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The composition of the inner crust of neutron stars is usually studied using phenomenological interactions such
as Skyrme energy-density functionals. But most of these functionals do not agree well with ab initio calculations
of very dilute neutron matter. In this work, we study the inner crust of neutron stars in the model of phase
coexistence of dense neutron-rich nuclear clusters and dilute neutron gas, and we investigate how employing a
realistic microscopic equation of state for the neutron gas alters the composition. Our results indicate that, with
a functional that reproduces the correct equation of state of neutron matter at moderate densities, one can obtain
a good description of the crust even if the functional does not have the correct behavior at extremely low density.
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I. INTRODUCTION

Neutron stars are born in core-collapse supernovae and are
among the most compact objects found in the universe. The
presence of dense matter and its extreme physical properties
make neutron stars a cosmic laboratory to study fundamental
laws under conditions inaccessible in terrestrial experiments.
The recent detection of gravitational wave signals of binary
neutron star mergers [1] sparked great interest among the new
generation of physicists to study the physical properties and
composition of neutron stars. Neutron stars consist of four
layers, namely outer crust, inner crust, outer core, and inner
core [2]. The inner crust is composed of bound nuclear clus-
ters dipped in less dense superfluid neutrons and degenerate
electron gas. Determination of its properties and composition
holds importance in understanding exotic phases of matter
(the so-called pasta phases), and in explaining pulsar glitches
which are said to be the consequence of the effect of the
pinning of vortices of the superfluid neutrons to the lattice of
clusters [3].

The inhomogeneous phase of the inner crust depends on
the equation of state (EoS) of low-density neutron-rich matter.
In a first approximation, it can be regarded as a phase co-
existence of liquid drops (nuclear clusters) and a gas (dilute
neutron gas) under the constraints of charge neutrality and
β equilibrium [4–6]. However, the results depend upon the
choice of phenomenological interactions like Skyrme energy-
density functionals (EDF) such as SLy4 [7], BSk22 [8,9], or
relativistic mean-field models [10]. It has long been known
that if Skyrme EDFs are fitted only to bound nuclei, they
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fail to correctly describe neutron matter [11,12]. Therefore,
more modern Skyrme forces such as SLy4 [7] or BSk22 [9]
always include neutron-matter constraints into their fitting
protocol. In spite of this, they fail to correctly reproduce
the EoS of the neutron gas at very low densities, as noticed
in [13]. As an example, we show in Fig. 1 the neutron-
matter EoS as predicted by the SLy4 (orange dashes) and
BSk22 (green dash-dot) Skyrme EDFs compared to theories
developed for infinite neutron matter using realistic neutron-
neutron (nn) interactions as the starting point (the so-called
ab initio theories), namely, various quantum Monte Carlo
(QMC) calculations [14–16] and recent calculations within
many-body perturbation theory (MBPT, red stars) [17] and
Bogoliubov many-body perturbation theory (BMBPT, blue
solid line) [18] using renormalization-group evolved interac-
tions. We see that there is a huge discrepancy between the
Skyrme and the ab initio results in the low-density regime.
In the case of BSk22, the discrepancy is essentially limited
to the density range below ≈0.02 fm−3. One may expect that
including nn pairing on top of the Skyrme mean field would
make the agreement better, since the pairing energy lowers the
neutron-matter energy in this density range [19]. However, as
shown in Fig. 1, adding the pairing energy (see Appendix B
for details) to SLy4 (orange dash-dot-dot) or BSk22 (green
dots), is not sufficient to bring the phenomenological EoS into
agreement with ab initio results. In the rest of this paper, we
will neglect the pairing energy.

Many previous studies of the inner crust relied entirely
on the phenomenological Skyrme EDF. These studies in-
clude, e.g., Hartree-Fock [11] and Hartree-Fock-Bogoliubov
[20] calculations, and simpler extended Thomas-Fermi cal-
culations [5] to which shell corrections can be added
perturbatively [21]. Looking at Fig. 1, one may wonder how
reliable these descriptions can be if they use functionals
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FIG. 1. Comparison of low-density neutron-matter EoS obtained
from phenomenological Skyrme EDF (SLy4 (orange dashes) [7]
and BSk22 (green dash-dot) [8,9]) with various EoS obtained from
realistic nn interactions: third-order BMBPT (blue solid line) [18],
MBPT (red stars) [17], and various QMC calculations [14] (green
squares), [16] (purple triangle), and [15] (black circles). The vertical
axis represents the ground-state energy in units of the energy of the
free Fermi gas (EFG), as a function of Fermi momentum (kF).

that do not have the right low-density limit. To address this
question, we employ the simple phase coexistence model
[4–6] neglecting surface energy, Coulomb energy, and shell
effects, and minimizing the thermodynamic potential using
the phenomenological EDF for the drops and the realistic
neutron-matter EoS for the gas.

II. FORMALISM

The inner crust contains neutron gas, bound nuclei, and
electron gas. Following [5], it can be modeled as phase co-
existence of liquid drops (bound nuclei) with volume V (l ),
neutron gas with volume V (g), and uniformly distributed elec-
tron gas to satisfy charge neutrality in the total volume, V =
V (l ) + V (g), where the liquid volume fraction is u = V (l )/V .
Charge neutrality implies ne = un(l )

p , where nq is the number
density of particle species q = n, p, e. The total energy of the
system is given by E = εV , where ε is the total (average)
energy density. In this simple model, the total energy density
as a function of u, n(l )

p , n(l )
n , and n(g)

n is

ε = εe
(
un(l )

p

) + (1 − u)εN
(
n(g)

n , 0
) + uεN

(
n(l )

n , n(l )
p

)
, (1)

where εe(ne) = 3
4 neh̄kF,e is the energy density of the electron

gas (neglecting the electron mass) and εN (nn, np) denotes the
energy density of nuclear matter with neutron and proton
densities nn and np respectively. The total baryon density is
again a function of u, n(l )

p , n(l )
n , and n(g)

n given by

nB = un(l )
p + un(l )

n + (1 − u)n(g)
n . (2)

To stabilize the system, it should have minimum energy
under the constraint of constant baryon density, therefore min-
imizing the function ε − λnB, where λ is a Lagrange multi-
plier which eventually will turn out to be the baryon chemical

potential μB. By doing so we get three equations which de-
scribe mechanical equilibrium, chemical equilibrium, and β

equilibrium,

P(l ) = P(g), (3)

μ(l )
n = μ(g)

n , (4)

μ(l )
n = μe + μ(l )

p . (5)

In phase i = l, g, the pressure P(i) is given by

P(i) = μ(i)
n n(i)

n + μ(i)
p n(i)

p − ε
(
n(i)

n , n(i)
p

)
, (6)

and the chemical potential by μ(i)
q = ∂ε/∂n(i)

q . For given n(g)
n

(or equivalently, for given μ
(g)
n ), we can solve numerically

Eqs. (3) and (4) for the variables n(l )
p and n(l )

n . Then, the
volume fraction can be found from

u =
[
μ(l )

n − μ(l )
p

h̄c

]3
1

3π2n(l )
p

, (7)

which is a simplified expression of Eq. (5), and finally the total
baryon density is given by Eq. (2).

In principle, the pressures and chemical potentials in the
two phases follow from the same EoS. For instance, we will
make as in Ref. [5] calculations using pressures P(i) and chem-
ical potentials μ(i)

q obtained with the SLy4 and the BSk22
parametrizations of the Skyrme EDF. However, knowing that
the Skyrme EDF fails to describe the low-density neutron gas,
as seen in Fig. 1, we will also make calculations where we
use the Skyrme EDF only for P(l ) and μ(l )

q in the liquid phase,
while we use the BMBPT3 results for dilute neutron matter
[18] to compute P(g) and μ

(g)
n in the gas phase. In practice, in

order to compute P(g) and μ
(g)
n in this case, we approximate

the numerical results of [18] by a rational function given in
Appendix A.

It is clear that this somewhat inconsistent approach only
makes sense if the gas density is much smaller than the density
in the liquid phase, and that it must fail if both phases have
comparable densities, as happens near the crust-core transi-
tion.

III. RESULTS

As explained at the end of the previous section, we com-
pare results for the inner crust in the phase coexistence model
obtained in two different kinds of calculations to answer our
question how employing realistic nn interaction for neutron
gas would change the composition, i.e., the densities n(l )

q and

n(g)
n of the coexisting phases and the volume fraction u of the

liquid phase, i.e., of the nuclear clusters. First, we use the
SLy4 interaction for the bound nuclei (liquid phase) and the
BMBPT3 results for the neutron gas and then calculate the
composition. This is compared with the results found employ-
ing only the SLy4 interaction for both phases. We can see
the graph comparing the compositions obtained in these two
calculations in Fig. 2(a).
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FIG. 2. (a) Comparison of different neutron and proton densities in the liquid and in the gas as functions of the total baryon density,
obtained after taking the Skyrme interaction (SLy4) for both the clusters and the gas phase (orange lines), and taking the Skyrme interaction
(SLy4) for the clusters and realistic nn interaction (BMBPT3) for the gas phase (blue lines). (b) Corresponding volume fractions of nuclear
clusters as functions of total baryon density, (c) proton fraction, and (d) corresponding pressures, including the pressures of nucleons and
electrons.

A graph comparing the corresponding volume fractions of
nuclear clusters as a function of nB is shown in Fig. 2(b),
focusing on the low-density regime.

Looking at the curve of composition Fig. 2(a), we expect
that the density of neutron gas goes to zero at very low
baryon density. This is the transition from outer crust to inner
crust, which happens at the neutron-drip density n(ND)

B . Our
value n(ND)

B ≈ 6.6 × 10−4 fm−3 is approximately three times
higher than the expected one [2]. The reason is that in our
simple model we are neglecting the nuclear surface tension
and Coulomb interaction. These can be taken into account
in the framework of the compressible liquid-drop model that
was introduced in [22] and has since then been used by many
authors, e.g., [23–26]. However, this goes beyond the scope of
the present study.

Later on, as the total baryon density progressively increases
as we go towards the core, the density of the neutron gas in-
creases and nuclear clusters get enriched in neutrons, therefore
the proton fraction decreases; see Fig. 2(c). When we take
only the SLy4 interaction for both phases, at nB ≈ 0.09 fm−3

[5] the liquid fills the whole volume, which is the transition
from the inner crust to the outer core. Taking different inter-
actions for liquid phase and gas phase, we cannot describe
this transition because of the inapplicability of this method at
higher densities, as mentioned before.

In the low-density regime, when we employ BMBPT3
results to the gas phase, neutron and proton densities inside
the nuclear clusters and the density of the neutron gas get
larger; see Fig. 2(a). At the same time, since the total baryon
density must be the same, the volume fraction of the clusters
is reduced; see Fig. 2(b). Therefore, in total, we get more
superfluid neutron gas content than when we apply only SLy4
interaction for both phases. But since the volume fraction
of the clusters is smaller with BMBPT3 than with SLy4 for
the neutron gas, the net effect is that the proton fraction is
reduced; see Fig. 2(c). Certainly we can say that our calcu-
lation with realistic nn interaction gives us a hint that the
inner crust is more neutron rich than predicted with the SLy4
interaction. Now, making use of the compositions discussed
above, we calculate the pressure of the system, including

FIG. 3. Same as Fig. 2 but for BSk22 interaction instead of SLy4.
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also the pressure of the degenerate electrons in addition to
the pressure of the nucleons. In Fig. 2(d), we see that em-
ploying BMBPT3 in the gas phase reduces the pressure of
the system as compared to only SLy4 interaction in both
phases.

In the next step we will incorporate another phenomeno-
logical model BSk22 in place of SLy4 and repeat our study.
We take BMBPT3 for the gas phase and BSk22 for the nuclear
clusters and compare with the only BSk22 interaction in both
phases. We notice that now the curves of the composition are
similar in both cases; see Fig. 3(a). Eventually the volume
fraction, proton fraction, and pressure—see Figs. 3(b), 3(c),
and 3(d)—turn also out to be very similar in both cases.

IV. CONCLUSION

Looking at Fig. 1, we ascertain that phenomenological
Skyrme EDFs disagree with the ab initio (BMBPT3) EoS
based on a realistic nn interaction in the low-density regime of
neutron matter, as can be found in the inner crust of neutron
stars. Therefore we study how strongly this discrepancy may
affect predictions for the composition of the inner crust based
on Skyrme interactions. To get an idea of the importance of the
effect, we consider the simple phase-coexistence model and
compare the results obtained by using the phenomenological
Skyrme EDF for the nuclear clusters and the BMBPT3 EoS
for the neutron gas with those obtained by using the Skyrme
EDF for both phases.

We find out that using only SLy4, for gas phase and nu-
clear clusters, is not in agreement with the calculation done
with the BMBPT3 employed for gas phase and SLy4 for
nuclear clusters. Replacing SLy4 with BSk22 and repeating
our calculation, we observe that the composition of the inner
crust found using only BSk22 for both phases turns out to
be similar to that obtained with BMBPT3 for the gas phase
and BSk22 for the nuclear clusters. Referring to Fig. 1, we
could have anticipated that the discrepancy in the BSk22 case
is smaller than in the SLy4 case, since the behavior of BSk22
is overall closer to BMBPT3 than SLy4 and almost coincides
with BMBPT3 at kF � 0.8 fm−1.

We conclude that, in order to obtain a reasonable descrip-
tion of the inner crust, it is sufficient to employ an EDF such as
BSk22 that follows closely the correct neutron-matter EoS at
nn � 0.02 fm−3, even if it does not have the right asymptotic
behavior for nn → 0. This is consistent with the result of
Ref. [20], where it was found that the inclusion of pairing,
which affects the neutron matter EoS in the same density
range where BSk22 disagrees with BMBPT3, has almost no
effect on the inner crust composition.

In this work, we implemented the simple phase coexistence
model in order to study the composition of the inner crust
and the behavior of various phenomenological Skyrme EDFs
and ab initio theory at low density. While this is probably
sufficient to estimate the effect of the differences between
the various EoS, it is clearly not enough to make a reliable
prediction for the crust composition. For instance, the neutron
drip density is not correct. Therefore, in further studies, we
wish to extend our calculation to the compressible liquid-drop
model, where we can include surface and Coulomb energy

TABLE I. Parameters of the rational approximation (A1).

a1 (fm) a2 (fm2) a3 (fm3) a4 (fm4)

7.42207 0 16.0561 2.09893

b1 (fm) b2 (fm2) b3 (fm3) b4 (fm4)

13.9605 9.55301 0 35.3716

in our calculations, getting closer to the real physical system.
Furthermore, in the Skyrme EoS, the effect of nn pairing
should be included.

APPENDIX A: RATIONAL APPROXIMATION FOR THE
NEUTRON-GAS EOS

We made a rational approximation of the BMBPT3 results
of Ref. [18], which is useful to compute the chemical potential
and pressure of the dilute neutron gas. We write the ratio as

ε

εFG
(kF) = 1 + a1kF + a2k2

F + a3k3
F + a4k4

F

1 + b1kF + b2k2
F + b3k3

F + b4k4
F

. (A1)

When the density tends towards zero, this ratio should behave
as [27]

ε

εFG
= 1 + 10

9π
kFann, (A2)

where ann = −18.487 fm is the nn scattering length (see Table
VIII of [28]). From Eq. (A2), one can obtain b1 = a1 − 10

9π
ann.

The other parameters are obtained by a least-squares fit and
are listed in Table I. The parameters a2 and b3 have been set
to zero because they do not lead to any improvement of the fit.

APPENDIX B: PAIRING ENERGY

To estimate the pairing energy to be added to the
phenomenological Skyrme EoS, it is important to include
screening (or medium polarization) effects, which are known
to lower the pairing gap compared to when using only the
bare nn interaction in the pairing channel. Here, we use the
pairing interaction as described in Ref. [29], including the full
RPA polarization computed with SLy4 and with BSk22. Gaps
computed with this interaction have the correct asymptotic
behavior at very low density and also agree well with quantum
Monte Carlo results; cf. [30]. In BSk22, screening turns out to
be weaker so the gaps are somewhat larger than with SLy4.
The pairing energy density is computed from the formula [27]

εpair =
∫

d3k

(2π )3

(
h̄2k2

m∗
[
v2

k − θ (kF − k)
] − ukvk�k

)
, (B1)

with m∗ the effective mass computed with the respective
Skyrme functional, and uk and vk the usual coefficients of the
Bogoliubov transformation and �k the momentum dependent
gap; cf. [27].
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