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Gravitational form factors of light nuclei: Impulse approximation
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The gravitational form factors of light nuclei are evaluated up to momenta of the order of the nucleon mass,
using the impulse approximation. The nucleon gravitational form factors are reduced nonrelativistically, and
used to derive the gravitational form factors of light nuclei. The deuteron gravitational form factors are analysed
using the Reid soft core potential. The helium-4 gravitational form factors are assessed using the K-harmonics
method, and compared to those following from a mean-field approximation with a Woods-Saxon potential. The
importance of removing the center of mass motion for the ensuing form factors is emphasized. The mass radii of
these light nuclei are extracted and compared to their charge radii counterparts. The details of their pressure and
shear distributions are discussed.
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I. INTRODUCTION

The gravitational form factors of the nucleon carry impor-
tant information on its mass distribution, most of which is
carried by constituent gluons. Recently, threshold photopro-
duction of charmonium at Jefferson Laboratory (JLab) [1] has
opened the possibility of measuring the gluonic component
of the nucleon gravitational form factors. The high statistics
results reported by the E12-007 collaboration [2], suggest
smaller mass radii for the proton in comparison to its elec-
tromagnetic radius.

Threshold electromagnetic production of charmonium off
light nuclei could open the possibility of understanding the
nuclear effects on the gravitational form factors. The nucleus
is a collection of nucleons (protons and neutrons) bound by
strongquantum chromodynamics (QCD) interactions. Most of
what is known about nuclei has been gleaned using elec-
tromagnetic probes at intermediate energies [3], where the
nucleons appear as rigid but extended bodies exchanging
mesons, albeit mostly pions [4] (and references therein). The
disparity between the fundamental and unconfined degrees
of QCD (quarks and gluons) and the observed but confined
degrees of freedom (mesons and nucleons) call for novel
probes. The ultimate goal is to understand the composition
of the nucleons, and how the nuclear interactions emerge in a
nucleus.

The difficult character of the strong nuclear interaction, has
required the use of approximate models to account for the
motion of the nucleons in a bound nucleus. Mean field models
of which the shell model is the ultimate realization, have
proven successful in interpreting many aspects of low and
intermediate nuclear physics. However, much is still needed
for a theory to be sufficiently accurate and predictive. For this
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reason, the study of simpler nuclei such as deuterium, triton,
and helium-3,4 should prove useful for the study of novel
probes, such as the one provided by the energy-momentum
tensor (EMT).

The simplest nuclear system is of course the deuteron. Its
binding energy (2.225 MeV), charge radius (2.13 fm), and
magnetic moment (0.857 in Bohr magnetons) are well es-
tablished, which strongly constrain the pair nucleon-nucleon
interaction [5]. The deuteron large size and weak binding
suggests that the nuclear interaction is due to single pion
exchange between almost on-shell nucleons. The deuteron is
a diffuse nucleus.

The purpose of this work is to provide the starting frame-
work for the nuclear effect on the deuteron EMT. We will
derive in detail its gravitational form factors using the impulse
approximation. The results are readily extended to spherically
symmetric and light nuclei such as helium-4, which is the
prototype nucleus per excellence, given that its binding energy
per particle is close to the saturation one.

For completeness, we note that the gravitational D-form
factors for nuclei were initially discussed using a liquid drop
model in [6], relativistic nuclear potentials in [7], nuclear
structure [8–13], and more recently the generalized Skyrme
model in [14]. Also, the spatial densities and forces in the
deuteron were discussed in [15] using the light cone convo-
lution model. An estimate of the mass radius of helium-4 was
suggested recently using φ-meson photoproduction [16].

The outline of this paper is as follows. In Sec. II we briefly
review the chief aspects of the deuteron S, D contributions
using Reid soft core potential. In Sec. III we summarize the
relevant aspects of the nucleon gravitational A, B,C = 1

4 D
form factors. To use them for low and intermediate energies
up to the nucleon mass scale, we explicitly present their
non-relativistic expansions. In Sec. IV we derive the deuteron
gravitational form factors in the impulse approximation, and
in leading order in the recoil momentum of the spectator nu-
cleon. In Sec. V we extend our results to helium-4 using both
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the K-harmonics method and the mean-field approximation
with a Woods-Saxon potential. The importance of removing
the spurious center of mass motion, while addressing the form
factors of light nuclei is emphasized. In Sec. VI we detail
the extraction of the mass radii from the pertinent EMT form
factors. Our conclusions are in Sec. VII. In Appendix A,
we compare our deuteron and helium-4 charge form factors
versus the existing data. In Appendix B, we briefly recall the
pressure and shear force used.

II. DEUTERON STATE

The deuteron with the tiny 2.2 MeV binding is a loosely
bound light nucleus composed of almost quasifree proton
plus neutron held together by a long range pion-exchange
interaction. In the nonrelativistic approximation, the deuteron

wave function is a mixture of 3S1 + 3D1,

�m(r) =
(

u

r
+ 1√

8

w

r
S12

)
χm√
4π

(1)

with the deuteron quadrupole operator

S12 = 6S · r̂S · r̂ − 2S2 = 6Qi j r̂ir̂ j (2)

with total spin �S, where Qi j is the quadrupole operator Qi j =
1
2 (SiS j + S jSi ) − 2

3δi j . The reduced radial wave functions
u,w are normalized,∫ ∞

0
dr(u2 + w2) = 1. (3)

The coupled u,w reduced radial components 3S1 and 3D1

of the deuteron wave function will be sought using a central
and tensor interaction [17]

u′′ + m

h̄2 (−E − VC (r)) u −
√

8
m

h̄2 VT w = 0,

w′′ + m

h̄2

(
− E − VC (r) − 6h̄2

mr2
+ 2VT (r) + 3VLS (r)

)
w −

√
8

m

h̄2 VT u = 0 (4)

with the Reid soft core potential VR = VC + VT S12 + VLS L · S,

VC = −h
e−x

x
+ 105.468 (MeV)

e−2x

x
− 3187.8 (MeV)

e−4x

x
+ 9924.3 (MeV)

e−6x

x
,

VT = −h

((
1

x
+ 3

x2
+ 3

x3

)
e−x −

(
12

x2
+ 3

x3

)
e−4x

)
+ 351.77 (MeV)

e−4x

x
− 1673.5 (MeV)

e−6x

x
, (5)

VLS = 708.91 (MeV)
e−4x

x
− 2713.1 (MeV)

e−6x

x
.

Here, x = μr is the pion range fixed by μ = 0.7 fm−1, as illustrated in Fig. 1 (top). Also h = 10.463 MeV and h̄2/m is assumed
to be 41.47 MeV fm2 with m the twice reduced mass of proton and neutron. The numerical S- and D-wave functions solution to
the coupled equations (5) and valid for x < 10.01, are shown in Fig 1 (bottom). For x > 10.01, the explicit solutions are [17]

u(r) = 0.87758e−αμr,

w(r) = 0.0023e−αμr

(
1 + 3

αμr
+ 3

(αμr)2

)
(6)

with α = (mED)1/2/(μh̄). The deuteron solution in Fig. 1 (bottom) carries binding energy ED = 2.2246 MeV, and a quadrupole
moment

QE
D = 1

4

∫
d3r|�1(r)|2 (3z2 − r2) ≈ 0.31 fm2 (7)

in the z direction and the maximally stretches spin state. The deuteron is mostly cigar-shaped. This deformation amounts to
pD = 6.53%, the percentage of admixture of D state in the deuteron [17].

III. NUCLEON EMT

The standard decomposition of EMT form factor in a nucleon state is [18–20]

T μν
N (p2, p1) = 〈p2|T μν (0)|p1〉 = u(p2)

(
A(k)γ (μP̄ν) + B(k)

iP̄(μσ ν)αkα

2mN
+ C(k)

kμkν − ημνk2

mN

)
u(p1) (8)

with a(μbν) = 1
2 (aμbν + aνbμ), k2 = (p2 − p1)2 = t , P̄ =

(p1 + p2)/2, and the normalization uu = 1. Equation (8) is
conserved and trace full. Note that in other conventions, the
C-form factor is also referred to by D(k) = 4C(k).

The gluonic gravitational form factors (GFFs) have been
analyzed both analytically and numerically, and more re-
cently extracted empirically with overall good agreements.
For the numerical analyses below, we will use a tripole
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FIG. 1. Top: Reid soft core potentials VC,T,LS; bottom: deutron
S, D wave functions in Eq. (4).

parametrization of the holographic results for the gluon GFFs,
and a dipole parametrization for the lattice quark GFFs with
k2 = −Q2 space-like,

Ag(k) = Ag(0)(
1 + Q2

m2
T T,g

)3 , Aq(k) = Aq(0)(
1 + Q2

m2
T T,q

)2 ,

Cg(k) =
1
4 Dg(0)(

1 + Q2

m2
SS,g

)3 , Cq(k) =
1
4 Dq(0)(

1 + Q2

m2
SS,q

)2 (9)

with mT T,g = 1.612 GeV, mT T,q = 1.477(44) GeV, mSS,g =
0.963 GeV, mSS,q = 0.81(14) GeV, Ag(0) = 0.430, Aq(0) =
0.510(25), Dg(0) = −1.275, and Dq(0) = −1.30(49). The
parameters of the gluon GFFs are from the holographic
model [22], in overall agreement with those recently reported
by the E12-007 collaboration [2]. The quark GFFs are ob-
tained by recent lattice results in [21], as illustrated in Fig. 2.
To fix the sum rule Aq(0) + Ag(0) = 1, we set Aq(0) = 0.57,
which is slightly larger than the lattice results. The remaining
EMT form factor B is null in dual gravity [22], and is very
small in unpolarized lattice calculations [21] and global anal-
ysis [23].

Although, the holographic EMT form factors are given in
terms of hypergeometric functions [22], Eq. (9) provides a
good approximation for a wide range of momenta. They are
in agreement with the hard scattering rules asymptotically.
We will not consider the additional C̄q,g form factors as they

FIG. 2. Nucleon GFFs: Aq,Cq (quarks) are from the recent lattice
results [21], and Ag,Cg (gluons) are from the holographic model [22].

are absent in the holographic construction, and add to zero in
physical observables. Alternative discussions to some of these
form factors can be found in [24–29].

In this work, we assume that the nucleons in the deuteron
are quasifree particle since the binding energy is very small.
For on-shell nucleons, we can use the Gordon identity to
rewrite Eq. (8) as Eq. (10), which is more convenient for the
non-relativistic reduction. More specifically, we have

T μν
N (p2, p1) = u(p2)

(
A(k)

P̄μP̄ν

mN
+ (A(k)

+ B(k))
iP̄(μσ ν)αkα

2mN

+C(k)
kμkν − ημνk2

mN

)
u(p1). (10)

To probe the EMT in the deuteron at low and intermediate
momentum transfers, we will use a nonrelativistic reduction,
with the assumption that it holds for k/mN of about 1. The jus-
tification for this assumption can only be made a posterioriti,
by comparing to possibly future diffractive experiments. We
recall that a similar assumption works reasonably well for the
electromagnetic probes in the deuteron, at the nucleon mass
scale [4]. With this in mind, the nonrelativistic reduction of
Eq. (10) reads

T 00
N (k) =

(
A(k) mN +

(
1

8
A(k) − 1

4
B(k) + C(k)

) �k2

mN

)

+
(

1

2
A(k) + B(k)

)
(σ × ik) · P

2mN
+ O

( �k3

m2
N

,
�P2

mN

)
,

T 0 j
N (k) = (A(k) + B(k))

(σ × ik) j

4
+ A(k) P j

+O
( �k3

m2
N

,
�P2

mN

)
,

T jl
N (k) = (A(k) + B(k))

(σ × ik)( jPl )

2mN
+ C(k)

klk j − δ jl �k2

mN

+O
( �k3

m2
N

,
�P2

mN

)
, (11)
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FIG. 3. A graviton through T μν (k), striking a nucleon in a
deuteron with a recoiling spectator of momentum −P.

where P j is the momentum of spectator shown in Fig. 3 and
only terms linear in P j are retained. This additional assump-
tion is justified in the analysis of the EMT of the deuteron to
follow. Indeed, the higher order terms in the expansion when
evaluating in a deuteron state, are controlled by the binding
energy ED = 2.225 MeV which is small,

〈 �P2〉
m2

N

≈ ED

mN
≈ 10−3.

With this in mind, and dropping the O notations for conve-
nience, Eq. (11) yields

T 00
N (k) = TM (k) + TSP(k)

(σ × ik) · P

2m2
N

,

T 0 j
N (k) = TS (k)

(σ × ik) j

4mN
+ A(k)P j, (12)

T jl
N (k) = TS (k)

(σ × ik)( jPl )

2m2
N

+ CM (k)
k jkl − δ jl �k2

m2
N

.

For simplicity, we use the notation TM (k), TS (k), TSP(k) to
represent the contributions in Eq. (11) for mass, spin, and
spin-recoil. They can be related to form factor A(k), B(k), and
C(k) through

TM (k) = A(k) mN +
(

1

8
A(k) − 1

4
B(k) + C(k)

) �k2

mN
,

TS (k) = mN (A(k) + B(k)),

TSP(k) = mN

(
1

2
A(k) + B(k)

)
,

CM (k) = mNC(k). (13)

Since T 00 and T 0 j are related to the nucleon energy
and spin, the factors TM , TS represent the form fac-
tor of momentum fraction and angular momentum in the
nucleon.

IV. DEUTERON EMT IN THE IMPULSE APPROXIMATION

In the first approximation, we can treat the proton and
neutron in the deuteron as quasifree. In the impulse approx-
imation, the EMT are the expectation values of Eq. (11) in the
deuteron state. Since the EMT is isoscalar, the contributions

of the proton and neutron add equally:〈
+ k

2
m′

∣∣∣∣T 00
N (k)

∣∣∣∣ − k

2
m

〉

= 2TM (k)

〈
+ k

2
m′

∣∣∣∣1
∣∣∣∣ − k

2
m

〉

+ 2TSP(k)

〈
+ k

2
m′

∣∣∣∣P · (S × ik)

2m2
N

∣∣∣∣ − k

2
m

〉
,

〈
+ k

2
m′

∣∣∣∣T 0 j
N (k)

∣∣∣∣ − k

2
m

〉

= 2TS (k)

〈
+ k

2
m′

∣∣∣∣ (S × ik) j

4mN

∣∣∣∣ − k

2
m

〉
(14)

+ 2mN A(k)

〈
+ k

2
m′

∣∣∣∣ P j

mN

∣∣∣∣ − k

2
m

〉
,

〈
+ k

2
m′

∣∣∣∣T jl
N (k)

∣∣∣∣ − k

2
m

〉

= 2TS (k)

〈
+ k

2
m′

∣∣∣∣ (S × ik)( jPl )

2m2
N

∣∣∣∣ − k

2
m

〉

+ 2CM (k)
k jkl − δ jl �k2

m2
N

〈
+ k

2
m′

∣∣∣∣1
∣∣∣∣ − k

2
m

〉
.

Here, m, m′ refer to the azimuthal quantum numbers in Eq. (1)
(not to be confused with the reduced mass). The matrix ele-
ments in the deuteron state can be simplified using symmetry
arguments, and the conservation of the EMT. Their physical
interpretation is best in the Breit (brick-wall) frame as illus-
trated in Fig. 3 with k0 = 0 and �k · �P = 0.

The simplest matrix elements to evaluate do not involve the
total momentum P, they will be evaluated first, followed by
single and double total momenta. For the latter, we will rely
on a wave function prescription to avoid issues of hermiticity.

A. Matrix element of 1

The details of the matrix element of 1 will be provided
in full to show how all matrix elements are evaluated. More
specifically and following the kinematics depicted in Fig. 3,
the matrix element can be defined as [30]〈

+ k

2
m′

∣∣∣∣1
∣∣∣∣ − k

2
m

〉
=

∫
d3P �

†
m′

(
P + k

4

)
1�m

(
P − k

4

)

=
∫

d3r e
i
2 k·rϕ†

m′ (r) 1 ϕm(r), (15)

where we used the wave packet form for the deuteron in-out
states

�m

(
P ± k

4

)
=

∫
d3r e−i(P± 1

4 k)·r ϕm(r). (16)

Inserting Eq. (1) into Eq. (15) gives〈
+ k

2
m′

∣∣∣∣1
∣∣∣∣ − k

2
m

〉
= CE (k)δmm′ − 2CQ(k)〈m′|(S · k̂)2

− 1

3
S2|m〉 (17)
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with the deuteron total spin and angular momentum

�S = 1
2 (�σp + �σn) = �σ , �L = �Lp + �Ln = �r × �P, (18)

and the form factors

CE (k) =
∫ ∞

0
dr(u2 + w2) j0

(
kr

2

)
,

CQ(k) = 3√
2

∫ ∞

0
dr

(
uw − w2

2
√

2

)
j2

(
kr

2

)
. (19)

The deviation from spherical symmetry follows from the D-
wave content of the deuteron wave function. We note that
CE (0) = 1 as expected from the deuteron charge normaliza-
tion, and that near the forward limit

CQ(k) ≈ QE
D

4
�k2 (20)

with the quadrupole moment QE
D ≈ 0.31 fm2.

B. Matrix element of (S × ik) j

Similarly, the spin contribution can be obtained by symme-
try using the Wigner-Eckart theorem〈

+ k

2
m′

∣∣∣∣(S × ik) j

∣∣∣∣ − k

2
m

〉

=
∫

d3r e
i
2 k·rϕ†

m′ (r) (S × ik) j ϕm(r)

= CS (k)〈m′|(S × ik) j |m〉 (21)

with the result

CS (k) =
∫ ∞

0
dr j0

(
kr

2

)(
u2 − w2

2

)

+ 1√
2

∫ ∞

0
dr j2

(
kr

2

)(
wu + w2

√
2

)
(22)

or by direct computation, by specializing to i = 2, m = 1, and
m′ = 0, and choosing k = k3̂. In the forward limit

CS (0) = CI (0) − 4CP(0) = 1 − 3
2 pD = 1 − 3

2 6.53% (23)

with CP(0) given in Eq. (29) below, and pD = 6.53% the
percentage of D admixture in the deuteron.

C. Matrix element of P j

The first recoil contribution P j to the energy momentum
tensor can be obtained as follows:〈

+ k

2
m′

∣∣∣∣P j

∣∣∣∣ − k

2
m

〉

=
∫

d3P �
†
m′

(
P + 1

4
k

)
P j�m

(
P − 1

4
k

)

= i

2

∫
d3r e

i
2 k·r

(
∂ jϕ

†
m′ (r)ϕm(r) − ϕ

†
m′ (r)∂ jϕm(r)

)
.

(24)

Inserting the explicit derivative of the deuteron wave function

∂ jϕm(r) =
((

u′(r)

r
− u(r)

r2
− w(r)√

2r2

)
r̂ j

+
(

w′(r)√
8r

− 3w(r)√
8r2

)
S12(r̂)r̂ j

+ 3w(r)√
8r

(
σ

j
1 σ2 · r̂ + σ

j
2 σ1 · r̂

r

))
χm (25)

in Eq. (24), and using the identities

j1
(

kr
2

)
kr

= j0
(

kr
2

) + j2
(

kr
2

)
6

,∫
d3rei �k·�r

2 r̂ j = 4π

∫
r2dr j1

(
kr

2

)
ik̂ j, (26)

we can finally reduce Eq. (24) to〈
+ k

2
m′

∣∣∣∣P j

∣∣∣∣ − k

2
m

〉
= CP(k) 〈m′|(S × ik) j |m〉 (27)

with

CP(k) =
∫

dr
3w2

8

(
j0

(
kr

2

)
+ j2

(
kr

2

))
. (28)

Its forward contribution is readily tied to the admixture of D
state in the deuteron

CP(0) = 3
8 pD = 3

8 6.53%. (29)

Equation (27) is manifestly transverse to the direction of mo-
mentum k. The Breit frame projection through Pi → P̃i as in
Eq. (32) below, leaves it unchanged.

D. Matrix element of (S × ik)( jPl )

This matrix element can be obtained by evaluating first

t jl =
〈
+k

2
m′

∣∣∣∣1

2

(
P j (�S × i�k)l + Pl (�S × i�k) j

)∣∣∣∣ − k

2
m

〉
. (30)

More specifically, the reduction of Eq. (30) follows the
same reasoning as above with

t jl = −1

4

∫
d3re

i
2 k·r (∂ jϕ′†

m (r)(�S × �k)lϕm(r) − ϕ′†
m (r)(�S × �k)l∂ jϕm(r)) + (l ↔ j)

= −
∫

d3re
i
2 k·r

(√
2r (u′w − w′u) − w2 + 2

√
2uw

16r3

)
(r̂ j (�S × �k)l S12 − r̂ jS12(�S × �k)l )

−
∫

d3re
i
2 k·r 3wu

4
√

8r3

((
σ

j
1 σ2 · r̂ + σ

j
2 σ1 · r̂

)
(�S × �k)l − (�S × �k)l

(
σ

j
1 σ2 · r̂ + σ

j
2 σ1 · r̂

))
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−
∫

d3re
i
2 k·r 3w2

32r3

((
σ

j
1 σ2 · r̂ + σ

j
2 σ1 · r̂

)
(�S × �k)l S12 − S12(�S × �k)l

(
σ

j
1 σ2 · r̂ + σ

j
2 σ1 · r̂

)) + (l ↔ j)

= 1

k

∫
dr

(√
2r (u′w − w′u) − w2 + 2

√
2uw

16r

)[(
10

kr
j2

(
kr

2

)
− j1

(
kr

2

))

×
(

24
k jkl

�k2
Qαβkαkβ − 12(Q jβklkβ + Qlβk jkβ )

)
− 48 j2( kr

2 )

kr
(δ jlQαβkαkβ − �k2Q jl )

]

+ 1

k

∫
dr

(
wu√

8r
− w2

8r

)
j1

(
kr

2

)
(6δ jlQαβkαkβ − 6�k2Q jl )

+ 1

k

∫
dr

9w2

8r
j1

(
kr

2

)
((�S × k)l (�S × k) j + (�S × k) j (�S × k)l )

+ 1

k

∫
dr

3w2

2r

j2
(

kr
2

)
kr

(4(δ jl �k2 − klk j ) − 3(�S × k)l (�S × k) j − 3(�S × k) j (�S × k)l

+ 3(2δ jl Qαβkαkβ − Q jβklkβ − Qlβk jkβ )). (31)

The matrix element in Eq. (31) lacks manifest transversality, i.e., klt jl �= 0. This is caused by the off-shell character of the
struck nucleon which leads to the violation of the kinematic condition: �k · �P �= 0 say in the Breit frame. To enforce the Breit
frame condition �k · �P = 0 in the matrix elements, we will make the operator substitution

Pμ → P̃μ = Pμ − (k · P)

k2
kμ. (32)

This replacement is carried out in the evaluation of the EMT nucleon matrix elements, rather than the evaluation of the wave
function in Eq. (16), followed by the Breit frame substitution (32). This amounts to the projection

t̃ jl = t jl − klt jαkα + k jt lαkα

k2
+ k jkl kαtαβkβ

k4
(33)

when evaluating the matrix elements of the EMT in the deuteron state. The upshot of this substitution, is the manifest
conservation of the the recoil corrections in the deuteron EMT,

t̃ jl = klk j − δ jl �k2

2
DSP

0 + (k jkαQlα + klkαQ jα − �k2Q jl − δ jlQαβkαkβ )DSP
2 + (k jkl − δ jl �k2)Qαβ k̂α k̂βDSP

3 (34)

with

DSP
0 = −

∫
dr

3w2 j1
(

kr
2

)
kr

,

DSP
2 = +

∫
dr

3krw(
√

2u + w) j1
(

kr
2

) − 6 j2
(

kr
2

)
(
√

2u(2w − rw′) + w(
√

2ru′ + 2w))

2�k2r2
, (35)

DSP
3 = −

∫
dr

3
(
2 j2

(
kr
2

)
(2

√
2u(rw′ − 2w) + w(5w − 2

√
2ru′)) + krw(2

√
2u − w) j1

(
kr
2

))
2�k2r2

.

The net result is the matrix entry

〈
+ k

2
m′

∣∣∣∣(S × ik)( jPl )

∣∣∣∣ − k

2
m

〉
= (k jkl − δ jl �k2)

2
DSP

0 δmm′ + 〈m′|(k jkαQlα + klkαQ jα − k2Q jl − δ jl Qαβkαkβ )|m〉DSP
2

+ (k jkl − δ jl �k2)k̂α k̂β 〈m′|Qαβ |m〉 DSP
3 , (36)

which is manifestly transverse, with all invariant form factors DSP
0 , DSP

2 , DSP
3 finite in the forward limit.
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E. Summary EMT in impulse approximation

In summary, the nonrelativistic contributions to the deuteron EMT in the impulse approximation and in linear order in the
recoil momentum of the spectator nucleon, are given by

T 00
D (k, m′, m) = 2TM (k)

(
CE (k)δmm′ − 2CQ(k)k̂α k̂β〈m′|Qαβ |m〉

)

+ 2TSP(k)

(
− DSP

0 (k)δmm′ − (
DSP

2 (k) + 2DSP
3 (k)

)
k̂α k̂β〈m′|Qαβ |m〉

) �k2

2m2
N

= mDAD(k)δmm′ + QD(k)
kαkβ

2mD
〈m′|Qαβ |m〉,

T 0 j
D (k, m′, m) = 2TS (k)CS (k) 〈m′| (S × ik) j

4mN
|m〉 + 2mN A(k)CP(k) 〈m′| (S × ik) j

mN
|m〉

= JD(k)
〈m′|(�S × i�k) j |m〉

2
,

T jl
D (k, m′, m) = 2TS (k)

(
(k jkl − δ jl �k2)

2
DSP

0 (k)δmm′ + (k jkl − δ jl �k2)Qαβ k̂α k̂βDSP
3 (k)

+〈m′|(k jkαQlα + klkαQ jα − �k2Q jl − δ jl Qαβkαkβ )|m〉 DSP
2 (k)

)
1

2m2
N

+ 2CM (k)
CE (k)(k jkl − δ jl �k2)δmm′ − 2CQ(k)(k jkl − δ jl �k2)k̂α k̂β〈m′|Qαβ |m〉

m2
N

= DD
0 (k)

k jkl − δ jl �k2

4mD
δm′m + DD

3 (k)
(k jkl − δ jl �k2)k̂α k̂β〈m′|Qαβ |m〉

4mD

+ DD
2 (k)

〈m′|(k jkαQlα + klkαQ jα − �k2Q jl − δ jlQαβkαkβ )|m〉
2mD

. (37)

Our conventions for the deuteron EMT invariant form factors,
follow the general spin-1 conventions introduced in [31]. In
the impulse approximation and to linear order in the recoil
momentum of the spectator nucleon (in short hand notations),
they are

AD = 2

mD

(
TMCE − �k2

2m2
N

TSPDSP
0

)
,

QD = −2mD

�k2

(
4TMCQ + �k2

m2
N

TSP
(
DSP

2 + 2DSP
3

))
,

JD = TSCS

mN
+ 4ACP,

DD
0 = 4mD

m2
N

(
1

2
TSDSP

0 + 2CMCE

)
,

DD
2 = 2mD

m2
N

TSDSP
2 ,

DD
3 = 4mD

m2
N

(
TSDSP

3 − 4CMCQ
)

(38)

with the deuteron quadrupole form factor

Q(k) = −4m2
D

�k2
CQ(k) → QD (39)

that reduces to the deuteron quadrupole moment in the for-
ward direction.

The numerical results for low and intermediate momenta
k � mN , are shown in Fig. 4. Note that the quark and gluon
contributions to D0 and D3 are comparable, since Cg(k) and
Cq(k) are very similar in Eq. (9). In the impulse approx-
imation, the spin averaged deuteron D value at the origin
is D0(0) = −10.43, which is to be compared to D0(0) =
−13.126 in the Skyrme model [14], and D0(0) = −24.33 in
the relativistic light cone convolution model [15].

For B(k) ≈ 0 and at low momenta k � mN , we have

TM (k) ≈ TS (k) ≈ 2TSP(k) ≈ mN A(k).

The deuteron invariant EMT form factors (38) simplify (short
hand notation)

AD ≈ A(k)CE ,

QD ≈ −4m2
D

�k2
A(k)CQ − 2A(k)

(
DSP

2 + 2DSP
3

)
, (40)

JD ≈ A(k)(CS + 4CP )

for the mass AD, quadrupole QQ, and momentum JD, re-
spectively. For the deuteron D terms, we have (short hand
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FIG. 4. The deuteron invariant EMT form factors (38) in the impulse approximation: gluon (red-dashed line), quark (blue-dotted line), and
gluon+quark (black-solid line), compared to the nucleon AN and DN (thinner dashed, dotted, and solid lines).

notation)

DD
0 ≈ 4A(k)DSP

0 + 16C(k)CE ,

DD
2 ≈ 4A(k)DSP

2 , (41)

DD
3 ≈ 8A(k)DSP

3 − 32C(k)CQ

for the standard tensor DD
0 , tensor spin-spin DD

2 , and tensor-
quadrupole DD

3 , respectively.
The three deuteron D-form factors in the impulse approx-

imation can be used to describe the spatial distributions of
the pressure and shear force inside the deuteron as probed by
a graviton or a graviton-like probes. Using the conventions
for the pressure and shear introduced in [6], we show in
Fig. 5 their distribution inside the deuteron. The formulas are
put in Appendix B. We have separated the quark and gluon
contributions, following their separation in the nucleon form
factors (9). Here, p{0,2,3},{g,q} refer to the pressure distributions
carried by the quarks and gluons separately, and s{0,2,3},{g,q}
refer to the shear distributions carried by the quarks and
gluons also separately. We note that the pressure distribu-
tions and shear forces obtained in this work satisfied the von
Laue conditions mentioned in [31]. The sign of p0,g changes

around r = 1.4 fm, which is further than the one reported in
the nucleon in [22]. Both p0,g and s0,g have longer tails in
comparison to the nucleon.

V. HELIUM-4 EMT IN THE IMPULSE APPROXIMATION

We will start with the simplest 0++ helium-4 nucleus, a
scalar particle both in spin and isospin. The ground state of
helium-4 is composed of two protons and two neutrons in a
purely S wave. Its 0++ EMT is characterized by two invariant
form factors [18]

〈p2|T μν |p1〉 = PμPν

mα

AH (k) + 1

4mα

(kμkν − gμνk2)DH (k).

(42)
In the impulse approximation, most of the EMT results for
helium-4 can be inferred from those of the deuteron presented
above with much simplifications. The same observations can
be extended to the lighter 0++ magic nuclei.
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FIG. 5. The gluon and quark pressure p0,2,3 and shear s0,2,3 dis-
tributions inside the deuteron, in the impulse approximation.

A. Helium-4 state

To construct the helium-4 state, we will use the K-
harmonics method to factor out the spurious center of mass
motion [32,33]. The method works well for few particle sys-
tems, when the multidimensional Schrodinger equation can be
reduced to a one-dimensional hyper-radial distance times the
lowest K harmonics.

The K-harmonics method becomes increasingly involved
for heavier nuclei, where the mean-field single particle ap-
proximation is more appropriate. However, the removal of
the spurious center of mass motion is more challenging in
the mean-field approach. We will present both methods, when
addressing helium-4 for comparison.

1. K-harmonics method

The ground state of helium-4 (α particle) is spin-isospin
singlet, and reads

�H [1, . . . , 4] = ϕ[r1, r2, r3, r4] P[σ (i), τ (i)], (43)

where P[] refers to the properly symmetrized spin-isospin
wave function. In general, the ground state contains a smaller
D-wave admixture [34], that we have ignored for simplicity.

To remove the spurious center of mass motion in Eq. (43)
using the K-harmonics method, the pertinent Jacobi coordi-
nates are [33]

�ξ1 = 1√
2

(�r2 − �r1),

�ξ2 = 1√
6

(�r1 + �r2 − 2�r3),

�ξ3 = 1

2
√

3
(�r1 + �r2 + �r3 − 3�r4),

�RC = 1

4
(�r1 + �r2 + �r3 + �r4), (44)

the radial hyperdistance is

R2 = 1

4

∑
i �= j

(�ri − �r j )
2 = �ξ 2

1 + �ξ 2
2 + �ξ 2

3 (45)

and the center of mass motion factors out of the four-particle
kinetic contribution

K = −
4∑

i=1

∇2
i

2mN
→ − 1

2mN

(
d2

dR2
+ 8

R

d

dR
− K2

N

R2

)
. (46)

The hyperspherical harmonics (HHs) are the eigenstates of
the grand-angular momentum [33]

K2
N YKLML

[K] (�Ñ ) = (K (K + 3N − 2))YKLML
[K] (�Ñ ) (47)

for atomic number A with N = A − 1. The Ñ = 3N − 1
angles are fixed by the hyperspherical symmetric Jacobi co-
ordinates through

ξ1 = R cosθ (sinθ1cosφ1, sinθ1sinφ1, cosθ1),

ξ2 = R sinθ cos φ(sinθ2cosφ2, sinθ2sinφ2, cosθ2), (48)

ξ3 = R sinθsinφ(sinθ3cosφ3, sinθ3sinφ3, cosθ3).

They are valued as θi ∈ [0, π ], φi ∈ [0, 2π ], θ ∈ [0, π
2 ], and

φ ∈ [0, π
2 ] with the angular volumes

�9 =
∫ π/2

0
dφ sin2φcos2φ

∫ π/2

0
dθ sin5θcos2θ

3∏
i=1

∫ π

0
dθi

∫ 2π

0
dφisinθi = 32π4

105
. (49)

The specific form of the HHs follows by recoupling the
individual angular momenta Li. They are normalized as∫

d�Ñ YKLML ∗
[K] (�Ñ )YK ′L′M ′

L
[K ′] (�Ñ ) = δ[K],[K ′] (50)

and their total number is

dK = (2K + 3N − 2)
(K + 3N − 3)!

K!(3N − 2)!
. (51)
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For helium-4 with A = 4 and N = 3, the K = 0 HH has degeneracy d0 = 1, and the K = 1 HHs have degeneracy d1 = 9. For
K = 0 case, the spin-isospin wave function can be written as [35]

P[σ (i), τ (i)] =
√

105

8π2
(([σ (1), σ (2)]1[σ (3), σ (4)]1)00([τ (1), τ (2)]0[τ (3), τ (4)]0)00

− ([σ (1), σ (2)]0[σ (3), σ (4)]0)00([τ (1), τ (2)]1[τ (3), τ (4)]1)00). (52)

Here, σ (i), τ (i) refer to the spin-isospin of the ith nucleons.
The subscripts refer to their recoupling to a total spin-isospin.

The general form of Eq. (43) in hyperspherical form mod-
ulo the spin factors is

ϕ[K](R)YKLML
[K] (�8̃ ) (53)

with the S-wave solution for helium-4

ϕ[0](R)Y000
[0] (�8̃ ) = ϕ(R)√

�9
. (54)

To eliminate the linear derivative in the hyperdistance in the
Schrodinger equation, we will seek the radial wave function

ϕ(R) = u(R)

R4
(55)

with the reduced wave function satisfying

u′′ − 12

R2
u − 2mN

h̄2 (W (R) + VC (R) − E )u = 0 (56)

subject to the normalization∫ ∞

0
dR |u(R)|2 = 1. (57)

A large centrifugation emerges following the reduction to the
hyperdistance. Here, W (R) is the projection of the pair po-
tential V (ri j ) on the K = 0 harmonic, which can be obtained
through [35]

W (R) = 1

�9

∫
d�9

∑
i< j

V (ri j ). (58)

Since the helium-4 wave function is symmetric under the
spatial exchange of any pair of nucleons, it follows that

W (R) = 6

�9

∫
d�9V (

√
2Rcosθ ) (59)

or equivalently,

W (R) = 315

4

∫ 1

0
dx (1 − x2)2x2 V (

√
2Rx). (60)

For the pair Coulomb potential,

VC (ri j ) =
(

1

2
+ τz(i)

)(
1

2
+ τz( j)

)
e2

4π ri j
(61)

using the spin-isospin helium-4 wave function (52), the
Coulomb potential can be reduced to

VC (R) =
∑
i< j

∫
d�9P+(σ (i), τ (i))VC (ri j )P(σ (i), τ (i))

= 35

16
√

2R

e2

4π
= 2.23 MeVfm

R
. (62)

We note the recent applications of this method to the clus-
tering of light nuclei in heavy-ion collisions [36], and the
charmed tetraquark states in [37].

Specific choices of the pair potential in Eq. (60) for helium-
4 were discussed in [35,38,39]:

V1(r) = +144.86 e−(r/0.82)2 − 83.34 e−(r/1.6)2
,

V2(r) = +389.5 e−(r/0.7)2 − 140.6 e−(r/1.4)2
(63)

with the potential energy in MeV units, and the spatial range
in fm. The above potentials are obtained by studying the bind-
ing energy of various light nuclei [38,39]. We have checked
that the effect of the Coulomb interaction is negligible. The
potentials in Eq. (63) capture schematically the repulsion at
short distance (omega-exchange) and the attraction at large
distance (pion-exchange). They reproduce the binding energy,
electromagnetic radius, and the electromagnetic form factor
of helium-4 up to momenta of the order of 1

2 mN as detailed
in Appendix A. This range can be extended to 2

3 mN with our
choice

V3(r) = +1310.21 e−(r/0.7)2 − 467.97 e−(r/1.16)2
. (64)

The reduced S-wave solutions to Eq. (56) for V1, V2, and
V3 are shown in Fig. 6 versus the hyperdistance. The bind-
ing energy of helium-4 with potential V1, V2, and V3 are
−27.75 MeV, −28.47 MeV, and −29.3 MeV, respectively.
The large induced centrifugation by projection on the hyper-
distance causes it to peak at 2.5 fm. In the later sections, we
will present the GFFs of helium-4 obtained with potential V3.

2. Woods-Saxon potential (mean-field approximation)

For heavier nuclei the use of single particle states in the
mean-field approximation is more convenient, modulo the
center of mass motion. Although helium-4 does not qualify as
a large nucleus, we will present the analysis for comparison
with the K-harmonics method. In this case, the radial part of
Eq. (43) will be sought using the independent particle states

ϕ[r1, . . . , r4] =
4∏

i=1

u(ri )

ri
. (65)

The reduced u is solution to

u′′(r) − mN

2h̄2 (EH + VW S (r))u(r) = 0 (66)

in the Woods-Saxon potential

VW S (r) = − V0

1 + e(r−R)/a
≡ −V0y(r) (67)

and normalized as
∫

dr u2 = 1. The depth V0, range R, and
skin a of the potential are fixed to reproduce helium-4 binding
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FIG. 6. Top: The potential W (R) and VC (R) defined in Eqs. (60)
and (62). W1, W2, and W3 are obtained using V1, V2, and V3 defined in
Eqs. (63) and (64). Bottom: Helium-4 S wave reduced wave function
solution with potential V1, V2, and V3 versus the hyperdistance.

energy per particle 1
4 EH = 7.1 MeV and radius rH = 1.7 fm.

In general, the solution to Eq. (43) can be obtained in closed
form, in terms of a generalized hypergeometric function [40]

u(r) = Cy(r)ν (1 − y(r))μ

× 2F1(μ + ν, μ + ν + 1, 2ν + 1, y(r)) (68)

with C fixed by the normalization. Here, we have set μ =
i(γ 2 − ν2)

1
3 and ν > 0 with

ν2 = a2EH mN

2h̄2 , γ 2 = a2V0mN

2h̄2 .

For light nuclei in general, V0 = 50 MeV, a = 0.51 fm, and
R = r0A

1
3 with r0 = 1.25 fm.

In Fig. 7 we show the potential for A = 4 (top), and the
single particle state wave function for helium-4 (bottom). The
numerical binding energy per particle is 1

4 EH = 7.1 MeV with
a radius of 1.6 fm in agreement with the measured charge
radius in [41].

B. Helium-4 EMT

The way we have presented the derivation of the deuteron
EMT results in the impulse approximation, can be applied
verbatim to helium-4 using the wave function (43), with much
simplifications and minor changes, thanks to the absence of a

FIG. 7. Top: Woods-Saxon potentials VW S for helium-4. Bottom:
Helium-4 S wave.

D-wave admixture in helium-4. With this in mind, the results
for helium-4 follow from Eq. (37) by inspection,

T 00
H (k) = 4TM (k) C̄E (k)

=
(

mα + �k2

4mα

)
AH (k) + �k2

4mα

DH (k),

T 0 j
H (k) = 0,

(69)

T jl
H (k) = 4CM (k)C̄E (k)

k jkl − δ jl �k2

m2
N

= DH (k)
kl k j − δ jl �k2

4mα

with

AH (k) = 4TM (k)

mα

C̄E (k) − �k2

m3
α

(TM + 64CM )C̄E (k)

≈ A(k)C̄E (k), (70)

DH
0 (k) = 16

mα

m2
N

CM (k)C̄E (k) ≈ 64C(k)C̄E (k)

with the normalization C̄E (0) = 1.
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FIG. 8. A- and D-form factors for helium-4 obtained using K-
harmonics method with potential V3.

1. K-harmonics

For the reduced S-wave solution (54) we have [35]

C̄E (k) =
∫

dR d�9

(
1

4

4∑
i=1

e−ik·(ri−RC ) |u(R)|2
�9

)

=
∫

dR d�9ei
√

3
2

�k �ξ3
|u(R)|2

�9
(71)

= 105
∫

dR
|u(R)|2(

1
2

√
3kR

)3 j3

(
1

2

√
3kR

)
,

where we made use of the permutation symmetry of the
helium-4 wave function expressed in Jacobi coordinates with

�r4 − �R = −
√

3
2

�ξ3.

2. Woods-Saxon potential

For the Woods-Saxon potential we have

C̄E (k) =
∫ ∞

0
u2(r) j0(kr)dr. (72)

Note that kr instead of 1
2 kr appears in Eq. (72), as the the

reduced wave functions using the Woods-Saxon potential are
coordinated from the center of mass.

In Fig. 8 we show the A, D form factors for helium-4 using
the K-harmonics method for the wave function with the spuri-
ous center of mass removed. In Fig. 9 we show the A, D form

FIG. 9. A- and D-form factors for helium-4 obtained using a
Woods-Saxon potential.

factors for helium-4, using the Woods-Saxon potential, with-
out the removal of the spurious center of mass. The behavior
of the form factors obtained with different approaches are
quantitatively different in the intermediate momentum range
with the A, D form factors free of the center of mass motion,
crossing the zero line at about k ∼ mN/2. The differences
between the two constructions illustrate the importance of
removing the center of mass motion, while describing the
form factors for light nuclei. This point is further illustrated
in our analysis of the charge form factors in Appendix A,
where we note the agreement with the potential (64) up to
2
3 mN , well within the range of validity of our nonrelativistic
expansion. The gluon and quark contributions to the pressure
pg,q and shear sg,q distributions are shown in Fig. 10, these
results should be reasonable for distances r > 2π/( 2

3 mN ) ∼
2 fm.

The results for helium-4, the lightest 0++ magic nucleus,
carry to heavier magic nuclei in the impulse approximation,
with general A in the Woods-Saxon potential. In particular
we have AH (0) ≈ A0A(0) = 1 and DH (0) ≈ A2D(0) in the
impulse approximation, which is to be compared to the scal-
ing A

7
3 suggested using a liquid drop model [6], A2.26 using

relativistic nuclear potentials [7], and more recently A1.7–1.8

reported in the generalized Skyrme model [14]. In Fig. 11
we compare the D-form factor per nucleon, for the nucleon
(red-solid line), deuteron (green-solid line), and helium-4 with
K-harmonics method (black-solid line), and Woods-Saxon
potential (blue-solid line).
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FIG. 10. The gluon and quark pressure pg,q and shear sg,q

distributions in helium-4 using K-harmonics method (top) and
Woods-Saxon potential (bottom), in the impulse approximation.

VI. SCALAR AND MASS RADII

We now extend the proton definitions of the scalar radius
rS and the mass radius rM to light nuclei, by defining the scalar
and mass form factors

GS (k) = T 00(k) − T ii(k), GM (k) = T 00(k) (73)

FIG. 11. The spin average D form factor normalized by the
baryon number A in the nucleon (N), deuteron (D), and helium-4
(HE) with sublabels for K harmonics with potentials V3 and Woods-
Saxon.

for each of the deuteron and helium-4 with

r2
S,M = −6

(
dln GS,M (k)

d�k2

)
�k2=0

. (74)

The quark and gluon radii in light nuclei are presented in
Table I, and compared to the charge radii following from
Appendix A using the same wave functions. The quark and
gluon separated radii in light nuclei are comparable, owing
to the similarity of these radii in the nucleon following from
Eq. (9). Overall, the difference between the scalar and mass
radii seen in the nucleon, persists in light nuclei with the
gluonic scalar radii larger than the mass radii, but both appear
closer to the computed charge radii, in the impulse approxi-
mation. A similar observation was made in [15] for the light
front transverse deuteron size, in the light cone convolution
model.

VII. CONCLUSIONS

We have analyzed the gravitational form factors for the
deuteron in the context of the impulse approximation. The
proton and neutron inside the deuteron were assumed nonrel-
ativistic with the recoil of the spectator nucleon retained only
to linear order. These approximations limit our gravitational
form factors to momenta of the order of the nucleon mass.

The deuteron gravitational form factors AD, QD, JD capture
the mass, quadrupole, and momentum distributions, supple-
mented by three additional DD

0 , DD
2 , DD

3 form factors reflecting
on the standard tensor, spin-tensor, and mixed-spin-tensor
contributions, respectively. Using the nucleon gravitational
form factors, we have made explicit both the gluonic and
fermionic contributions to each of the form factors. This bud-
geting reflects on the quantum delocalization of the concepts
of quarks and gluons, in constituent bound states at low en-
ergy.

The deuteron scalar and mass radii from either the quarks
or gluons are comparable to the deuteron electromagnetic
radius. In contrast, the spin averaged quadrupole scalar and
mass radii carried by the quarks and gluons are substantially
smaller than the deuteron electromagnetic radius.

Our analysis of the deuteron, readily extends to helium-4,
a much more compact nucleus. To describe the 0++ ground
state of helium-4, we have used both the K-harmonics method
where the spurious center of mass motion is explicitly re-
moved, and a Woods-Saxon potential with the spurious center
of mass motion present. While the radii appears to be similar
for both constructions, the ensuing form factors are sub-
stantially different, showing the importance of removing the
spurious center of mass motion.

In the zero momentum limit, the mean-field approximation
appears reliable in the determination of the mass radii, even
with the unsubtracted center of mass motion. This observation
allows for the extension of the mean-field approach to the
heavier 0++ magic nuclei O16, C40,.... In particular, Eq. (69)
can be extended to the heavier nuclei case, the spin average
D-form factor for these heavier nuclei appears to scale as
DA(0) = A mA/mN D(0) ≈ A2D(0) for a large atomic number
A, in the impulse approximation. Although the nonrelativis-
tic reduction holds in heavier nuclei, fermi motion requires
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TABLE I. The quark and gluon EMT radii (fm) of light nuclei following from Eq. (73): scalar radii rS , mass radii rM , rQ,S/M spin averaged
quadrupole radii, and rE charge radii. For helium-4 we have listed the results from the K harmonics (K) with potential V3 and Woods-Saxon
potential (WS), with the bracketed results referring to experiment.

Nuclei rg
S rq

S rg
M rq

M rg
S,Q rq

S,Q rg
M,Q rq

M,Q rE

proton(experiment) 1.07 [2] − 0.76 [2] − − − − − 0.84 [42]
proton(input) 0.93 [22] 0.82 0.68 [22] 0.60 − − − − 0.8
Deuteron 2.16 2.11 2.06 2.04 0.97 0.97 0.97 0.97 2.12 (2.13 [41])
Helium-4(K) 1.80 1.76 1.69 1.67 − − − − 1.79 (1.68 [43])
Helium-4(WS) 1.79 1.75 1.68 1.66 − − − − 1.79 (1.68 [43])

that we include the next-to-leading order corrections in the
spectator recoil. Also, exchange current corrections maybe
important.

While our analysis has been considerably simplified by
treating the light nuclei constituents nonrelativistically, limit-
ing the range of the invariant form factors to about the nucleon
mass, we plan to extend it to the relativistic case at least for
the deuteron. Also, our analysis was limited to first order in
the recoil of the struck nucleon or core. We plan to pursue
the analysis to second order in the spectator recoil momen-
tum, and investigate the importance of the exchange current
contributions.

Our construction can be extended to analyze the gen-
eralized parton distributions (GPDs) for light nuclei, to
understand the particular role played by the nucleon pair in-
teraction, as well as exchange currents. Our gravitational form
factors should prove useful for assessing diffractive photo-
and electroproduction of heavy quarkonia on light nuclei.

The current effort at JLab to measure near threshold heavy
quarkonia production on nucleons should be extended to light
nuclei, to shed light on how the formation of nuclei may
affect our understanding of mass and charge distributions,
and the nature of the quantum delocalization of the quarks
and gluons in bound states at low energy. Clearly, with the
advent of the Electron-Ion Collider (EIC) with higher energy
and luminosity, threshold photoproduction of quarkonia such
as J/�,ϒ on light nuclei, should prove useful for addressing
these issues.
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APPENDIX A: LIGHT NUCLEI CHARGE FORM FACTORS

To compare the mass radii from the gravitational form
factors to the charge radii for light nuclei, we provide here
a simple estimate of their charge form factors, also in the
impulse approximation. Since data are available, that allows
us to gauge the validity of our method. With this in mind and

for a single nucleon, the electromagnetic current reads

Jμ
N (k) = ū(p2) e

(
F1(k)γ μ + F2(k)

iσμνqν

2mN

)
u(p1). (A1)

F1, F2 are the Dirac and Pauli form factors, which are related
to the electric and magnetic Sachs form factors as

GE (k) = F1(k)− �k2

4m2
N

F2(k), GM (k) = F1(k)+ F2(k), (A2)

The age-old Rosenbluth analysis of the electron scattering
data up to 10 GeV2 shows that the Sachs form factors for the
proton are well approximated by dipoles

GD(k) =
(

1 + �k2

0.71

)−2

, Gp
E (k) = GD(k),

Gn
E (k) = 0, Gp,n

M (k) = μp,nGD(k) (A3)

with the p, n empirical magnetic moments μp = 2.79,−1.91
(in Bohr magnetons). For completeness, we note that the JLab
analysis based on the ratio of the polarization of the scattered
proton shows Gp

E falling faster than Gp
M [44]:

Gp
E (k) = (1 − 0.13 (�k2 − 0.04)) GD(k). (A4)

The leading nonrelativistic and recoil contributions to the
nucleon charge form factor are

eJ0
N (k) = e

(
GE (k) + (σ × ik) · P

4m2
N

(2GM (k) − GE (k))

+O
( �k4

m4
N

,
P2

m2
N

))
. (A5)

We now proceed to use Eq. (A5) for the modifications to the
charge density in light nuclei, using the impulse approxima-
tion.

1. Deuteron charge form factor

Since the deuteron wave function is symmetric under spin
exchange and independently space exchange of p, n, it follows
that only the singlet combination of electric and magnetic
form factors contribute to the deuteron charge form fac-
tor (A5) through the substitution

GS
E (k) = Gp

E (k) + Gn
E (k)

2
, GS

M (k) = Gp
M (k) + Gn

M (k)

2
(A6)
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with σ → S. With this in mind, and using some of the matrix elements developed for the EMT form factors earlier, we obtain
for the charge density in the impulse approximation

J0
D(k, m′, m) = 2GS

E (k)

(
CE (k)δm′m − 2CQ(k)〈m′|(S · k̂)2 − 1

3
S2|m〉

)

− �k2

2m2
N

(
2GS

M (k) − GS
E (k)

) (
DSP

0 (k)δm′m + (
DSP

2 (k) + 2DSP
3 (k)

)〈m′|Qi j k̂ik̂ j |m〉)

= F D
C (k)δm′m + F D

Q (k)
kαkβ

2m2
D

〈m′|Qαβ |m〉. (A7)

The squared electric charge radius of the deuteron is the
sum of the nucleon, plus the intrinsic CE -form factor
contribution

〈r2〉D = 〈r2〉N + 〈r2〉CE . (A8)

The results for the electric charge form factor for the deuteron
|F D

C | in Eq. (A7) are shown in Fig. 12 (top), and compared to
the empirical data in [45]. The impulse approximation works
reasonably well in this momentum range, although the diffrac-

FIG. 12. Top: Deuteron electric charge form factors in the
impulse approximation compared to experiment [46]. Bottom:
Helium-4 electric charge form factors using the K-harmonics method
with the potentials in Eqs. (63) and (64) and the Woods-Saxon
potential, compared to experiment [47].

tive dip is slightly off to the right of the empirical values. The
diffractive pattern with a first zero at about k2

D ≈ 0.75 GeV2,
reflects on the good deuteron S-wave function from the soft
Reid potential in Fig. 1, with a peak at aD ≈ 1.5 fm (diffrac-
tion disk size).

2. Helium-4 charge form factor

For helium-4, the charge density in the impulse approxi-
mation reads

J0
He(k) = 4GS

E (k) C̄E (k) = 2F He
C (k), (A9)

where the analog of the singlet substitution (A6) applies,
because of the spin and space symmetry of the underlying
wave function. Note that at low momentum transfer Eq. (A9)
simplifies to

F He
C (k) ≈ F D

C (k). (A10)

The squared electric charge radius of helium-4 is the
sum of the nucleon plus the intrinsic C̄E form factor
contribution

〈r2〉H = 〈r2〉N + 〈r2〉C̄E
. (A11)

The results for the electric charge form factor for helium-4
|F He

C | in Eq. (A9) are shown in Fig. 12 (bottom) for the
Woods-Saxon potential (red-triangle) and the K harmonics
with potential V1 (dotted-blue line), V2 (green diamond) V3

(purple triangle), and compared to the empirical data (yellow
square) in [47]. Note that the diffractive minima following
from V1–V3 are different. The corresponding wave functions
shown in Fig. 6 are similar but not identical, especially in
the small R region, which is at the origin of the difference in
the k > mN/2 region. The result with Woods-Saxon potential
does not display a diffraction pattern, since the single-particle
wave function in Fig. 7 shows no plateau or disk. The K
harmonics does, and the discrepancy between the measured
diffractive minimum and the K-harmonics minimum, could
be narrowed by optimizing the potential choice in Eq. (63).
Away from the diffractive minima, the K-harmonics elec-
tric form factor and the measured one are comparable in
magnitude.
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APPENDIX B: PRESSURE AND SHEAR FORCE

Following [31], the stress tensor defined by the i j compo-
nents of the EMT is defined as (a = q, g),

T jl
a (�r, m′, m) =

∫
d3k

(2π )3

mD

E
e−ik·r

〈
+ k

2
m′

∣∣∣∣T̂ jl
a (0)

∣∣∣∣ − k

2
m

〉

= (
p0(r)δ jl + s0(r)Y jl

2

)
δm′m + p2(r)〈m′|Qi j |m〉

+ 2s2(r)〈m′|Q̂l pY pj
2 + Q̂ j pY pl

2

− δ jl Q̂pqY pq
2 |m〉

+ 〈m′|Qαβ |m〉∂̂α∂̂β

[
p3(r)δ jl + s3(r)Y jl

2

]
(B1)

with Y jl
2 = r̂l r̂ j − 1

3δ jl . The pressure and shear force follow
as

pi = 1

3

1

r2

d

dr
r2 d

dr
D̃i(r),

si = −1

2
r

d

dr

1

r

d

dr
D̃i(r). (B2)

Here, D̃i are the Fourier transform of the deuteron form factors
Di defined in Eq. (37),

D̃0,2,3(r) =
∫

d3k

2E (2π )3
e−ik·rD0,2,3(k). (B3)

For helium-4 without the small D-wave admixture, the pres-
sure and shear force receive contribution only from D0.
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