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Heavy-dense QCD, sign optimization, and Lefschetz thimbles
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We study the heavy-dense limit of QCD on the lattice with heavy quarks at high density. The effective three-
dimensional theory has a sign problem which is alleviated by sign optimization where the path integration domain
is deformed in complex space in a way that minimizes the phase oscillations. We simulate the theory via a
hybrid Monte Carlo approach, for different volumes, both to leading order and next-to-next-to leading order in
the hopping expansion, and show that sign optimization successfully mitigates the sign problem at large enough
volumes where usual reweighting methods fail. Finally we show that there is a significant overlap between the
complex manifold generated by sign optimization and the Lefschetz thimbles associated with the theory.
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I. INTRODUCTION

Mapping the phase diagram of quantum chromodynamics
(QCD), the theory that governs the strong nuclear force, has
been an outstanding problem for many decades. The main
challenge in a nutshell is that such a task requires nonper-
turbative methods which almost always involve a numerical
stochastic, “Monte Carlo” component where the path integral
is statistically sampled. Even though such nonperturbative
methods have been very successful in computing the thermo-
dynamic properties of QCD at small densities [1,2], for most
theories at finite density, including QCD, their applicability is
severely limited by the “sign problem” which arises when path
integral measure is not positive definite and therefore cannot
be interpreted as a probability measure. In many cases, such
as QCD at finite density, the underlying action is complex and
the Boltzmann weight, e−S , leads to severe phase oscillations
in the path integral which become exponentially rapid in the
large-volume and/or low-temperature limit [3–6]. These oscil-
lations make the numerical computation of the path integral
practically impossible.

Over the years, there have been many attempts to tackle the
sign problem. One set of ideas stems from complexification
of fields where, instead of sampling the configurations on the
original domain of the path integral [for example SU(NC ) for
QCD], one samples on a complexified domain [a subset of
SL(NC ) for QCD] where the phase oscillations are milder
and therefore can be dealt with using conventional methods.
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Of course, the deformation to the complexified fields must
not change the value of the path integral. An example of
a complex domain over which the path integral has milder
phase oscillations is the Lefschetz thimble decomposition,
which is a multidimensional generalization of expressing a
one-dimensional integral as a linear combination of steepest
descent contours [7,8]. Just like steepest descent contours, the
phase over each Lefschetz thimble is stationary, rendering the
phase oscillations milder [9–11]. However, finding the correct
linear combination of thimbles for a given set of parameters
in the theory and sampling is generally challenging. To over-
come these difficulties various methods have been proposed
where, instead of the thimbles, one samples over other com-
plex domains which still have milder phase oscillations than
the original domain but are easier to construct and sample
compared to thimbles [12].

A more direct approach to mitigating the sign problem
by complexification is to convert it into an optimization the
problem where one minimizes the sign oscillations within a
family of complex domains parametrized by a set of auxiliary
variables. In a nutshell, an observable, such as the average
phase, that measures the strength of the sign oscillations,
is minimized within that set of parameters that describe the
complexified domain. The set of ideas that stem from this
approach goes under the name “sign optimization” or “path
optimization method” and has been applied to various QCD-
like models [13–16]. More broadly, this idea has also been
used to mitigate signal-to-noise problems in gauge theories
even in the absence of a sign problem [17]

In this paper, we implement sign optimization in the heavy-
dense limit of QCD which is captured by an effective theory
whose degrees of freedom describe heavy quarks at very high
density. Even though this is a somewhat academic limit of
QCD, it does inherit the sign problem from QCD, which
becomes exponentially severe with the volume and/or inverse
temperature. Furthermore the degrees of freedom are elements
of SU(NC ), the complexification of which can be generalized
to QCD. Furthermore, the simplified mathematical structure
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of the theory in this limit allows analytical expressions which
can be directly compared with the Monte Carlo results ob-
tained from sign optimized lattice simulations. Finally, for
the same reason, the simulations are not as demanding as
QCD in terms of computational resources. All these factors
combined make heavy-dense QCD an ideal test ground for
implementing sign optimization with the goal of applying it to
QCD in the future. Along similar lines to this work, it has been
studied via Lefschetz thimbles [18] and complex Langevin
methods[19,20] in the context of the sign problem.

In Ref. [21] we studied the one-dimensional limit of QCD
in the context of sign optimization. This paper is a natural con-
tinuation of the work along those lines. One crucial difference,
however, is that heavy-dense QCD is a three-dimensional
effective theory where the sign problem grows exponentially
with the volume, allowing us to analyze the performance of
sign optimization as a function of volume; which was not
possible in one-dimensional QCD. At the same time, as we
discuss further in the paper the existence of complex saddle
points, and the relations between the Lefschetz thimbles at-
tached to these saddles and the sign optimized manifolds is
similar to what we have observed in one-dimensional QCD.

The rest of the paper is organized as follows. In Secs. II
and III we briefly recapitulate the heavy-dense effective the-
ory of QCD and sign optimization respectively. Our results
are presented in Sec. IV. We then compare the complexified
domains obtained by sign optimization to Lefschetz thimbles
in Sec. V. Finally we discuss our results and present our
conclusions in Sec. VI.

II. HEAVY-DENSE QCD

We consider the cold and dense limit of QCD with heavy
quarks [22–26]. In this limit, the quarks cannot move due
their large mass, but do not decouple entirely either, due
to their high density. The resulting effective theory is three
dimensional and its degrees of freedom are Polyakov loops,
P(x), that describe these stationary quarks. More precisely, to
leading order in this heavy-dense limit, the Dirac determinant
(for Wilson fermions on the lattice) reduces to [24]

det Q f =
∏

x

det(1 + h Tr Px )2 det(1 + h̄ Tr P†
x )2, (1)

where Px = ∏Nt
x0=1 U0(x0, x) is the Polyakov loop (in the tem-

poral gauge) that is an element of SU(3) and

h = e(μ−m)/T = (2κeμa)Nt , h̄ = e(−μ−m)/T = (2κe−μa)Nt

(2)
are the quark and antiquark fugacities with a, μ, and m being
the lattice spacing, quark chemical potential, and constituent
quark mass. It is also useful to define the “hopping parameter”
κ = e−ma/2. In the heavy-dense limit

ma → ∞, μa → ∞ such that κeμa = finite. (3)

At high densities, quarks have a much larger fugacity than
antiquarks, h � h̄ and the second term in Eq. (1) can
be neglected, which simply means that the antiquark con-
tribution to the effective action is negligible. We further
take the lattice strong coupling limit where the gauge field

dynamics can be neglected as well. This turns out to be a
fairly good approximation for g2

Y M � 1 because, as explained
in Ref. [25], the effective gauge coupling λ vanishes rapidly
as λ ∼ (2Nc/g2

Y M )Nt for an SU(Nc) gauge group with coupling
g2

Y M . Finally, for Nc = 3, the Dirac determinant can be ex-
pressed in terms of Tr P as

det(1 + hPx) = (1 + h Tr Px + h2 Tr P†
x + h3). (4)

Putting everything together, to leading order in the heavy-
dense limit, the partition function of the effective theory is
obtained as

Z =
∫

[DP]
∏

x

(1 + h Tr Px + h2 Tr P†
x + h3)2. (5)

Apart from h = 0 (zero density) or h = 1 (half-filling), Px and
P†

x have different weights, therefore the Dirac determinant is
complex and the theory has a sign problem. Furthermore the
sign problem grows exponentially with volume,

σ = σV
0 , where σ0 = 1 + 4h3 + h6

1 + h2 + 2h3 + h4 + h6
, (6)

which follows from the fact only nonvanishing group integrals
are

∫
[DP] = ∫

[DP]P†P = 1, and the path integral factorizes
for each x.

Beyond leading order, the dynamics of fermions can be
systematically incorporated in the theory as interactions be-
tween the Polyakov loops at different spatial points and can be
organized in a hopping expansion controlled by the hopping
parameter κ [26]. These interactions further simplify in the
limit Nt � 1, which we assume, and lead to the following
next-to-next-to-leading order (NNLO) effective action [26]:

SNNLO = −2
∑

x

Tr log(1 + hPx)

+ η
∑
x,î

Tr
hPx

1 + hPx
Tr

hPx+î

1 + hPx+î

− η2
∑
x,î

Tr
hPx

(1 + hPx)2
Tr

hPx+î

(1 + hPx+î )2

− η2
∑
x,î, ĵ

Tr
hPx

(1 + hPx)2
Tr

hPx+î

(1 + hPx+î )

× Tr
hPx+ ĵ

(1 + hPx+ ĵ )
. (7)

Here î, ĵ denote the nearest neighbors of x and the sums
over î and ĵ run over each direction (x + 1̂, x − 1̂, etc.). The
effective coupling that controls the hopping expansion is

η = κ2Nt

Nc
. (8)

We have simulated the leading order as well as NNLO
theory by using sign optimization.

III. COMPLEXIFICATION AND SIGN OPTIMIZATION

In this section we summarize the idea of sign optimiza-
tion [13,14,16,27,28], and detail how we implement it in
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heavy dense QCD. As mentioned in the Introduction, our
strategy is to complexify the path integral, without changing
its value, in a way that the sign oscillations in the complexified
domain are milder than in the original domain. Let us denote
a generic complex space whose shape depends on a set of
parameters, �λ, as M�λ. Our first requirement is that complexi-
fication does not change the value of the path integral:

Z =
∫

SU(3)
[DP]e−S[P] =

∫
M�λ

[DP]e−S[P]. (9)

This is ensured by Cauchy’s theorem as long as the deforma-
tion from SU(3) to M�λ does not cross any singularities. The
strength of the sign oscillations are captured by the average
phase,

σ�λ =
∫
M�λ

[DP]|e−S[P]|e−i Im S[P]∫
M�λ

[DP]|e−S[P]| =
∫
M�λ

[DP]e−S[P]∫
M�λ

[DP]e− Re S[P]
. (10)

When the sign oscillations are strong |σ�λ| ≈ 0 due to the phase
cancellations and when they are mild |σ�λ| ≈ 1. Notice that
even though the path integral remains unchanged with the
deformation, the average sign does change, since the integrand
in the denominator involves a nonholomorphic term Re S.
Therefore our goal is to find a set of �λ’s which maximizes
|σ�λ|. To do this, we follow a gradient descent trajectory where
we start from SU(3) (i.e. λi = 0) and update �λ according to

�λ(τ + 1) = �λ(τ ) + δ∇�λ log |σ�λ(τ )| (11)

where τ denotes the gradient ascent step. With an appropriate
choice of the step size δ determined empirically, this proce-
dure converges to a local maximum of |σ�λ|.

It is clear that the complexified path integration domain,
M ≡ M�λ

V , must have the same dimensions as SU(3)V ,
meaning it is a middle dimensional complex manifold em-
bedded in SL(3)V . To parametrize M�λ we first express P ∈
SU(3), with eight angles a lá Bronzan [29]:

P(θ ) =
⎛
⎝ c1c2eiθ4 s1eiθ6 c1s2eiθ7

s2s3e−i(θ7+θ8 ) − s1c2c3ei(θ4+θ5−θ6 ) c1c3eiθ5 −c2s3e−i(θ4+θ8 ) − s1s2c3ei(θ5−θ6+θ7 )

−s1c2s3ei(θ4−θ6+θ8 ) − s2c3e−i(θ5+θ7 ) c1s3eiθ8 c2c3e−i(θ4+θ5 ) − s1s2s3ei(−θ6+θ7+θ8 )

⎞
⎠. (12)

The path integral is evaluated on the domain θi ∈ [0, π/2] for
i = 1, 2, 3 and θi ∈ [0, 2π ] for i = 4, . . . , 8. In this represen-
tation, the group measure is explicitly written as

dP = H (θ )d8θ (13)

where H (θ ) is the Haar measure, identified with the invariant
measure over the SU(3) manifold

H (θ ) =
√

det g = 1

2π5
s1c3

1s2c2s3c3. (14)

Here g is the invariant SU(3) metric defined as gi j =
Tr(P−1 P

θi
P−1 P

θ j
) up to an arbitrary normalization that can be

fixed by demanding
∫

d8θ H = 1. The path integral in terms
of the θ variables can be written as

Z =
∫

[Dp]e−S[P] =
∫

d8V θ e−S(θ ), (15)

where

Seff (θ ) = S[P(θ )] −
∑

x

log H (θx). (16)

We can now express M�λ in terms of complex θ ’s, which we
denote as θ̃ . It is convenient to express the θ̃ in terms of its
real part, which we simply call θ , as

θ̃i(θ ) = θi + i fi(θ ), (17)

where fi(θ ) are nonsingular, real functions that generically
depend on a set of parameters �λ. By construction, P(θ̃ (θ ))
is an element of a middle-dimensional manifold M�λ ⊂ SL(3)
since it is still parametrized by eight variables. Furthermore
the path integral over this manifold M�λ is equal to the original
path integral over SU(3). This is because θ can be smoothly
deformed into θ̃ by considering a set of intermediate surfaces

parametrized by θi + is fi with s ∈ [0, 1] without crossing any
singularities in the integrand. By Cauchy’s theorem this de-
formation does not change the value of Z [27].

One advantage of the Ansatz (17) is that we can express the
path integral over M�λ using the original real variables θ

Z =
∫
M�λ

[DP]e−S[P] =
∫

d8V θ̃ e−Seff (θ̃ )

=
∫

d8V θ det Je−Seff (θ̃ (θ )) =
∫

d8V θ e−S̃(θ ), (18)

where

J = ∂θ̃i

∂θ j
= δi j + i

∂ fi

∂θ j
(19)

is the Jacobian of the transformation, and the effective action
is given as

S̃(θ ) = Seff (θ̃ (θ )) −
∑

x

[log det J (θx)

+ log H (θ̃ (θx))]. (20)

We shall consider a class of complex fields generated by the
so-called mixing Ansatz:

fi(θ ) =
⎧⎨
⎩

0 for i = 1, 2, 3,∑N
m,n=0 λ(i)

m,n cos(mθ4 + nθ5) for i = 4, 5,

λ(i) for i = 6, 7, 8.

(21)

This Ansatz, introduced in the study of the one-dimensional
QCD, outperformed the “diagonal” Ansatz where Im θ̃i is only
a function of θi, i.e., fi(θ ) ≡ fi(θi ) [21]. The heuristic reason
for its better performance is that the mixing between θi’s
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captures the fluctuations around complex saddle points more
accurately than the diagonal Ansatz. We will elaborate more
on this in Sec. V when we compare the manifold created via
sign optimization to Lefschetz thimbles.

We note that since the only degrees of freedom of the
heavy-dense effective theory are Polyakov loops, Tr P, we
could have used the two independent eigenvalues of Tr P
to parametrize the path integration domain instead of using
the full SU(3) parametrized by eight variables. However, we
chose to work with the full SU(3), despite its redundancy,
in order to keep the discussion general and pave the way for
more realistic cases where the degrees of freedom are the full
SU(3). That said, in this case, one would likely need to work
with a more general Ansatz for the complexified fields than
Eq. (21). This can achieved by considering, for instance, the
Fourier coefficients of all the θi’s. A more detailed analysis
of the computational performance of different choices of the
Ansätze is left for future work.

Being equipped with the representation of the path integral
over M�λ in terms of real θi given in Eq. (18), it is straight-
forward to simulate the theory using standard Monte-Carlo
techniques by using the effective action given in Eq. (20).
The Markov chain on the complex field space, M�λ is gen-
erated by using real θ ’s that parametrize M�λ with respect to
the probability distribution e−ReS̃ , and the remaining phase
is reweighted. In other words the expectation value of an
operator is computed as

〈O〉 = 1

Z

∫
d8V θ e−Seff (θ ) O

= 1

σ�λ

1

Z pq

∫
d8V θ e−ReS̃ Oe−iImS̃ = 1

σ�λ
〈Oe−iImS̃〉ReS̃

(22)

where 〈· · · 〉ReS̃ denotes the average with respect to the Boltz-
mann factor e−ReS̃ , and the phase quenched partition function
and the average phase are given as

Zpq =
∫

d8V θ e−ReS̃, σ�λ = 〈e−iImS̃〉ReS̃

≡
∫

d8V θ e−S̃∫
d8V θ e−ReS̃

. (23)

We kept the subscript �λ in the average phase to emphasize that
it explicitly depends on �λ, even though the partition function
and therefore the expectation values of physical quantities
do not. We now come back to the problem of choosing the
optimal manifold within our Ansatz that maximizes σ�λ and
hence alleviates the sign problem. As mentioned earlier, the
optimal choice of �λ is determined via gradient ascent. We start
from SU(3) (λi = 0) and update �λ according to Eq. (11). The
gradient in Eq. (11) can be explicitly calculated as [27]

∇�λ log |σ�λ| = −
〈∫

d8V θ ∇�λe−ReS̃

〉
ReS̃

= 〈∇�λRe(Seff − Tr log J )
〉
ReS̃

(24)

=
〈
Re

(
i
∂Seff

∂θ̃i
∇�λ fi − Tr(J−1∇�λJ )

)〉
ReS̃

. (25)

Therefore each gradient ascent step includes the Monte Carlo
computation of the expectation value above, which, notably,
can be carried out without a sign problem. We have simulated
the theory for various parameters, both to leading order and
next-to-next-to leading order using sign optimization as out-
lined above. In the next section we present our results.

IV. RESULTS

As explained in the previous section, the configurations
on the sign optimized manifold can be sampled by using
the effective action (20) with its arguments being real θi’s,
and reweighing the remaining phase, Eq. (22), as usual. We
simulated the theory using a hybrid Monte Carlo (HMC)
algorithm [30] with a standard leapfrog integrator for the evo-
lution of the Hamiltonian h(θ, p) = S̃(θ ) + p2/2, and used
reflective boundary conditions for θ1,2,3 [31], which improved
the acceptance performance of the HMC simulation. We fixed
the number of points in the Euclidean time direction to be
Nt = 100, which corresponds to the cold limit. We simulated
the theory both to leading order and to next-to-next-to leading
order in the hopping expansion. In the former case, we fixed
the hopping parameter to κ = 0.01 and in the latter we varied
it between 0 and 0.05. Note that the range of the chemical
potential where the fugacity, th, varies between 0 and 1 is
roughly |1 − μ| ∼ 1/Nt that can be seen from Eq. (2). In
our complexification Ansatz given in Eq. (21) we used N = 3
Fourier coefficients.

In Fig. 1 (left) we show the average sign as a function
of volume for μ = 0.998, κ = 0.01, and Nt = 100 (which
corresponds to fugacity h = 0.45) to leading order in the
hopping expansion. Especially for larger volumes V = 53 and
63, the original sign problem is bad enough that reweighting
is practically unfeasible. However, with sign optimization, it
is mitigated to values where reweighting becomes feasible.
To illustrate this, we plotted the Polyakov loop for the same
values on the right. The result after sign optimization agrees
with the the value computed on the real manifold, albeit with
significantly smaller error bars. The improvement in the sign
problem as a function of gradient ascent is shown in Fig. 2,
where we used the same parameters as above with volume
V = 43. Similarly, the value of the average Polyakov loop as
a function of the ascent step is shown on the right. Notably,
initially the statistical uncertainty is quite substantial due to
the severe sign problem. Gradient ascent indeed stabilizes the
sign, which in turn decreases the statistical uncertainty in the
physical observable, 〈P〉.

The average sign, equation of state and the Polyakov loop
as a function of the chemical potential for volumes 53 and
63 are shown in Fig. 3. For both volumes without sign opti-
mization, the sign problem is too severe, as seen both directly
from the top figures, or from the error bars in the physical ob-
servables below (the density and the Polyakov loop). For both
volumes, sign optimization works as expected by stabilizing
the sign and therefore significantly reducing the statistical
uncertainty for all values of μ. Note that the Silver Blaze
phenomenon [32], where the density sharply rises when the
(baryon) chemical potential reaches the baryon mass, is cor-
rectly reproduced via sign optimization, in line with previous
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FIG. 1. The average sign (left) and the Polyakov loop (right) as a function of volume computed on the real plane and sign optimized
manifold, Mλ, with 250 and 1000 gradient ascent steps. The dashed gray line on the right figure denotes the exact value of the Polyakov loop.

work on heavy-dense QCD [19,26]. In our case this happens
at μ = 1, where recall that the chemical potential is measured
in units of constituent quark mass. Notably at μ = 1 (the
half-filling point) due to a particle-hole symmetry, the sign
problem vanishes, as studied in detail in [33].

In Figs. 4 and 5 we show the average sign, density, and
Polyakov loop as a function of κ , before (right) and after
(left) sign optimization to next-to-next-to-leading order in the
hopping expansion. For these simulations, we used the same
form of the effective action given in Eqs. (20) and (16), where
in this case S[P(θ )] in Eq. (16) is identified with the NNLO
action, SNNLO[P(θ )] given in Eq. (7). Note that for different
values of the chemical potential, the severity of the sign prob-
lem varies with the hopping parameter κ as seen in Fig. 4.
As seen from the same figure, sign optimization alleviates the
sign problem as expected even in the presence of the hopping
terms. This is in contrast with the case where the sign problem
can be solved by the worm algorithm only to leading order
(free) in the hopping expansion and in parallel with complex
Langevin, which also works in either case.

In Fig. 5 we show the dependence of the density and
Polyakov loop to the hopping parameter for the same values
of the chemical potential as above. Similarly to the free case,
the statistical uncertainties that arise from the sign problem
are significantly reduced by sign optimization. In order to
check the validity of our results we compared them with sec-
ond order perturbation theory. The dashed (solid) lines show
analytic results to first (second) order perturbation theory.
These analytic results were calculated by expanding e−SNNLO

to first (second) order in η and evaluating the integrals over
Lx = Tr Px and L∗

x = Tr P†
x with the help of the relations

Tr
hP�x

1 + hP�x
= hL�x + 2h2L∗

�x + 3h3

1 + hL�x + h2L∗
�x + h3

, (26)

Tr
hP�x

(1 + hP�x )2
= hL�x + 4h2L∗

�x + 9h3

1 + hL�x + h2L∗
�x + h3

−
(

hL�x + 2h2L∗
�x + 3h3

1 + hL�x + h2L∗
�x + h3

)2

. (27)

As expected, the agreement between the sign optimized
Monte Carlo computations and the perturbative calculations
is fairly good for small values of κ .

V. CONNECTION WITH LEFSCHETZ THIMBLES

While sign optimization is computationally effective, by
construction it does not provide much physical insight into
how it alleviates the sign problem. In this section we aim
to provide a physical interpretation of the results by estab-
lishing a connection between the sign optimized manifold,
M�λ, and the Lefschetz thimbles associated with the theory.
In order to construct the Lefschetz thimbles associated with
the path integral, Eq. (5), to compare and contrast with M�λ,
we first express the path integral in terms of the eigenvalues
of the Polyakov loop, α1, α2. Opting to work with α’s instead
of θ ’s makes visualizing the connection with the thimbles
easier. The Polyakov loop in the diagonal form is given as

FIG. 2. The average sign (left) and Polyakov loop (right) as a function of gradient ascent step for h = 0.45 (κ = 0.01, μ = 0.998, Nt =
100) and V = 43. The solid lines denote the exact values of σSU(3) and 〈P〉.
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FIG. 3. The average sign, density, and Polyakov loop as a function of chemical potential for volumes V = 53 and 63.

P = diag{eiα1 , eiα2 , e−i(α1+α2 )}. The group measure for the α

variables is a Vandermonde determinant:

V (�α) =
∏
i< j

|eiαi − eiα j |

= sin2

(
α1 − α2

2

)
sin2

(
α1 + 2α2

2

)
sin2

(
2α1 + α2

2

)
,

(28)

such that the partition function is expressed as

Z =
∫ ∏

x

[dα1,xdα2,xV (αx)]e−S[P(�αx )] =
∫

d2V α e−Se[�αx].

(29)
Here the effective action is defined as

Se[�αx] =
∑

x

[−2 log(1 + h Tr P(�αx) + h2P†(�αx) + h3)

+ logV (�αx)] (30)

and the Polyakov loop takes the form Tr P(�α) = eiα1 + eiα2 +
e−i(α1+α2 ).

The Lefschetz thimble decomposition of Z can be con-
structed by evaluating the holomorphic gradient flow

dαi,x

dτ
= ∂S[�αx]

∂αi,x
(31)

starting from αi,x ∈ [0, 2π ] and taking the formal limit τ →
∞. Finite values of τ are associated with a family of com-
plex manifolds that interpolate between the original domain,
[0, 2π ]2V , and the thimble decomposition. Following [34], we
shall call these manifolds “generalized thimbles.”

Since there are no interactions between different spatial
points in the leading order in the hopping expansion given
in Eq. (5), the flow equation, Eq. (31), can be solved for
each spatial point x independently. Therefore each generalized
thimble is V dimensional direct product of a two dimensional
complex manifold. We solve the flow equation to generate this
two-dimensional manifold for different flow times.

In order to visualize the generalized thimble, we then take
a projection on the subspace defined by α1 + α∗

2 = 0. Notably,
this quantity is “conserved” under the flow, namely

d

dτ
(α1 + α∗

2 ) = 0. (32)
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FIG. 4. The average sign as a function of the hopping parameter, in next-to-next-to leading order in the hopping expansion with (left) and
without (right) sign optimization for different values of μ, V = 43, and Nt = 100.

This can be seen by observing that the action, Se, given in
Eq. (30) is a real function of x and y where α1 = −α∗

2 =
x + iy. The conservation equation, Eq. (32), then follows di-
rectly from the flow equation, Eq. (31). We now compare
the sign optimized manifold and the generalized thimbles
on the projection on the subspace α1 + α∗

2 = 0 denoted by
the dashed black line in Fig. 6. Projections of the gen-
eralized thimbles as well as the sign optimized manifold
on this subspace are one-dimensional, which we show in
Fig. 7.

First, it can be seen that the generalized thimbles converge
into the the thimble decomposition with increasing flow time
as expected. Second, there are multiple complex saddle points,
hence multiple thimbles, which contribute to the thimble de-
composition. There are two saddle points on the subspace that
we focus on (those that intersect the dashed line in Fig. 6),
but the other saddle points contribute equally as well since
Re Se (hence the path integral weight) on each saddle point
is equal. Third, the sign optimized manifold approximately
reconstructs the thimble, especially around the saddle points

FIG. 5. The density and Polyakov loop as functions of the hopping parameter, in next-to-next-to leading order in the hopping expansion
with (left) and without (right) sign optimization for different values of μ, V = 43, and Nt = 100.

045208-7
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FIG. 6. The histogram of the eigenvalues of the Polyakov loop averaged over the volume. The green stars denote the saddle points and the
dashed line represents the subspace defined by α1 + α∗

2 = 0 on which we plot the Lefschetz thimble.

where most of the contribution to the path integral comes
from.

We would like to point out that, in general, sampling mul-
timodel distributions like this could present challenges as the
Markov chain could get stuck in a local minimum. The gener-
alized thimble approach is susceptible to this phenomenon as
the relevant support of each thimble in the sampled field space,
Re α, shrinks with increasing flow time as pictured in Fig. 8.
As a result, transitioning from one such region to another
becomes more difficult. The sign optimization, however, does
not. This follows directly from the form of the parametrization
given in Eq. (21), as Imαi is expressed as a function of Reαi,
so that the size of the relevant region in the sampled field
space remains the same [12]. Finally, the Jacobian associated
with the sign optimization Ansatz, Eq. (19), is fairly simple
and can be analytically calculated, as opposed to the Jacobian
associated with holomorphic gradient flow which has to be
numerically evaluated, introducing extra computational cost.

In fact, for practical applications, the computation of the Ja-
cobian whose computational cost scales with N3, where N is
the number of degrees of freedom, which itself scales with the
spacetime volume, is the main bottleneck in the holomorphic
gradient flow framework. In contrast, in the path optimization
algorithm presented in this paper, it scales linearly in space-
time volume, owing to the form of the complexification Ansatz
we used.

VI. CONCLUSIONS

We simulated the heavy-dense effective theory of QCD
at finite density by using sign optimization to alleviate the
sign problem. The optimal complex domain for the path in-
tegral is chosen within a family of Ansätze via a gradient
ascent algorithm. Building up on our previous observation
from one-dimensional QCD, we used the “mixing” Ansatz for
the complexified manifold, which is constructed to capture

FIG. 7. The comparison between the surfaces generated by holomorphic gradient flow, approaching the Lefschetz thimble at large flow
times, and the sign optimized manifold, plotted on the subspace defined by α1 + α∗

2 = 0. The stars denote the saddle points that lie on this
subspace (see Fig. 6).
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FIG. 8. The parametrization of the generalized thimbles (left) and the sign optimized manifold (right) in terms of the real fields (bars). For
thimbles, with increasing flow time the relevant region in the real field space that is sampled shrinks into small, disconnected regions leading
to multimodal distribution in contrast to sign optimization.

the fluctuations of fields around the complex saddle points.
We simulated the theory for different values of the hopping
parameter, volume, and chemical potential to both leading
order and next-to-next-to leading order in the hopping expan-
sion. Notably, the sign problem in the latter case cannot be
solved via worm algorithm unlike the former case [35]. We
observed that the sign optimization method can handle both
cases with comparable amounts of computational resources.
We also demonstrated that sign optimization works success-
fully for volumes 43, 53, and 63 where the sign problem is too
severe to overcome with usual reweighing.

Although the sign optimization method is demonstrated
to be an efficient way to alleviate the sign problem, it does
not provide much of physical insight in how it accomplishes
this. This is a generic property of optimization algorithms. We
showed that sign optimization in fact in a way reconstructs
the Lefschetz thimbles (a multidimensional generalization of
stationary phase contours) around the complex saddle points
of the theory. Similar phenomena have been observed be-
fore [14]. In this paper we explicitly compared the Lefschetz
thimble and the sign optimized manifold and showed that
they indeed overlap, especially in the vicinity of the sad-
dle points. This comparison further solidifies the observation
of the similarity between the Lefschetz thimbles emanating
from the complex saddles of the theory and the sign opti-
mized manifold made in one-dimensional QCD [21]. As a
result, one might view sign optimization as a method to con-
struct an approximation to the Lefschetz thimbles. However,
there are advantages of using sign optimization instead of
directly sampling the (generalized) Lefschetz thimbles. First,
the parametrization of the sign optimized manifold does not
require a numerical computation of the Jacobian as opposed
to thimbles, as it can be performed analytically, reducing the

computational cost. The gradient ascent procedure introduces
some computational cost, but since there is no sign problem
in computation of the gradient ascent observable (24) and it
does not have to be computed very precisely, the cost scales as
the number of ascent steps multiplied by moderate power of
the spacetime volume. Second, sampling the sign optimized
manifold does not lead to severe multimodal distributions,
which are difficult to sample as opposed to the thimbles.

We performed sign optimization within a family of com-
plex manifolds which are parametrized by a fairly generic
Ansatz that can in principle be applied to an arbitrary theory
whose degrees of freedom takes a value in SU(3). This gener-
ality comes with a cost, however. Finding a generic solution
to the sign problem is an NP-hard problem [36], therefore any
generic Ansatz, such as the one we used, will still lead to an
exponentially hard problem. Of course, reducing the exponent
can lead to practically useful results, as we demonstrated here.
At the same time, by using certain properties of the underlying
theory such as symmetries or perhaps some other knowledge
such as complex saddle points, one could consider a more
specific Ansatz tailored for the specific theory in mind. In this
case, there is no a priori reason for the sign problem to be
exponentially hard. Here, we took the first step in relating
the sign optimized manifolds to the complex saddle points
and the fluctuations around them. The natural next step is to
improve the complexification Ansatz by using some analytical
information based on these observations, which is left for
future work.
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