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Density-dependent quark mean-field model for nuclear matter and neutron stars
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We develop a density-dependent quark mean-field (DDQMF) model to study the properties of nuclear matter
and neutron stars, where the coupling strength between σ meson and nucleon is generated by the degree
of freedom of quarks, while other meson coupling constants are regarded as density-dependent ones. Two
values for the nucleon effective mass, M∗

N0/MN = 0.556, 0.70 at the saturation density are chosen based on
the consideration of the core-collapse supernova simulation and finite nuclei when the meson-nucleon coupling
constants are fixed. We find that the equation of state (EOS) of nuclear matter, the symmetry energy, the
mass-radius relations, and the tidal deformabilities of neutron stars with larger nucleon effective mass are more
sensitive to the skewness coefficient J0. The EOSs with M∗

N0/MN = 0.70 are softer when the skewness coefficient
J0 = −800 MeV. However, the maximum masses of the neutron star can be around 2.32M� with J0 = 400 MeV
regardless of the value of the nucleon effective mass. By manipulating the coupling strength of the isovector
meson to generate different slopes of symmetry energy, we construct the neutron star EOSs that can satisfy the
different variables from the simultaneous mass-radius measurements of PSR J0030 + 0451, PSR J0740 + 6620
by the NICER collaboration, the mass-radius relations of HESS J1731-347, and the radius constraints from the
gravitational-wave signal GW170817 in the framework of a DDQMF model. At the same time, most of these
constructed EOSs can also satisfy the constraints of the tidal deformability from GW170817 event.

DOI: 10.1103/PhysRevC.109.045804

I. INTRODUCTION

The properties of nuclear matter are strongly correlated
with the matter in the core of heavy nuclei, neutron stars, and
core-collapse supernovae, which are excellent testing grounds
for studying nuclear many-body systems and have attracted
many studies using different theoretical approaches, includ-
ing the Brueckner-Hartree-Fock (BHF) approach [1], the
relativistic Dirac-Brueckner-Hartree-Fock (DBHF) approach
[2], the variational approach [3] based on realistic nuclear
forces, the chiral effective field theory (EFT) methods, as
well as the Skyrme-Hartree-Fock, Gogny-Hartree-Fock [4],
and relativistic mean-field (RMF) models [5] based on the
effective nucleon-nucleon (NN) interactions.

All of the above models assume that the nucleons in the
nuclear medium can be treated as point particles in the same
way as those in free space. However, the EMC (European
Muon Collaboration) effect indicates that the properties of the
in-medium nucleon will be changed by the nuclear medium
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due to its internal structure [6], consisting of quarks and
gluons. Nowadays, many experiments at different laboratories
have been taken to investigate the structure of the nucleon. It
is particularly worth mentioning that an electron-ion collider
(EIC) is being built at Brookhaven National Laboratory to
study the nucleon structure in finite nuclei precisely. Further-
more, the EIC in China (EicC) has been proposed and will be
constructed based on an upgraded heavy-ion accelerator, High
Intensity heavy-ion Accelerator Facility (HIAF) [7], which
can offer significant insights into the three-dimensional land-
scape of the internal structure of the proton and other hadrons.

In addition, many theoretical works are devoted to studying
the nuclear many-body theory from the quark level. Guichon
proposed the quark-meson coupling (QMC) model [8], where
the current quarks are confined in the MIT bag and the nu-
cleons interact with each other through exchanging σ and ω

mesons between the quarks in different nucleons. Later, Toki
et al. replaced the current quarks with constituent quarks in
their proposed quark mean-field (QMF) model [9], where the
constituent quarks are confined by a confinement potential,
and they applied the QMF model to study the properties of
finite nuclei and neutron stars [10–13]. Furthermore, to satisfy
the spirit of quantum chromodynamic (QCD) theory, Barik

2469-9985/2024/109(4)/045804(11) 045804-1 ©2024 American Physical Society

https://orcid.org/0009-0006-5042-3986
https://orcid.org/0000-0003-2717-9939
https://orcid.org/0000-0002-1709-0159
https://orcid.org/0000-0002-7497-3185
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.109.045804&domain=pdf&date_stamp=2024-04-03
https://doi.org/10.1103/PhysRevC.109.045804


HUANG, SHEN, HU, AND ZHANG PHYSICAL REVIEW C 109, 045804 (2024)

et al. developed a modified QMC model where the center
of mass correction, pionic correction, and gluonic correction
were taken into account when calculating the nucleon mass
with the quark model [14–16]. Similarly, Xing et al. included
the contribution of pions and gluons at the quark level within
the QMF model [17] and applied it to the investigations of
neutron stars and hypernuclei systems [18–23].

In these previous works, effective interactions for meson-
nucleon couplings were based on the relativistic mean-field
(RMF) approximation when performing nuclear matter cal-
culations, including the nonlinear terms both for σ and ω

mesons [10,17], which can reproduce the nucleon self-energy
from the DBHF theory [2] and satisfactory properties of finite
nuclei [24]. In some sense, the meson self-coupling terms can
be incorporated into the meson-nucleon coupling constants as
a form of density dependence. Brockmann and Toki devel-
oped the density-dependent relativistic mean-field (DDRMF)
method, where the coupling constants are density-dependent
so that the corresponding self-energies are consistent with the
DBHF results of nuclear matter [25].

Furthermore, the properties of neutron stars are more
strongly dependent on the EOSs under extreme conditions
of density and isospin asymmetry. With the rapid progress
of astronomical-observable techniques, many works have fo-
cused on the observation and measurement of neutron stars,
which can provide constraints on the EOS of neutron star
matter. It is worth mentioning that the LIGO/Virgo collab-
orations have, for the first time, detected the gravitational
wave produced from a binary neutron star merger, GW17087
[26], which provided crucial information about binary masses
and the tidal deformability [27]. The simultaneous measure-
ments of mass-radius observations of the massive pulsars,
PSR J0030 + 0451 [28,29] and PSR J0740 + 6620 [30,31],
can further provide constraints on the EOS. In addition to
observations of massive neutron stars, a light central compact
object in the supernova remnant HESS J1731-347 has recently
been reported with a mass and radius of M = 0.77+0.20

−0.17M�
and R = 10.4+0.86

−0.78 km, respectively [32]. In our previous
works [33–35], the DDRMF model has been proven to be a
very powerful many-body framework, which can describe the
above observables very well.

Therefore, we try to further develop a density-dependent
quark mean-field (DDQMF) model, which incorporates the
nuclear medium effects at the quark level, so as to study the
EOS of dense matter and the properties of neutron stars. Un-
like the DDRMF model [36], the σ meson-nucleon coupling
constant does not have to be taken into account in the DDQMF
model since the effective nucleon mass in the QMF model is
obtained from quark level, where the σ meson-quark coupling
constant is introduced. As a result, the DDQMF model has
fewer parameters than those in the DDRMF model.

In this work, we aim to study the EOS of dense matter and
the properties of neutron stars with the DDQMF model, where
the constituent quarks (mq = 350 MeV) are confined by a po-
tential in a harmonic oscillator form similar to Refs. [14,17].
The density-dependent couplings for ω and ρ mesons of the
DDQMF model will be redetermined by fitting the satura-
tion properties of nuclear matter from DDME-X model [37],
which can reproduce the ground state properties of finite

nuclei very well. The symmetry energy Esym and its density
dependence play a crucial role in the EOS of neutron star
matter because of its highly isospin-asymmetric nature. Esym
and its slope (L) can be extracted from measurements of the
neutron skin thickness (Rskin) of 208Pb by PREX-II [38–40]
and 48Ca by CREX collaboration [41]. However, the two
measurements are very different, bringing a great challenge
to understanding the nuclear many-body theory. The slope
of symmetry energy (L) can be controlled by adjusting the
coupling constants of the isovector meson by fixing Esym at the
density of 0.11 fm−3 [42]. We also tried to construct the EOS
for neutron stars that can satisfy the observational constraints
mentioned above using the DDQMF model.

The paper is organized as follows. In Sec. II we briefly
introduce the theoretical framework of the DDQMF model.
In Sec. III, the density-dependent parameters of meson cou-
plings will be determined. The properties of nuclear matter
and neutron stars obtained in the DDQMF models will also be
shown. Finally, we will give a conclusion in Sec. IV.

II. THE DENSITY-DEPENDENT QUARK
MEAN-FIELD MODEL

Within the QMF model, three constituent quarks are con-
fined in the hadron by a confinement potential and satisfy the
Dirac equation. After solving the Dirac equations in the pres-
ence of the meson mean fields, the effective mass of nucleons
can be obtained, which will be used to solve nuclear many-
body systems. In the nuclear medium, the Dirac equation for
the constituent quarks can be written as

[
iγ μ∂μ − (

mq − gq
σ σ

) − γ 0
(
�q

ωω + 1
2�q

ρρτ3
) − U (r)

]
ψq(r)

= 0, (1)

where ψq(r) represents the quark field with constituent quark
mass mq. σ, ω, ρ are the exchanging meson fields between
quarks in different nucleons to achieve nucleon-nucleon inter-
actions. gq

σ , �
q
ω, �

q
ρ are the quark-meson coupling constants

and τ3 is the third component of the isospin matrix. Here,
we adopt a phenomenological confinement potential with a
mixing scalar-vector form [14]

U (r) = 1
2 (1 + γ 0)(aqr2 + Vq), (2)

since the analytical confinement potential for quarks cannot
be obtained from QCD theory directly due to the highly non-
perturbative at low energy. Now, the Dirac equation (1) can be
simplified as

[−iα · ∇ + βm∗
q + U (r)]ψq(r) = ε∗

qψq(r), (3)

where

ε∗
q = εq − �q

ωω − 1
2�q

ρρτ3, m∗
q = mq − gq

σ σ (4)

are the effective single quark energy and effective quark
mass. Equation (3) can be solved exactly and its ground-state
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solution of the energy satisfies√
λq

aq
(ε′

q − m′
q) = 3, (5)

where

ε′
q = ε∗

q − Vq/2, m′
q = m∗

q + Vq/2,

λq = ε′
q + m′

q = ε∗
q + m∗

q. (6)

The zeroth-order energy of the nucleon can be obtained from
the solution of Eq. (3) for the quark energy εq,

E∗
N =

∑
q

ε∗
q . (7)

In this work, the center-of-mass correction εc.m., the pion cor-
rection δMπ

N , and the gluon correction (�EN )g are taken into
account following Refs. [14,17], so the mass of the nucleon in
the nuclear medium becomes

M∗
N = E∗0

N − εc.m. + δMπ
N + (�EN )g. (8)

The specific form of each term in Eq. (8) can be found in
Ref. [17]. Finally, the nucleon radius in QMF model is written
as

〈
r2

N

〉 = 11ε′
q + m′

q(
3ε′

q + m′
q

)(
ε′2

q − m′2
q

) . (9)

Then we can apply the nucleon mass in the nuclear medium
from Eq. (8) to the nuclear many-body problem with the
meson-exchange picture. To describe the nuclear matter, we
consider the scalar − isoscalar(σ ), vector-isoscalar (ω), and
vector-isovector (ρ) mesons and the DDQMF Lagrangian in
the uniform system with mean-field approximation is given as

LQMF = ψ̄N
[
iγμ∂μ − M∗

N − γ 0(�ωN (ρB)ω + 1
2�ρN (ρB)ρτ3)

]
ψN − 1

2 m2
σ σ 2 + 1

2 m2
ωω2 + 1

2 m2
ρρ

2, (10)

where ψN is the nucleon field. The effective nucleon mass, M∗
N

is obtained from the quark model as a function of the quark
mass correction, δmq = gq

σ σ , which is related to σ field, while
ω and ρ mean fields do not obviously cause any change of the
nucleon properties. The density-dependent coupling constant
for the ω meson can be expressed as a fraction of the baryon
density, ρB, and the coupling constant for ρ is chosen to be in

exponential form

�ωN (ρB) = �ω(ρB0) fi(x), with fω(x) = aω

1 + bω(x + dω )2

1 + cω(x + dω )2
,

�ρN (ρB) = �ρ (ρB0)exp[−aρ (x − 1)], (11)

where x = ρB/ρB0 and ρB0 is the saturation density of sym-
metric nuclear matter. We keep the constraint fω(1) = 1,
which can lead to

aω = 1 + cω(1 + dω )2

1 + bω(1 + dω )2
, (12)

while the constraints f ′′
i (0) = 0 and f ′′

σ (1) = f ′′
ω (1) in the con-

ventional DDRMF model [36] do not need to be considered
here.

The equations of motion of nucleons and mesons will be
generated by the Euler-Lagrangian equation

[iγ μ∂μ − M∗
N − γ 0(�ωN (ρB)ω + 1

2
�ρN (ρB)ρτ3+�R)]ψN = 0,

m2
σ σ = −∂MN∗

∂σ
ρs,

m2
ωω = �ωN (ρB)ρB,

m2
ρρ = 1

2
�ρN (ρB)ρB3, (13)

where the ∂MN ∗
∂σ

is not a explicit function of the σ mean field
while that is equal to the �σN in the DDRMF model [33]. The
rearrangement term, �R, is

�R = ∂�ωN (ρB)

∂ρB
ωρB + 1

2

∂�ρN (ρB)

∂ρB
ρρB3, (14)

where the scalar, vector densities, and their isospin compo-
nents are generated by the expectation value of nucleon fields,

ρs = 〈ψ̄ψ〉, ρB = 〈ψ†ψ〉, ρB3 = 〈ψ̄τ3γ
0ψ〉. (15)

With the energy-momentum tensor, the energy density, E ,
and pressure, P, of nuclear matter can be obtained, respec-
tively, as

E = 1
2 m2

σ σ 2 − 1
2 m2

ωω2 − 1
2 m2

ρρ
2 + �ωN (ρB)ωρB

+ 1
2�ρN (ρB)ρρB3 + En

kin + E p
kin,

P =ρB�R(ρB) − 1
2 m2

σ σ 2 + 1
2 m2

ωω2 + 1
2 m2

ρρ
2 + Pn

kin + Pp
kin,

(16)

where the contributions from kinetic energy are

E i
kin = 1

π2

∫ kFi

0
k2

√
k2 + M∗

N
2dk = 1

8π2

[
kFiE

∗
Fi

(
2k2

Fi + M∗
N

2) + M∗
N

4 ln
M∗

N

kFi + E∗
Fi

]
,

Pi
kin = 1

3π2

∫ kFi

0

k4dk√
k2 + M∗

N
2

= 1

24π2

[
kFi

(
2k2

Fi − 3M∗
N

2)E∗
Fi + 3M∗

N
4 ln

kFi + E∗
Fi

M∗
N

]
. (17)
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Then, the properties of nuclear matter can also be determined. The binding energy per nucleon, E/A, the incompressibility, K ,
and the skewness coefficient, J , are defined by [43]

E

A
= E

ρB
− MN , (18)

K = 9
∂P

∂ρB

∣∣∣∣
δ=0

= 9

[
ρB

∂�R

∂ρB
+ 2�ωNρ2

B

m2
ω

∂�ωN

∂ρB
+ �2

ωNρB

m2
ω

+ k2
F

3E∗
F

+ ρBM∗
N

E∗
F

∂M∗
N

∂ρB

]
, (19)

J = 27ρ3
B

∂3(E/ρB)

∂ρ3

∣∣∣∣
δ=0

= 27ρ3
B

[
1

ρB

∂3E
∂ρ3

B

− 3

ρ2
B

∂2E
∂ρ2

B

+ 6

ρ3
B

∂E
∂ρB

− 6E
ρ4

B

]
, (20)

where

∂E
∂ρB

=
√

k2
F + M∗2

N + �2
ωN

m2
ω

ρB + �R,

∂2E
∂ρ2

B

= 1

2E∗
F

(
π2

kF
+ 2M∗

N

∂M∗
N

∂ρB

)
+ �2

ωN

m2
ω

+ 2�ωNρB

m2
ω

∂�ωN

∂ρB
+ ∂�R

∂ρB
,

∂3E
∂ρ3

B

= − 1

4E∗3
F

(
π2

kF
+ 2M∗

N

∂M∗
N

∂ρB

)2

+ 1

2E∗
F

[
− π4

2k4
F

+ 2

(
∂M∗

N

∂ρB

)2

+ 2M∗
N

∂2M∗
N

∂ρ2
B

]
+ 2�ωNρB

m2
ω

∂2�ωN

∂ρ2
B

+ 2ρB

m2
ω

(
∂�ωN

∂ρB

)2

+ 4�ωN

m2
ω

∂�ωN

∂ρB
+ ∂2�R

∂ρ2
B

.

The symmetry energy, Esym, and its slope, L, are

Esym = 1

2

∂2ε/ρB

∂ρB

∣∣∣∣
δ=0

= k2
F

6E∗
F

+ �2
ρN (ρB)

8m2
ρ

ρB, (21)

L = 3ρB
∂Esym

∂ρB
= k2

F

3E∗
F

− k4
F

6E∗3
F

(
1 + 2M∗

N kF

π2

∂M∗
N

∂ρB

)

+ 3�2
ρN

8m2
ρ

ρB + −3aρ�
2
ρN

4m2
ρρB0

ρ2
B. (22)

We can find that Esym and L are only dependent on �ρN (ρB)
when the isoscalar properties of nuclear matter at nuclear
saturation density are fixed. In addition, we define the scalar
potential, US , and vector potential, UV , as

US = M∗
N − MN , UV = �ωN (ρB)ω + 1

2�ρN (ρB)ρτ3 + �R.

(23)

For comparison with the DDRMF model, we define the
coupling constants of σ meson, �σN (ρB), with M∗

N = MN −
�σN (ρB)σ in DDQMF model.

In the uniform neutron star matter, the compositions of
baryons and leptons are determined by the requirements of
charge neutrality and β-equilibrium conditions,

μμ = μe = μn − μp, ρp = ρe + ρμ. (24)

III. RESULTS AND DISCUSSIONS

The two parameters of the confinement potential, (aq, Vq),
are fixed to (0.4955927, −102.041429), respectively, for
mq = 350 MeV by reproducing the experiment data of nu-
cleon mass MN = 939 MeV and the charge radius 〈r2

N 〉1/2 =
0.87 fm in free space with Eqs. (5), (8), and (9). The effective
mass M∗

N is dependent on δmq = mq − m∗
q = gq

σ σ and it can

be expanded in terms of σ field to the fourth-order in symmet-
ric nuclear matter,

M∗
N = MN + a

(
gq

σ σ
)+ b

(
gq

σ σ
)2 + c

(
gq

σ σ
)3 + d

(
gq

σ σ
)4

, (25)

where the parameters a = −2.19849, b = 1.09324×10−3,

c = −6.20770×10−7, d = 8.47995×10−9 can be determined
by fitting to the results of M∗

N from Eq. (8).
The quark-meson coupling gq

σ , the coupling parameters
�ωN (ρB0), bω, cω, dω, and �ρN (ρB0), aρ can be determined
by fitting saturation properties of nuclear matter, i.e., the sat-
uration density, ρB0, the binding energy per nucleon, E/A, the
incompressibility, K0, the skewness coefficient, J0, the effec-
tive mass, M∗

N0/MN , the symmetry energy, Esym0, and its slope,
L0, at the saturation point. The saturation properties used in
this work are listed in Table I, which are almost extracted from
DDME-X set [37]. J0 at the saturation point is only loosely
known to be in the range of −800 � J0 � 400 MeV based
on the analysis of terrestrial nuclear experiments and energy
density functional [44]. Here, we choose another nucleon ef-
fective mass of M∗

N0/MN = 0.70 at the saturation point since
a larger effective mass can lead to a more rapid contraction
of the protoneutron star, which will directly result in a faster
explosion in the core-collapse supernova simulations [45],
while M∗

N0/MN ∼ 0.60 can give reasonable spin-orbit split-
tings for finite nuclei in RMF model. With M∗

N0, ρB0, and the
correspondence between M∗

N and δmq, gq
σ and σ field at the

saturation point, σ0, can be calculated by

(
gq

σ

)2 = −m2
σ δmq

∂M∗
N0

∂δmq
ρs

, (26)

σ0 = δmq

gq
σ

. (27)
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TABLE I. Saturation properties, i.e., the saturation density, ρB0, the binding energy per nucleon, E/A, the incompressibility, K0, the
skewness coefficient, J0, the effective mass, M∗

N0/MN , the symmetry energy, Esym0, and the slope of the symmetry energy, L0, at the saturation
point, used in this work for fitting the meson coupling constants.

ρB0 [fm−3] E/A [MeV] K0 [MeV] J0 [MeV] Esym0 [MeV] L0 [MeV] M∗
N0/MN

0.152 −16.1 267 −800/400 32.3 49.7 0.556/0.70

Along with the E/A at the saturation point, the parameters,
�ωN (ρB0), cω can be obtained as

�ωN (ρB0) = mω

ρB0

√
2(E/A + MN )ρB0 − m2

σ σ 2
0 −2

(
εn

kin+ε
p
kin

)
,

(28)

ω0 = �ωN (ρB0)ρB0

m2
ω

, (29)

cω = bω(dω + 1) − y[1 + bω(1 + dω )2]

(dω + 1) + y[1 + bω(1 + dω )2](dω + 1)2
, (30)

where

y =
1
2 m2

σ σ 2
0 − 1

2 m2
ωω2

0 − Pp
kin − Pn

kin

2ρB0�ωN (ρB0)ω0
.

�ρN (ρB0) and aρ can be calculated numerically with the
definition of Esym and L with Eqs. (21) and (22) simulta-
neously and constants bω, dω can be obtained by solving
Eqs. (19) and (20) simultaneously. Finally, we can have aω

with Eq. (12). The obtained parameters mentioned above,
gq

σ , �ωN (ρB0), aω, bω, cω, dω, �ρN (ρB0), aρ , are listed in
Table II.

The density-dependent behaviors of coupling constants,
�σN (ρB) and �ωN (ρB), the effective mass, M∗

N , and the
scalar(vector) potential for symmetric nuclear matter with
M∗

N0/MN = 0.556, 0.70 are plotted in the panels of Fig. 1,
respectively. In panel (a), the effective σ meson couplings
constants, �σN (ρB) = M∗

N/σ are given as a function of baryon
density. The strengths of those with M∗

N0/MN = 0.556 are
larger than the ones with M∗

N0/MN = 0.70 around 40%. The
�σN (ρB) from DDME-X are compared, which are smaller
than the lower effective mass case in DDQMF model, al-
though their nucleon effective mass at saturation density is
the same. In panel (b), the effective nucleon masses are given
as functions of baryon density. The DDQMF parametriza-
tion with M∗

N0/MN = 0.556 has similar density-dependent
behaviors with DDME-X below the nuclear saturation density.
When the density increases, the effective mass from DDME-X
rapidly reduces while the ones in DDQMF tend to converge at
high densities.

Correspondingly, the vector meson coupling constants are
shown in panel (c) which depend on the skewness J0 in the
fitting process. The red and green shaded regions in this panel
with the upper limit marked by the magenta dashed line cor-
responds to J0 = 400 MeV and the blue solid line to J0 =
−800 MeV. The brownish regions in this paper result from the
overlap of green and red regions. The relevant results from the
DDME-X model are also added for comparison. �ωN (ρB) with
M∗

N0/MN = 0.556 will be stronger than that with M∗
N0/MN =

0.70 to provide more repulsive contributions, which will be
canceled out with the attraction from the σ meson. At the
low-density region, the �ωN (ρB) with M∗

N0/MN = 0.556 is
larger than that from DD-MEX, while it will be smaller above
ρB = 0.3 fm−3. Therefore, EOSs from the DDQMF will be
softer than that from DD-MEX at the high-density region due
to the lack of strong repulsion. Furthermore, �ωN (ρB) with
larger M∗

N0 are more sensitive to J0. When J0 = −800 MeV,
it rapidly decreases with the baryon density. The scalar and
vector potentials, US and UV , from DDME-X and DDQMF
models are plotted in panel (d), which are strongly related to
effective nuclear mass and vector meson coupling strength.
Therefore, they have similar behaviors as shown in panels (b)
and (c).

In Fig. 2, we show the behaviors of the binding energies per
nucleon, E/A, and pressures, P as functions of baryon density
for symmetric nuclear matter in panels (a) and (b). When the
M∗

N0/MN is fixed, the EOS will become softer with smaller
J0, since this skewness term denotes the third-order derivative
of E/A from Eq. (20). Meanwhile, for the smaller J0, the
DDQMF with a smaller effective nucleon mass can generate
a stiffer EOS due to the larger vector meson contributions.
However, when J0 is large enough, such as J0 = 400 MeV,
the effect of M∗

N0 becomes very weak and two EOSs from
different effective masses are almost the same. So the magenta
dashed lines, which represent the case of J0 = 400 MeV,
for M∗

N0/MN = 0.556, 0.70 seem to be almost overlapping.
Furthermore, the EOS from DDME-X is stiffer than those
from DDQMF due to its strong repulsive vector potential. In
panel (b), the pressures from the present model are compared
to the constraint from heavy-ion collisions at 2-4ρB0 [46],
which supports the DDQMF parametrization with a larger

TABLE II. The coupling parameters, gq
σ , �ωN (ρB0), aω, bω, cω, dω, �ρN (ρB0), aρ , obtained by fitting saturation properties in Table I.

M∗
N0/MN J0[MeV] gq

σ �ωN (ρB0) aω bω cω dω �ρN (ρB0) aρ

0.556 −800 6.4516 15.0304 1.2838 0.1306 0.2801 0.5887 7.2479 0.4755
400 1.1955 0.2398 0.4284 0.1743

0.70 −800 4.4885 10.9401 1.0269 0.04339 0.007140 0.0001920 8.12239 0.4150
400 1.0156 0.5852 0.6504 −0.4724
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FIG. 1. The density-dependent behaviors of coupling constants, �σN (ρB) and �ωN (ρB), the effective mass, M∗
N , and the scalar(vector)

potential at M∗
N0/MN = 0.556, 0.70 as functions of the baryon density for symmetric nuclear matter with DDQMF parameters in Table II.

M∗
N0 and smaller J0. Similarly, the pressures for J0 = 400

MeV at M∗
N0/MN = 0.556, 0.70 are almost the same.

Together with β-equilibrium and charge neutrality condi-
tions in Eq. (25), the EOSs of neutron star matter with the
DDQMF model can be obtained. The EOS of the nonuniform
matter in the crust region is generated by IUFSU parametriza-
tion with Thomas-Fermi approximation from Ref. [47], where
the crust EOSs with different Lcrust = 47 MeV and Lcrust =
110 MeV are given for comparison. They denote the neutron
skin measurements from CREX and PREX-II, respectively.

The mass-radius (M-R) relation of neutron stars can be cal-
culated by solving the Tolman-Oppenheimer-Volkoff (TOV)
equation [48,49] with the EOSs of neutron star matter as
input. In panels (a) and (b) of Fig. 3, the M-R relations
at M∗

N0/MN = 0.556, 0.70 with different skewness, J0 are

shown, respectively. Additionally, we include mass-radius
observations from measurements of PSR J0030 + 0451 [28]
and PSR J0740 + 6620 [30] by NICER, which have a mass
of 1.34+0.15

−0.16M� with a radius 12.71+1.24
−1.06 km and a mass of

2.072+0.067
−0.066M� with a radius 12.39+1.30

−0.98 km, respectively. The
purple horizontal line indicates the radius constraint at 1.4M�
from GW170817 event with R1.4 = 11.9 ± 1.4 km [26]. The
mass-radius constraints from the compact central object of
HESS J1731-347 [32] are also shown with 68% and 95%
confidence intervals. It should be noted that the red and green
shaded regions in this figure are calculated from −800 � J0 �
400 MeV with distinguished crust EOSs with Lcrust = 47 MeV
and Lcrust = 110 MeV, respectively, which are different from
the meanings represented in the previous figure. The dashed
line and solid line still represent the upper and lower limit, and
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FIG. 2. (a) The binding energies per nucleon and (b) pressures as functions of vector density for symmetric nuclear matter with DDQMF
parameters in Table II.

the brownish region results from the overlap of the green and
red regions. Apparently, a higher Lcrust can yield a softer EOS,
leading to a smaller radius in the low-mass region.

The maximum masses for M∗
N0/MN = 0.556 and

M∗
N0/MN = 0.70 are all about Mmax = 2.3M� with a

radius of about Rmax = 11.7 km at J0 = 400 MeV, while
they are much different at J0 = −800 MeV. For the
DDQMF with M∗

N0/MN = 0.556 and J0 = −800 MeV,
the maximum mass of the neutron star is about 2.1M�. It
largely decreases to 1.6M� for M∗

N0/MN = 0.70. The M-R
relation for M∗

N0/MN = 0.556 with Lcrust = 110 MeV can
satisfy the 95% credibility constraint from HESS J1731-347

as well as the constraints from PSR J0740 + 6620, PSR
J0030 + 0451, and GW170817 events. On the other hand,
for M∗

N0/MN = 0.70, the M-R relations are more sensitive
to J0, where the maximum masses and the corresponding
radius, as well as the radius at the low-mass region, at
J0 = −800 MeV are much smaller. The M-R relation for
M∗

N0/MN = 0.70 at J0 = −800 MeV with Lcrust = 110 MeV
can even approach the 68% credibility constraint from HESS
J1731-347, but cannot satisfy the constraints from the other
three observations about the massive neutron star.

With the rapid development of gravitational wave de-
tectors, the dimensionless tidal deformability, �, has also

FIG. 3. Mass-radius relations of neutron stars at M∗
N0/MN = 0.556, 0.70 with the DDQMF model.
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FIG. 4. Tidal deformabilities of neutron stars at M∗
N0/MN = 0.556, 0.70 with the DDQMF model.

become another important property of neutron stars to con-
strain the theoretical models. The GW170817 event provides
the constraint on � at M1.4 with �1.4 = 190+390

−120 [27]. In
Fig. 4, � of the neutron stars as a function of their masses
from DDQMF models are shown. For M∗

N0/MN = 0.556,
�1.4 with Lcrust = 47–110 MeV change from 410–420 at
J0 = −800 MeV to 602–612 at J0 = 400 MeV. Similarly,
for M∗

N0/MN = 0.70, �1.4 change from 90–100 at J0 =
−800 MeV to 558–620 at J0 = 400 MeV. Therefore, �1.4

from these DDQMF models can almost satisfy the constraint
from the GW170817 event. Similar to the behavior of the
mass, for M∗

N0/MN = 0.70, the � is more sensitive to J0, and
� is much smaller for the same mass at J0 = −800 MeV, so
the constraint from GW170817 event supports a larger M∗

N0
and a smaller J0, which is consistent with the requirements of
heavy-ion collisions.

By adjusting the ρ meson coupling constants, �ρN (ρB0)
and aρ , using Eqs. (21) and (22), we can obtain the core
EOSs of the DDQMF model with different L0 values,
while maintaining the symmetry energy fixed at subsat-
uration density ρB = 0.11 fm−3 with Esym(0.11) = 26.85
MeV for M∗

N0/MN = 0.556 and Esym(0.11) = 26.99 MeV for
M∗

N0/MN = 0.70. The magnitudes of �ρN and aρ for L0 =
30, 40, 60, 80 MeV are listed in Table III. We excluded the
case below L0 = 30 MeV because the corresponding speed of
sound in nuclear matter becomes less than zero.

The density-dependent behaviors of Esym are plotted
in Fig. 5. Smaller L0 can yield larger Esym below the
subsaturation density, and produce smaller Esym in the
high-density region, which can be understood by the
expansion of Esym(ρB) = Esym(ρ0) + L(ρB − ρ0)/3ρ0 + · · · .
The Esym will converge at the high density due to the second
term related to �ρN (ρB) will disappear at the high density.
Esym for L0 = 30–60 MeV will converge at about 1.0 fm−3

while Esym for L0 = 80 MeV will converge at about 2.0 fm−3.
The effective mass will sightly affect the symmetry energy for
L0 = 80 MeV and a larger effective mass generates a larger
symmetry energy at high density.

Now we combine the core EOS with different L0 in
DDQMF model with Lcrust = 110 MeV for the crust EOS
from IUFSU model since a larger Lcrust can yield a smaller
radius, especially in the low-mass region, which can make it
easier to satisfy the M-R constraint from HESS J1731-347.
The corresponding M-R relations with the above EOSs in
Table III are shown in Fig. 6. The colorful shadow regions re-
late to the core EOSs with different L0, and M-R relation with
the original L0 = 49.7 MeV is also shown for comparison. We
can find that the L0 for the core EOS has little effect on the
maximum mass and the corresponding radius of neutron stars.

The M-R relations from different L0, J0 with M∗
N/MN =

0.556 are given in panel (a) of Fig. 6. The radius at 1.4M�,
R1.4, decreases from (12.76, 13.48) km to (11.86, 12.50) km,
a decrease of about 1.0 km as the core EOS changes from
L0 = 80 MeV to L0 = 30 MeV, while the radius at 0.77M�
(R0.77) decreases by about 1.7 km, from (13.03, 13.49) km
to (11.38, 11.81) km, where (RJ0=−800, RJ0=400) denotes the

TABLE III. Parameters �ρN and aρ of the DDQMF model gen-
erated for different L0 at saturation density ρB0 with the symmetry
energy Esym fixed at ρB0 = 0.11 fm−3.

L0 [MeV] 30 40 60 80

M∗
N/MN = 0.556 �ρN (ρB0) 6.69347 6.99212 7.49302 7.91292

aρ 0.76350 0.60553 0.35513 0.15780
M∗

N/MN = 0.70 �ρN (ρB0) 7.65896 7.90445 8.33656 8.71322
aρ 0.63759 0.51342 0.32079 0.16086
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FIG. 5. The density-dependent behaviors of the symmetry energy for L0 = 30, 40, 60, 80 MeV of the DDQMF model.

radius interval from J0 = −800 MeV to J0 = 400 MeV at a
fixed effective nucleon mass. This indicates that the L0 of the
core EOS plays an opposite role in determining the radius of
low-mass neutron stars compared to Lcrust of the crust EOS.
Furthermore, the M-R relation obtained from L0 = 30 MeV
(shaded in red) can fully satisfy the 68% credibility M-R
constraint from HESS J1731-347, as well as the mass-radius
constraints from PSR J0030 + 0451, PSR J0740 + 6620, and
GW170817 events. We also show the similar M-R relations
for M∗

N/MN = 0.70 in panel (b). As J0 approaches 400 MeV,
the M-R relation for L0 = 30 MeV may also satisfy all the

68.3% credit constraints and the radius constraint from the
GW170817 event. When the skewness becomes smaller, the
massive neutron star cannot be supported.

Finally, � of the neutron stars as a function of their masses
from the EOSs of different L0, J0 with M∗

N/MN = 0.556, 0.70
given in Fig. 6 are shown in Fig. 7. For M∗

N0/MN = 0.556,
�1.4 with L0 = 30–80 MeV change from 405–640 at J0 =
−800 MeV to 575–745 at J0 = 400 MeV. Similarly, for
M∗

N0/MN = 0.70, �1.4 with L0 = 30–80 MeV change from
110–145 at J0 = −800 MeV to 610–780 at J0 = 400 MeV.
�1.4 from these DDQMF models with different L0 can almost

FIG. 6. Mass-radius relations of neutron stars with different L0 for the core EOS with the DDQMF model.
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FIG. 7. Tidal deformabilities of neutron stars with different L0 for the core EOS with the DDQMF model.

satisfy the constraint from GW170817 event except for the
case of L0 = 80 MeV at M∗

N0/MN = 0.556, which is the pur-
ple region in the panel (a) of Fig. 7, since larger L0 for the
core EOS can produce stiffer EOS of the neutron star matter
and the larger � will be obtained.

IV. CONCLUSION

In this work, we developed the density-dependent
quark mean-field (DDQMF) model, where the ω, ρ

meson coupling constants and the nonlinear terms in
the previous QMF model [17] were replaced with
density-dependent coupling constants. Seven independent
parameters [gq

σ , �ωN (ρB0), bω, cω, dω, �ρN (ρB0), aρ] were
determined by fitting the nuclear saturation properties
(ρB0, E/A, K0, J0, Esym0, L0, M∗

N0) of nuclear matter from
DDME-X model, where the effective nucleon mass was fixed
by two cases with M∗

N0/MN = 0.556, 0.70 because present
core-collapse supernova simulation favors a larger M∗

N0
[45] while M∗

N0/MN ∼ 0.60 can give reasonable spin-orbit
splittings for finite nuclei in the RMF model. J0 was chosen
to be in the range of −800 � J0 � 400 MeV based on the
analysis of terrestrial nuclear experiments and energy density
functional theory [44].

We investigated the properties of infinite nuclear matter
and neutron stars with the DDQMF model. The larger M∗

N
corresponds to the smaller vector potential, which will pro-
vide a softer EOS and make it easier to satisfy the constraint
from heavy-ion collisions at 2 − 4ρB0 densities. However,
when J0 is large enough, e.g., J0 = 400 MeV, the EOSs
with M∗

N0/MN = 0.556 and M∗
N0/MN = 0.70 are almost the

same, which leads to the maximum mass of neutron stars of
around Mmax = 2.32M� with a radius about Rmax = 11.7 km
for both M∗

N0 at J0 = 400 MeV. Moreover, the M-R relations
obtained from M∗

N0/MN = 0.556 can simultaneously satisfy

the constraints from PSR J0740 + 6620, PSR J0030 + 0451,
and GW170817 events. However, the M-R relations obtained
from M∗

N0/MN = 0.70 at very small J0 can hardly satisfy these
three constraints since the EOSs and M-R relations with larger
M∗

N will be more sensitive to J0, and the maximum mass and
the corresponding radius, as well as the radius at the low-mass
region, from M∗

N0/MN = 0.70 at J0 = −800 MeV are much
lower than those at J0 = 400 MeV. Furthermore, when the
crust EOS is chosen to be Lcrust = 110 MeV, M-R relations
from M∗

N0/MN = 0.70 at J0 = −800 MeV can even come
close to satisfying the 68% credibility constraint from HESS
J1731-347.

To further study the effect of L0 on the properties of neu-
tron stars, we obtained several core EOSs with different L0

by adjusting �ρN (ρB0) and aρ to control the strength of ρN
interaction, while keeping Esym fixed at ρB = 0.11 fm−3. We
found that L0 has minimal impact on the maximum mass
and the corresponding radius, while the radius for low-mass
neutron star becomes smaller with L0 decreasing, which is op-
posite to the effect of the Lcrust. Furthermore, for M∗

N0/MN =
0.556, the M-R relation obtained by combining the core EOS
with L0 = 30 MeV and the softer crust EOS with Lcrust =
110 MeV can fully satisfy the 68% credibility M-R con-
straint from HESS J1731-347, as well as the mass-radius
constraints from PSR J0030 + 0451, PSR J0740 + 6620, and
GW170817. However, for M∗

N/MN = 0.70, the M-R relation
for L0 = 30 MeV can satisfy all these constraints only if J0

is close to 400 MeV. In addition, the tidal deformabilities at
M1.4, �1.4, from these DDQMF models can almost satisfy the
constraint, �1.4 = 190+390

−120, from the GW170817 event except
for the case of L0 = 80 MeV at M∗

N0/MN = 0.556. Therefore,
the constraint from the GW170817 event supports a larger
M∗

N0 and a smaller J0.
In the DDQMF model, the number of parameters in

density-dependent coupling constants is reduced compared
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to the DDRMF model since the effective nucleon mass is
generated from the quark level. Furthermore, the density-
dependent behaviors of the coupling constants in DDQMF
model at the high-density region also have obvious differences
from the DDRMF model, which can provide a constraint from
the nucleon internal structure. We will apply the DDQMF
model to study the finite nuclei system and introduce the
high-momentum correlation to discuss the effect of nucleon
structure on the properties of nuclei in the future.

In the inner core region of a neutron star, baryons includ-
ing strangeness degrees of freedom, such as �, �, and �

hyperons, will be present when the Fermi energies of nucleons
are larger than hyperon free masses which is also called as a

hyperonic star. In our previous work, we studied the properties
of hyperonic stars using the DDRMF model [34], and addi-
tionally, many works have taken hyperons into account in the
framework of QMF model [11,12,18,19]. So, we will apply
the DDQMF model to study the properties of hyperonic matter
and the hyperonic star in future. Furthermore, we will perform
a Bayesian analysis on the parameters of the DDQMF model
with the proper prior ranges obtained in the present work.
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