmetry energy is
directly proportional to the pressure of pure neutron matter
at saturation density, namely, P0 ≈ ρ0L/3.

III. RESULTS

Having expressed various physical observables in terms of
the extended set of model parameters, we now proceed to
calibrate the new functionals. The set of free parameters of
the Lagrangian of Sec. II A are the following:

θ = {ms, mv, mρ, mδ, g2
s, g2

v, g2
ρ, g2

δ, κ, λ, ζ ,�v,�s, fv, fρ}.
(30)

We start by performing a modest fit by optimizing a likelihood
function written in terms of a traditional chi-square objective
function L∝exp(−χ2/2). Experimental ground-state ener-
gies and charge radii for 40Ca, 48Ca, and 208Pb are used in
the calibration procedure, as well as the new information on
the weak-skin form factor extracted from the PREX [8] and
CREX [10] campaigns. The weak-skin form factor is defined
as follows [51]:

FWskin(q)≡Fch(q)−Fwk(q) −−→
q→0

q2

6
(Rwk +Rch )RWskin, (31)

where Fch and Fwk are the charge and weak form factors mea-
sured at the momentum transfer of the experiment, namely,
q=0.398 fm−1 for PREX and q=0.873 fm−1 for CREX. In
turn, the weak skin is defined in terms of the corresponding
experimental radii as RWskin ≡Rwk −Rch. Relative to the better
known neutron skin thickness Rskin =Rn−Rp, the weak skin
differs from it by incorporating corrections coming from the
finite nucleon size [52].

Due to the high dimensionality of the parameter space
[Eq. (30)] and the computational demands imposed by
self-consistent, mean-field calculations, we take a slightly un-
orthodox approach to the calibration procedure. We start by
defining the seven model parameters that enter into the like-
lihood function as follows: p={ms, ε0, ρ0, M∗, K0, fv, fρ}.
This set of parameters is varied within a predefined range
while leaving mv, mρ, mδ, J̃, L, Ksym, ζ , ξ ,�s fixed; here J̃ is
the value of the symmetry energy at a density ρ̃ =2ρ0/3≈
0.1 fm−1. It is important to note that there is a one-to-one
correspondence between four of the bulk parameters charac-
terizing symmetric nuclear matter, namely, ε0, ρ0, M∗, K0 and
the four isoscalar model parameters g2

s/m2
s , g2

v/m2
v, κ , and λ

[53]. Beyond the isoscalar sector, it was shown that the two
isovector parameters g2

ρ/m2
ρ and �v may also be determined

from knowledge of two quantities of central importance to the
symmetry energy, namely, J (or J̃) and L [36]. These relations
have now been extended here by using J , L, and Ksym to also
determine g2

δ/m2
δ . The connection between bulk properties and

model parameters has proved to be extremely useful, both
in developing an intuitive picture of the parameter space as
well as on improving the convergence of the self-consistent
calculations.

Once the choice of parameters has been made, each rele-
vant observable O(p) is sampled at three different points for
each of the seven parameters in p, thereby creating indepen-
dent parabolic approximation to O(p) along each of the seven
directions. That is, given a current location in parameter space
p0, the parabolic approximation to O(p) is given by

O(p) = O(p0) +
7∑

n=1

[an + bn(pn − cn)2], (32)

where an, bn, and cn are obtained from sampling the ob-
servable at three different points in every direction. The
parabolic approximation yields a gaussian likelihood function
that can be optimized using algorithm packages available in
Mathematica, such as random search, Nelder-Mead, and/or
simulated annealing. The parameter set p that optimizes the
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FIG. 1. Point proton (dashed lines) and neutron (solid lines) den-
sities of 208Pb as predicted by the three DINO models [21], alongside
predictions from the FSU-TD0 model introduced in this work (see
Table IV). The FSU-TD0 model eliminates the large oscillations in
the nuclear interior by trading the δ-meson term in the DINO models
in favor of a ρ-meson tensor interaction.

likelihood function is then resampled and the procedure is
repeated until it converges to the desired accuracy.

The main disadvantages of using the method just described
are the lack of quantification of errors and correlations as
well as having to limit the model space by fixing certain
parameters so the dimensionality of the space becomes man-
ageable. Monte Carlo sampling methods, such as those used
in our recent publication [54], might be more suitable in the
future with the emergence of reduced basis method (RBM)
techniques [29,55,56] that will be explored in a future work.

To set the stage and motivate the need for a new set of
covariant EDFs, we display in Fig. 1 point proton and neutron
densities for 208Pb as predicted by the recently calibrated
DINO models [21]. Also shown are predictions from one of
the newly extended models introduced in this work (FSU-
TD0) and discussed in great detail in the following sections.
Although the addition of a third isovector parameter (gδ)
enabled the DINO models to reproduce the CREX-PREX
results at the 67% confidence level, this success came with
a very heavy price, namely, generating large unphysical os-
cillations in the nuclear interior. As we show in the following
sections and clearly illustrated in the figure, the inclusion of
tensor terms in the calibration of the FSU-TD functionals
becomes instrumental in removing these large oscillations.

In the following sections we will start by examining—
first without retuning the model parameters—the individual
impact of some of the new terms added to the Lagrangian
density. We will then proceed to re-tune the parameters using
ground-state properties of 40Ca, 48Ca, and 208Pb, and will end
the section by showcasing some of the results obtained with
the newly calibrated models.

A. Tensor coupled ρ meson

To our knowledge, incorporating tensor interactions to the
relativistic Lagrangian was first reported in a work by Rufa

FIG. 2. Charge density of 48Ca (red) and 208Pb (green) as pre-
dicted by the DINOa model [21] with and without the inclusion of a
tensor-coupled ρ meson. For fρ =−4 (dot-dashed line), the density
fluctuations in the nuclear interior increase. In contrast, a positive
fρ =10 (dashed line) mitigates the charge density fluctuations in the
interior, thereby improving the agreement with experiment (circled
points) [57]. Predictions from the original DINOa model are depicted
with a solid line.

et al. [27]; for a more recent work see Ref. [28] and refer-
ences contained therein. The Lagrangian density introduced
in that work included Yukawa couplings to the σ , ω, ρ, and
photon fields, cubic and quartic scalar self-interactions, and
tensor coupling terms involving the two vector mesons. A
particularly important result drawn from such study concluded
that the ω-tensor interaction increases the effective nucleon
mass while maintaining a robust spin-orbit splitting. In con-
trast, the authors found that the ρ-tensor interaction offers
very little to justify its inclusion. In this work we demon-
strate its significant impact on the charge density as well as
on the weak skin. However, we note that it is difficult to
cleanly isolate the impact of each individual term on a specific
observable because of the strong correlation among model
parameters.

We start by considering one of the “DINO” models in-
troduced in Ref. [21]. By adding the isovector δ meson, the
DINO models provide an extension of the FSU-like models
[35] in the hope of mitigating the PREX-CREX discrepancy
[10]. Given that the curvature of the symmetry energy Ksym

was believed to hold the key to elucidate the source of the dis-
crepancy, a third isovector parameter (g2

δ) was added in order
to tune J , L, and Ksym. In Fig. 2 we examine the predictions
of the DINOa model [21] on the charge density of 48Ca and
208Pb with and without the influence of the ρ-tensor coupling
fρ . We note that for negative fρ , the already large density
fluctuations in the nuclear interior predicted by the DINO
model are further exacerbated. Instead, a positive fρ reduces
the density fluctuations at the center of the nucleus, bringing
the predictions into closer agreement with experiment. We
also display in Table I the impact of fρ on some ground-state
observables of relevance to PREX and CREX, without any
retuning of the model parameters. As alluded in Ref. [27], the
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TABLE I. Ground-state observables for 208Pb and 48Ca as pre-
dicted by the original DINOa model [21] and the DINOa model
supplemented by a tensor-coupled ρ meson, with fρ =10 and fρ =
−4. No attempt has been made at this point to recalibrate the model
parameters.

Model (208Pb) B/A (MeV) Rch (fm) Fch−Fwk Rn−Rp (fm)

DINOa 7.864 5.508 0.0264 0.1753
DINOa+( fρ >0) 7.852 5.510 0.0268 0.1794
DINOa+( fρ <0) 7.870 5.504 0.0263 0.1742
Experiment 7.867 5.501(1) 0.041(13) 0.283(71)

Model (48Ca) B/A (MeV) Rch (fm) Fch−Fwk Rn−Rp (fm)

DINOa 8.674 3.468 0.0334 0.1002
DINOa+( fρ >0) 8.638 3.463 0.0378 0.1277
DINOa+( fρ <0) 8.695 3.463 0.0311 0.0871
Experiment 8.667 3.477(2) 0.0277(55) 0.121(35)

impact of the ρ-tensor interaction on the properties of 208Pb is
indeed modest. With or without the addition of fρ , the DINOa
predictions for the neutron skin thickness remains within 1.5
standard deviations from the PREX central value. This, how-
ever, is not the case for 48Ca, where the changes in the neutron
skin thickness are significant. Let us restate that no effort has
been made so far in recalibrating the model parameters. It
suffices to say that the inclusion of the ρ-tensor interaction—a
derivative coupling that enhances surface effects—is worth
incorporating into these new covariant EDFs.

B. Tensor coupled ω-meson

The main motivation for adding an isoscalar tensor term
stems from the difference in the spatial dependence of the
ω-meson field for 48Ca and 208Pb. Given the derivative nature
of the tensor coupling, one expects a more significant effect
for 48Ca where the spatial fluctuations are larger than for
208Pb where the ω-meson field is mostly uniform throughout
the nuclear interior. When adding the ω-tensor coupling fv,
we witness the anticipated mass dependence, particularly on
observables sensitive to the nuclear surface. As in Table I,
we display in Table II the quantitative impact of fv on a few
selected ground-state observables.

Given that large and canceling σ - and ω-meson fields are
the hallmark of covariant EDFs, any modification to the ω-
meson field is expected to strongly impact the nuclear binding
energy. This is clearly the case for both nuclei, but more so
for 48Ca where the spread can exceed 1 MeV per nucleon.
Moreover, due to their difference in the surface-to-volume
ratio, the neutron skin thickness in 48Ca changes significantly,
whereas it remains fairly constant in the case of 208Pb. Al-
though, encouraging, without a proper retuning of parameters
these results are deceptive. In particular, since the ω meson
generates an isoscalar mean field, the spatial distributions
of both neutron and protons shift in the same direction. So
whereas we observe a differential change in the neutron skin
thickness of 48Ca relative to 208Pb, demanding agreement
with the experimental binding energies and charge radii is
likely to wash out the desired differential effect. Nevertheless,
the inclusion of fv into the functional seems to improve the

TABLE II. Ground-state observables for 208Pb and 48Ca as pre-
dicted by the original FSUGarnet model [37] and the FSUGarnet
model supplemented by a tensor-coupled ω meson, with fv =±5.
No attempt has been made at this point to recalibrate the model
parameters.

Model (208Pb) B/A (MeV) Rch (fm) Fch−Fwk Rn−Rp (fm)

FSUGarnet 7.892 5.493 0.0232 0.1612
FSUGarnet+( fv >0) 7.569 5.554 0.0235 0.1631
FSUGarnet+( fv <0) 8.242 5.429 0.0232 0.1622
Experiment 7.867 5.501(1) 0.041(13) 0.283(71)

Model (48Ca) B/A(MeV) Rch (fm) Fch−Fwk Rn−Rp (fm)

FSUGarnet 8.621 3.428 0.0437 0.1665
FSUGarnet+( fv >0) 8.029 3.511 0.0430 0.1862
FSUGarnet+( fv <0) 9.316 3.339 0.0441 0.1449
Experiment 8.667 3.477(2) 0.0277(55) 0.121(35)

overall performance of the model. We now demonstrate this
by recalibrating the DINOa model after adding the two ten-
sor couplings. This results in a functional that improves the
interior charge densities stemming from the large delta cou-
pling, while keeping FWskin mostly intact. The charge density
distributions are displayed in Fig. 3 and the various nuclear
observables are listed in Table III.

It is important to note that, after recalibration, the addition
of an ω-meson tensor coupling does not always improve the
agreement with experiment. There is some evidence suggest-
ing that such a term has a strong impact in the determination
of the compressibility K0 of the model [27]. This could be
especially important for models constrained by experimen-
tal information on the giant monopole resonance (GMR).
Because information on the GMR was not included in our
calibration procedure, our models tend to favor a relatively
large K0. For this reason the compressibility K0 is capped at
250 MeV, a value within the suggested experimental limits

FIG. 3. Charge density distributions for 48Ca (red) and 208Pb
(green). The effect of adding the two tensor interactions is seen to
reduce the fluctuations in the nuclear interior that are characteristic
of the DINO models.
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TABLE III. Ground-state observables for 208Pb and 48Ca as pre-
dicted by the original DINOa model [21] and a recalibrated DINOa
model after including the two tensor interactions.

Model (208Pb) B/A (MeV) Rch (fm) Fch−Fwk Rn−Rp (fm)

DINOa 7.864 5.508 0.0264 0.1753
DINOa + fρ + fv 7.871 5.510 0.0241 0.1616
Experiment 7.867 5.501(1) 0.041(13) 0.283(71)

Model (48Ca) B/A (MeV) Rch (fm) Fch−Fwk Rn−Rp (fm)

DINOa 8.674 3.468 0.0334 0.1002
DINOa + fρ + fv 8.674 3.463 0.0344 0.1063
Experiment 8.667 3.477(2) 0.0277(55) 0.121(35)

[58]. Moreover, we retain the ω-tensor interaction as a means
to improve the performance of the model. Later on, we will
be able to reliably asses the importance of such a term by
invoking the full power of reduced basis methods.

We will now divert our attention to the new scalar mixing
term �s, which couples the isoscalar σ meson and isovector δ

meson in a manner analogous to how the �v term acts on the
vector sector.

C. Effect of scalar mixing 	s

Earlier covariant EDFs with only one isovector parameter
(gρ

2/m2
ρ) fitted to the symmetry energy at saturation density

are naturally stiff [33]. In an effort to tune the slope of the
symmetry energy L—and therefore adjust the neutron skin
thickness of 208Pb—a meson-mixing parameter in the vector
sector (�v) was introduced [4]. Having now introduced the δ

meson into the Lagrangian density, it is only natural to include
a similar scalar mixing term �s between the isoscalar σ meson
and the isovector δ meson. Such a scalar mixing term seems
to play an important role in the EOS of neutron star matter as
well as in the weak skin of 48Ca and 208Pb [18,20].

One of the main drawbacks of models that are stiff above
saturation density is the resulting large neutron star radii and
high tidal deformabilities. Even the DINOa model with a
fairly modest value for L generates large tidal deformabilities
because of the large and positive value for Ksym. In an effort
to soften the symmetry energy we now proceed to examine
the effect of �s on the DINOa model. Again, given that no
attempt is made to recalibrate the model parameters, we now
study separately the impact of both a positive and negative �s.

It is important to note, however, that such meson mixing
terms result in a redefinition of the effective meson mass [5].
In the particular case of a negative �v or �s, there is a thresh-
old density at which the meson mass becomes imaginary.
Such a threshold density is higher for scalar mixing because
of the large δ-meson mass, so we proceed to explore the im-
pact on the the DINOa model by arbitrarily setting the scalar
mixing term to �s =±0.00025. We underscore, however, that
a larger and negative �s may result in unphysical results once
the effective δ-meson mass becomes negative.

We display in Fig. 4 mass-radius relations as predicted by
the original DINOa model, together with the predictions after
adding the scalar mixing term. We note that for �s >0 both

FIG. 4. Impact of the scalar mixing term on both neutron star
radii and the weak-skin form factor of 48Ca and 208Pb (see inset in
the upper right panel). The predictions of the three DINO models for
the weak-skin form factors are shown along with the results obtained
after adding a positive (green) and negative (red) scalar mixing term
of magnitude �s =±0.00025. The effects on stellar radii and the tidal
deformability are displayed in the figure and the labels, respectively.

stellar radii and tidal deformability of a 1.4M� neutron star
are reduced relative to the original DINOa predictions; the
effect, however, goes in the opposite direction for negative
�s, exacerbating the undesired behavior of the original model.
Yet, the effect is opposite in the case of the weak-skin form
factor, shown on the inset in Fig. 4. In this case the impact
of a positive �s is marginal, whereas a negative �s brings the
predictions well inside the 67% confidence ellipse. In essence,
a negative �s brings the predictions into agreement with both
PREX and CREX, but at the expense of increasing neutron
star radii and tidal deformabilities. Our goal is then to use
the new scalar mixing term to lower neutron star radii and
tidal deformabilities, even if the impact on the weak skin is
minimal.

Although illuminating on their own, it is difficult to predict
the combined effect of all the new terms that have been added
to the model. In the next section we include all these new
terms in an attempt to optimize a likelihood function contain-
ing finite nuclei observables. Once calibrated, we will then
examine the predictions for other relevant observables.

D. New calibrated functionals

In this section we perform the calibration of a set of new
functionals that relative to the DINO models include three
additional terms with parameters fv, fρ , and �s. For now,
we set the quartic ρ-meson coupling ξ to zero as its impact
on finite nuclei observables is small [26]. Later on, we will
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TABLE IV. Model parameters for the newly optimized FSU-TD covariant EDFs. The parameter κ and the the scalar-meson mass are given
in MeV. The other meson masses are fixed at mv =782.5 MeV, mρ =763.0 MeV, and mδ =980.0 MeV. The nucleon mass has been fixed at
M =939 MeV.

Model ms g2
s g2

v g2
ρ g2

δ κ λ ζ �v �s fv fρ

FSU-TD0 504.887 121.876 204.744 308.933 000.000 2.95569 −0.00667997 0.015 0.04049660 0.0000 0.0000 −80.0000
FSU-TD1 523.350 137.752 216.245 440.198 462.522 3.00645 −0.00735190 0.015 0.00285816 −0.0005 5.0812 −23.2207
FSU-TD2 520.948 128.648 202.611 488.902 504.015 3.02088 −0.00709203 0.015 0.00428229 0.0005 3.6763 −31.3320

assess its impact on the EOS at high densities. Although the
quartic ω-meson coupling ζ softens the EOS at high densities,
it has been shown to have a negligible impact on the EOS in
the vicinity of saturation density [26]. Yet, given its impor-
tance at high densities and its strong impact on the maximum
neutron star mass [54], we fix the value of the quartic ω-
meson coupling to ζ =0.015 in order to satisfy the current
maximum-mass constraint from PSR J0740+6620 [59,60].
Lastly, the new scalar mixing coupling �s is constrained to
avoid that any of the isovector meson masses become imag-
inary while �v is being varied. The rest of the parameters,
namely ms, g2

s, g2
v, g2

δ, g2
ρ, κ, λ,�v, fv, and fρ , are allowed to

vary and fit to the binding energies and charge radii of 40Ca,
48Ca, and 208Pb. The weak skin form factors are also fitted
to their experimental values. Besides binding energies, charge
radii, and weak skin form factors, we supplement the set of
observables used for the calibration by including an approx-
imate value for the charge density at the origin in order to
mitigate the large density fluctuations in the nuclear interior.

As mentioned earlier, the calibration of the models param-
eters is limited to the optimization of a likelihood function
without any attempt to assign theoretical uncertainties. Such a
challenging task will be performed in the near future by bring-
ing to bear the full power of reduced basis methods. The newly
calibrated models will henceforth be referred as FSU-TD0,
FSU-TD1, and FSU-TD2. The FSU-TD0 model differs from
the other two—and indeed from the DINO models—in that
the δ-meson coupling is set to zero (i.e., gδ =0). The reason
behind this choice is to isolate the impact of the delta coupling
on a functional with tensor interactions. It also suggests that
adding just a single tensor coupling to the FSU functional
can offer drastic improvements to the densities (see Fig. 1),
neutron star radii, and tidal deformabilities. The other two
models, FSU-TD1 and FSU-TD2, differ in that the former
is calibrated assuming a negative scalar mixing term whereas
the latter assumes �s >0. Model parameters and associated
predictions for the bulk properties of infinite nuclear matter
are listed in Tables IV and V, respectively.

To demonstrate the fidelity of these new models, we dis-
play in Fig. 5 charge density distributions for 48Ca and 208Pb.
The newly calibrated FSU-TD models eliminate the large
density oscillations in the nuclear interior displayed in Fig. 2,
without compromising the success of the models in repro-
ducing binding energies and charge radii, as indicated in
Table VI. For reference, we also show predictions from the
FSUGarnet model [37] together with the experimental data
of Ref. [57]. Also shown as insets in the figure are the cor-
responding charge form factors normalized to Fch(q=0)=1.

The curvature at the origin is proportional to the mean square
radius of the charge distribution and is well reproduced by
all the models. This is hardly surprising given that the charge
radius is included in the calibration of the model parameters.
However, the agreement with experiment extends up to at least
q=2 fm−1, suggesting that these classes of covariant EDFs
are robust to this approximate momentum-transfer range. Be-
yond a few diffraction minima the agreement with experiment
is lost, since short-range correlations and other effects that go
beyond mean-field descriptions are important in accounting
for the large-q behavior of the form factor. We note that elim-
inating the large density fluctuations in the nuclear interior is
mainly due to the inclusion of the tensor-coupled-ρ interac-
tion, which enables one to reduce the very large isovector (gδ

and gρ) coupling constants characteristic of the DINO models,
while still generating weak skin form factors that fall within
the 95% confidence ellipse; see the left-hand panel in Fig. 6.

While the newly calibrated DINO and FSU-TD models
were developed with the aim of reconciling the CREX-PREX
tension, it is imperative to achieve this goal without com-
promising the success of earlier models in reproducing the
properties of both finite nuclei and neutron stars. To this end,
we now display neutron star predictions from the new models,
focusing primarily on stellar radii and tidal deformabilities.
A critical factor in mitigating the large tidal deformabilities
predicted by the DINO models is the addition of a positive
scalar coupling �s to the Lagrangian density. In this con-
text, the FSU-TD2 model stands out as unique, nearly falling
within the 67% CREX/PREX confidence ellipse, demon-
strating good agreement with electron scattering experiments,
and predicting stellar radii consistent with NICER, and tidal
deformabilities within 1.6σ of the recommended value by
the LIGO-Virgo Collaboration [25]. Instead, the FSU-TD1
functional—with a negative �s—offers only marginal im-
provement in describing charge densities and weak skin form

TABLE V. Bulk properties of infinite nuclear matter [Eq. (29)]
as predicted by the newly optimized FSU-TD covariant EDFs. All
properties are defined at saturation density ρ0, except for J̃ that is
defined as the value of the symmetry energy at a density of two-thirds
of ρ0. All quantities are in units of MeV, except ρ0 which is given in
fm−3.

Model ε0 ρ0 M∗ K0 J̃ J L Ksym

FSU-TD0 −16.145 0.150 0.546 250.0 27.0 31.466 50.0 138.137
FSU-TD1 −16.113 0.151 0.524 250.0 27.0 31.047 50.0 500.052
FSU-TD2 −16.155 0.152 0.544 250.0 27.0 30.649 50.0 500.069
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FIG. 5. Charge density distributions for 48Ca (left) and 208Pb (right) as predicted by the three new FSU-TD models, alongside the
predictions from FSUGarnet [37]. Shown in the inset is the square of the charge form factor |Fch|2(q) as a function of the momentum transfer.
The experimental charge form factors and corresponding spatial densities are obtained from Ref. [57].

factors relative to FSU-TD2, but at a significant cost in repro-
ducing stellar properties. This behavior is depicted in the two
panels in Fig. 6, where the CREX-PREX confidence ellipse
is displayed alongside neutron star predictions that are com-
pared against NICER’s 68% and 95% confidence contours for
both J0030 and J0740.

It is particularly interesting to explore the entire
momentum-transfer dependence of the weak skin form fac-
tor [51]. This is shown in Fig. 7 for the three new models
alongside older predictions from FSUGold2 [36] and FSUG-
arnet [37]. The curvature at the origin is proportional to the
weak skin defined in Eq. (31). Also shown are the experi-
mental measurements at the relevant momentum transfers of
q = 0.8733 fm−1 for CREX and q = 0.3977 fm−1 for PREX.
It is clear from the figure that while the extraction of the weak
skin involves some model dependence, FWskin is a genuine

TABLE VI. Ground-state observables for 208Pb and 48Ca as pre-
dicted by the newly calibrated FSU-TD models. The weak skin form
factors Fch−Fwk for 48Ca and 208Pb include spin-orbit corrections
[52] and were computed at the momentum transfers of relevance to
CREX (q = 0.8733 fm−1) and PREX (q = 0.3977 fm−1).

Model (208Pb) B/A (MeV) Rch (fm) Fch−Fwk Rn−Rp (fm)

FSU-TD0 7.871 5.523 0.0186 0.1322
FSU-TD1 7.871 5.511 0.0239 0.1618
FSU-TD2 7.869 5.510 0.0210 0.1428
Experiment 7.867 5.501(1) 0.041(13) 0.283(71)

Model (48Ca) B/A (MeV) Rch (fm) Fch−Fwk Rn−Rp (fm)

FSU-TD0 8.661 3.446 0.0366 0.1287
FSU-TD1 8.673 3.463 0.0335 0.1022
FSU-TD2 8.669 3.464 0.0319 0.0955
Experiment 8.667 3.477(2) 0.0277(55) 0.121(35)

experimental observable. This figure—together with Fig. 6—
encapsulates the CREX-PREX dilemma: none of the large set
of covariant EDFs can simultaneously reproduce the CREX
and PREX results at the 1σ level. Yet as mentioned earlier, no
theoretical model can convincingly resolve the CREX-PREX
tension.

E. χEFT and the quartic coupling ξ

We now proceed to address the role of the quartic ρ-meson
coupling ξ . As argued by Müller and Serot in Ref. [26], the
effect of ξ at normal nuclear density is virtually imperceptible,
but it may become important at high densities, especially
when the proton fraction becomes very small. There they
argue that the only significant nonlinearity at high density is
due to the quartic, isoscalar vector interaction ζ . However,
we find that the inclusion of the quartic, isovector term ξ

becomes important when comparing the new models against
predictions from chiral effective field theory (χEFT) for the
EOS of pure neutron matter (PNM) [61].

Even for the FSU-TD0 model with relatively moderate
values for the slope and curvature of the symmetry energy,
namely L=50 MeV and Ksym =138 MeV, the predicted be-
havior for the EOS of PNM deviates significantly from the
one suggested by χEFT; see Fig. 8. Such large deviations
relative to χEFT especially at low densities are concerning
since it is in this region where the χEFT uncertainties are
extremely small. To mitigate this problem we invoke the quar-
tic, isovector term ξ . Because the imperceptible impact of ξ

on the properties of finite nuclei, the model parameters listed
in Table IV remain unchanged. This is because the proton
fraction of the finite nuclei that define the fitting protocol
is relatively large. Hence, without any further calibration of
parameters, we simply estimate the value of ξ in an effort to
reduce the discrepancy with χEFT.
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FIG. 6. Weak skin form factor Fch−Fwk for the new class of FSU-TD models displayed with stars in the left panel alongside other RMF
models, such as FSUGarnet and FSUGold2. Shown together with the three DINO models labeled a,b,c are predictions from FSU-TD0 (green),
FSU-TD1 (blue), and FSU-TD2 (red). The right panel shows the mass-radius relations as predicted by the various models and include in
parenthesis, the tidal deformabilities for a M =1.4M� neutron star. Also included are the 68% and 95% confidence intervals for the two
NICER sources J0030 and J0740.

We set the values of quartic, isovector terms to ξ =0.020,
and ξ =0.023 for FSU-TD1 and FSU-TD2, respectively. Note
that we have found no significant improvement on the EOS of
PNM for the FSU-TD0 model, so we simply set the value of
ξ to zero. The impact of adding ξ on the other two models is
depicted by the dashed lines in Fig. 8. Although clearly not
perfect, the addition of the quartic, isovector term improves
the agreement with χEFT. Moreover, because the influence of
ξ is strong in the vicinity and of nuclear saturation density, we
are confident that the discrepancy with χEFT can be remedied

without much difficulty, once suitable priors are included in
the calibration of the model. Indeed, it was shown in Ref. [54]
that such a region is mostly sensitive to ε0, J , and L, bulk
parameters of infinite nuclear matter that are well constrained
by existing nuclear data.

Given that the addition of ξ affects the EOS of neutron
star matter at and above saturation density, we also see im-
provements in the description of neutron star observables,
particularly in the case of the tidal deformability for both
FSU-TD1 and FSU-TD2. Yet we underscore that, unlike the ζ

FIG. 7. Weak skin form factor Fch−Fwk as a function of momentum transfer q for the new class of FSU-TD models. Also shown with
their associated colors are predictions from the FSUGold2 [36] and FSUGarnet [37] models, alongside the CREX and PREX results. Note that
while FSUGold2 pins down the PREX result, it dramatically overestimates the CREX result. In contrast, the softer FSUGarnet model shows
some improvement for CREX but underestimates the PREX result.
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FIG. 8. The energy per neutron as a function of density. Results
from χEFT [61] are shown in light blue with their associated un-
certainty bands. The predictions of the three FSU-TD models are
given with (dashed lines) and without (solid lines) the ξ term. The ξ

coupling constant has no noticeable impact on the predictions of the
FSU-TD0 model, so it is therefore omitted.

term which primarily affects the high density region of the
EOS, the quartic, isovector parameter ξ is relevant even at
intermediate densities given that neutron star matter becomes
more symmetric with increasing density. As such, ξ softens
the EOS in a density region of relevance to intermediate-mass
neutron stars, such as in the binary system GW170817 [24].
This argument is validated in Fig. 9, where we observe a
significant decrease in the tidal deformability of a M =1.4M�
neutron star, not necessarily because of a large reduction in the
stellar radii, but rather due to a reduction in the second Love
number which is sensitive to the EOS. Indeed, as documented
in Table VII, the inclusion of ξ results in the following favor-
able changes to the tidal deformability: �1.4 =1072 → 846
for FSU-TD1 and �1.4 =823 → 735 for FSU-TD2. A future
sensitivity study of ξ on both the Love number and the tidal
deformability could be helpful in understanding its impact on
the EOS [62]. Also shown in Table VII are the predicted max-
imum mass supported by the EOS, the core-crust transition
density, and threshold density and mass for the direct Urca
process.

We conclude this section with a word of caution on de-
veloping insights on the symmetry energy and the EOS of
neutron star matter from χEFT. As indicated in Eq. (26), the
nuclear symmetry energy is strictly defined as

S(ρ) = 1

2

(
∂2E (ρ, α)

∂α2

)
α=0

. (33)

Yet, for a large class of functionals the symmetry energy
seems to be well reproduced by the so-called parabolic ap-
proximation, defined as the difference between the EOS of
pure neutron matter and the corresponding one for symmet-
ric nuclear matter, i.e., S(ρ)=EPNM(ρ)−ESNM(ρ). It is this
parabolic approximation that is often used to construct the

FIG. 9. Mass-radius relations for the FSU-TD models (solid
lines) and the FSU-TD models supplemented by the addition of the
quartic, isovector term ξ (dashed lines). Also shown are NICER’s
68% and 95% confidence contours together with predictions for the
tidal deformabilities of a M =1.4M� neutron star (see legends).

EOS of charge-neutral, neutron star matter in beta equilibrium
[64]. Indeed, based on this approximation, χEFT approaches
develop a framework in which the energy per particle of
asymmetric nuclear matter is obtained from an interpolation
between the EOS of symmetric nuclear matter and that of
pure neutron matter [65]. It is this expression, together with
the leptonic contribution to the EOS, that is then used to
determine the proton fraction for neutron star matter.

However, we note that, for the new class of covariant EDFs
considered here, the parabolic approximation may be badly
broken. We display in Fig. 10 a comparison between the
symmetry energy computed exactly (solid lines) as in Eq. (33)
and in the parabolic approximation (dashed lines). It is inter-
esting to note that in the case of the DINOa model—with very
large Yukawa couplings in the isovector sector—the parabolic
approximation already becomes invalid at low densities and is
badly broken at saturation density. In the case of the FSU-TD
models, the additional isovector coupling constants reduce
the Yukawa δ-meson coupling, resulting in better agreement
between the two prescriptions, leading us to believe that the
large isovector couplings of the model lead to the failure of
this approximation. An analytical expression for the quartic
contribution to the expansion of the energy per particle could
provide better insight into the exact cause of the deviation, but
is impractical at the moment and in no way trivial. Yet we
must conclude that, while χEFT calculations of pure neutron
matter are enormously useful for the calibration of energy
density functionals, relying on the parabolic approximation to
compute the equation of state of neutron star matter should be
carefully scrutinized.

045807-13



MARC SALINAS AND J. PIEKAREWICZ PHYSICAL REVIEW C 109, 045807 (2024)

TABLE VII. Neutron star predictions for the FSU-TD models with and without the inclusion of the quartic ρ-meson self-interaction.
Shown are the radius, dimensionless tidal deformability, and second Love number for a 1.4M� neutron star. Also shown are the maximum
mass supported by the EOS, the core-crust transition density, and threshold density and mass for the direct Urca process. The core-crust
transition density is computed using the thermodynamic stability method of Ref. [63].

Model R1.4 (km) �1.4 k2(1.4) Mmax (M�) ρtrans (fm−3) ρUrca (fm−3) MUrca (M�)

FSU-TD0 13.41 616.7 0.0808 2.279 0.0824 0.489 2.068
FSU-TD1 14.01 1072.3 0.1119 2.375 0.1037 0.261 1.284
FSU-TD2 13.71 822.8 0.0959 2.326 0.1036 0.303 1.477
FSU-TD1 + ξ 14.02 846.4 0.0889 2.389 0.0950 0.298 1.641
FSU-TD2 + ξ 13.79 735.4 0.0831 2.338 0.0910 0.331 1.699

IV. CONCLUSIONS

The highly successful PREX and CREX campaigns are
challenging our most basic understanding of the nuclear sym-
metry energy. While the binding energy of nuclei with a mod-
erate neutron excess determines the symmetry energy in the
vicinity of nuclear saturation density, the neutron skin thick-
ness has been identified as a robust proxy for the determina-
tion of its slope. Indeed, a large class of energy density func-
tionals suggest a fairly strong correlation between the neutron
skin thickness of 48Ca and 208Pb. This correlation now appears
to be badly broken. Whereas PREX favors a large neutron
skin thickness in 208Pb and thus a stiff symmetry energy, the
significantly thinner neutron skin thickness in 48Ca reported
by CREX suggests instead a much softer symmetry energy.

Given the relatively primitive nature of the isovector sec-
tor of most covariant energy density functionals, there have
been several recent attempts to enlarge the isovector sec-
tor by including the isovector-scalar δ meson in search for
a resolution to the CREX-PREX dilemma [18–20]. In this
paper we investigate the impact of a significantly enlarged
Lagrangian density on the properties of both finite nuclei and

FIG. 10. The symmetry energy calculated for some of the new
classes of models with enlarged isovector sectors. The result using
the parabolic approximation (dashed) differs—in some instances
significantly—from the result using the exact expression for the
symmetry energy (solid) depending on the strength of the isovector
coupling constants.

neutron stars. Relative to the Lagrangian density of Ref. [36]
containing only two isovector parameters, we have added (a)
the δ-meson and its nonlinear coupling to the isoscalar-scalar
σ meson, (b) tensor terms for both the isoscalar-vector ω

meson and the isovector-vector ρ meson, and (c) a quartic
self-interacting coupling term for the ρ-meson. The addition
of these new terms suggests a promising avenue to resolve
some outstanding problems concerning the structure of finite
nuclei and neutron stars.

We started our investigation by examining the impact of
each new term on a few critical observables, such as the weak
skin form factor and the mass-radius relation. We showed
that the addition of tensor interactions plays a crucial role
in reducing the large oscillations in the charge density dis-
played by the DINO models in the nuclear interior, while
preserving the agreement of the DINO models in mitigating
the CREX-PREX discrepancy. Moreover, the inclusion of the
mixed scalar coupling �s together with the quartic ρ-meson
self-interaction ξ is shown to have a significant impact on
the EOS at intermediate and high densities. The addition of
these two terms also alleviates some of the problems of the
DINO models that arise because of the large value of the
curvature of the symmetry energy Ksym required to modify
the symmetry energy in the vicinity of the saturation density.
Such large values for Ksym predict large stellar radii that are
in conflict with the NICER results and overestimate the tidal
deformability reported by the LIGO-Virgo Collaboration. To
a large extent, these problems have been solved in the present
work. Nevertheless, without a proper calibration procedure
that provides model uncertainties and correlations between
observables, the full impact of the new Lagrangian density
is difficult to assess. Yet, we are optimistic that the significant
advancements in employing reduced basis models for imple-
menting Bayesian inference will aid us in achieving this goal.
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