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Correlation between the symmetry energy slope and the deconfinement phase transition
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We study how the nuclear symmetry energy slope (L) can affect the hadron-quark phase transition and neutron
star properties. We show that the main physical quantities as the critical chemical potential and pressure are
strongly influenced by the symmetry energy slope. In extreme cases, the total amount of deconfined quarks can
reach up to 99% of the hybrid star mass.
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I. INTRODUCTION

From terrestrial nuclear physics to neutron star
observations, our knowledge about the behavior of
strongly interacting matter has taken a great leap forward
in the last 30 years. However, many open questions
remain.

One of them is related to the neutron stars composition, for
example, is there exotic, non-nucleonic matter in the neutron
star core? What kind? Some studies indicate that hyperons
are inevitable [1–4]. Other possibilities are the presence of
� resonances [5–7] and kaon condensate [8]. An even more
exotic scenario happens when the neutron star’s inner core
experiences a deconfinement phase transition and becomes
composed of quarks, while the outer layers remain made up
of hadronic matter. A star with a quark core surrounded by
hadronic matter is called a hybrid star [9–11]. The study of
hybrid stars’ properties is crucial, as a recent study indicates
that hybrid stars are indeed the most probable scenario for
massive neutron stars [12].

Another open question is the value of the symmetry en-
ergy slope. In the earlier 2010s, most studies pointed to a
relatively low value for L. For instance, in Refs. [13–15]
upper limits of 54.6, 61.9, and 66 MeV, respectively, were
suggested. However, in the last couple of years, the situation
has changed and new experiments have pointed to a signifi-
cantly higher upper limit. For instance, in a study about the
spectra of pions in intermediate energy collisions, an upper
limit of 117 MeV was obtained [16], while in one of the PREX
II analyses [17] an upper limit of 143 MeV was suggested.
All these conflicting results have been well summarized in a
recent paper (Ref. [18]): the CREX group points to a slope
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in the range 0 < L < 51 MeV, while PREX II results point
to 76 MeV < L < 165 MeV. Although, a revised analysis of
PREX II data, including also ground state properties of nuclei,
astrophysical observations, and heavy-ion collision indicates a
slope in the range 59 < L < 107 MeV [[19]] the verdict does
not change: there is no overlap between CREX and PREX II
analyses. This is a big caveat.

In this work, we assume that every supermassive neutron
star must have a quark core, as suggested in Ref. [12], and
study how different values of the symmetry energy slope L
affect their properties. We begin with microscopic properties.
For different values of L, we construct the equation of state
(EoS), and then pay special attention to the physical quantities
related to the phase transition, such as the point at which the
Gibbs free energy per baryon G/nB of both phases intersect
(commonly called critical chemical potential μ0 [20]), the
critical pressure (p0), the energy density gap between the two
phases, (�ε), the latent energy (�Q) [21,22], and the hadronic
number density n.

We then study how L affects the macroscopic properties of
the neutron stars, as their maximum mass, the radius of the
canonical 1.4 M� star, the minimum star mass that allows a
quark core (Mmin) and the total mass and size of the quark
core inside the hybrid star. To accomplish these tasks we
use an extended version of quantum hadrodynamics (QHD)
[23] for the hadronic phase and a thermodynamic consistent
vector MIT model for the quark phase, both in the mean-field
approximation [24].

In the case of the QHD, besides the traditional σωρ

mesons, we use two extensions: to reduce the slope, we
add the nonlinear ωρ coupling as presented in the IUFSU
model [25–27]; while to increase the slope, we add the
scalar-isovector δ meson [28–30]. The use of two different
interactions helps us understand both the phenomenology of
changes in the slope L and the influence of different fields
and coupling constants in the field theory. In the case of the
vector MIT bag model, we use symmetry group arguments
to fix the coupling constant of the vector field with different
quark flavors [24].
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II. FORMALISM

The extended version of the QHD [23], which includes
both the ωρ nonlinear coupling [25–27] and the scalar-
isovector δ meson [28–30], has the following Lagrangian
density in natural units:

LQHD = ψ̄N
[
γ μ

(
i∂μ − gωωμ − gρ

1
2 �τ · �ρμ

)
− (MN − gσ σ − gδ�τ · �δ)

]
ψN − U (σ )

+ 1
2

(
∂μσ∂μσ − m2

s σ
2
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2
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)
× (

g2
ωωμωμ

) + 1
2 m2

ρ �ρμ · �ρ μ − 1
4 Pμν · Pμν. (1)

The ψN is the Dirac field of the nucleons. The σ , ωμ, �δ, and �ρμ

are the mesonic fields. The g’s are the Yukawa coupling con-
stants that simulate the strong interaction, MN is the nucleon
mass and ms, mv , mδ , and mρ are the masses of the σ , ω, δ,
and ρ mesons, respectively. The U (σ ) is the self-interaction
term introduced in Ref. [31] to fix the compressibility

U (σ ) = κMN (gσ σ )3

3
+ λ(gσ σ )4

4
. (2)

Furthermore, leptons are added as free fermions to account
for the chemical stability. The EoS is then obtained in mean
field approximation (MFA) by calculating the components of
the energy-momentum tensor [23]. The total energy density
and the number density are given by [30,32]
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n =
∑

B

k3
fN

3π2
, (4)

where �v = �ωρg2
ωg2

ρ ; N indicates the nucleon and l
indicates leptons. The pressure is easily obtained by ther-
modynamic relations p = ∑

f μ f n f − ε, where the sum runs
over all the fermions and μ f is the corresponding chemical
potential.

The parameters used in this work are based on the L3ωρ

parametrization introduced in Ref. [33] and are presented
in Table I. The nuclear constraints at the saturation density
are also in Table I and are taken from two extensive review
articles, Refs. [34,35]. The parameters (gρ/mρ )2, (gδ/mδ )2,
and �ωρ are chosen in order to fix the symmetry energy at the
saturation point S0 = 31.7 MeV, while varying the slope L.
Their values are presented in Table II. It is worth pointing out
that fixing the symmetry energy at the saturation density is not
the only possibility. In Ref. [36] the authors fix S at k f = 1.15
fm (n ≈ 0.1 fm−3) instead.

TABLE I. Model parameters used in this study and their pre-
dictions for symmetric nuclear matter at saturation density. The
phenomenological constraints were taken from Refs. [34,35].

Parameters Constraints Our model

(gσ /ms )2 12.108 fm2 n0(fm−3) 0.148–0.170 0.156
(gω/mv )2 7.132 fm2 M∗/M 0.6–0.8 0.69
κ 0.004138 K (MeV) 220–260 256
λ −0.00390 S0(MeV) 28.6–34.4 31.7
− − B/A(MeV) 15.8–16.5 16.2

The parameters used in this work are the same as the ones
presented in Ref. [37], where the authors vary the symmetry
energy slope to study pure hadronic neutron stars and gravi-
tational wave signals. Additional discussions about the QHD
formalism, calculations, behavior of the symmetry energy and
its slope, as well as the role played by the ρ, δ mesons, and the
nonlinear couplings can be found in Ref. [37] and references
therein.

Now, the thermodynamic consistent vector MIT bag model
has the following Lagrangian density [9,24,38]:

LvMIT = {ψ̄q[γ μ(i∂μ − gqV Vμ) − mq]ψq

+ 1
2 m2

V VμV μ − B}�(ψ̄qψq), (5)

where mq is the mass of the quark q of flavor u, d , or s. Here,
we follow [24] and use (mu = md = 4 MeV, ms = 95 MeV);
ψq is the Dirac quark field, B is the constant vacuum pressure,
and �(ψ̄qψq) is the Heaviside step function to assure that the
quarks exist only confined to the bag. The quark interaction is
mediated by the massive vector channel Vμ analogous to the
ω meson in QHD [23]. Again, leptons are added to account
for β stable matter. The construction of the EoS and the
computation of the related physical quantities are analogous to
the QHD calculations, i.e., by applying the Euler-Langrange
equations in Eq. (5), and relying on the MFA we obtain the
energy eigenvalue [9,24]

Eq =
√

k2 + m2
q + gqV V0. (6)

TABLE II. Model parameters selected to set the symmetry en-
ergy at S0 = 31.7 MeV.

L (MeV) (gρ/mρ )2 (fm2) (gδ/mδ )2 (fm2) �ωρ

44 8.40 0 0.0515
60 6.16 0 0.0344
76 4.90 0 0.0171
92 4.06 0 0
100 7.23 0.92 0
108 10.41 1.85 0
116 13.48 2.76 0
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The total energy density and the number density for the
quarks are given by

ε =
∑

q

Nc

π2

∫ k f q
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2
m2

V V 2
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n =
∑

q

Nc × k3
f q

3π2
, (8)

where Nc = 3 is the number of colors. The pressure is again
obtained by thermodynamic relations p = ∑

f μ f n f − ε. The
bag B is taken as B1/4 = 158 MeV, as discussed in Ref. [9].
Two other important quantities are XV and GV defined as
[9,24]

XV = gsV

guV
, GV =

(
guV

mV

)2

. (9)

XV is related to the relative strength of the vector field with the
s quark in relation to the u and d quarks. We assume XV = 0.4,
since this is the value predicted by the symmetry group [24].
GV is related to the absolute strength of the vector field, and
we use here three different values, 0.38, 0.40, and 0.42 fm2

to guarantee that the quark hadron phase transition happens
for all values of L. It is important to notice that varying the
bag constant (B) causes a global effect on the quark EoS (the
entire EoS is shifted). Increasing the bag causes a softening
in the EoS, reducing the critical chemical potential and the
maximum mass of the related compact object. On the other
hand, reducing the bag causes a stiffening of the EoS. How-
ever, a larger reduction in the bag can make the quark matter
energetically unfavorable and prevent the formation of the
hybrid star. Now, if we change XV to 1.0 (a universal coupling)
it stiffens the EoS, but in general, it will require further modi-
fications on the values of GV , otherwise, the quark EoS will be
energetically unfavorable. Additional discussions on the role
of B, XV , and GV can be seen in Refs. [9,38]. Moreover, with
the values of B, XV , and GV used in this work, we guarantee
that the quark matter is outside the so-called stability window
[39,40]. It was shown in Ref. [41] that if the quark matter in
the core of hybrid stars were obtained with parameters that lie
inside the stability window (absolutely stable strange matter),
the entire star would be converted into a strange star in a finite
amount of time.

III. RESULTS AND DISCUSSION

A. Microscopic results

We use the so-called Maxwell construction for the decon-
finement transition. In this approach, the transition pressure is
the one where the Gibbs free energy per baryon G/nB of both
phases intersect, being the energetically preferred phase the
one with lower G/nB [20]. The Gibbs free energy per baryon
coincides with the baryon chemical potential. We call the
intersection points critical pressure (p0) and critical chemical
potential (μ0). The chemical potential at T = 0 for hadron and
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FIG. 1. Critical chemical potential (a) and pressure (b) as a func-
tion of the symmetry energy slope L, for different quark-meson
couplings: GV = 0.38, 0.40, and 0.42 fm2.

quark phases can be calculated as [22,42]

μH = εH + pH

nH
, μQ = εQ + pQ

nQ
, (10)

and the criteria for the Maxwell construction are

μ0 = μH = μQ, and p0 = pH = pQ. (11)

So far, there are no experimental results that could in-
dicate the critical chemical potential at T = 0, and our
current knowledge relies on effective models. Here, we follow
Ref. [43] that suggests that the critical chemical potential is in
the range 1050 MeV < μ0 < 1400 MeV.

In Fig. 1 we show the critical chemical potential and the
critical pressure in function of the slope L for three values
of GV . We can see that for all values of GV , both μ0 and
p0 decrease with increasing slope. Thus, for all values of GV

used, the higher critical values are obtained for the smaller
slopes. We also notice that when we assume L � 100 MeV,
both critical chemical potential and pressure become almost
independent of the value of GV . Moreover, the critical chemi-
cal potential drops below 1050 MeV, which strongly disfavors
very high values of L as the constraint from PREX II results
[17]. This can be better understood from the hybrid EoS
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FIG. 2. Hybrid EoS for different slope values of the hadron phase
and for quark vector couplings GV = 0.38 (a) and 0.42 fm2 (b) in the
top and bottom figures, respectively.

curves in Fig. 2: a larger slope implies a stiffer hadronic
EoS in the deconfinement region, so the critical pressure is
reached earlier. At lower pressures (p � 0.4 MeV fm−3), the
behavior of the EoS with the slope is reversed, and the larger
slope corresponds to a softer EoS. This occurs because of the
strength and nature of the coupling constant, as discussed in
Ref. [37]. Nevertheless, it does not affect our results, since
there is no deconfinement in this region. An interesting phys-
ical quantity is the discontinuity of the energy density, or
energy density gap, a feature that appears due to the Maxwell
construction choice: �ε = εQ − εH . For low values of L, the
values of �ε present little change, and are always in the range
25 MeV/fm3 < �ε < 70 MeV/fm3. However, as the slope
increases, so does the discontinuity of the energy density. And
here again, the results become almost independent of GV .
For extreme cases (L = 116 MeV), the value of �ε always
surpasses 200 MeV/fm3. This is illustrated in the top plot of
Fig. 3, which shows the energy difference between quark and
hadron phases as a function of the slope.

At the bottom of Fig. 3 we show the relativistic (adimen-
sional) latent energy

�Q = p0
εQ − εH

εHεQ
, (12)
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FIG. 3. Energy difference (a) and latent energy (b) of the decon-
finement transition as a function of the slope. Each curve corresponds
to a different quark meson coupling, GV = 0.38, 0.40, and 0.42 fm2.

which was proposed in Ref. [21] as an intuitive generalization
of the nonrelativistic latent heat (see Eqs. (2) and (4) of [21]).
It should be mentioned that this quantity is not unique in
determining the phase transition discontinuity, and different
quantities have been defined for this purpose in the literature
[44–46]. Still, this is an interesting quantity, as we comment
next. In our calculation, the larger values of the latent energy
are obtained for the smallest slope considered, of 44 MeV.
Furthermore, in general, the higher the value of GV , the higher
is the latent heat. This is due to the large critical pressure and
energy densities where deconfinement occurs. Afterwards,
�Q decreases until around 80 � L � 90 MeV, and a local
maximum occurs around L ≈ 100 MeV, which is the point
where there is a steep decrease in the critical pressure and
energy densities of both phases, but an increase in the energy
density discontinuity. We should expect �Q → 0 if we keep
increasing the slope, as the critical pressure drops quickly as
already shown in Fig. 1.

Another interesting quantity is the hadronic number den-
sity at the phase transition, nc. Although there is no formal
bond on this parameter, there are some reasonable statements
that we can make. First, the quark-hadron phase transition is
very unlikely to happen below 1.3 times the nuclear saturation
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TABLE III. Some physical quantities at the quark-hadron phase
transition for different values of L and GV .

GV (fm2) L (MeV) μ0 (MeV) p0 �ε �Q nc/n0

0.38 44 1211 85.0 32.0 0.0113 2.95
0.38 60 1174 67.4 27.5 0.0091 2.73
0.38 76 1112 41.5 34.6 0.0097 2.36
0.38 92 1067 24.2 70.5 0.0164 1.88
0.38 100 1012 5.8 150.2 0.0170 1.09
0.38 108 1000 2.1 191.3 0.0118 0.77
0.38 116 996 0.92 214.6 0.0074 0.60

0.40 44 1305 131.8 47.4 0.0181 3.41
0.40 60 1275 115.1 37.4 0.0140 3.26
0.40 76 1193 74.1 24.1 0.0082 2.83
0.40 92 1091 31.8 56.2 0.0148 2.06
0.40 100 1019 6.9 140.6 0.0177 1.16
0.40 108 1005 2.5 184.6 0.0128 0.81
0.40 116 1000 1.1 209.0 0.0083 0.63

0.42 44 1391 180.2 70.7 0.0276 3.79
0.42 60 1369 166.6 60.4 0.0234 3.70
0.42 76 1308 130.5 38.3 0.0143 3.40
0.42 92 1127 44.0 41.9 0.0126 2.30
0.42 100 1027 8.3 130.8 0.0182 1.25
0.42 108 1010 2.9 178.1 0.0137 0.85
0.42 116 1004 1.3 203.5 0.0092 0.66

density, n0, because, as pointed in Ref. [21], the EoS up this
value can be modeled by next-to next-to-next-to-leading order
from chiral perturbation theory (ChPT). Indeed, 1.3 n0 was
also used as a lower limit in the study of latent heat presented
in Ref. [21]. Ultimately, we can consider unrealistic a model
that predicts the quark-hadron phase transition at densities
lower than the nuclear saturation density itself. In Table III
we summarize the critical pressure and chemical potential,
the energy density discontinuity, the latent energy, and the
hadronic number density for different slopes and quark-meson
couplings. As can be seen, the constraint μ0 > 1050 MeV
suggested in Ref. [43] and the bound nc > 1.3 n0 are in accor-
dance. Moreover, for L � 108 MeV, the results become even
more extreme. We have μ0 ≈ 1000 MeV and the number den-
sity of the phase transition drops below the nuclear saturation
density. These results strongly disfavor larger values of the
slope. From the field theory point of view, our results also
strongly advocate against the inclusion of the scalar-isovector
δ meson in the standard σωρδ model of the QHD if there is
no ωρ interaction [28,29].

B. Macroscopic results

Now we turn to analyze how the change in slope mod-
ifies the mass-radius diagram for hybrid stars. For each of
the discussed EoS we solve the Tolman-Oppenheimer-Volkof
(TOV) equations [47] and obtain the mass-radius diagram.
Moreover, we use the Baym-Pethick-Sutherland (BPS) EoS
[48] for the neutron star’s outer crust and the Baym-Bethe-
Pethick (BBP) EoS [49] for the inner crust. In Fig. 4 we show
the influence of the slope for GV = 0.38 and 0.42 fm2 in the
top and bottom panels, respectively. We also discuss a couple
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FIG. 4. Mass radius diagram for hybrid stars within GV = 0.38
(a) and GV = 0.42 fm2 (b). Different curves represent different slope
values for hadron matter. The hatched areas are the constraints com-
ing from the PSR J0740+6620 [50] and the radius of the canonical
star as discussed in the text.

of observational constraints coming from the NICER x-ray
telescope. The first, and maybe the most important one, is the
PSR J0740+6620, whose mass and radius lie in the range of
M = 2.08 ± 0.07 M�, and 11.41 km < R < 13.70 km, re-
spectively [50]. The other constraint is related to the radius of
the canonical M = 1.4 M� star. Two NICER results constrain
the radius of the canonical star between 11.52 km < R1.4 <

13.85 km [51] and between 11.96 and 14.26 km [52]. Here, we
use the union set of both constraints as a more conservative
approach. Explicitly, we use 11.52 km < R1.4 < 14.26 km
as a constraint. The results and constraints are presented in
Fig. 4.

Let us begin by analyzing the effect of the slope L for a
fixed GV . We notice that the increase of L causes a decrease in
the maximum mass that can reach around 0.1M�. Moreover,
as shown in Table III, for higher values of L, the critical
chemical potential is very low. This results in the minimum
mass that presents a quark core (Mmin) being as low as 0.1 M�.
As a consequence, for higher values of L, the hybrid stars with
masses around and above the canonical 1.4 M� present very
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low values of radii. Indeed, we can see that for L � 108 MeV,
all the radii for the canonical star fall below the lower limit
of 11.52 km discussed above. The same is true for the radius
constraint of the PSR J0740+6620 [50]. Although we have a
mass in the M = 2.08 ± 0.07 M� range, the radii for L > 100
MeV are below the lower limit of 11.41 km.

In relation to GV , we can see that increasing GV increases
the maximum mass of the hybrid star. Also, since the critical
chemical potential increases with a larger GV , the minimum
mass that allows a quark core (Mmin) also increases. In relation
to the constraints, we see that we have a congruence in the
bounds. The same results that predict a phase transition below
the saturation density are the ones outside of the constraints
of both the radius of the canonical star and the radius range
of the PSR J0740+6620 [50]. They also predict a critical
chemical potential within μ0 < 1050 MeV. From the field
theory point of view, all the results that fail to fulfill the
supracited bonds, are those that employ the scalar-isovector
δ meson. Indeed, the only results that use the δ meson and
are still able to produce 11.52 km < R1.4 < 14.26 km are
those with L = 100 MeV. However, it still fails to reproduce
the radii of the PSR J0740+6620. Therefore, the neutron star
constraints also advocate against the scalar-isovector δ meson.

In a recent work (Ref. [53]), the authors suggested that
the value of the energy gap, �ε is related to the maximum
mass of a hybrid star, such that the higher the gap, the lower
the maximum mass. Indeed, they pointed out that if �ε >

180 MeV/fm3, the maximum mass of the corresponding hy-
brid stars do not meet the lower mass limit of the second object
in the GW190814 event. Our results support only partially
this discussion. Although it is true that the higher value of �ε

produces the lower maximum mass, the opposite is not true,
i.e., the lowest value of �ε does not produce the most massive
star. Moreover, even by increasing �ε by six or seven times,
the reduction in the maximum mass is only around 3–5% . A
more natural correlation seems to be between the maximum
mass and the critical chemical potential. The higher the value
of the critical chemical potential, the higher the maximum
mass. A similar result was already found in Ref. [38] with
different models and parametrizations. The role of the energy
gap seems to be therefore only secondary.

We now estimate the mass and size of the quark cores
present in the most massive hybrid star of each model pre-
sented. To accomplish that, we follow Ref. [2] and solve
the TOV equations [47] for the quark EoS from the density
corresponding to the central density at the maximum mass hy-
brid stars and stop at the density corresponding to the critical
chemical potential. The percentage amount of quarks present
in the most massive hybrid star of each model is presented in
Fig. 5. As can be seen, as we increase the slope, we also in-
crease the amount of the quark in the most massive hybrid star.
For extreme cases (L = 116 MeV), the percentual amount of
quarks can be as high as 99% of the total mass of the star
(MQ(%)), as well 96% of its radius (RQ(%)), and it is essentially
independent of GV . If we restrict ourselves to models that
satisfy all the constraints, then we have the amount of quark in
both mass and radius around 81%, for L = 92 MeV. For lower
values of L, the results strongly depend on GV , and are ulti-
mately related to the critical chemical potential. Nevertheless,

 20
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 40  60  80  100  120

M
Q

 (
%

)

L  (MeV)

GV = 0.38 fm2

GV = 0.40 fm2

GV = 0.42 fm2

FIG. 5. Percentual amount of quarks in the core of the most
massive hybrid stars. The amount of quarks can be as high as 99% of
the total mass of the star.

we always obtain the total amount of quarks corresponding at
least to 20% of the mass of the most massive hybrid star. This
fact is in agreement with the discussion presented in Ref. [12],
about the existence of quarks in the core of massive stars. All
the hybrid stars’ main results are presented in Table IV.

It is worth mentioning a completely different approach,
where a Bayesian analysis of neutron star properties and some
nuclei properties, such as binding energy, charge radii, and
neutron skin thickness, was performed, practically ruling out
models with very large slopes [54]. These results are corrobo-
rated by our analysis and disfavor extremely large quark cores
in hybrid stars. However, we have to keep in mind that the
size of the quark core is indeed model-dependent, as claimed
above and shown in [9]: while the vector MIT bag model
can produce very large cores, the same does not happen if
the vector Nambu–Jona-Lasinio model is used, a feature also
obtained in Ref. [55].

IV. CONCLUSIONS

Motivated by the conflict between the CREX group and
the PREX-II results presented in Ref. [18], in this work, we
studied how the change in the slope of the symmetry energy
at saturation density is correlated to the deconfinement phase
transition. For the hadron phase, we used a modified version of
QHD including either an ωρ interaction to reduce the slope or
a δ meson to increase it. For the quark phase, we used a ther-
modynamic consistent vector MIT bag model with different
quark-meson couplings. The main results can be summarized
as:

(i) The critical pressure (p0) and the critical chemical
potential (μ0) are strongly dependent of the slope L.
Lower values of L result in a higher values of p0 and
μ0, while higher values L produce lower values of p0

and μ0.
(ii) Lower values of GV produces lower values of p0

and μ0. However, for the higher values of the slope,
L � 100 MeV, the results are almost independent
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TABLE IV. Some of the neutron stars’ main properties.

GV (fm2) L (MeV) Mm(M�) R (km) nm/n0 Mmin (M�) R1.4 (km) MQ (M�) MQ (%) RQ (km) RQ (%) J0740+6620

0.38 44 2.08 11.34 6.30 1.67 12.58 1.07 51.4 7.35 64.7 Yes
0.38 60 2.07 11.35 6.33 1.52 12.74 1.22 58.9 7.83 68.9 Yes
0.38 76 2.06 11.35 6.35 1.28 12.90 1.47 71.3 8.58 75.5 Yes
0.38 92 2.06 11.34 6.36 1.07 12.96 1.67 81.0 9.15 80.6 Yes
0.38 100 2.02 10.82 6.65 0.49 11.70 1.91 94.5 9.80 90.5 No
0.38 108 2.02 10.51 6.86 0.23 11.11 1.97 97.5 9.92 94.3 No
0.38 116 2.01 10.35 7.11 0.09 10.83 1.99 99.0 9.95 96.1 No

0.40 44 2.12 11.50 6.10 1.92 12.58 0.76 35.8 6.33 55.0 Yes
0.40 60 2.11 11.44 6.33 1.86 12.74 0.89 42.2 6.73 58.8 Yes
0.40 76 2.09 11.44 6.35 1.62 12.99 1.17 55.9 7.66 66.9 Yes
0.40 92 2.08 11.47 6.31 1.23 13.24 1.58 75.9 8.89 77.5 Yes
0.40 100 2.04 10.82 6.64 0.55 11.87 1.91 93.6 9.78 90.3 No
0.40 108 2.03 10.64 6.60 0.27 11.23 1.99 98.0 10.01 94.0 No
0.40 116 2.03 10.51 6.59 0.10 10.95 2.01 99.0 10.07 95.8 No

0.42 44 2.16 11.64 5.89 2.05 12.58 0.47 21.7 5.28 45.3 Yes
0.42 60 2.15 11.61 5.87 2.02 12.74 0.54 25.1 5.55 47.8 Yes
0.42 76 2.13 11.70 5.86 1.91 12.99 0.73 34.2 6.30 53.8 Yes
0.42 92 2.10 11.64 6.04 1.41 13.48 1.49 70.9 8.55 73.4 Yes
0.42 100 2.05 11.03 6.37 0.62 12.04 1.90 92.6 9.77 88.5 No
0.42 108 2.04 10.70 6.59 0.24 11.34 1.99 97.5 10.00 93.4 No
0.42 116 2.04 10.56 6.58 0.11 11.00 2.01 98.5 10.07 95.3 No

of GV . Moreover, for L � 100 MeV, the critical
chemical potential drops below 1050 MeV, which is
in disagreement with the discussion pointed out in
Ref. [43]. These results disfavor higher values of the
slope, as well as advocate against the scalar-isovector
δ meson.

(iii) For low values of L, the energy density gap, �ε,
increases with GV , lying in the range 25 MeV/fm3 <

�ε < 70 MeV/fm3. However, as the slope increases,
the discontinuity of the energy density quickly grows
and becomes almost independent of GV , surpassing
200 MeV/fm3.

(iv) Similar behavior can be seen for the latent heat �Q.
For low values of L, it strongly depends on GV .
However, as the slope grows, the results are almost
independent of GV . �Q presents a local maximum at
L = 100 MeV, and then quickly drops due to the fast
decrease of the critical pressure.

(v) There is also a decrease in the number den-
sity on which the phase transition occurs, nc. For
L ≈ 100 MeV, the number density drops below 1.3
n0. As for L � 108 MeV, it drops below the sat-
uration density itself. These results disfavor both,
the large values of L, as well the use of the scalar-
isovector δ meson.

(vi) From the macroscopic point of view, we see that
an increase in the slope causes a decrease in the
maximum mass. On the other hand, an increase of

GV increases the maximum mass of the hybrid star.
Moreover, as the slope L increases, the minimum
mass that presents a quark core becomes as low as
0.1 M�. For larger values of L, both the radius of
the canonical star, and the radius related to the PSR
J0740+6620 are below the inferior limit constrained
by the NICER X-ray telescope [50–52]. This result
again disfavors the larger values of L and the use of
the δ meson.

(vii) Finally we analyze the total amount of quarks in the
most massive hybrid star predicted for each model.
For low values of L, the results strongly depend on
GV . The larger the GV , the lower the total amount
of quarks. As the slope increases, the amount of
quarks also increases, and the results become almost
independent of GV . For extreme values of L, the
total quark core mass can represent 99% of the total
mass of the hybrid star. However, assuming only
parametrizations able to reproduce the constraints,
the total mass reaches 81%.
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