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We present a comprehensive reevaluation of the f t values in superallowed nuclear β decays crucial for the
precise determination of Vud and low-energy tests of the electroweak standard model. It consists of the first, fully
data-driven analysis of the nuclear β decay form factor, that utilizes isospin relations to connect the nuclear
charged weak distribution to the measurable charge distributions. This prescription supersedes previous shell-
model estimations, and allows for a rigorous quantification of theory uncertainties in f which is absent in the
existing literature. Our new evaluation shows an overall downward shift of the central values of f at the level of
0.01%.
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I. INTRODUCTION

The top-row Cabibbo-Kobayashi-Maskawa (CKM) matrix
element Vud is a fundamental parameter in the standard model
(SM) that governs the strength of charged weak interactions
involving up and down quarks. Its precise determination con-
stitutes an important component of the low-energy tests of
the SM and the search of physics beyond the standard model
(BSM) at the precision frontier. Currently, beta transitions be-
tween isospin T = 1, and spin-parity JP = 0+ nuclear states
(the so-called superallowed nuclear β decays) and free neu-
tron decay are the two competing candidates for the most
precise determination of Vud . The advantage of the former
is the existence of many nuclear transitions that had been
measured over decades and averaged over (see, e.g., Ref. [1]
and references therein), but the existence of nuclear structure
effects complicates the theory analysis. In contrast, neutron
decay is limited by the experimental precision but is free from
nuclear uncertainties and is theoretically cleaner.

The recent improved measurement of the neutron life-
time τn by UCNτ [2] and the axial coupling constant gA by
PERKEO-III [3] have made the precision of Vud from neutron
β decay almost comparable to that from superallowed nuclear
β decays, but a mild tension starts to develop between the two
values:1

|Vud |0+ = 0.97361(31) [1], |Vud |precise
n = 0.97404(42) [4].

(1)

1We have rescaled the result in Ref. [1] by the new averaged
nucleus-independent radiative corrections in Ref. [4]; there are other
choices of average, e.g., Ref. [5], and there is an ongoing effort to
reach a community consensus on this input [6].

Notice, however, that there are some consistency issues on
experimental inputs to the neutron decay, for example the
well-known beam-bottle discrepancy for τn (see, e.g., Ref. [7]
and references therein), and the discrepancy between the gA

extracted from the β asymmetry A [3] and from the electron-
neutrino correlation a [8,9]. Adopting the latest Particle Data
Group (PDG) averaged values of τn and gA [10] results in
|Vud |n with a largely inflated experimental uncertainty:

|Vud |PDG-av
n = 0.974 33(87), (2)

which overshadows the tension above.
An inconsistency also occurs in the determination of

Vus: From semileptonic kaon decays one obtains |Vus|K�3 =
0.223 08(55) [11,12] (with Nf = 2 + 1 + 1 lattice determi-
nation of the K0 → π− transition matrix element [13–15]),
whereas from leptonic kaon decays one obtains |Vus|Kμ2 =
0.2252(5) [10], which is significantly larger. These different
values of Vud and Vus, combining with |Vub|K�3 = 3.82(20) ×
10−3 [10], give very different results in the test of the first-row
CKM unitarity |Vud |2 + |Vus|2 + |Vub|2 = 1. Just for an illus-
tration, combining |Vud |0+ and |Vus|K�3 gives a 3.6σ deficit of
the first-row CKM unitarity, but changing |Vud |0+ to |Vud |precise

n

the deficit reduces to 1.7σ . A recent global analysis that took
into account all these different determinations reported a 2.8σ

unitarity deficit [5]. Given its profound impact on the SM
precision tests, it is important to understand the origin of
discrepancies between different experimental determinations
of the first-row CKM matrix elements.

It is a commonplace for low-energy precision tests that
the main limitation in precision comes from radiative cor-
rections that are sensitive to the effects of strong interaction
which is described by quantum chromodynamics (QCD). At
low energies QCD is nonperturbative, which complicates the
uncertainty estimation of theory calculations. In recent years,
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effort has been put in developing methods that would allow
one to compute such corrections to β decay with a controlled
systematics. The dispersion relation (DR) [16–18], effective
field theory (EFT) [19,20] and lattice QCD [21–23] analyses
have ensured a high-precision determination of the single-
nucleon radiative correction. The SM theory uncertainties in
the free neutron decay are believed to be firmly under control
at the precision level of 10−4.

The theory for superallowed nuclear β decays is more in-
volved due to the presence of specifically nuclear corrections.
This fact is reflected in the master formula for the extraction
of Vud [24],2

|Vud |20+ = π3 ln 2

G2
F m5

eFt
(
1 + �V

R

) . (3)

Above, �V
R is the free-nucleon radiative correction which is

also present in neutron decay. All nuclear structure effects are
absorbed into the so-called Ft value [25],

Ft = f t (1 + δ′
R)(1 + δNS − δC), (4)

where t , the partial half-life, can be obtained from the ex-
perimental branching ratio after accounting for the small
correction from the electron capture fraction [26,27]. All re-
maining quantities in the expression above require nuclear
theory inputs at either tree or loop level. First, δ′

R is known as
the nucleus-dependent outer radiative correction, which is cal-
culable order by order with quantum electrodynamics (QED)
assuming the nucleus as a point charge [28–30]. The remain-
ing radiative corrections that depend on the nuclear structure
are contained in δNS, which has previously been studied in the
nuclear shell model [25,31–34]. Furthermore, δC represents
the isospin-symmetry-breaking (ISB) correction to the Fermi
matrix element. This correction has been an object of study by
the nuclear theory and experimental community over the past
six decades [34–47]. Both δNS and δC have recently been under
renewed scrutiny [17,48–51], and new methods were devised
to study them either using nuclear ab initio methods [52,53]
or by relating them to experimental measurements [54], which
we will not discuss here.

The focus of this paper is the statistical rate function f in
superallowed β decays. It represents the phase space integral
over the spectrum of the positron originating from a β decay
process φi → φ f e+νe. At the leading order it is fixed by the
atomic mass splitting (i.e., the QEC value). However, a number
of effects that lead to sizable corrections to the spectrum
require atomic and nuclear theory inputs, and have to be
included in f . Among these are the distortion of the outgoing
positron wave function in the Coulomb field of the daugh-
ter nucleus, the nuclear form factors, screening effects from
atomic electrons, recoil corrections, etc. In principle, each of
these inputs bears its own theory uncertainty which must be
accounted for in the total error budget. Unfortunately, in most
existing literature, including the series of reviews by Hardy
and Towner [1,26,55,56], only the experimental uncertainty

2Throughout this paper, we take h̄ = c = 1, but keep me explicit
unless mentioned otherwise.

of QEC is included in the evaluation of f . Here we address the
validity of this assumption, given the precision goal of 10−4

for the extraction of Vud .
A quantity of fundamental importance in the determination

of the statistical rate function is the charged weak form factor
f+(q2), defined through the (relativistic) nuclear matrix ele-
ment of the vector charged current:3

QFT〈φ f (p f )|[J†μ
W (0)

]
V |φi(pi )〉QFT

= f+(q2)(pi + p f )μ + f−(q2)(pi − p f )μ, (5)

with q2 = (pi − p f )2. In nuclear physics it is common to use
the Breit frame where q only has the spatial component. The
contribution of f− to the decay rate is suppressed simultane-
ously by ISB and kinematics, so only f+ is relevant. After
scaling out its �q 2 = 0 value, which is just the Fermi matrix
element MF (=√

2 in the isospin limit), one can perform a
Fourier transform4

f+(q2) = MF

∫
d3x e−i �q·�xρcw(r), (6)

which defines the nuclear charged weak distribution ρcw(r);
it is essentially the distribution of “active” protons eligible
to transition weakly into a neutron in a nucleus. Obviously,
ρcw(r) is a basic property of the nucleus, just like the nuclear
charge distribution ρch(r). Yet, in the literature they are treated
with very different levels of rigor: ρch(r) was deduced from
experimental data where uncertainties are (in principle) quan-
tifiable, whereas ρcw(r) is evaluated using simplified nuclear
models. This may introduce an uncontrolled systematic un-
certainty and neglects the fact that the two distributions are
correlated.

The purpose of this work is a careful reevaluation of f with
a more rigorous, data-driven error analysis. In particular, we
adopt the strategy pioneered in Ref. [57] that connects ρcw(r)
to the charge distributions of the members of the superallowed
isotriplet using model-independent isospin relations. This pre-
scription transforms the nonquantifiable model uncertainty in
the usual approach to ρcw(r) into uncertainty estimates that
are derived from experimental ones under the only assumption
of an approximate isospin symmetry. Furthermore, the new
approach automatically accounts for the correlation between
the Fermi function and the decay form factor, and treats their
uncertainties on the same footing. We also analyze possible
uncertainties from secondary effects, such as the screening
corrections by the atomic electrons. A necessary condition to
apply the new isospin-based prescription is that at least two
out of three nuclear charge radii in a nuclear isotriplet must
be experimentally known, which is currently satisfied by 15
measured superallowed transitions. We report the newly cal-
culated f for these transitions with a more robust uncertainty
estimate. Our result lays a foundation for the future, more
rigorous extraction of Vud from superallowed β decays.

3Here, the quantum field theory (QFT) plane wave states are nor-
malized as QFT〈φ(p′)|φ(p)〉QFT = (2π )32Epδ

(3)( �p − �p′).
4All distributions in this paper are normalized as

∫∞
0 4πr2

ρ(r)dr = 1.
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This work is organized as follows. In Sec. II we intro-
duce the statistical rate function specifying various correction
terms. A particular emphasis is put on the shape factor that
depends on the charged weak distribution. In Sec. III we de-
scribe the isospin relations that connect different electroweak
distribution functions. Section IV is the central part of this
work, where we describe in full detail our procedure of se-
lecting the nuclear charge distribution data that we use for the
data-driven analysis. In Sec. V we discuss our treatment of
the secondary nuclear/atomic structure effects that enter f .
We present our final results in Sec. VI and discuss their influ-
ence and prospects. Some useful formulas on the solutions of
the Dirac equation, the shape factor, and the nuclear charge
distributions can be found in Appendixes A–D.

II. STATISTICAL RATE FUNCTION
AND THE SHAPE FACTOR

We study the superallowed β+ decay, φi → φ f e+νe, where
we denote the positron energy and momentum as as E ≡ Ee

and �p ≡ �pe, with p = | �p|. The positron end-point energy of
the decay is given by E full

0 ≡ (M2
i − M2

f + m2
e )/(2Mi ), but

upon neglecting recoil corrections it can be approximated
as E0 ≡ Mi − M f . Before applying various corrections, the
uncorrected differential decay rate is proportional to pE (E0 −
E )2. The statistical rate function f is defined as the integrated
decay rate in atomic units (h̄ = c = me = 1).

Reference [58] provided an in-depth survey of 12 different
types of atomic/nuclear corrections that should be applied to
the formula above for a generic allowed β decay. For superal-
lowed decays of 0+ nuclei, the number of relevant corrections
is reduced. Therefore, following Refs. [26,55], we express the
statistical rate function as

f = m−5
e

∫ E0

me

pE (E0 − E )2F (E )C(E )Q(E )R(E )r(E )dE ,

(7)

where we have arranged the correction factors in decreasing
degrees of importance: (1) the Fermi function F (E ), (2) the
shape factor C(E ), (3) the atomic shadowing correction Q(E ),
(4) the kinematic recoil correction R(E ), and (5) the atomic
overlap correction r(E ). All five corrections depend on the
nucleus, which is usually denoted by carrying the daughter
nucleus charge Z as a second argument, but we suppress this
dependence for compactness. In this work we classify the
former two corrections as primary, as their sizes are the largest
and, more importantly, they are sensitive to the details of nu-
clear charge distributions. These corrections will be evaluated
consistently using the most recent nuclear distribution data.
The latter three corrections, on the other hand, are classified
as secondary as their sizes are smaller and are insensitive to
the shape of the nuclear charge distribution. We will not treat
these corrections differently than in the literature (except for a
more careful account for theory uncertainties).

We start from the largest correction, the Fermi function
F (E ) that accounts for the Coulomb interaction between the
outgoing positron and the daughter nucleus [59]. Historically,
it was first derived by solving the Dirac equation of the
charged lepton under the Coulomb potential of a pointlike
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FIG. 1. A plot of the Fermi function F (E ) with respect to the
magnitude of the positron momentum p (in units of me) for 22Mg. The
error band due to uncertainties from the nuclear charged distribution
parameters is too small to be visible.

nucleus, for which an analytic solution exists. This solution
diverges at r = 0 where the charge density is infinite, so it
was instead evaluated at an arbitrarily chosen nuclear radius R
[60]. Corrections due to the finite nuclear charge density could
then be added on top of it [61,62]. Here we do not adopt this
two-step approach, but solve the full Dirac equation numeri-
cally with a given nuclear charge distribution. The numerical
solution is finite at r = 0, from which we can define the Fermi
function as

F (E ) = f 2
+1(0) + g2

−1(0)

2p2
= α2

+1 + α2
−1

2p2
, (8)

where the coefficients α±k (k = 1 in this case) come from
the solution of the radial Dirac equation, detailed in Ap-
pendixes A and B. Figure 1 shows the typical shape of the
Fermi function for β+ decay: since the Coulomb force is
repulsive for a positron, the probability of its existence at
r = 0 with low energy is suppressed.

The second largest correction is the shape factor C(E ),
which incorporates the influence of the β decay form factor
in Eq. (5) [or equivalently the charged weak distribution in
Eq. (6)]. A closed expression was obtained by Behrens and
Bühring [63]:

C(E ) =
∑

k

λk

{
M2

0 (k) + m2
0(k) − 2μkγk

kE
M0(k)m0(k)

}
,

(9)

where k = +1,+2, . . . . The involved Coulomb functions are

λk = α2
−k + α2

+k

α2
−1 + α2

+1

, μk = α2
−k − α2

+k

α2
−k + α2

+k

kE

γk
, (10)

where γk =
√

k2 − α2Z2
f , with Z f the atomic number of

the daughter nucleus. The functions that depend on ρcw(r)
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are

M0(k) =
√

k

(2k − 1)!!

∫ ∞

0
4πr2dr ρcw(r)(pr)k−1

×
[

Hk (r) jk−1(Eνr) − r

R
Dk (r) jk (Eνr)

]

m0(k) =
√

k

(2k − 1)!!

∫ ∞

0
4πr2dr ρcw(r)(pr)k−1

×
[

hk (r) jk−1(Eνr) − r

R
dk (r) jk (Eνr)

]
(11)

where Eν ≈ E0 − E is the neutrino energy, and the functions
Hk , hk , Dk , and dk are defined in Eq. (A5). Notice that the
overall Fermi matrix element has been factored out from the
definitions above. The derivation of this master formula can
be found in Appendix C. One can also check that it reduces
to the simple expression in Ref. [57] upon switching off the
electromagnetic interaction.

The series in Eq. (9) converges very fast. In fact, explicit
calculation shows that the k = 2 correction to f is smaller
than 0.0003% for all measured transitions (i.e., up to A = 74),
therefore it is sufficient retain only the k = 1 term, which
greatly simplifies the analysis.

III. ISOSPIN FORMALISM

In the survey by Hardy and Towner [26], the weak form
factor was evaluated in the impulse approximation, where
nucleus is treated as a collection of noninteracting nucleons.
In this formalism, the nuclear matrix element of the weak
transition operator Ô reads

〈φ f |Ô|φi〉 =
∑
αβ

〈α|Ô|β〉〈φ f |a†
αaβ |φi〉, (12)

where {α, β} are single-nucleon states, {a†
α, aβ} are their cor-

responding creation and annihilation operator, 〈α|Ô|β〉 is the
single-nucleon matrix element, and 〈φ f |a†

αaβ |φi〉 the one-
body density matrix element evaluated with shell model. In
this formalism the Fermi function and the shape factor are
completely decoupled, and the theory error from the shell
model calculation is not quantifiable.

An alternative approach was adopted by Wilkinson in
Ref. [64]. It consists of first identifying ρcw with ρch at zeroth
order and adding a correction that is assumed to be small,

ρcw(r) = ρch(r) + δρ(r), (13)

with the latter estimated in the nuclear shell model. Refrence
[58] interpreted δρ(r) as a consequence of ISB (Sec. F) and
assumed it to be small. However, we will show that the size of
δρ(r) is enhanced and is comparable to ρch(r), hence it cannot
be taken as a small correction.

In this work we perform a consistent treatment of F (E )
and C(E ) using the isospin formalism, coined in the earlier
days the conserved vector current (CVC) hypothesis [65–67].
It arises from the expressions of the vector charged weak and
electromagnetic current:(

J†μ
W

)
V = d̄γ μu,

Jμ
em = 1

6 (ūγ μu + d̄γ μd ) + 1
2 (ūγ μu − d̄γ μd ), (14)

where the former is purely isovector, while the latter has
both isoscalar and isovector components. It is therefore the
presence of the isoscalar electromagnetic current that gives
rise to a nonzero δρ(r), even in absence of ISB. To connect
the nuclear matrix elements of the two currents, we construct
linear combinations which subtract out the matrix element
of the isoscalar current. To that end, we apply the Wigner-
Eckart theorem in the isospin space to the members of the 0+
isotriplet Tf = Ti = 1,

〈Tf , Tz, f |OT
Tz
|Ti, Tz,i〉

= (−1)Tf −Tz, f

(
Tf T Ti

−Tz, f Tz Tz,i

)
〈Tf ||OT ||Ti〉, (15)

where 〈Tf ||OT ||Ti〉 is a reduced matrix element. Expressing
now the time component of the electroweak currents as tensors
in the isospin space,

J0
em = O0

0 − 1

2
O1

0,
(
J†0

W

)
V

= − 1√
2

O1
1, (16)

we obtain the electromagnetic and charged weak form factors
as

ZTz F
0

ch,Tz
= 〈1, Tz|J0

em|1, Tz〉

= − Tz

2
√

6
〈1||O1||1〉 + 1√

3
〈1||O0||1〉,

M0
F F 0

cw = 〈1, Tz f |
(
J†0

W

)
V |1, Tzi〉 = 1

2
√

3
〈1||O1||1〉, (17)

with M0
F = √

2, and ZTz is the atomic number of the nucleus
within isospin quantum numbers (1, Tz ).5 Fourier transform-
ing the form factors into the coordinate space gives

ρcw(r) = ρch,1(r) + Z0[ρch,0(r) − ρch,1(r)]

= ρch,1(r) + Z−1

2
[ρch,−1(r) − ρch,1(r)]. (18)

This means, taking ρch,1 as a reference distribution (since the
neutron-rich nucleus is always the most stable), one has δρ =
Z0(ρch,0 − ρch,1) = Z−1(ρch,−1 − ρch,1)/2.

In Fig. 2 we show the plot of two ρch along with ρcw in the
A = 22 isotriplet, the later obtained from the isospin relation
(18). A few features are observed:

(i) ρcw differs significantly from all ρch, and δρ cannot
be taken as a small perturbation.

(ii) Unlike the ordinary charge distributions that fall off
monotonically with increasing r, ρcw is peaked at a
larger value of r. This can be qualitatively understood
in a shell-model picture: While a photon couples
equally to all protons inside the nucleus, a W boson
can only couple to a proton in the outermost shell
because the corresponding neutron state in an inner
shell is filled.

5In this paper we adopt the nuclear physics’s convention of isospin,
i.e., Tz(p) = −1/2.

045501-4



DATA-DRIVEN REEVALUATION OF f t VALUES IN … PHYSICAL REVIEW C 109, 045501 (2024)

FIG. 2. Plot of the nuclear charge distribution ρch(r) in atomic
units (h̄ = c = me = 1) for 22Mg (blue) and 22Ne (red), and the cor-
responding charged weak distribution ρcw(r) (green). The selection
of nuclear charge distribution data is explained in Sec. IV.

(iii) The error band of ρcw deduced from the isospin rela-
tion is much larger than that of the individual ρch due
to the enhancement of the Z factor in δρ.

In short, the isospin relation (18) allows us to evaluate
F (E ) and C(E ) simultaneously with reduced model depen-
dence and a fully correlated error analysis.

Finally, isospin symmetry also relates the three charge dis-
tributions within an isotriplet:

2Z0ρch,0(r) = Z1ρch,1(r) + Z−1ρch,−1(r). (19)

Therefore, if the charge distribution of a particular daughter
nucleus is unknown, one can still obtain it if the other two
charge distributions within the isotriplet are. For example, the
unknown charge distribution of 18Fe(ex) can be deduced from
the data of 18Ne and 18O using the formula above.

IV. SELECTION OF NUCLEAR CHARGE
DISTRIBUTION DATA

A comprehensive data-driven analysis of f using the
isospin formalism requires a careful selection of nuclear
charge distribution data. The most important distribution pa-
rameter is the root-mean-square (RMS) charge radius,

rRMS ≡ 〈
r2

ch

〉1/2 =
[∫ ∞

0
4πr2 r2ρch(r)dr

]1/2

. (20)

For stable nuclei it can be extracted from elastic electron
scattering or from spectra of muonic atoms. For unstable ones
it can be deduced from the field shift relative to a stable
reference nucleus. Many compilations of nuclear charge radii
are available, including ones by Fricke, Heilig, and Schopper
[74], Angeli and Marinova [68], and Li et al. [69]. While the
data analysis in Ref. [74] is more transparent, Refs. [68,69]
cover more nuclei and will be adopted in this paper, along-
side several new measurements [70–73]. We summarize the
available data of RMS nuclear radii relevant to superallowed
transitions in Table I.

The full functional form of the nuclear charge distribution
beyond the RMS charge radius can only be extracted from

TABLE I. Available data on nuclear RMS charge radii for isotriplets in measured superallowed decays. Superscripts denote the source of
data.

A 〈r2
ch,−1〉1/2 (fm) 〈r2

ch,0〉1/2 (fm) 〈r2
ch,1〉1/2 (fm)

10 10
6 C 10

5 B(ex) 10
4 Be: 2.3550(170)a

14 14
8 O 14

7 N(ex) 14
6 C: 2.5025(87)a

18 18
10Ne: 2.9714(76)a 18

9 F(ex) 18
8 O: 2.7726(56)a

22 22
12Mg: 3.0691(89)b 22

11Na(ex) 22
10Ne: 2.9525(40)a

26 26
14Si 26m

13 Al: 3.130(15)f 26
12Mg: 3.0337(18)a

30 30
16S 30

15P(ex) 30
14Si: 3.1336(40)a

34 34
18Ar: 3.3654(40)a 34

17Cl 34
16S: 3.2847(21)a

38 38
20Ca: 3.467(1)c 38m

19 K: 3.437(4)d 38
18Ar: 3.4028(19)a

42 42
22Ti 42

21Sc: 3.5702(238)a 42
20Ca: 3.5081(21)a

46 46
24Cr 46

23V 46
22Ti: 3.6070(22)a

50 50
26Fe 50

25Mn: 3.7120(196)a 50
24Cr: 3.6588(65)a

54 54
28Ni: 3.738(4)e 54

27Co 54
26Fe: 3.6933(19)a

62 62
32Ge 62

31Ga 62
30Zn: 3.9031(69)b

66 66
34Se 66

33As 66
32Ge

70 70
36Kr 70

35Br 70
34Se

74 74
38Sr 74

37Rb: 4.1935(172)b 74
36Kr: 4.1870(41)a

aRef. [68].
bRef. [69].
cRef. [70].
dRef. [71].
eRef. [72].
fRef. [73].
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electron scattering off stable nuclei, where the available data is
quite limited. The most recent compilation by de Vries et al.,
which will be our main source of reference, dates back to
1987 [75]. In Appendix D, we summarize the most commonly
used parametrizations in that compilation: The two-parameter
Fermi (2pF), three-parameter Fermi (3pF), three-parameter
Gaussian (3pG), and harmonic oscillator (HO). For each
distribution, we define the “primary” distribution parameter
which is just 〈r2

ch〉1/2, and one or two independent, “sec-
ondary” distribution parameters (a for 2pF, a and w for 3pF
and 3pG, αHO for HO). The primary parameter is always
taken from Table I, whereas the secondary parameters are
taken from the compilation by de Vries et al.. The analytic
expressions of 〈r2

ch〉 given in Appendix D then allow us to
fix the remaining, nonindependent parameters (c for 2pF, 3pF,
and 3pG, b for HO).

Given the limited information, we must develop a selection
criteria in order to make full use of the data in Ref. [75]
to determine all the (independent) secondary distribution
parameters. Inspired by Ref. [26], we adopt the following
prescription:

(i) If the data for a desired nucleus are available in
Ref. [75], we use the secondary parameter(s) listed
there.

(ii) If the data of a particular nucleus are not available,
we take the secondary parameter(s) from the nearest
isotope.

(iii) If no data of any isotope exist, we take the secondary
parameter(s) from an available nucleus with the clos-
est mass number A.

For some nuclei there are more than one set of distribution
parameters given in Ref. [75]. In that case we need to choose
the “best” set of data, which we evaluate according to the
following criterion. First, we compare the quoted central value
of rRMS for an available nucleus in de Vries’s compilation (not
necessarily one that participates in a superallowed decay) with
those in Angeli’s review [68]. The latter typically has a smaller
uncertainty. We then use |rdeVries − rAngeli| as a measure of the
accuracy of de Vries’s fitting. At the same time, we use the
quoted uncertainty of rRMS in de Vries’s compilation, δrdeVries,
as a measure of its precision. Then, we may select a set of data
which has the best overall accuracy and precision by requiring

� ≡ [(rdeVries − rAngeli )
2 + (δrdeVries)2] = min. (21)

Finally, we are only interested in those nuclear isotriplets
where at least two charge radii are measured, such that the
isospin formalism can be applied. This includes 9 nuclear
isotriplets and covers 15 superallowed transitions. In what
follows we summarize, for all such nuclei, the charge distribu-
tion parameters that we chose for the evaluation of the Fermi
function and the shape function, and explain the reasoning of
our choice.

A. A = 18

(i) For 18Ne, we take 〈r2
ch〉1/2 = 2.9714(76) fm [68]. The

nearest isotope of which charge distribution data exists
in Ref. [75] is 20Ne, with three parametrizations: 2pF

(1971) [76], 2pF (1981) [77], and 3pF (1985) [78].
We adopt the secondary parameters from 3pF (1985):
a = 0.698(5) fm and w = −0.168(8), which return
the smallest �.

(ii) For 18O, we take 〈r2
ch〉1/2 = 2.7726(56) fm [68]. The

charge distribution data exists in Ref. [75], from which
we take the secondary parameter: HO (1970), αHO =
1.513 [79].

B. A = 22

(i) For 22Mg, we take 〈r2
ch〉1/2 = 3.0691(89) fm [69]. The

nearest isotope for which charge distribution data exist
in Ref. [75] is 24Mg, with three parametrizations: 3pF
(1974) [80], 3pF (1974v2) [81], and 2pF (1976) [82].
We adopt the secondary parameters from 3pF (1974):
a = 0.607(9) fm and w = −0.163(30), which return
the smallest �.

(ii) For 22Ne, we take 〈r2
ch〉1/2 = 2.9525(40) fm [68]. The

charge distribution data exist in Ref. [75], from which
we take the secondary parameter: 2pF (1971), a =
0.549(4) fm [76].

C. A = 26

(i) For 26mAl, we take 〈r2
ch〉1/2 = 3.130(15) fm [73]. The

nearest isotope for which charge distribution data exist
in Ref. [75] is 27Al, with two parametrizations: 2pF
(1967) [83] and 2pF (1973) [84]. We adopt the sec-
ondary parameters from 2pF (1973): a = 0.569 fm,
which returns the smallest �.

(ii) For 26Mg, we take 〈r2
ch〉1/2 = 3.0337(18) fm [68]. The

charge distribution data exist in Ref. [75], from which
we take the secondary parameter: 2pF (1976), a =
0.523(32) fm [82].

D. A = 34

(i) For 34Ar, we take 〈r2
ch〉1/2 = 3.3654(40) fm [68].

The nearest isotope for which charge distribution
data exists in Ref. [75] is 36Ar, from which we
take the secondary parameter: 2pF (1976), a =
0.507(15) fm [85].

(ii) For 34S, we take 〈r2
ch〉1/2 = 3.2847(21) fm [68]. The

nearest isotope for which charge distribution data exist
in Ref. [75] is 32S, from which we take the secondary
parameters: 3pG (1974), a = 2.191(10) fm and w =
0.160(12) [86].

E. A = 38

(i) For 38Ca, we take 〈r2
ch〉1/2 = 3.467(1) fm [70]. The

nearest isotope for which charge distribution data
exist in Ref. [75] is 40Ca, from which we take the
secondary parameters: 3pF (1973), a = 0.586(5) fm
and w = −0.161(23) [87].

(ii) For 38mK, its RMS charge radius is experimentally
known, 〈r2

ch〉1/2 = 3.437(4) fm [71], but is the least
precise among all three in the isotriplet. So we ob-
tain instead the radius and charge distributions of
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this nucleus using the isospin relation (19): 〈r2
ch〉1/2 =

3.4367(10) fm.
(iii) For 38Ar, we take 〈r2

ch〉1/2 = 3.4028(19) fm [68]. The
nearest isotope for which charge distribution data ex-
ist in Ref. [75] is 36Ar, which we mentioned above.

We emphasize that this nuclear isotriplet plays a special
role as it is the only isotriplet where all three nuclear charge
radii are measured. This allows us to test the validity of the
CVC assumption we used in deducing ρcw. As pointed out in
Ref. [54], a nonzero value of the quantity

�M (1)
B ≡ 1

2 (Z1〈rch,1〉2 + Z−1〈rch,−1〉2) − Z0〈rch,0〉2 (22)

measures the nuclear isospin mixing effect not probed by the
nuclear mass splitting. Using Table I, we obtain �M (1)

B =
−0.03(54) fm2, which is consistent with zero. This shows that
the current experimental precision of radii observables is not
yet enough to resolve the ISB effect; this also validates our
strategy of using CVC with experimental data.

F. A = 42

(i) For 42Sc, we take 〈r2
ch〉1/2 = 3.5702(238) fm [68]. No

data of charge distributions on Sc isotopes exist in
Ref. [75], so we pick the available nucleus of nearest
mass number, 40Ca, which we mentioned above.

(ii) For 42Ca, we take 〈r2
ch〉1/2 = 3.5081(21) fm [68]. The

nearest isotope for which charge distribution data exist
in Ref. [75] is 40Ca, which was already mentioned
before.

G. A = 50

(i) For 50Mn, we take 〈r2
ch〉1/2 = 3.7120(196) fm [68].

The nearest isotope for which charge distribution data
exist in Ref. [75] is 55Mn, from which we take the
secondary parameter: 2pF (1969), a = 0.567 fm [88].

(ii) For 50Cr, we take 〈r2
ch〉1/2 = 3.6588(65) fm [68].

The charge distribution data exist in Ref. [75],
with two parametrizations: 2pF (1976) [89] and 2pF
(1978) [90]. We adopt the secondary parameter from
2pF (1976): a = 0.520(13) fm, which returns the
smallest �.

H. A = 54

(i) For 54Ni, we take 〈r2
ch〉1/2 = 3.738(4) fm [72]. The

nearest isotope for which charge distribution data exist
in Ref. [75] is 58Ni, from which we take the sec-
ondary parameters: 3pF (1970), a = 0.5169 fm and
w = −0.1308 [91].

(ii) For 54Fe, we take 〈r2
ch〉1/2 = 3.6933(19) fm [68]. The

charge distribution data exist in Ref. [75], with three
parametrizations: 3pG (1976) [92], 2pF (1976) [89],
and 2pF (1978) [90]. We adopt the secondary pa-
rameters from 3pG (1976): a = 2.270(12) fm and
w = 0.403(15), which return the smallest �.

I. A = 74

(i) For 74Rb, we take 〈r2
ch〉1/2 = 4.1935(172) fm [69]. No

data of charge distributions on Rb isotopes exist in
Ref. [75], so we pick the available nucleus of nearest
mass number, 72Ge, from which we take the secondary
parameter: 2pF (1975), a = 0.573(7) fm [93].

(ii) For 74Kr, we take 〈r2
ch〉1/2 = 4.1870(41) fm [68]. No

data of charge distributions on Kr isotopes exist in
Ref. [75], so we pick the available nucleus of near-
est mass number, 72Ge, which was already mentioned
before.

With the information above, one can now evaluate F (E )
and C(E ) simultaneously using Eqs. (8) and (9) with a fully
correlated error analysis.

V. SECONDARY CORRECTIONS

This section outlines the procedure we adopt to compute
the remaining, “secondary” corrections to f in Eq. (7).

A. Screening correction

The presence of atomic electrons that reside around the
atomic radius rA ≈ 1 Å alters the nuclear potential felt by
the outgoing positron; namely, at very large r the positron
does not feel the pointlike Coulomb potential V (r) = |Z|α/r
(where α is the fine-structure constant), but instead feels a
screened version. To estimate this correction, we use the
simple formula by Rose [95] derived from the Wentzel-
Kramers-Brillouin (WKB) approximation:

Q(E ) = p̃Ẽ

pE

F (Ẽ )

F (E )
, (23)

with Ẽ = E − V0, p̃ =
√

Ẽ2 − m2
e , V0 = α2Z4/3

i N(Zi ), where
Zi is the atomic number of the parent nucleus, and the function
N(Zi ) can be computed approximately using Hartree-Fock
wave functions; here we obtain its functional form by inter-
polating the discrete points in Ref. [94], which we reproduce
in Table II for the convenience of the readers.

The size of the screening correction is of the order 10−3,
but the simplified formula above does not permit a rigor-
ous quantification of its uncertainty. Nevertheless, one could
gain some insights by comparing the outcomes of different
models. Reference [58] compared the simple Rose formula
to the solution of a more sophisticated potential by Salvat
et al. [96] (which they adopted); they found that the two are
practically indistinguishable except at very small E ; see Fig. 5
of their paper. For β+ decay, the small-E contribution to f is
suppressed not only by the kinematic factor pE but also by
the Fermi function; see Fig. 1. Therefore, it is reasonable to
believe that the simple Rose formula is sufficient to meet our
precision goal. Nevertheless, we will assign a 10% uncertainty
to the total screening correction to f to stay on the safe side.

B. Kinematic recoil correction

The kinematic recoil correction factor R(E ) in Eq. (7) takes
into account two effects: (1) the difference between E full

0 and
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TABLE II. Hartree-Fock calculation of N(Zi ) from Ref. [94].

Zi N(Zi ) Zi N(Zi ) Zi N(Zi ) Zi N(Zi ) Zi N(Zi ) Zi N(Zi )

1 1.000 14 1.481 25 1.513 39 1.553 60 1.572 80 1.599

7 1.399 15 1.484 27 1.518 45 1.561 64 1.577 86 1.600

8 1.420 16 1.488 30 1.540 49 1.566 66 1.579 92 1.601

9 1.444 17 1.494 32 1.556 52 1.567 68 1.586 94 1.603

10 1.471 18 1.496 35 1.550 53 1.568 70 1.590

11 1.476 20 1.495 36 1.551 54 1.568 74 1.593

12 1.474 23 1.504 38 1.552 55 1.567 76 1.595

E0 in the upper limit of the E integration, and (2) the 1/M-
suppressed terms in the tree-level squared amplitude, with
M the average nuclear mass. One may derive its expression
starting from the exact, relativistic phase space formula for the
decay of spinless particles; see, e.g., Appendix A in Ref. [52].
Retaining terms up to O(1/M ) gives

R(E ) ≈ 1 + 2E3 − 2E0E2 + E2
0 E − m2

eE

E (E − E0)M
. (24)

Reference [26] adopted a simpler, E -independent form, which
is equivalent to the expression above to O(1/M ) after
integrating over E :

RHT(E0) ≈ 1 − 3E0

2M
. (25)

The size of this correction is ∼10−4, so there is no need to
assign an uncertainty to it.

It is worth noticing that, depending on whether E0 or E full
0

is used in the “zeroth-order” expression of f , the expression
of R(E ) will appear differently, e.g., between Ref. [26] and
Ref. [58], which is a minor detail often not clearly explained
in literature.

C. Atomic overlap correction

The last structure-dependent correction in Eq. (7) is the
atomic overlap correction r(E ) which accounts for the mis-
match between the initial and the final atomic states in the β

decay; it is of the order �10−4. We evaluate this correction
using the empirical formula in Ref. [55]:

r(E ) = 1 − 1

E0 − E

∂2

∂Z2
i

B(G), (26)

with

B(G) =

⎧⎪⎪⎨
⎪⎪⎩

13.080Z2.42
i eV, 6 � Zi � 10,

14.945Z2.37
i eV, 11 � Zi � 30,

11.435Z2.45
i eV, 31 � Zi � 39,

(27)

where Zi is again the atomic number of the parent nucleus.
Similarly, it is unnecessary to assign an uncertainty due to its
smallness.

VI. FINAL RESULTS AND DISCUSSIONS

Our final results of the statistical rate function (denoted as
fnew) are summarized in Table III, alongside the latest compi-
lation by Hardy and Towner [1] (denoted as fHT). In contrast
to the latter, which quoted only the experimental uncertainty
from the QEC values, our results fully account for the theory
uncertainties from the Fermi function, the shape factor, and
the screening correction (scr). The errors from the former
two are fully correlated and stem from the radial (rad) and
higher-order shape parameters (shape) in the nuclear charge
distribution functions. It is apparent from our analysis that in
many cases the total theory uncertainty (rad + shape + scr)
is larger than the experimental ones (QEC). Based on this we
deem that Ref. [1] has underestimated the errors in f . To be
complete, we also compare the old and new determination of
the full f t value in Table IV.

It is interesting to study the shift of the central value of f
from the previous determination. It was shown in Ref. [57],
by inspecting the analytic formula of the “pure-QCD” shape
factor CQCD(E ) in the absence of electromagnetic interaction,
that an increase of 〈r2

cw〉1/2, the MS radius characterizing
ρcw, in general leads smaller values of f . Indeed, from the
last column in Table III we see that in most cases our new
evaluation reduces the central value of f at the level of 0.01%,
although some of such shifts are within the quoted (theory)
uncertainties. The magnitude of the shift obtained in this work
is in general smaller than those estimated in Ref. [57] upon
accounting for the correlated effects with the Fermi function.
Nevertheless, according to Eq. (3), a coherent downward shift
of f may lead to an upward shift of Vud , which could partially
alleviate the current CKM unitarity deficit.

We refrain from quoting immediately an updated value of
Vud based on the new values of f for several reasons:

(i) In this work we only improved the control over the nu-
clear structure effects that reside in the statistical rate
function, but not in other pieces of Eq. (4), especially
δNS and δC. Before similar theory progress on these
two quantities (which can be expected in the next few
years), any update on Ft values would be preliminary.

(ii) With the existing data on nuclear charge radii, we are
only able to reevaluate f for 15 out of the 25 mea-
sured superallowed transitions. Furthermore, most of
the information of the secondary charge distribution
parameters in these 15 transitions are not directly
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TABLE III. Comparison between new and old results of f . Notation: 123.12(234) means 123.12 ± 2.34.

Transition fnew fHT
fnew− fHT

fnew
(%)

18Ne → 18F 134.62(0)rad(0)shape(2)scr(17)QEC 134.64(17)QEC −0.01(0)rad(0)shape(2)scr
22Mg → 22Na 418.27(1)rad(1)shape(7)scr(13)QEC 418.35(13)QEC −0.02(0)rad(0)shape(2)scr
26Si → 26mAl 1027.52(15)rad(12)shape(17)scr(12)QEC 1028.03(12)QEC −0.05(1)rad(1)shape(2)scr
34Ar → 34Cl 3409.89(16)rad(18)shape(60)scr(25)QEC 3410.85(25)QEC −0.03(0)rad(1)shape(2)scr
38Ca →38m K 5327.49(14)rad(36)shape(98)scr(31)QEC 5328.88(31)QEC −0.03(0)rad(1)shape(2)scr
42Ti → 42Sc 7124.3(57)rad(8)shape(14)scr(14)QEC 7130.1(14)QEC −0.08(8)rad(1)shape(2)scr
50Fe → 50Mn 15053(18)rad(3)shape(3)scr(60)QEC 15060(60)QEC −0.04(12)rad(2)shape(2)scr
54Ni → 54Co 21137(3)rad(1)shape(5)scr(52)QEC 21137(57)QEC +0.00(2)rad(0)shape(2)scr
26mAl → 26Mg 478.097(60)rad(54)shape(82)scr(100)QEC 478.270(98)QEC −0.04(1)rad(1)shape(2)scr
34Cl → 34S 1995.076(81)rad(103)shape(364)scr(94)QEC 1996.003(96)QEC −0.05(0)rad(1)shape(2)scr

38mK → 38Ar 3296.32(8)rad(21)shape(63)scr(15)QEC 3297.39(15)QEC −0.03(0)rad(1)shape(2)scr
42Sc → 42Ca 4468.53(336)rad(52)shape(91)scr(46)QEC 4472.46(46)QEC −0.09(8)rad(1)shape(2)scr
50Mn → 50Cr 10737.93(1150)rad(202)shape(229)scr(50)QEC 10745.99(49)QEC −0.08(11)rad(2)shape(2)scr
54Co → 54Fe 15769.4(23)rad(7)shape(34)scr(27)QEC 15766.8(27)QEC +0.02(1)rad(0)shape(2)scr
74Rb → 74Kr 47326(127)rad(18)shape(12)scr(94)QEC 47281(93)QEC +0.10(27)rad(4)shape(3)scr

measured but inferred from the nearest isotopes. The
effects of isotope shifts to the secondary parameters
are not systematically accounted for.

(iii) Moreover, the experimental determination of the nu-
clear charge radii is not unambiguous. In some
cases electron scattering and atomic spectroscopy
disagree with each other. In addition, the extraction
of nuclear radii from data relies on the removal of
higher-order corrections, most notably the nuclear po-
larization correction. In the nuclear radii compilation
by Fricke and Heilig [74] this correction is taken
from older calculations [97] from the 1970s. Mean-

TABLE IV. Summary of the experimental results of the partial
half-life t and the previous f t determination, both from Ref. [1], and
our updated f t values for 15 superallowed transitions.

Transition t (ms) ( f t )HT (s) ( f t )new (s)

18Ne → 18F 21630 ± 590 2912 ± 79 2912 ± 80
22Mg → 22Na 7293 ± 16 3051.1 ± 6.9 3050.4 ± 6.8
26Si → 26mAl 2969.0 ± 5.4 3052.2 ± 5.6 3050.7 ± 5.6
34Ar → 34Cl 896.55 ± 0.81 3058.0 ± 2.8 3057.1 ± 2.8
38Ca →38m K 574.8 ± 1.1 3062.8 ± 6.0 3062.2 ± 5.9
42Ti → 42Sc 433 ± 12 3090 ± 88 3085 ± 86
50Fe → 50Mn 205.8 ± 4.7 3099 ± 71 3098 ± 72
54Ni → 54Co 144.9 ± 2.3 3062 ± 50 3063 ± 49
26mAl → 26Mg 6351.24+0.55

−0.54 3037.61 ± 0.67 3036.5 ± 1.0
34Cl → 34S 1527.77+0.47

−0.44 3049.43+0.95
−0.88 3048.0 ± 1.1

38mK → 38Ar 925.42 ± 0.28 3051.45 ± 0.92 3050.5 ± 1.1
42Sc → 42Ca 681.44 ± 0.26 3047.7 ± 1.2 3045.0 ± 2.7
50Mn → 50Cr 283.68 ± 0.11 3048.4 ± 1.2 3046.1 ± 3.6
54Co → 54Fe 193.495+0.086

−0.063 3050.8+1.4
−1.1 3051.3+1.7

−1.4
74Rb → 74Kr 65.201 ± 0.047 3082.8 ± 6.5 3086 ± 11

while, the compilation by Angeli and Marinova [68]
quotes neither the value nor the source of the nuclear
polarization correction used. Thus, one may not be
able to claim to have gained a full control over all
theory systematics until these ambiguities are fully
resolved.

With the above caveats in mind, our work represents an
important first step towards a fully data-driven analysis of
f t values based on available data of nuclear charge distri-
butions. Our approach offers a well-defined prescription to
rigorously quantify the theory uncertainties, both in the Fermi
function and in the shape factor. It also helps to identify some
of the most urgently needed experimental measurements for
future improvements. For instance, one extra measurement of
nuclear charge radius in each of the A = 10, 14, 30, 46, 62
nuclear isotriplets will activate the data-driven analysis on
these systems based on the isospin formalism, and for A = 66
and 70, two measurements on each isotriplet are needed. Also,
the continuation of this work would greatly benefit from a
more coherent, comprehensive, and transparent compilation
of nuclear charge radii and their uncertainties, so it provides
extra motivations for such effort in the future.
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APPENDIX A: RADIAL SOLUTIONS
OF THE DIRAC EQUATION

For a nucleus of charge Z and charge distribution ρch(r),
the potential experienced by an electron reads

V (r) = −4πZα

[
1

r

∫ r

0
dr′ρch(r′)r′2 +

∫ ∞

r
dr′ρch(r′)r′

]
.

(A1)

The radial Dirac equations are

f ′
κ (r) = κ − 1

r
fκ (r) − [E − me − V (r)]gκ (r),

g′
κ (r) = [E + me − V (r)] fκ (r) − κ + 1

r
gκ (r). (A2)

We choose the normalization such that, when V (r) = 0, the
unbounded radial functions read

(
gfree

κ (r)

f free
κ (r)

)
= p

⎛
⎜⎝

√
E+me

E j�(pr)

sgn(κ )
√

E−me
E j�̄(pr)

⎞
⎟⎠, (A3)

where j� is the spherical Bessel function, with

� =
{
κ, κ > 0,

−κ − 1, κ < 0,
�̄ =

{
κ − 1, κ > 0,

−κ, κ < 0.
(A4)

It is beneficial to define k ≡ |κ|. With that, one defines four
new types of radial functions Hk , hk , Dk , and dk as

f+k (r) ≡ α+k

(2k − 1)!!
(pr)k−1{Hk (r) + hk (r)},

g−k (r) ≡ α−k

(2k − 1)!!
(pr)k−1{Hk (r) − hk (r)},

f−k (r) ≡ − α−k

(2k − 1)!!
(pr)k−1 r

R
{Dk (r) − dk (r)},

g+k (r) ≡ α+k

(2k − 1)!!
(pr)k−1 r

R
{Dk (r) + dk (r)}, (A5)

with the normalization Hk (0) ≡ 1, hk (0) ≡ 0, and R is an
arbitrarily chosen radius parameter such that the nuclear
charge is practically zero at r > R. These definitions, to-
gether with the normalization of fκ (r), gκ (r), fully define the
parameters α±k .

A particularly important case is the pointlike Coulomb
potential:

V (r) = −Zα

r
, (A6)

where there are two sets of solutions, the “regular” and “irreg-
ular” ones. The “regular” solution reads

(
greg

κ (r)

f reg
κ (r)

)
= p

⎛
⎜⎝
√

E+me
E Re

−
√

E−me
E Im

⎞
⎟⎠Qκ (r), (A7)

where

Qκ (r) ≡ 2e
πy
2

|�(γκ + iy)|
�(2γκ + 1)

(γκ + iy)(2pr)γκ−1

× e−ipr+iηκ
1F1(γκ + 1 + iy; 2γκ + 1; 2ipr), (A8)

with

γκ =
√

κ2 − α2Z2, y = ZαE

p
,

ηκ = sgn(κZ ) sin−1

√
1

2

(
1 + κγκ − y2me/E

γ 2
κ + y2

)
. (A9)

Meanwhile, the “irregular” solution reads

(
girreg

κ (r)

f irreg
κ (r)

)
= p

⎛
⎜⎝
√

E+me
E Re

−
√

E−me
E Im

⎞
⎟⎠Q̄κ (r), (A10)

where Q̄κ (r) is obtained from Qκ (r) by simply switching
γκ → −γκ .

When r → ∞, the regular solution takes the following
asymptotic form:

(
greg

κ (r)

f reg
κ (r)

)
→ 1

r

⎛
⎜⎝
√

E+me
E cos(pr + δκ )

−
√

E−me
E sin(pr + δκ )

⎞
⎟⎠, (A11)

where

δκ = y ln(2pr) − arg �(γκ + iy) + ηκ − πγκ

2
(A12)

is the phase shift for the Coulomb potential. The correspond-
ing phase shift for the irregular solution is δ̄κ , which is again
obtained by taking γκ → −γκ .

If the pointlike Coulomb potential holds for all distances
(i.e., from r = 0 to r → ∞), then only the regular solutions
survive because the irregular solutions blow up at r → 0.
However, in reality the nuclear charge is distributed over a
finite space, so Eq. (A6) only holds at r > R. Therefore, since
the analytic solutions never apply to r = 0, we must retain
both the regular and irregular solutions. To be more specific,
the radial function at r > R (which we call the “outer solu-
tion”) is a linear combination of the two:(

gκ (r)

fκ (r)

)
= Aκ

(
greg

κ (r)

f reg
κ (r)

)
+ Bκ

(
girreg

κ (r)

f irreg
κ (r)

)
, r > R, (A13)

where the coefficients satisfy the following normalization
condition, which we express in terms of the matrix product
for future benefit [98]:(

Aκ

Bκ

)T(
1 cos(δκ − δ̄κ )

cos(δκ − δ̄κ ) 1

)(
Aκ

Bκ

)
= 1. (A14)

The other condition comes from the matching with the inner
solution (i.e., the r < R solution) at r = R, which we will
describe later.

Finally, to obtain radial functions for the positron, one
simply switches Z → −Z .
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APPENDIX B: OBTAINING THE INNER SOLUTION

Here we outline the procedure to obtain the inner solution
as well as the matching to the outer solution. We start with the
κ = +k functions, and define

f+k ≡ α+k

(2k − 1)!!
(pr)k−1 f̄+k,

g+k ≡ α+k

(2k − 1)!!
(pr)k−1 r

R
ḡ+k, (B1)

where f̄+k = Hk + hk , ḡ+k = Dk + dk . They satisfy the fol-
lowing radial equations:

f̄ ′
+k (r) = −[E − me − V (r)]

r

R
ḡ+k (r),

r

R
ḡ′

+k (r) = [E + me − V (r)] f̄+k (r) − 2k + 1

R
ḡ+k (r),

(B2)

with the normalization condition f̄+k (0) = Hk (0) + hk (0) =
1. It is easy to see that this one normalization condition
completely fixes both functions; for instance, taking r = 0 at
both sides of the second differential equation gives ḡ+k (0) =
R[E + me − V (0)]/(2k + 1), so we now know the values of
both functions at r = 0. The values of their first derivative at
r = 0 are then given immediately by the differential equa-
tions, so on and so forth. Similarly, for the κ = −k radial
functions, we define

g−k ≡ α−k

(2k − 1)!!
(pr)k−1ḡ−k,

f−k ≡ − α−k

(2k − 1)!!
(pr)k−1 r

R
f̄−k, (B3)

where ḡ−k = Hk − hk , f̄−k = Dk − dk . They satisfy the fol-
lowing radial equations:

ḡ′
−k (r) = −[E + me − V (r)]

r

R
f̄−k (r),

r

R
f̄ ′
−k (r) = [E − me − V (r)]ḡ−k (r) − 2k + 1

R
f̄−k (r), (B4)

with the normalization condition ḡ−k (0) = Hk (0) − hk (0) = 1.
Given a choice of nuclear charge distribution [which fixes the potential V (r)], we can solve for the functions ḡ±k (r), f̄±k (r)

numerically from r = 0 to r = R. Then, at r = R, we match them to the analytic expressions of the outer solutions. Combining
Eqs. (A13), (B1), and (B3), the matching gives

(
Aκ

Bκ

)
= ακ (pR)k−1

(2k − 1)!! p

(
Re Qκ (R) Re Q̄κ (R)

Im Qκ (R) Im Q̄κ (R)

)−1
⎛
⎜⎝

√
E

E+me
ḡκ (R)

−sgn(κ )
√

E
E−me

f̄κ (R)

⎞
⎟⎠, (B5)

where κ = ±k. Substituting this in Eq. (A14) gives

α−2
κ =

(
(pR)k−1

(2k − 1)!!p

)2

⎡
⎢⎣
(

Re Qκ (R) Re Q̄κ (R)

Im Qκ (R) Im Q̄κ (R)

)−1
⎛
⎜⎝

√
E

E+me
ḡκ (R)

−sgn(κ )
√

E
E−me

f̄κ (R)

⎞
⎟⎠
⎤
⎥⎦

T

×
(

1 cos(δκ − δ̄κ )

cos(δκ − δ̄κ ) 1

)(
Re Qκ (R) Re Q̄κ (R)

Im Qκ (R) Im Q̄κ (R)

)−1
⎛
⎜⎝

√
E

E+me
ḡκ (R)

−sgn(κ )
√

E
E−me

f̄κ (R)

⎞
⎟⎠. (B6)

Thus, with the numerical solutions of f̄±k (R) and ḡ±k (R), Eqs. (B5) and (B6) give spontaneously the coefficients α±k and
{A±k, B±k}; the former give all the Coulomb functions while the latter determine the full radial functions at r > R.

APPENDIX C: DERIVATION OF THE MASTER FORMULA OF SHAPE FACTOR

In this Appendix we briefly outline the derivation of the master formula of the shape factor, Eq. (9), based on the formalism
by Behrens and Bühring [63]. To match their notations, we adopt the following normalization of states:

〈�k′|�k〉 = (2π )3δ(3)(�k − �k′), (C1)

i.e., the states are rescaled with respect to the QFT states in the introduction as |�k〉 = (1/2Ek )|�k〉QFT ≈ (1/2M )|�k〉QFT.
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We start by introducing the Behrens-Bühring form factors in terms of the nuclear matrix element of the charged weak
current:

〈
J†0

W (0)
〉

f i
=
∑
LmL

√
4π (2Ji + 1)(−1)Jf −mJ f

(
Jf L Ji

−mJf mL mJi

)
Y ∗

LmL
(q̂)

(qR)L

(2L + 1)!!
FL(q2),

〈 �J†
W (0)〉 f i =

∑
KLmK

√
4π (2Ji + 1)(−1)Jf −mJ f

(
Jf K Ji

−mJf mK mJi

)
�Y mK ∗
KL (q̂)

(qR)L

(2L + 1)!!
FKL(q2). (C2)

where q = p f − pi, q = |�q|, with YLmL and �Y mK
KL the spherical

harmonics and the vector spherical tensor respectively. When
Ji = Jf = 0, only the F0 and F01 form factors survive, but
the latter is proportional to f−(q2) (in the Breit frame) which
vanishes in the isospin limit. The former gives〈

J†0
W (0)

〉
f i

= F0(q2), (C3)

where thre q → 0 limit gives the Fermi matrix element:
F0(0) = MF .

The differential rate of the tree-level decay φi(pi ) →
φ f (p f )e+(pe)νe(pν ) is given by

d� = d3 p f

(2π )3

d3 pe

(2π )3

d3 pν

(2π )3
(2π )4δ(4)

× (pi − p f − pe − pν )
∑
λeλν

|T |2. (C4)

The amplitude, using the lepton current in configuration
space, reads

T = −GFVud√
2

∫
d3q′

(2π )3
〈φ f (�q′)|J†μ

W (0)|φi(�0)〉
∫

d3x e−i �q′ ·�x

× ψ̄ν, �pν
(�x)γμ(1 − γ5)ψe+, �p(�x)

→ −GFVud√
2

1

2π2

∫ ∞

0
dq′q′2F0(q′2)

∫
d3x j0(q′r)

× ψ
λν†
ν, �pν

(�x)(1 − γ5)ψλe
e+, �p(�x); (C5)

the second expression applies to Ji = Jf = 0 decays, where
λe, λν denote the lepton spin orientations. This representation
is particularly convenient for the implementation of Coulomb
effects, as we just need to take the lepton wave functions as the
solution of the Dirac equation. To that end, we shall expand
these wave functions in terms of spherical waves:

ψ
λν

ν, �pν
(�x) =

∑
κνμν

ilν bλν

κνμν
ψμν

ν,κν
(�x),

ψ
λe
e+, �p(�x) =

∑
κeμe

(−1) je+μe ile aλe∗
κeμe

ψ
−μe

e+,κe
(�x). (C6)

The spherical waves read

ψμν

ν,κν
(�x) =

(
jlν (Eνr)χμν

κν
(r̂)

i sgn(κν ) jl̄ν (Eνr)χμν

−κν
(r̂)

)
,

ψ
−μe

e+,κe
(�x) =

(
i fκe (r)χ−μe

−κe
(r̂)

−gκe (r)χ−μe
κe

(r̂)

)
, (C7)

where

χμ
κ ≡

∑
m

C j μ

� μ−m; 1
2 m

Y� μ−m(r̂)χm (C8)

is a two-component spinor, with C j μ

� μ−m; 1
2 m

the Clebsch-

Gordan coefficients. The expansion coefficients read

bλν

κνμν
= 4π√

2
C jν μν

lν μν−λν ; 1
2 λν

Y ∗
lν μν−λν

( p̂ν ) ,

aλe
κeμe

= 4π√
2p

C je μe

le μe−λe; 1
2 λe

Y ∗
le μe−λe

( p̂e)ei�κe , (C9)

with �κe an extra phase due to the distortion by the nuclear
charge.

Substituting Eq. (C6) into Eq. (C5), one may perform the
angular integration to obtain

T = − GFVud√
2

1

2π2

∫ ∞

0
dq′q′2F0(q′2)

∫ ∞

0
dr r2 j0(q′r)

×
∑

κeμeκνμν

(−1) je−μe+1aλe∗
κeμe

bλν∗
κνμν

δμe,−μν

{
gκe (r)

× [
jlν (Eνr)δκe,κν

+ jl̄ν (Eνr)δκe,−κν

]− sgn(κe) fκe (r)

× [
jlν (Eνr)δ−κe,κν

+ jl̄ν (Eνr)δ−κe,−κν

]}
. (C10)

Now, we may express gκe and fκe in terms of H, h, D, d as
we defined in Appendix A, which allows us to introduce
the Behrens-Bühring’s shape factor functions MK (ke, kν ) and
mK (ke, kν ). In superallowed decays, we only need the K =
L = S = 0 functions:

M0(ke, kν ) = 2

πMF

∫ ∞

0
dq′q′2

∫ ∞

0
dr r2 j0(q′r)F0(q′2)

× (pr)ke−1

(2ke − 1)!!

√
2 je + 1

2
δkekν

×
{

Hke (r) jkν−1(Eνr) − r

R
Dke (r) jkν

(Eνr)
}
,

m0(ke, kν ) = 2

πMF

∫ ∞

0
dq′q′2

∫ ∞

0
dr r2 j0(q′r)F0(q′2)

× (pr)ke−1

(2ke − 1)!!

√
2 je + 1

2
δkekν

×
{

hke (r) jkν−1(Eνr) − r

R
dke (r) jkν

(Eνr)
}
,

(C11)
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where we have rescaled the functions by 1/F0(0) = 1/MF .
With them we can rewrite Eq. (C10), after some algebra, as

T = GFVud

4π
MF

∑
κeμeκνμν

(−1) je−μe+1

√
2 je + 1

× aλe∗
κeμe

bλν∗
κνμν

δμe,−μν
ακe

× {sgn(κe)M0(ke, kν ) + m0(ke, kν )}. (C12)

Next we evaluate the squared amplitude and perform the
phase-space integration. Neglecting kinematic recoil correc-
tions, one can easily show that

d�

dE
≈ 1

(2π )5
Ep(E0 − E )2

∫
d�e

∫
d�ν

∑
λeλν

|T |2. (C13)

The angular integration and summation over lepton spin act
only on the expansion coefficients aλe

κeμe
, bλν

κμμν
:

∑
λe

∫
d�eaλe∗

κeμe
aλe

κ ′
eμ

′
e
= 8π2

p2
δκeκ ′

e
δμeμ′

e
,

∑
λν

∫
d�νbλν∗

κνμν
bλν

κ ′
νμ

′
ν
= 8π2δκνκ ′

ν
δμνμ′

ν
. (C14)

We can further simplify Eq. (C11): Since both M0(ke, kν ) and
m0(ke, kμ) are proportional to δkekν

, we can define

M0(ke, kν ) ≡ δkekν
M0(k),

m0(ke, kν ) ≡ δkekν
m0(k), (C15)

where ke = kν ≡ k. Furthermore, we know that the Fourier
transform of F0(q′2) gives the charged weak distribution func-
tion: ∫ ∞

0
dq′q′2F0(q′2) j0(q′r) = 2π2MF ρcw(r); (C16)

this leads us to the expressions of M0(k) and m0(k) in Eq. (11).
Finally, plugging everything into Eq. (C13) gives

d�

dE
≈ G2

FV 2
ud

2π3
M2

F pE (E0 − E )2F (E )C(E ), (C17)

where the Fermi function F (E ) and the shape factor C(E ) are
exactly those given by Eqs. (8) and (9) respectively.

APPENDIX D: PARAMETRIZATIONS OF NUCLEAR
CHARGE DISTRIBUTIONS

Here we summarize the few parametrizations of nuclear
charge distributions used in Ref. [75].

(i) Two-parameter Fermi (2pF):

ρch(r) = ρ0

1 + exp{(r − c)/a} , (D1)

where

ρ0 = − 1

8πa3Li3(− exp{c/a})
(D2)

and the MS charge radius

〈
r2

ch

〉 = 12a2Li5(− exp{c/a})

Li3(− exp{c/a})
. (D3)

(ii) Three-parameter Fermi (3pF):

ρch(r) = ρ0(1 + wr2/c2)

1 + exp{(r − c)/a} , (D4)

where

ρ0 = − 1

8πa3[Li3(−ec/a) + (12a2w/c2)Li5(−ec/a)]
(D5)

and

〈
r2

ch

〉 = 12[30a4wLi7(− exp{c/a}) + a2c2Li5(−ec/a)]

12a2wLi5(−ec/a) + c2Li3(−ec/a)
,

(D6)

where Lis(z) is the polylogarithm function.
(iii) Three-parameter Gaussian (3pG):

ρch(r) = ρ0(1 + wr2/c2)

1 + exp{(r2 − c2)/a2} , (D7)

where

ρ0 = − 2c2

π3/2a3[3a2wLi5/2(−ec2/a2 ) + 2c2Li3/2(−ec2/a2 )]
(D8)

and

〈
r2

ch

〉 = 6a2c2Li5/2(−ec2/a2
) + 15a4wLi7/2(−ec2/a2

)

6a2wLi5/2(−ec2/a2 ) + 4c2Li3/2(−ec2/a2 )
.

(D9)

(iv) Harmonic oscillator (HO):

ρch(r) = ρ0(1 + αHOr2/b2) exp{−r2/b2}, (D10)

where

ρ0 = 2

π3/2(3αHO + 2)b3
(D11)

and

〈
r2

ch

〉 = 3(5αHO + 2)b2

6αHO + 4
. (D12)
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