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Truncated partial-wave analysis for η-photoproduction observables via Bayesian statistics
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A truncated partial-wave analysis is performed for η photoproduction off the proton using the polarization
observables σ0, �, T , E , F , and G. Through this approach, model-independent estimates of the electromagnetic
multipole parameters are calculated. Based on these estimates, predictions are made for polarization observables
that have not yet been measured. These predictions identify promising future measurements that could resolve
the inherent mathematical ambiguities within the results. Bayesian inference is combined for the first time with
truncated partial-wave analysis, analyzing different truncation orders for six energy bins near the ηp-production
threshold, i.e., E lab

γ ∈ [750, 1250] MeV.
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I. INTRODUCTION

Baryon spectroscopy is an experimental technique to ac-
quire a better understanding of the strong interaction and its
fundamental theoretical description given by quantum chro-
modynamics. Particles (for example, pions, real photons, as
well as electrons [1]) are brought to collision with a nu-
cleon. With a sufficiently high center-of-mass energy, the
nucleon can be excited to a resonant state, which is clas-
sified as a distinct particle with certain intrinsic properties.
Two well-established examples for baryon resonances are
the delta resonance �(1232)3/2+ and the Roper resonance
N (1440)1/2+ [2]. As such resonances are often formed and
decay via the strong interaction, their proper lifetimes are
rather short; for the above examples, on the order of 10−24 s.
A direct detection of resonances with state-of-the-art detectors
is not possible. Instead, the analysis of the final-state parti-
cles angular distributions using partial-wave analysis (PWA),
allows us to draw conclusions about the formation of the
resonance and its inherent properties such as total angular
momentum, mass, decay width, and parity. Up to the present
day, single pseudoscalar meson photoproduction reactions are
the experimentally most studied reactions in terms of baryon
spectroscopy. A comprehensive overview can be found in the
recently published review on light baryon spectroscopy by
Thiel et al. [1]. The experimental data which are used as
input to partial-wave analyses are called polarization observ-
ables. In single pseudoscalar meson photoproduction, there
are sixteen linearly independent measurable quantities. Mul-
tiple facilities worldwide [3–7] have contributed to a large
database. In addition, multiple PWA approaches [8–13] do
exist for describing the data and extracting information about
the resonant states. The results of this paper are compared
with the K-matrix model of Bonn-Gatchina [9], the dynam-
ical coupled-channel approach of Jülich-Bonn [10], and the
unitarized isobar-model of Eta-MAID [11]. However, these
approaches depend on an energy-dependent parametrization
for the complex amplitudes [1], leading to model-dependent
outcomes. For a detailed comparison of these three PWA

approaches, the reader is advised to Refs. [1,14]. Resonant
states can also be predicted in a purely mathematical man-
ner via theory models based on quantum chromodynamics,
such as quark models or lattice quantum chromodynam-
ics; see, for example, Ref. [15]. However, theory models
predicted significantly more states than are experimentally
confirmed, predominantly in the higher-mass region, which
is known as the missing-resonance problem [1]. This un-
solved issue motivates further studies and the exploration of
new approaches within this field of physics. In this paper,
a completely model-independent analysis approach, namely,
truncated partial-wave analysis (TPWA) [16–20], is em-
ployed. This avoids the bias present in other PWA approaches.
In general, PWA as well as TPWA may exhibit mathematical
ambiguities in their results, indicating that various solutions
can effectively describe the same data points. These ambi-
guities arise from the intrinsic mathematical nature of the
problem. As such, it is an essential step in any analysis
using experimental data to check for potential ambiguities
and evaluate their significance in comparison to each other.
Mathematical ambiguities in TPWA were first investigated
by Omelaenko [21]. A detailed treatment of the subject can
be found in Refs. [18–20]. The application of TPWA to ex-
perimental data (π0 photoproduction off the proton for the
first- and second-resonance region) was conducted in detail
by Wunderlich [19] using the maximum likelihood method.
Among other things, the effect of measurement uncertainties
on ambiguities was investigated. This paper is the first to
perform a TPWA using Bayesian inference. Therefore, the
results in this paper are given as distributions, as opposed
to point estimates in previous PWA and TPWA approaches,
allowing the uncertainty of an estimated parameter to be
quantified with an unprecedented level of detail, which is
of particular importance. Through this approach it becomes
possible to study the phase space in more detail and, by
association, the structure of the above-mentioned ambiguities.
It is even possible to discover a certain connectivity between
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different solutions, indicating problematic ambiguities. The
results of this paper comprises the estimation of complex
electromagnetic multipole parameters for various maximal
angular momenta �max. Based on these estimations, for the
first time, model-independent predictions for unmeasured po-
larization observables are computed.

This paper is structured as follows: a concise introduc-
tion to Bayesian statistics is given in Sec. II. An outline
of TPWA, hence the foundation of the employed model, is
provided in Sec. III, followed by a discussion of the math-
ematical ambiguities. The employed datasets are introduced
and discussed in Sec. IV, accompanied by the discussion of
their systematic uncertainties and correlations between the
data points used. Within Sec. V the posterior distribution,
centerpiece of the analyses, is introduced. Finally, the results
of TPWA examined via Bayesian inference are presented in
Sec. VI.

II. BASICS OF BAYESIAN STATISTICS

The fundamental equation of Bayesian statistics is Bayes’
theorem [22,23]:

p(� | y) = p(y | �) p(�)∫
p(y | �) p(�)d�

. (1)

Herein, � denotes the parameters of the model used whereas
y stands for the employed data.

The posterior distribution p(� | y) is in general a multi-
dimensional probability distribution reflecting the probability
of the model given the data. It consists of the likelihood
distribution p(y | �), comprising the data points and model
predictions, and the prior distribution p(�), which inhibits
the current knowledge about the parameters of the model,
before the data are taken into consideration. The denominator
in Eq. (1) plays the role of a normalization factor and can be
neglected within the computations of parameter estimation as
it is constant for fixed y. The definitions for the likelihood
distribution and prior distributions employed in this paper can
be found in Secs. V A and V B.

The overall goal of each analysis is to scan the relevant
regions of the posterior accurately. From this, the parame-
ter distributions can then be extracted, i.e., their marginal
distributions.1 In general, the posterior is nontrivial and the
integrals encountered in the derivation of the marginal dis-
tributions cannot be solved analytically. Instead, one can
employ numerical methods, such as Markov chain Monte
Carlo (MCMC) algorithms, in order to estimate the involved
integrals. For instance, the Metropolis-Hastings [24,25] or the
Hamiltonian Monte Carlo [26,27] algorithm can be used, of
which the latter one is applied in this work. The convergence
of the Markov chains2 can be monitored by convergence

1The marginal distribution of 	1 with respect to the posterior distri-
bution p(	1,	2 | y) is defined as p(	1 | y) = ∫

d	2 p(	1, 	2 | y)
[23].

2“A sequence X1, X2, . . . of random elements of some set is a
Markov chain if the conditional distribution of Xn+1 given X1, . . . , Xn

depends on Xn only” [[28], p. 2].

diagnostics such as the potential-scale-reduction statistic R̂
[29], Monte Carlo standard error [28] (which depends on the
effective sample size [23]), and trace plots [30].

To check the plausibility of the model under consider-
ation, a posterior predictive check can be performed [23].
Herein, replicated data distributions yrep are generated using
the sampled parameter distributions as input for the posterior
distribution, while at the same time treating the data points as
unknown parameters. In contrast with maximum likelihood or
maximum a posteriori estimation, the marginal parameter es-
timates of Bayesian inference are given as distributions. This
allows us to quantify the uncertainty of a parameter with an
unmatched level of detail. In addition, point estimates and the
marginal parameter estimates of Bayesian inference differ in
their underlying interpretation, making the latter an intriguing
additional analysis approach.

III. TRUNCATED PARTIAL-WAVE ANALYSIS

Within this section, the basic equations of TPWA for single
pseudoscalar-meson photoproduction are outlined. For an in-
depth explanation, the reader is advised to Refs. [19,20].

Polarization observables are the measurable quantities of
interest in single pseudoscalar-meson photoproduction. They
are used as experimental input for a TPWA. In total there
are sixteen polarization observables, which can be calcu-
lated by measuring differential cross sections under different
polarization states. Three groups can be distinguished: the un-
polarized differential cross section, three single-polarization
observables, and twelve double-polarization observables [31].
A comprehensive list of the required polarization states for
each observable is given in Table I while a mathematical
definition is given in Table II.

The theoretical prediction of a profile function3 of a po-
larization observable depends on the energy W as well as the
scattering angle θ in the center-of-mass frame. It can be ex-
pressed as an expansion into the basis of associated Legendre
polynomials Pβα

k [20]:


̌α
theo(W, θ ) = ρ

2�max+βα+γα∑
k=βα

Aα
k (W ) Pβα

k (cos θ ). (2)

Equation (2) includes a kinematic phase-space factor ρ,
angular expansion parameters βα , γα , which are fixed pa-
rameters for each of the sixteen polarization observables of
pseudoscalar-meson photoproduction, and energy-dependent
series coefficients Aα

k :

Aα
k (W ) = M†(W )Cα

kM(W ). (3)

Here, M denotes the complex multipole vector, which con-
tains all participating multipoles involved for the truncation
order �max. A valid choice for the definition of this vector, by

3The profile function 
̌α (W, θ ) of an observable 
α (W, θ ) is de-
fined as 
̌α (W, θ ) := σ0(W, θ )
α (W, θ ), where σ0 is the unpolarized
differential cross section.
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TABLE I. This table collects the polarization configurations
(beam, target, recoil) which allow us to measure the sixteen po-
larization observables of pseudoscalar meson photoproduction. In
the center-of-mass coordinate system, the unprimed coordinates are
chosen as follows: ẑ axis along incident photon beam direction and
ŷ perpendicular to the reaction plane x̂-ẑ. The primed coordinates
is a rotation of the unprimed coordinates such that the final-state
meson momentum points along the ẑ′ axis. The table is redrawn from
Ref. [31]. A mathematical definition of the observables can be found
in Table II.

Beam Direction of target- or recoil-
Observable polarization nucleon polarization

σ0 Unpolarized
� Linear
T Unpolarized y
P Unpolarized y′

H Linear x
P Linear y
G Linear z
F Circular x
E Circular z

Ox′ Linear x′

T Linear y′

Oz′ Linear z′

Cx′ Circular x′

Cz′ Circular z′

Tx′ Unpolarized x, x′

Lx′ Unpolarized z, x′

� Unpolarized y, y′

Tz′ Unpolarized x, z′

Lz′ Unpolarized z, z′

TABLE II. The definition of the sixteen polarization observables
in terms of transversity amplitudes bi are displayed. The table is
adapted from Ref. [33]. The definition of the observables in terms
of the required polarization configurations can be found in Table I.

Observable Transversity representation (ρ) Type


̌1 = σ0
1
2 (|b1|2 + |b2|2 + |b3|2 + |b4|2) S


̌4 = −�̌ 1
2 (|b1|2 + |b2|2 − |b3|2 − |b4|2)


̌10 = −Ť 1
2 (−|b1|2 + |b2|2 + |b3|2 − |b4|2)


̌12 = P̌ 1
2 (−|b1|2 + |b2|2 − |b3|2 + |b4|2)


̌3 = Ǧ Im[−b1b∗
3 − b2b∗

4] BT

̌5 = Ȟ Re[b1b∗

3 − b2b∗
4]


̌9 = −Ě Re[b1b∗
3 + b2b∗

4]


̌11 = F̌ Im[b1b∗
3 − b2b∗

4]


̌14 = Ǒx′ Re[−b1b∗
4 + b2b∗

3] BR

̌7 = −Ǒz′ Im[−b1b∗

4 − b2b∗
3]


̌16 = −Čx′ Im[b1b∗
4 − b2b∗

3]


̌2 = −Čz′ Re[b1b∗
4 + b2b∗

3]


̌6 = −Ťx′ Re[−b1b∗
2 + b3b∗

4] T R

̌13 = −Ťz′ Im[b1b∗

2 − b3b∗
4]


̌8 = Ľx′ Im[−b1b∗
2 − b3b∗

4]


̌15 = Ľz′ Re[−b1b∗
2 − b3b∗

4]

means of electromagnetic multipoles [32], is

M(W ) = [
E0+(W ), E1+(W ), M1+(W ), M1−(W ),

× E2+(W ), E2−(W ), M2+(W ), M2−(W ), . . . ,

× E�max+(W ), E�max−(W ), M�max+(W ), M�max−(W )
]
.

(4)

In addition, Eq. (3) contains a complex 4�max × 4�max matrix
C for each observable α and each summand k. Its general
definition can be found in Ref. [19].4 From these matrices one
can not only read off the contributing partial waves but also
their interferences with each other [20].

Equations (2) to (4) imply the following:

(1) The statistical analysis is performed for a single energy
at a time.

(2) The polarization observable 
α (W, θ ) and the unpo-
larized differential cross section σ0(W, θ ) have to share
the same energy and angular binning.

(3) The observables 
α (W, θ ) used within the TPWA have
to share the same energy binning.

(4) As 
̌α (W, θ ) is an observable, i.e., a real number, the
matrices Cα

k are Hermitian.
(5) The bilinear form of Aα

k gives rise to mathematical am-
biguities, as certain transformations leave this quantity
invariant.

The last point is discussed in more detail in the following.

A. Ambiguities

Ambiguities in PWA or TPWA refer to situations in which
multiple configurations of the model parameters can describe
the data points with similar levels of accuracy. This phe-
nomenon is apparent in the reproduced data distributions in
Figs. 1 and 2 where the different colored distributions, cor-
responding to multiple ambiguities, nearly overlap. In the
following discussion, various types of mathematical ambi-
guities are examined and it is concluded that only so-called
accidental discrete ambiguities can appear in the results of this
paper.

The origin of the immanent mathematical ambiguities lies
in the definition of the polarization observables. For photopro-
duction, they can be written in general as a bilinear product of
the form [33–35]


̌α (W, θ ) = κb†(W, θ ) �α b(W, θ ), (5)

with a numerical prefactor κ , a vector b of length NA, con-
taining the complex spin amplitudes bi, and a matrix �α with
dimensions NA × NA. Certain transformations T of the com-

plex spin amplitudes bi(W, θ )
T−→ b̃i(W, θ ) leave the bilinear

product and thus the observable invariant. Hence, when all
observables in a subset {
̌α1 , . . . , 
̌αn} are invariant under
the same transformation, an ambiguity emerges [19,33], as
the experimental distinction between bi and b̃i is not possible

4An overall factor of 1/2 is missing in the formula for Cα
k in

Ref. [19].
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FIG. 1. Posterior predictive check for the profile functions σ0, Ǧ, �̌, Ě , Ť , and F̌ for truncation order �max = 1 and energy bins E lab
γ =

[750, 850, 950, 1050, 1150, 1250] MeV. The reproduced data distributions for the different solutions are shown together with the original data
with statistical uncertainties as black points. Each solution group is drawn in a different color and each peak of a distribution corresponds
to an accidental ambiguity. In addition, the corresponding values from EtaMAID2018 [48] (dashed line), BnGa-2019 [42] (dotted line), and
JüBo-2022 [47] (dash-dotted line) are shown as well.
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FIG. 2. Posterior predictive check for the profile functions σ0, Ǧ, �̌, Ě , Ť , and F̌ for truncation order �max = 2 and energy bins E lab
γ =

[750, 850, 950, 1050, 1150, 1250] MeV. The reproduced data distributions for the different solutions are shown together with the original data
with statistical uncertainties as black points. Each solution group is drawn in a different color and each peak of a distribution corresponds
to an accidental ambiguity. In addition, the corresponding values from EtaMAID2018 [48] (dashed line), BnGa-2019 [42] (dotted line), and
JüBo-2022 [47] (dash-dotted line) are shown as well.
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any more. Such an ambiguity can be resolved by including a
further observable 
̌αk into the subset, which is not invari-
ant under the specific transformation [19,33]. There exists
one special case of an ambiguity which cannot be resolved
by including any further observables, namely, the simulta-
neous rotation of all transversity amplitudes by the same

(possibly energy- and angle-dependent) phase: bi(W, θ )
T−→

eiφ(W,θ )bi(W, θ ) (see Ref. [33]). However, this continuous
ambiguity can be ignored for the special case of a TPWA,
since the angle-dependent part of the ambiguity is generally
removed by the assumed truncation (see comments made in
Ref. [36]), and the energy-dependent part is fixed by imposing
certain phase conventions for the multipoles. The formalism
for the remaining relevant discrete ambiguities in a TPWA is
outline briefly in the following. For more information about
discrete as well as continuous ambiguities in the case of the
complete experiment analysis, see the paper of Chiang and
Tabakin [33].

As shown by Omelaenko [19,21], in a TPWA (truncated
at some finite �max � 1) the complex spin-amplitudes can be
expressed (up to kinematical prefactors) as a finite product of
irreducible polynomials:

b1(W, θ ) ∝
2�max∏
k=1

(
tan

θ

2
+ βk (W )

)
, (6)

b2(W, θ ) ∝
2�max∏
k=1

(
tan

θ

2
− βk (W )

)
, (7)

b3(W, θ ) ∝
2�max∏
k=1

(
tan

θ

2
+ αk (W )

)
, (8)

b4(W, θ ) ∝
2�max∏
k=1

(
tan

θ

2
− αk (W )

)
, (9)

with the complex roots αk (W ) and βk (W ), which are in
essence equivalent to multipoles. It can be shown [18,21,37]
that the special case where tan(θ/2) = 0 implies a direct
connection between the roots:

2�max∏
i=1

αi(W ) =
2�max∏
j=1

β j (W ). (10)

All transformations T which correspond to a discrete am-
biguity of the four group-S observables {σ0, �̌, Ť , P̌} must
also satisfy Eq. (10), which allows us to rule out a major
part of the maximal possible 42�max [18] discrete ambiguity-
transformations from the beginning. The so-called “double
ambiguity” [18,21], which corresponds to the simultaneous
complex conjugation of all roots automatically preserves the
constraint in Eq. (10).

Unfortunately, there can also occur so-called accidental
ambiguities. These emerge when any discrete ambiguity other
than the double ambiguity of all roots approximately fulfills
Eq. (10) [18]. The accidental ambiguities as well as the double
ambiguity can in principle be resolved by including further
observables into the analysis apart from the four group S
observables. Candidates for observables capable of resolving

the above-mentioned discrete ambiguities would be either F̌ ,
Ǧ or any of the BR- and T R-type observables.

The accidental ambiguities cannot be avoided for analyses
of real data due to their abundance (i.e., 42�max − 2 possible
candidates exist for such ambiguities), and they will show
up as modes within the posterior distribution and thus in the
marginal parameter distributions.

In contrast with the discrete ambiguities described above,
there can also exist so-called continuous ambiguities in
the TPWA (in addition to the above-mentioned simulta-
neous phase-rotation of all transversity amplitudes, which
has been ruled out), which exist on continuously connected
regions within the multipole parameter space [19]. These
ambiguities can occur in case an insufficiently small set of
observables is analyzed, and they manifest as plateau-like
structures (with possibly rounded edges) in the marginalized
posterior-distributions, as opposed to the peak-like structures
(or modes) originating from discrete ambiguities. The set of
six observables analyzed in this work (see Sec. IV) is large
enough to avoid such continuous ambiguities.

For more information about discrete ambiguities in TPWA,
the paper by Omelaenko [21] and especially the subsequent
work [18] is recommended. The proof of the completeness of
the set of six observables analyzed in this work (Sec. IV) in
the idealized case of an “exact” TPWA5 proceeds a little bit
different compared with the work by Omelaenko [21]. The
proof is outlined in some detail in Sec. A.

Summarizing, accidental discrete ambiguities will likely be
present within TPWA performed on real data, resulting in a
multimodal likelihood and posterior distribution.

IV. DISCUSSION OF THE DATABASE USED

A review of the currently available database on polariza-
tion observables for the reaction γ p → ηp can be found in
Ref. [1]. To cover the largest possible energy range and to
resolve discrete mathematical ambiguities, the TPWA is per-
formed using the six polarization observables σ0 [38], � [39],
T [40], E [41], F [40], and G [42]. This choice of observables
indeed resolves the discrete ambiguities of TPWA, as shown
in Sec. A.

An overview of the data is given in Table III and a visual-
ization of the phase-space coverage of the individual datasets
can be found in Sec. B, Fig. 3. The available energies for
the TPWA are determined by the observable with the low-
est statistics [19,31], which in this case is the observable
G. In total six energy bins are available, starting near the
ηp-photoproduction threshold at E lab

γ = 750 MeV up to 1250
MeV, in 100 MeV steps.

As TPWA is a single-energy regression, the energy binning
of each observable has to be shifted to that of G. The proce-
dure is described in Ref. [19]. The advantage of this method is
that no new, i.e., experimentally unobserved, data points have
to be constructed, for example, via interpolation.

5Accidental ambiguities can be disregarded for this rather academic
scenario [19].
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TABLE III. Information on the experimental data, given as dimensionless asymmetries, used for the TPWA of γ p → ηp. Energy and
angular ranges are written as intervals.

Observable Number of data points E lab
γ /MeV cos(θ ) Facility References

σ0 5736 [723, 1571] [−0.958, 0.958] MAMI Kashevarov et al. [38]
T, F 144 [725, 1350] [−0.917, 0.917] MAMI Akondi et al. [40]
� 140 [761, 1472] [−0.946, 0.815] GRAAL Bartalini et al. [39]
E 84 [750, 1350] [−0.917, 0.917] MAMI Afzal et al. [41,43]
G 47 [750, 1250] [−0.889, 0.667] CBELSA/TAPS Müller et al. [42]

However, none of the observables are given as profile func-
tions which are needed for the TPWA, see Eq. (2). Thus,
the angular distribution of σ0 has to be adjusted for each
observable in order to multiply both. This is not an issue, since
the very precise MAMI σ0 dataset [38] covers a large angular
range [−0.958, 0.958] with a small step size ≈0.083 in all
available energies.

The data discussed in Sec. IV not only have statistical
but also systematic uncertainties. The latter ones originate
primarily from the determination of the polarization degree
of the photon beam and the target nucleon, the dilution factor6

as well as the background-subtraction procedure [38–42].
In principle, each data point has its own systematic un-

certainty. However, there is no generally accepted method to
model the systematic uncertainty for each data point sepa-
rately. Instead, the contributions to the systematic uncertainty,
which are constant over the whole angular range, are deter-
mined for each dataset. Then, the same systematic uncertainty
is used for each data point within a dataset.

The contributions split up into the “general systematic un-
certainty” (σ0: 4% [[38], p. 5]), the degree of photon beam
polarization (F: 2% [40], E: 2.7% [41], G: 5% [42]), and the
degree of target polarization (T, F: 4% [40], E: 2.8% [41],
G: 2% [42]). The authors of the polarization observable �

added the statistical- and systematic uncertainty in quadrature
for each data point [39]. Thus, their systematic uncertainty
cannot be modeled separately within this paper.

The individual systematic contributions within a dataset
are combined in a conservative way. A worst-case scenario
approach is employed, based on the formulas used to calculate
the polarization observables, as given in the papers. In com-
parison with the “standard” procedure of adding the different
contributions in quadrature, there are two main advantages:
(1) The functional dependence is taken into account without
the need to make an assumption about the distribution of the
individual contributions. (2) The worst-case scenario covers
the maximal and minimal impact of the systematic uncertain-
ties, and everything in between.

As an illustrative example, suppose an observable A which
depends reciprocally on the degree of polarization of the
photon beam pγ and target pt, each with their own relative
systematic uncertainty �

pγ

sys and �
pt
sys, respectively. Then the

6The dilution factor is the ratio of polarizable free protons to all
nuclei in the used target material.

combined, relative systematic uncertainty of A would be

�A
sys = max

(∣∣1 − (
1 + �

pγ

sys
)−1(

1 + �pt
sys

)−1∣∣,∣∣1 − (
1 − �

pγ

sys
)−1(

1 − �pt
sys

)−1∣∣). (11)

With the input taken from the references, corresponding to
the respective datasets [38–42], the outlined approach results
in �σ0

sys = 4.0%, �G
sys = 7.4%, �E

sys = 5.7%, �T
sys = 4.2%,

�F
sys = 6.3%.
Due to the calculation of the profile functions, the system-

atic uncertainty of both datasets have to be combined as well:

�Ǎ
sys = max

(∣∣1 − (
1 + �A

sys

)(
1 + �σ0

sys

)∣∣,∣∣1 − (
1 − �A

sys

)(
1 − �σ0

sys

)∣∣). (12)

Thus, the relative systematic uncertainties for the profile func-
tions are �σ0

sys = 4.0%, �Ǧ
sys = 11.7%, �Ě

sys = 10.0%, �Ť
sys =

8.3%, �F̌
sys = 10.5%. The incorporation of the systematic un-

certainties into the statistical model is described in more detail
in Sec. V.

Furthermore, the calculation of the profile functions in-
troduces a correlation between the unpolarized differential
cross section and the profile functions, as well as among the
profile functions themselves. Since certain values of σ0(W, θ )
were used to calculate 
̌α (W, θ ), correlations were introduced
between certain data points of both observables. Moreover, the
same value of σ0(W, θ ) might be used to calculate data points
of different profile functions.

The relevance of these correlations can be estimated via the
Pearson correlation coefficient [44], see Eqs. (C4) and (C5) in
Sec. C. The measured values of the polarization observables
are used as expectation values and the corresponding squared
statistical uncertainties as the variances. An example, for a
correlation matrix is shown in Fig. 4. The correlations are
quite small, with absolute values below ≈0.17, but typically
on the order of 10−2 to 10−3. An exception is the significantly
higher correlation between σ0 and σ0 · E , with minimal and
maximal values of ≈0.29 and ≈0.67, respectively. This can be
explained by the similar definition of the coefficients Aα

k (W )
of σ0 and σ0 · E . Both having sensitivity to almost the exact
same interference terms of multipoles, albeit with different
strengths (see Ref. [20]). The magnitude of the correlation
matrix elements as a function of the energy can be seen in
Fig. 5. The corresponding covariance matrix, which is used
to construct the likelihood distribution in Sec. V A, can be
estimated via Eqs. (C2) and (C3) in Sec. C.
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FIG. 3. Energy and angular coverage of the six observables σ0, �, G, E , T , and F [38–42] which were used for the analysis. The energies
used, E lab

γ = [750, 850, 950, 1050, 1150, 1250] MeV, are determined by the observable G.

V. THE POSTERIOR DISTRIBUTION

It is assumed that the utilized profile functions, constructed
from the polarization observables, follow a normal distribu-
tion. The validity of this assumption is extensively discussed
in Sec. D. However, the profile functions are correlated with
the unpolarized differential cross section, as well as among
themselves, see Sec. IV. This dependence is modeled within
the likelihood distribution using a covariance matrix. In favor
of a compact representation, the functional dependencies are
not shown explicitly in the subsequent equations.

A. Likelihood distribution

Combining the results of Secs. IV and D, the conditional
likelihood distribution for each of the analyzed energies can

FIG. 4. Example for a correlation matrix. The correlations be-
tween the data points of the unpolarized differential cross section σ0

and the profile functions used, as well as the correlation between
the profile functions themselves, is shown for E lab

γ = 750 MeV.
Each square represents a certain data point. The color encodes the
correlation strength ranging from −1 (darker colors) to +1 (lighter
colors).

be formulated as an N-dimensional multivariate Gaussian
distribution:

p(y, x | �, κ) = N (μ,�)

= exp
(− 1

2 (y − μ)T�−1(y − μ)
)√

(2π )N |�|
. (13)

Herein, the vectors y, x ∈ RN contain the entirety of the N ∈
N utilized profile function data points and the corresponding
cos(θ ) values at which they were measured, respectively:

y = [yσ0 , yǦ, y�̌, yĚ , yŤ , yF̌ ], (14)

x = [xσ0 , xǦ, x�̌, xĚ , xŤ , xF̌ ]. (15)

The parameters of the model can be divided into two groups.
On the one hand, the real- and imaginary parts of multi-
poles, i.e., Eq. (4), denoted by � ∈ R8�max−1 are used to

FIG. 5. Unique correlation matrix element values as a function
of the laboratory frame energy. The color encodes the correlation
strength ranging from −1 (darker colors) to +1 (lighter colors).
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model the underlying physical process. On the other hand, the
parameters κ ∈ R5 which are used to model the systematic
uncertainties of the involved datasets:

κ = [κσ0 , κ Ǧ, κ Ě , κ Ť , κ F̌ ]. (16)

The multivariate normal distribution in Eq. (13) is constructed
with the model predictions μ ∈ RN for the expectations of y:

μ(�, κ, x)

= [κσ0μσ0 , κ ǦμǦ, 1μ�̌, κ ĚμĚ , κ Ť μŤ , κ F̌ μF̌ ]. (17)

The μα (�, xα ) are the model predictions for the individ-
ual profile functions, i.e., Eq. (2). Hence, in order to model
the systematic uncertainties, one additional parameter per
relevant dataset is introduced and multiplied with the corre-
sponding theoretical prediction for the profile function. Thus,
the model gets additional degrees of freedom to adjust for pos-
sible systematic uncertainties. However, these parameters are
restricted to physical meaningful bounds, further discussed in
Sec. V B. As explained in Sec. IV, the systematic uncertainty
of the polarization observable � cannot be modeled.

Finally, there is the covariance matrix � ∈ RN×N . Its off-
diagonal terms are not identical, and therefore the data pairs
are not exchangeable.7x

B. Prior distribution

The priors for the multipole parameters are chosen as
uniform priors with bounds corresponding to the physically
allowed ranges of the parameters (see Ref. [19]). Thus, the
priors incorporate physical knowledge while being uninfor-
mative compared with the likelihood distribution.

In principle a uniform prior for the systematic parame-
ters would be reasonable. However, in this case the hard
boundaries in the parameter space lead to numerical issues.
Thus, the prior distributions for the scaling parameters κ are
assumed to be normally distributed and centered around the
value one. The standard deviation is chosen such that8 99% of
the distribution are within the range 1 ± �α

sys, which results in
(rounded to five digits):

κσ0 ∼ N (1, 0.01552), (18)

κ Ǧ ∼ N (1, 0.04542), (19)

κ Ě ∼ N (1, 0.03882), (20)

κ Ť ∼ N (1, 0.03222), (21)

κ F̌ ∼ N (1, 0.04076). (22)

7If the joint probability density function p(y, x|�, κ) is invariant
under permutations of the data pairs (y, x)i, then the data pairs are
said to be exchangeable [23,45].

8This can be calculated by solving numerically the following equa-
tion for the standard deviation σ :∫ 1−�α

sys

−∞

exp
(
− 1

2

(
x−1
σ

)2
)

σ
√

2π
dx = 1 − 0.99

2
.

This choice is in accordance with the conservative combina-
tion of the systematic uncertainties, as discussed in Sec. IV.
The treatment of systematic errors within this paper is similar
to that in Refs. [31,46,47].

VI. RESULTS

Bayesian inference was utilized to extract the
electromagnetic multipole parameters, as introduced in
Eq. (4), for the reaction γ p → ηp at energies E lab

γ =
[750, 850, 950, 1050, 1150, 1250] MeV and truncation
orders �max = 1, 2 through truncated partial-wave analysis.
The procedures involved are detailed in Sec. E.

Highly multimodal posterior distributions were encoun-
tered, necessitating an adaptation of the typical MCMC
convergence diagnostic workflow. The adjusted procedure is
detailed in Sec. E 3. By studying the reproduced data dis-
tributions for the various truncation orders, an indication of
N∗ resonances in the energy range from 950 to 1050 MeV
is observed. Finally, utilizing the electromagnetic multipole
parameter estimates, predictions were calculated9 for the po-
larization observables H and P as well as those of group BR
and T R. Hence, this includes eight polarization observables
that are yet to be measured. The distributions of the multipole
parameters, the reproduced and predicted data are presented
alongside the values of EtaMAID2018 [48], BnGa-2019 [42],
and JüBo-2022 [47].

The presentation of the multipole parameter results is quite
detailed and deserves an explanation. The top part shows the
solutions found via Monte Carlo maximum a posteriori esti-
mation and their corresponding χ2/ndf values, together with
the 1σ uncertainty (see Sec. E 1). The middle part shows the
marginal-parameter distributions obtained via Bayesian infer-
ence, as explained in Secs. V and E 2. For a better comparison
of the two approaches for �max = 1, the [0.16, 0.5, 0.84] quan-
tiles of the distributions, corresponding to the median of the
distribution and the 1σ -uncertainty boundaries, are drawn
as dashed lines through all parts of the figure. Whereas,
for �max = 2 a solid vertical line is drawn for each peak of
the multimodal distribution, i.e., the most probable values.
The bottom part of the figure is a contour plot of the log
posterior density distribution and the corresponding marginal-
parameter distribution. The outermost contour line is at 1%
of the maximum altitude, each subsequent line represents an
11% increase. It is assumed that a log posterior distribution
centered around a higher log posterior value, corresponds to
more likely parameter values because this solution contributes
more probability mass to the posterior. Each solution group
is drawn in a different color and each peak of a distribu-
tion corresponds to an accidental ambiguity. The color for a
specific solution group is consistent between the shown fig-
ures (MCMC convergence, multipole, predictive performance
plots, etc.) for a certain energy and truncation order. This

9To get from the profile functions to the dimensionless polarization
observables, the predicted distribution is divided by a certain σ0

value, corresponding to the cos(θ ) value at which the prediction were
calculated.
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FIG. 6. MCMC convergence diagnostics for the truncation order �max = 2. Shown are the potential-scale-reduction statistic R̂ (the gray,
dashed line indicates the value of 1.01) and the Monte Carlo standard error (MCSE) for the median divided by the median in percent (the gray,
dashed line indicates the value of 1%). Each solution group is drawn in a different color.

means one can monitor the behavior of a specific ambiguity,
ranging from the MCMC diagnostic plots in Fig. 6 to the
multipole plots in Figs. 7 and 8, to the reproduced data plots in
Fig. 2, up to the predicted data distribution plots in Fig. 9. The

performed analyses showed, that Bayesian inference gives
more insight into the relevance of ambiguities, due to the
Hamiltonian Monte Carlo algorithm. When multiple chains
sample consistently multiple marginal modes together, this
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FIG. 7. Solutions of the multipole parameters Re(E0+) and Re(M2+) for a truncation order of �max = 2, for the energy bins E lab
γ =

[750, 850, 950, 1050, 1150, 1250] MeV. Each solution group is drawn in a different color and each peak of a distribution corresponds to
an accidental ambiguity. The different parts of the tripartite plots are explained at the beginning of Sec. VI. The natural logarithm was used to
calculate the log posterior density (lpd).
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FIG. 8. Solutions of the multipole parameter Im(M2+) for a truncation order of �max = 2, for the energy bins E lab
γ =

[750, 850, 950, 1050, 1150, 1250] MeV. In addition, solutions of systematic parameters for a truncation order of �max = 2 for the energy
bin E lab

γ = 950 MeV are shown. Each solution group is drawn in a different color and each peak of a distribution corresponds to an accidental
ambiguity. The different parts of the tripartite plots are explained at the beginning of Sec. VI. The natural logarithm was used to calculate the
log posterior density (lpd).
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FIG. 9. Predicted data distributions for the polarization observables Cz′ , H , Tx′ , Oz′ , Lx′ , P, Tz′ , Ox′ , Lz′ , and Cx′ for the energy bins E lab
γ =

[750, 850, 950, 1050, 1150, 1250] MeV, using a truncation order of �max = 2. Each solution group is drawn in a different color and each
peak of a distribution corresponds to an accidental ambiguity. In addition, the corresponding values from EtaMAID2018 [48] (dashed line),
BnGa-2019 [42] (dotted line), and JüBo-2022 [47] (dash-dotted line) are shown as well.

is a sign of a problematic ambiguity, as they tend to have
comparable log posterior densities. As an example, consider
the multipole solution for Re(M2+) at 750 MeV in Fig. 7. This
is an advantage over the maximum likelihood approach.

Within the following discussion of the results a represen-
tative selection of figures is shown. All parameter figures, for
all analyzed energies and truncation orders can be found in the
Supplemental Material [49].
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A. Impact of accidental ambiguities on the results

As discussed in Sec. III A, accidental ambiguities appear
in the results of the marginal multipole parameter distribu-
tions, which subsequently manifest in both the replicated and
predicted data distributions, as well as in the marginal sys-
tematic parameter distributions. The ambiguities are apparent
as differently colored distributions, where each peak of a
distribution corresponds to an accidental ambiguity. See, for
example, 2 and 7 to 9. As expected, all accidental ambiguities
can replicate the original data points. The corresponding re-
produced data distributions are nearly identical, as illustrated
in Fig. 2. The impact of ambiguities on predicted data dis-
tributions and what can be learned from it is discussed in
Sec. VI F.

B. Choice of the truncation order

At first, the regression was conducted using �max = 1. For
each of the six energy bins, the number of warmup and post-
warmup samples was set to 2×104, respectively. In total, Nc =
10 chains are started at each solution, found via the Monte
Carlo maximum a posteriori approach. The corresponding
MCMC convergence diagnostics, displayed in Sec. F, Fig. 10,
support this decision, with R̂ < 1.01 and relative Monte Carlo
standard error within a few percent or less.

For each energy bin above 950 MeV, specifically 1050,
1150, and 1250 MeV, the measured σ0 data are systematically
higher for cos(θ ) > 0 compared with the TPWA predictions.
Furthermore, the TPWA predictions for �̌ do not resemble the
original data points at all, as shown in Fig. 1. It appears that
the statistical model utilized with truncation order �max = 1
cannot adequately replicate data points for all observables. An
elucidation for this phenomenon is provided in Sec. VI C.

To enhance the data description flexibility of the TPWA
model, the truncation order was increased to �max = 2, and
the regression was re-executed. To obtain the desired MCMC
convergence diagnostics for each of the six energy bins, it was
necessary to increase the number of warmup and postwarmup
samples to 5×104, respectively. Nc remains the same as for
�max = 1. The corresponding MCMC convergence diagnos-
tics are displayed in Sec. F, Fig. 6. Special phenomena that
occur are discussed in detail in Sec. F. The TPWA model with
a truncation order of �max = 2 effectively describes the origi-
nal data points as evinced by the data distributions reproduced
in Fig. 2.

In general, it is preferable to set the truncation order �max

as high as possible, because lower partial waves can inter-
fere with higher ones, leading to non-negligible contributions.
However, increasing the truncation order also increases the
number of accidental ambiguities. For example, with �max = 3
and 1250 MeV, 43 posterior modes were identified. This
results in a situation that demands a large number of numeri-
cal computations to achieve the desired MCMC convergence
diagnostics. Additionally, the visual assessment of clustering
becomes challenging due to the large number of required
chains. Furthermore, the statistical quality of the combined
datasets do not permit observations of any F -wave contri-
butions, such as those from the N (1680)5/2+ [2] resonance
at E lab

γ ≈ 1035 MeV. Due to these considerations, this paper

focuses on �max = 2, while truncation orders with �max > 2
are reserved for future research.

C. Indication of N∗ resonances

To summarize, the model with �max = 1 is inadequate in
replicating the original data points for σ0 and �̌ for the en-
ergies above 950 MeV. This phenomenon could be explained
by an emerging resonance in the energy range between 950
and 1050 MeV that couples to an orbital angular momen-
tum � > 1 and predominantly contributes to σ0 and �̌. Since
isospin is a conserved quantity in the strong interaction, the
reaction of η photoproduction serves as an isospin filter,
meaning that for the subsequent discussion, only N∗ reso-
nances require consideration. There are two N∗ resonances
which fulfill the conservation laws, couple to � = 2, and fall
within the required energy range (taking into account the
Breit-Wigner width [2] of the resonances). These resonances
are N (1675)5/2− [2] at E lab

γ ≈ 1026 MeV and N (1700)3/2−

[2] at E lab
γ ≈ 1071 MeV.

There is also a resonance which opens up already at E lab
γ ≈

762 MeV, specifically N (1520)3/2− [2]. However, this reso-
nance has a branching ratio to ηN [2] that is ≈10 times smaller
than those of N (1675)5/2− and N (1700)3/2−. The datasets
employed do not appear to possess the necessary sensitivity
to see a contribution of N (1520)3/2−.

D. Multipole parameters

The solutions for E0+ and M2+ are shown as representative
examples of the multipole parameters in Figs. 7 and 8. The
figures for all multipole parameters are available in the Sup-
plemental Material [49]. Typically, the peaks of the marginal
distributions are in agreement with the first few “best” a
posteriori estimates. However, not every a posteriori solution
has a corresponding peak within the marginal distributions.
This could be due to two potential reasons. On the one hand,
the interpretation of a marginal distribution differs from that
of a maximum a posteriori estimate. On the other hand, the
reason may lie within the Hamiltonian Monte Carlo algorithm
[26,27], where it has been observed that some of the starting
values are not in close proximity to the “typical set”10 [50] but
adjust rapidly. An example is shown in Fig. 11.

Within Fig. 12, the fifteen multipole parameters are
graphed based on the laboratory energy of the photon. The
corresponding values of EtaMAID2018 [48], BnGa-2019
[42], and JüBo-2022 [47] are also shown. For a detailed com-
parison of the various solution clusters and their relevance,
readers are encouraged to refer to the tripartite multipole pa-
rameter figures in Figs. 7 and 8 and the Supplemental Material
in Ref. [49].

10The “typical set” are the regions of the posterior which contribute
the most to its expectation value.
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FIG. 10. MCMC convergence diagnostics for the truncation order �max = 1. Shown are the potential-scale-reduction statistic R̂ (the gray,
dashed line indicates the value of 1.01) and the Monte Carlo standard error (MCSE) for the median divided by the median in percent (the gray,
dashed line indicates the value of 1%). Each solution group is drawn in a different color.

d1. Comparison with MAID, BnGa, and JuBo

In general, the paper’s results align well with the values of
EtaMAID2018, BnGa-2019, and JüBo-2022. However, there
are two noteworthy exceptions.

First, for the multipole parameter Im(E2+), none of the
PWA values align with each other nor with the TPWA results
of this paper. Second, the three PWAs report a value of ≈20
mfm for the multipole parameter Re(E0+) at 750 MeV. This
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FIG. 11. Illustration of the first 1000 sampling points of a chain
with initial value at 3.7 (the blue vertical line). The first sampling
point is drawn in red. The chain converges from its starting point to
a more likely solution, i.e., with higher log posterior density (lpd)
value. The natural logarithm was used to calculate the lpd.

significant value of E0+ close to the ηp-production threshold
results from the dominant N (1535)1/2− resonance, which
couples to the S-wave E0+. The datasets of η photoproduc-
tion (see Sec. IV) utilized in this analysis do not emphasize
such high values. Although the marginal parameter distribu-
tion does indeed have a nonzero probability at ≈19 mfm,
the most likely values are around 8.5 mfm. This unexpected
difference may have multiple causes. On the one hand, both
BnGa-2019 and JüBo-2022 are coupled-channel analyses that
involve a variety of final states simultaneously [14]. On the
other hand, EtaMAID2018, BnGa-2019, and JüBo-2022 use
the πN partial-wave amplitudes from SAID [14] as input,
which includes the N (1535)1/2− resonance [51].

In contrast, the current analysis is not a coupled-channel
analysis nor does it rely on the SAID solutions. The values of
the multipole parameters are exclusively obtained from the η-
photoproduction datasets presented in Sec. IV.

In addition, the TPWA relies on single-energy regression,
which implies that solely the available data points at a partic-
ular energy bin can be utilized in the analysis. As the PWAs
do not follow this restriction, the complete available datasets
can be utilized. This is particular important for the differential
cross section, where the increased data can have a significant
impact on the regression.

Furthermore, although a dominant S-wave E0+ results in a
nearly constant maximal allowed value of one for the observ-
able E for all angles, the inverse conclusion does not always
hold true. For example, the observable E cannot differentiate
between S-wave E0+ and P-wave M1− since both can lead
to these maximum values of E . As shown in our results for
750 MeV (see Fig. 12), the expected strength of E0+ has
migrated to other multipoles, such as M1−.

Improved statistics of the datasets involved in terms of
the angular range or the inclusion of additional observables
in future analyses, may shift the probability mass of the
distribution of Re(E0+) at 750 MeV towards the values of
EtaMAID2018, BnGa-2019, and JüBo-2022.

E. Systematic parameters

The systematic parameters are all around the intended
value of one. Each marginal distribution, for all systematic
parameters and for all analyzed energy bins, is exclusively
unimodal. Examples can be found in Fig. 8 and the Supple-
mental Material [49].

F. Predicted data distributions

Using the estimated multipole parameters, predictions for
polarization observables were calculated which were not uti-
lized in this analysis. These include the observables H , P as
well as all eight observables of the groups BR and T R that
have yet to be measured [1]. The predicted data distributions
are displayed in Fig. 9. The distributions are within the phys-
ical bounds between −1 and 1 and their overall course over
the angular range shows the correct tendency at cos(θ ) = ±1
towards the mathematically expected values [18].

An interesting effect can be observed. The predicted data
distributions for the various ambiguities, show specific func-
tional trajectories over the angular range. In contrast, for the
reproduced data plots, the distributions were almost identical
for different ambiguities. If there were experimental data re-
lated to one of the predicted observables that supports only
one of the specific functional trends throughout the angular
range, it would eliminate any other ambiguity.

According to this criterion, potentially significant polariza-
tion observables have been chosen for upcoming experiments
and are consolidated in Table IV. In particular, the polarization
observable Cz′ seems suitable to reduce the ambiguities at all
six energy bins.

VII. SUMMARY AND OUTLOOK

A TPWA was conducted for η-meson photoproduction off
the proton near the production threshold. Model-independent
estimates of electromagnetic multipole parameters were de-
termined, allowing the first model-independent calculation of
predictions of unmeasured polarization observables. Based on
these results, promising future measurements were identified
with the aim of minimizing remaining ambiguities.

The datasets used in this study demonstrate clear D-wave
contributions above E lab

γ = 950 MeV, but are not sensitive to
F -wave or higher partial-wave contributions.

For the first time, this study combined TPWA with
Bayesian inference. The posterior distributions were highly
multimodal, necessitating adaptations to monitor the MCMC
convergence diagnostics. Despite its simplicity and use
of fewer data, the TPWA approach maintains model-
independence and achieves results consistent with the PWAs
of MAID2018, BnGa-2019, and JüBo-2022.

In general, resonances can be extracted from multipole
parameters. However, for a precise extraction of the res-
onance parameters the current resolution of the combined
datasets is not sufficient. In a subsequent study, the TPWA
approach could be combined with the Laurent + Pietarinen
parametrization for every multipole parameter [52] in order
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FIG. 12. Marginal multipole solutions for the truncation order �max = 2 for the energy bins E lab
γ = [750, 850, 950, 1050, 1150, 1250] MeV.

In addition, the multipole parameter predictions from EtaMAID2018 [48] (dashed line), BnGa-2019 [42], (dotted line) and JüBo-2022 [47]
(dash-dotted line) are shown as well. The relevance of a solution is represented by a transition from sienna (less relevant) to blue (more
relevant) hues. However, for a detailed comparison between the solutions and their relevance to each other, the reader is advised to the tripartite
multipole parameter figures in Figs. 7 and 8 and Ref. [49].

to extract resonance parameters. In addition, the role of the
prior distribution with regard to resolving the mathematical
ambiguities could be investigated.
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TABLE IV. Promising polarization observable candidates to
resolve the ambiguities for truncation order �max = 2. The corre-
sponding predicted data distributions are shown in Fig. 9.

E lab
γ (MeV) Observables

750 Cz′ ,Cx′ , Lx′ , Lz′

850 Cz′ ,Cx′ , Lx′ , Lz′ , Tx′ , Tz′

950 Cz′ ,Cx′ , Lx′ , Lz′ , Tz′

1050 Cz′ ,Cx′ , Lx′ , Oz′ , Tz′

1150 Cz′ , Ox′ , Tx′ , Tz′

1250 Cz′
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APPENDIX A: DISCRETE AMBIGUITIES OF THE
ANALYZED SET OF SIX POLARIZATION OBSERVABLES

Within this Appendix, the discrete partial-wave ambigui-
ties of the six observables {σ0, �̌, Ť , F̌ , Ǧ, Ě} analyzed within
this work (cf. Sec. IV and Table III) are discussed. It is
argued that this specific set is mathematically complete in
a TPWA. As has been demonstrated already in other works
(e.g., Ref. [19]), such mathematical considerations can still
serve as a useful precursor to analyses of real data.

The following discussion is based on the “Omelaenko
formalism” [21]. The basic definitions of the sixteen observ-
ables in pseudoscalar meson photoproduction, expressed in
the transversity basis, are used. The expressions are collected
in Table II.

1. Discrete ambiguities of the group-S observables in truncated
partial-wave analysis

As is well known from Omelaenko’s work, in the case
of a truncated partial-wave analysis with maximum angular
momentum �max, the four transversity amplitudes can be ex-
pressed in terms of linear factorizations:

b1(θ ) = −C a2L
exp

(−i θ
2

)
(1 + t2)L

2L∏
k=1

(t + βk ), (A1)

b2(θ ) = −C a2L
exp

(
i θ

2

)
(1 + t2)L

2L∏
k=1

(t − βk ), (A2)

b3(θ ) = C a2L
exp

(−i θ
2

)
(1 + t2)L

2L∏
k=1

(t + αk ), (A3)

b4(θ ) = C a2L
exp

(
i θ

2

)
(1 + t2)L

2L∏
k=1

(t − αk ), (A4)

where t = tan(θ/2) (with the center-of-mass scattering angle
θ ) and {αk, βk} are the Gersten-Omelaenko roots, which are,
in essence, equivalent to multipoles.

Furthermore, all permissible solutions have to satisfy Ome-
laenko’s constraint, i.e., Eq. (10). The solution theory for the
case where all four group-S observables have been selected,
and thus only ambiguities of the four moduli |b1|, |b2|, |b3|,
|b4| have to be considered, has been worked out at length in

Ref. [19]. This solution theory leads to the known complete
sets of five (e.g., {σ0, �̌, Ť , P̌, F̌ }). In the following section,
the special case where less than four diagonal observables are
selected is considered.

2. Discrete ambiguities of the three group-S
observables {σ0, �, T }

The set of observables used within this work contains only
three simultaneously diagonalized observables (σ0, �̌, Ť , see
Table II). Therefore, one has to investigate which kinds of dis-
crete ambiguities are allowed by this set of three observables,
using the root-formalism described in Appendix A 1. For this
purpose, one can look at the “minimal” linear combinations
of squared moduli:

σ0 − �̌ = 2(|b1|2 + |b2|2), (A5)

σ0 + �̌ = 2(|b3|2 + |b4|2), (A6)

σ0 + Ť = 2(|b1|2 + |b4|2), (A7)

σ0 − Ť = 2(|b2|2 + |b3|2), (A8)

−�̌ + Ť = 2(|b1|2 − |b3|2), (A9)

−�̌ − Ť = 2(|b2|2 − |b4|2). (A10)

Upon reducing the problem to the nonredundant amplitudes
b2 and b4 in the TPWA [by using b4(W, θ ) = b3(W,−θ ) and
b2(W, θ ) = b1(W,−θ ), cf. Eq. (6) to (9)], one obtains

σ0 − �̌ ∝
2�max∏
k=1

(t + α∗
k )(t + αk ) +

2�max∏
k=1

(t − α∗
k )(t − αk ),

(A11)

σ0 + �̌ ∝
2�max∏
k=1

(t + β∗
k )(t + βk ) +

2�max∏
k=1

(t − β∗
k )(t − βk ),

(A12)

σ0 + Ť ∝
2�max∏
k=1

(t + α∗
k )(t + αk ) +

2�max∏
k=1

(t − β∗
k )(t − βk ),

(A13)

σ0 − Ť ∝
2�max∏
k=1

(t − α∗
k )(t − αk ) +

2�max∏
k=1

(t + β∗
k )(t + βk ),

(A14)

−�̌ + Ť ∝
2�max∏
k=1

(t + α∗
k )(t + αk ) −

2�max∏
k=1

(t + β∗
k )(t + βk ),

(A15)

−�̌ − Ť ∝
2�max∏
k=1

(t − α∗
k )(t − αk ) −

2�max∏
k=1

(t − β∗
k )(t − βk ).

(A16)

The problem is now to find out which kinds of discrete am-
biguity transformations, when applied to the roots {αk, βk},
leave the full set of quantities Eqs. (A11) to (A16) invariant,
while also satisfying the multiplicative constraint Eq. (10).
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The first set of transformations which comes to mind is given
by the well-known double ambiguity:

αk → α∗
k and βk → β∗

k ∀ k = 1, . . . , 2�max. (A17)

But other transformations may also be possible in addition,
since the observable P̌ is missing from the full diagonalizable
set {σ0, �̌, Ť , P̌}. Ideas that one would have to test are, for
instance, exchange symmetries

αk → βk and βk → αk ∀ k = 1, . . . , 2�max, (A18)

sign changes

αk → −αk and βk → −βk ∀ k = 1, . . . , 2�max, (A19)

or combinations of both

αk → −α∗
k and βk → −β∗

k ∀ k = 1, . . . , 2�max. (A20)

All of these ideas indeed do not violate the constraint Eq. (10).
In case any such additional symmetry of the quantities
Eqs. (A11) to (A16) were found, the next step would be to test
which of the remaining three observables {F, G, E} resolves
the symmetry. Neither of the proposed symmetries Eqs. (A18)
to (A20) leaves all the six quantities Eqs. (A11) to (A16)
invariant. It remains to be asked whether such additional sym-
metries actually exist. In case they do not exist, the discussion
would be simplified significantly [since F̌ and Ǧ in this case
already resolve the double ambiguity Eq. (A17)]. Due to
information-theoretical reasons, it only seems permissible to
simultaneously use three of the quantities from Eqs. (A11) to
(A16), i.e., to use three new quantities obtained via invertible
and linear transformations from the three diagonal initial ob-
servables {σ0, �̌, Ť }.

As an example, one can select the three quantities given
by Eqs. (A11) to (A13). The full set of discrete ambiguity-
transformations, which, when applied to the roots {αk, βk},
leaves Eqs. (A11) and (A12) invariant while maintaining the
constraint in Eq. (10), is given by the two transformations
in Eqs. (A17) and (A19). Under the exchange symmetry
Eq. (A18), Eqs. (A11) and (A12) are transformed into each
other and thus are not invariant.

Now considering additionally the quantity in Eq. (A13),
one can see that while the transformation Eq. (A17) leaves
this quantity invariant, transformation Eq. (A19) does not.
This only leaves one possible conclusion, namely, that also
for the case of only three diagonal observables {σ0, �̌, Ť }, or
equivalently the three new quantities in Eqs. (A11) and (A13),
the double ambiguity is the only relevant discrete ambiguity
of the problem.11

The argument given above can be repeated for any other
case where a combination of three quantities from the six
definitions Eq. (A11) to (A16) is taken as a starting point.

11This statement is of course only true in case transformations
Eqs. (A17) and (A19) are indeed the only possible discrete ambigui-
ties of the quantities in Eqs. (A11) and (A12) and that no further such
discrete ambiguities exist. This seems plausible when considering
equations Eqs. (A11) and (A12), in combination with the constraint
in Eq. (10).

None of the other starting combinations is necessary for a
proof, since this would give a redundant derivation, with the
same outcome.

3. Completeness of the set {σ0, �̌, Ť , F̌, Ǧ, Ě}
It has already been shown in Refs. [18,19] that the ob-

servables F̌ and Ǧ change sign under the double-ambiguity
transformation.

All the arguments made up to this point prove that the
set {σ0, �̌, Ť , F̌ , Ǧ, Ě} is free of discrete ambiguities in the
TPWA. Assuming furthermore that this set of six observables
has no continuous ambiguities, the set is complete.

APPENDIX B: COVERED PHASE SPACE
OF THE DATA USED

The phase-space coverages of the polarization observable
data used are illustrated in Fig. 3. For a detailed description
of the data see Secs. IV and III. The vertical orange lines
correspond to the energy bins of the statistically weakest
polarization observable G and indicate by which amount the
dataset of another observable has to be shifted to match these
energies.

APPENDIX C: ON THE CORRELATION
OF PROFILE FUNCTIONS

The correlation of two random variables X and Y can be
calculated using the Pearson correlation coefficient defined as
[44]

Corr(X,Y ) = Cov(X,Y )√
Var[X ]Var[Y ]

, (C1)

with their respective variances Var and the covariance Cov
between the two random variables. Under the assumption that
the dimensionless observables do not have any correlation
with each other, the covariance of the unpolarized differential
cross-section σ0(W, θ ) (denoted with X ) and a profile function
[denoted Y ′ = XY because σ0(W, θ ) was used to calculate the
profile function] is

Cov(X,Y ′) = E[XXY ] − E[X ]E[XY ]

= (E[X 2] − E[X ]2)E[Y ]

= Var[X ]E[Y ]. (C2)

And similarly for the covariance of one profile function (de-
noted as Y ′ = XY ) to another (denoted Z ′ = XZ):

Cov(Y ′, Z ′) = E[XY XZ] − E[XY ]E[XZ]

= (E[X 2] − E[X ]2)E[Y ]E[Z]

= Var[X ]E[Y ]E[Z]. (C3)

Substituting Eqs. (C2) and (C3), respectively, into Eq. (C1)
the correlation for both cases is

Corr(X,Y ′) =
√

Var[X ]

Var[Y ′]
E[Y ], (C4)

Corr(Y ′, Z ′) = Var[X ]√
Var[Y ′]Var[Z ′]

E[Y ]E[Z]. (C5)
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APPENDIX D: UNDERLYING ASSUMPTIONS

An enormous strength of Bayesian statistics is its clarity
about the underlying assumptions and how these evolve into
the statistical model used. In general one has N data pairs
(y, x)i, where the two components can be distinguished as
follows:

(1) The random variables y = (y1, . . . , yN ) follow a cer-
tain distribution. In this context, these correspond to
the values of the profile functions of the polarization
observables 
̌α (W, θ ).

(2) The explanatory variables [23] x = (x1, . . . , xN ) do
not belong to any probability distribution. In this con-
text, these are the angular values cos(θi ) at which the
yi were measured.

The underlying distribution of y is of upmost importance
because it defines the shape of the likelihood function and, by
association, the structure of the parameter space. It is therefore
essential to examine the distribution from which y origi-
nates and discuss the validity of the assumptions involved.
Hereby, an understanding of the data acquisition as well as
the subsequent analysis, to extract values for the polarization
observables, is mandatory. For this reason, special emphasis
is placed on their discussion within this paper.

The polarization observables used within this analysis orig-
inate from measurements at multiple experimental facilities:
ELSA [5], MAMI [53], and GRAAL [54]. The measured
quantities are count rates, corresponding to differential cross
sections, from which then, one or multiple polarization ob-
servables can be extracted. The two most common methods
are a “binned chi-square fit” and an “unbinned maximum-
likelihood fit” [41]. For the first case, it is common to use an
asymmetry of the form

A ∝ N1 − N2

N1 + N2
, (D1)

where N1, N2 are normalized count rates of reconstructed
γ p → ηp events for different polarization states [39,40]. This
has the advantage that systematic effects, for example, from
the reconstruction efficiency, cancel out.

Certainly, the distribution of this asymmetry is not explic-
itly addressed in any of the analyses concerning polarization
observables which the authors have encountered up to this
point. However, since the distribution of A determines the
structure of the likelihood distribution, it is mandatory to study
its proper form.

The count rates N1, N2 are Poisson-distributed random vari-
ables. If the expectation value, typically denoted as λ, is high
enough, the distribution goes over to a Gaussian distribution.
In the case of the data used here, this should be a good
assumption.

The sum or difference of two independent Gaussian dis-
tributed random variables, as present in Eq. (D1), is again
Gaussian distributed, which can be shown, for example, using
characteristic functions.

However, the ratio of two, eventually correlated, Gaussian
distributions Z = X/Y is far more complicated. A gen-
eral treatment can be found in Ref. [55]. Additionally a

closed-form expression is given in Eq. (G3), of Appendix G 1.
Indeed, there exist Gaussian shapes for the asymmetry A in
certain limits, but there exists also the possibility for a bimodal
distribution [55]. Therefore, the shape of the asymmetry A
has to be checked for the absence of a bimodal structure. To
use χ2 as likelihood function, the distribution should be well
approximated by a Gaussian distribution. These checks can
be performed by inserting the corresponding values for the
expectation values (μx, μy), standard deviations (σx, σy) and
correlation (ρ) into the formula for Z and its transformation,
see Ref. [55], or by using Eq. (G3).

An alternative approach, where the utilization of such an
asymmetry can be circumvented, is the already mentioned
“unbinned maximum-likelihood fit.” Albeit, in contrast with
the first method, the detector acceptance has to be taken into
account [41], which is possible [56]. Within this approach,
the likelihood distribution can be modeled appropriately using
Poisson distributions.

Summarizing, it is advantageous to use the unbinned
maximum-likelihood fit for future analyses in order to extract
values for the polarization observables.

However, the distribution of the extracted polarization ob-
servables not only depends on the shape of the used likelihood
function but also implicitly on the method used to estimate
the parameter uncertainties. Again, the distribution of the pa-
rameters is rarely explicitly discussed within papers such as
the references cited in Table III. The error analysis of MINUIT

uses by default the HESSE approach [57], which assumes
an asymptotic approximation to a Gaussian distribution for
the parameters under consideration. Thus, it is likely that the
parameters were assumed to be Gaussian distributed. Another
indication in the same direction is that all data used within the
present analysis (cf. Table III) do have symmetric statistical
uncertainties [38–42].

The profile functions 
̌α are calculated by a product of
random variables. However, even when these two random
variables are independent and Gaussian distributed, the result
is not always a Gaussian, only when one of the standard
deviations is very small, see Ref. [19] or Appendix G 2. For-
tunately, this is the case for σ0 as it is the observable in pη
photoproduction with an unprecedented accuracy.

APPENDIX E: ANALYSIS STEPS

This section explains in detail the analysis steps in order to
determine the complex multipole parameters using Bayesian
inference.

The posterior, which was in all of the analyses explicitly
multimodal, and the goal to analyze the structure of the math-
ematical ambiguities present a major challenge with respect
to the sampling of the posterior distribution. On the one hand,
posteriors with multiple modes connected by regions of low
posterior density persuade the Markov chains to get stuck
within a certain mode, unable to explore multiple ones [23].
This results in drastically12 failing MCMC convergence diag-

12This behavior was to be expected since R̂ is a measure whether
all chains have converged to the same distribution.
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nostics, such as the potential-scale-reduction statistic R̂. On
the other hand, the number of possible modes increases expo-
nentially with the truncation order �max. An upper limit can be
given by 24�max − 2, as this is the maximal possible number of
accidental ambiguities of the four group-S observables [note
that the bulk of this number is probably not realized as actual
ambiguities due to the multiplicative constraint Eq. (10)] [19].
Capturing consistently all modes of the marginal posterior
distributions via a large number of chains, with randomized
starting values is computationally inefficient. Furthermore,
randomized starting values will lead to traceplots where one
cannot distinguish between chains that have not converged
yet and chains which have explored more than one mode. An
illustrative example is shown in Fig. 11.

These difficulties can be overcome by specifying well
chosen starting values for the MCMC algorithm, explained
in more detail in Appendixes E 2 and E 3. On that account,
certain parts of the typical Bayesian workflow [58] had to be
adapted.

1. Monte Carlo maximum a posteriori estimation

To compare between different solutions, found within the
same analysis, it is important to find all modes of the marginal
posterior distributions, especially the global maximum. As
already mentioned, the number of accidental ambiguities rises
exponentially with the truncation order. Thus, the utilization
of an optimization routine is substantially more efficient13

than a large number of MCMC chains. With this in mind,
a Monte Carlo maximum a posteriori estimation of the pro-
posed posterior is employed as a preparatory step for the
Bayesian inference procedure. The results of the follow-
ing approach are cross-checked via an implementation in
Mathematica [59], using the Levenberg-Marquard algorithm
[60,61], as well as in Julia [62] using the L-BFGS-algorithm
[63–67] via Optim.jl [68].

At first, one needs to fix the overall phase of the multipoles
due to the bilinear product in Eq. (3). Indeed, without such
a constraint the minimization algorithms would have conver-
gence problems because the solutions are no longer located
at isolated points in the parameter space but on continuous
connected regions. Without loss of generality, a valid choice
is Re(E0+) > 0, Im(E0+) = 0 [19]. Second, the minimiza-
tion algorithm is performed for n different starting values.
The starting values are chosen within the physically allowed
parameter space, which solely depends on the total cross
section σtot [19,69]. Fortunately, the unpolarized differential
cross section is the most accurately measured observable in
pη photoproduction [1], thus yielding accurate limits. An ap-
propriate amount of n equidistant points is chosen on each axis
of this (8�max − 1)-dimensional hyper-rectangle, such that the
volume is sufficiently covered. Each of these parameter con-
figurations is then used as starting values for the minimization
algorithm.

Finally, the nonredundant solutions, of the n possible
mode candidates can be extracted via a clustering algorithm.
Hereby, all values of the multipole parameters are rounded

13Integration is far more computation-intensive than differentiation.

to six digits. Then the unique solution vectors can be filtered
out. A rough estimate for the uncertainty of each parameter
solution is calculated via the inverse of the Hesse matrix [70],
i.e., assuming a Gaussian shape of the parameters.

2. Sampling of the posterior

Within this work, the well-established probabilistic pro-
gramming software Stan [71] has been used to encode the
model employed and to run the posterior sampling with the
state-of-the-art Hamiltonian Monte Carlo algorithm [26,27]
in combination with the No-U-Turn sampler [72]. The em-
ployed Stan model can be found in the Supplemental Material
Ref. [49].

For each mode of the posterior distribution, determined
within Sec. E 1, Nc chains are sampled with starting values
for the multipole and systematic parameters equal to the
corresponding (8�max + 4)-dimensional solution vector. This
approach ensures adequate sampling of all marginal posterior
modes and enables again a meaningful convergence diagnos-
tics, further discussed in Appendix E 3. Hence, this is true as
long as the posterior modes are in the vicinity of the “typical
set,”14 which is the case in this paper.

The following tuning parameters of the Hamiltonian Monte
Carlo algorithm and the No-U-Turn sampler are adapted to the
problem at hand. The average Metropolis acceptance proba-
bility δ ∈ [0, 1] is increased from its default value of 0.8 to
δ = 0.99. Thus, preferring a more fine-grained sampling, i.e.,
smaller leapfrog15 steps ε [72], over the additional computa-
tion time. The maximum tree depth, with a default value of
10, is increased to 50, so that the algorithm can explore even
challenging posterior regions without hitting the termination
conditions [71].

3. Monitor Markov chain Monte Carlo convergence

Naturally one is interested in how well the structure of the
posterior was explored by the applied MCMC algorithm. The
goal is to diagnose whether all Markov chains have explored
the same part of the posterior distribution [23], i.e., whether
the obtained distribution is reliable or accrued due to a random
effect. This can be monitored by convergence diagnostics such
as the potential-scale-reduction statistic R̂ [29] and Monte
Carlo standard error [28] (which depends on the effective
sample size [23]). Within this work, the adapted versions of
these diagnostics, as proposed by Vehtari et al. [73], are em-
ployed. In addition, trace plots [30] can be used to monitor the
behavior of chains which explore multiple marginal modes.
For each of these diagnostics, it is essential to use multiple
chains [30,73] for a reliable result.

However, a multimodal posterior provides some pitfalls.
As already mentioned at the beginning of Appendix E, the
Markov chains can get stuck in certain, isolated modes. Thus
not all chains would have seen the same parts of the posterior

14An illustration of the typical set can be found in Ref. [50].
15This refers to one parameter of the leapfrog integrator; see, for

example, Ref. [27].
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FIG. 13. Adapted workflow to monitor MCMC convergence due
to a multimodal posterior.

distribution and the convergence diagnostics would indicate
that the chains have not converged. Therefore, in case a mul-
timodal posterior is studied, where all modes are of interest,
the usual methods are not applicable. An adaptation has to be
made. Under the assumption that all modes of the posterior
were found via Monte Carlo maximum a posteriori estima-
tion, see Appendix E 1, the following strategy is employed:
A schematic representation of the adapted approach can be
found in Fig. 13. Instead of applying the convergence di-
agnostics to all chains at once, the chains are clustered into
groups according to their sampled parameter space and the
convergence diagnostics are then applied onto each group
separately.16 Consequently, the convergence for the whole
posterior is monitored.

The chains can be grouped according to their similarity
as follows: To avoid problems during the clustering process,
coming from high-dimensional data [75], a dimensional re-
duction of the chains is performed. Each chain, consisting of

16A similar approach was used in Ref. [74].

S sampling points, is characterized via a vector of its quantiles,
in this case the [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] quan-
tiles. Subsequently, the corresponding distance matrix [76] of
the quantile vectors is calculated using the Euclidean metric.
The constructed matrix serves as input for the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
algorithm [77]. The minimal cluster size should be at least
two, as this is the minimal amount of chains required to
perform the R̂ diagnostic [30]. An appropriate ε neighborhood
for the DBSCAN algorithm can be graphically determined,
for example, by visualizing the Euclidean distances of the
quantile vectors to each other. Afterwards, the correct clus-
tering of chains can be checked visually. Alternatively, the
two-sample Kolmogorov-Smirnov test [78] or the K-Sample
Anderson-Darling test [79] could be employed to compare
two distributions with each other.

The outlined approach still allows us to adjust the number
of chains Nc per group and the sampling points S in order to
gain adequate convergence diagnostics and the desired pre-
cision for the parameter estimates. Within this paper, one is
aiming for R̂ < 1.01 [73] and a relative Monte Carlo standard
error in the region of a few percent.

4. Analysis of generated data

It is crucial to prove the correct implementation and valid-
ity of the used model. An ideal testing scenario would be the a
priori knowledge of the correct outcome of the analysis using
the model under consideration. Therefore the PWA solution
EtaMAID2018 [48] is employed for the electromagnetic mul-
tipoles in Eq. (4) up to the desired truncation order �max. By
these means, pseudodata for the profile functions 
̌α (W, θ )
are generated via Eq. (2) for certain energies and angular
positions for the observables σ0, �, T , E , F , and G. These
data were used as input for the TPWA following the described
steps in Appendixes E 1 to E 3. This analysis yielded again
the EtaMAID2018 multipole solutions, indicating a correct
implementation.

APPENDIX F: CONVERGENCE DIAGNOSTICS

MCMC convergence diagnostics for the truncation orders
�max = 1 and �max = 2 for all analyzed energies are shown in
Figs. 10 and 6. The anticipated values for the potential-scale-
reduction statistic R̂ � 1.01 and the relative Monte Carlo
standard error (MCSE) of the median in the range of a few per-
cent were achieved for both truncation orders. The diagnostics
for 750 MeV are satisfactory, despite their slightly elevated
values, which are the result of the highly multimodal marginal
parameter distribution. However, certain convergence diag-
nostics for �max = 2 suggest that some groups of chains have
not yet converged, indicating a specific phenomenon that
will be discussed below. Hence, the four energies E lab

γ =
[950, 1050, 1150, 1250] MeV look suspicious. In each case
one group of chains show R̂ values way above 1.01 and rel-
ative Monte Carlo standard errors of over 100%. This results
from two modes separated in phase space by a small region of
low probability, so that the Metropolis acceptance probability
[27] for a transition between the two high-probability regions
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is quite small but nonzero. Hence, just a small number of
chains is able to explore both marginal modes at once, which
is the reason for the suspicious convergence diagnostics. For
the case of 1050 MeV, the blue distribution corresponds to a
cluster with just one group member. Hence, it is not possible
to calculate an R̂ value for this cluster. It is important to note
that this behavior cannot be prevented because it is inherently
a random effect. As an example how such a phenomenon man-
ifests within a parameter distribution, see the blue distribution
of Im(M2+) at 1250 MeV in Fig. 8. Despite their convergence
diagnostics, these types of distributions are shown within the
multipole parameter and posterior predictive plots for their
illustrative purposes.

APPENDIX G: PROBABILITY DISTRIBUTIONS
FOR THE QUOTIENT AND PRODUCT OF TWO

GAUSSIAN RANDOM VARIABLES

Assuming the original observables to follow a Gaussian
probability distribution up to a very good approximation, the
result of forming the quotient and/or product is generally
non-Gaussian. This Appendix collects some basic facts about
the quotient and the product distributions and considers some
limiting cases.

1. The quotient distribution: Z := X/Y

Given are two independent, uncorrelated, Gaussian dis-
tributed random variables X and Y :

X ∼ N (μX , σX ), Y ∼ N (μY , σY ), (G1)

together with the integral defining the probability distribution
function of the quotient variable Z := X/Y [80],

PX/Y (u) =
∫ ∞

−∞
dx

∫ ∞

−∞
dyδ

(
x

y
− u

)

×
exp

[− 1
2

( (x−μX )2

σ 2
X

+ (y−μY )2

σ 2
Y

)]
2πσX σY

=
∫ ∞

−∞
dy|y|

exp
[− 1

2

( (uy−μX )2

σ 2
X

+ (y−μY )2

σ 2
Y

)]
2πσX σY

, (G2)

Mathematica yields the following result (for positive values
of σX and σY ):

PX/Y (u) = f1(u) · {
√

2 f2(u) c

+ √
π f3(u) erf( f4(u)) exp[ f4(u)2]}, (G3)

with the declarations

f1(u) :=
exp

[− 1
2

(μ2
X

σ 2
X

+ μ2
Y

σ 2
Y

)]
√

2π f2(u)3
, (G4)

f2(u) :=
√

σ 2
X + σ 2

Y u2, (G5)

f3(u) := μY σ 2
X + μX σ 2

Y u, (G6)

f4(u) := f3(u)√
2 f2(u) c

, (G7)

c := σX σY (G8)

and the error function “erf” [81]. In the following, two limit-
ing cases for Eq. (G3) are analyzed: first, the vanishing of the
expectation values (i.e., μX = μY = 0):

PX/Y (u) = σX σY

π
(
σ 2

X + σ 2
Y u2

) . (G9)

This is a result which is known from earlier publications on
the quotient distribution, for instance [82].

Second, considering also unit standard deviations
(i.e., σX = σY = 1) the result Eq. (G9) further simplifies to

PX/Y (u) = 1

π (1 + u2)
. (G10)

This is the well-known Cauchy distribution.

2. The product distribution: Z := XY

Similar to Eq. (G2) the probability-distribution function
for the product of two independent, uncorrelated Gaussian
distributed random variables can be written [83] as

PXY (u) =
∫ ∞

−∞
dx

∫ ∞

−∞
dyδ(xy − u)

×
exp

[− 1
2

( (x−μX )2

σ 2
X

+ (y−μY )2

σ 2
Y

)]
2πσX σY

. (G11)

By introducing an integral-representation for the δ function

δ(xy − u) =
∫ +∞

−∞

dk

2π
eik(xy−u) =

∫ +∞

−∞

dk

2π
eikxye−iku,

(G12)

one can bring Eq. (G11) into the following form:

PXY (u) =
∫ +∞

−∞

dk

2π
e−ikuFk[μX , σX ; μY , σY ], (G13)

where

Fk[μX , σX ; μY , σY ] =
∫ ∞

−∞
dx

∫ ∞

−∞
dyeikxy

×
exp

[− 1
2

( (x−μX )2

σ 2
X

+ (y−μY )2

σ 2
Y

)]
2πσX σY

.

(G14)

This characteristic function can be solved analytically:

Fk[μX , σX ; μY , σY ]

=
∫ ∞

−∞
dy exp

[
−1

2
ky

(
kσ 2

X y − 2iμX
)]exp

[− (y−μY )2

2σ 2
Y

]
√

2πσY

=
exp

[− k(kμ2
Y σ 2

X +kμ2
X σ 2

Y −2iμX μY )
2+2k2σ 2

X σ 2
Y

]√
1 + k2σ 2

X σ 2
Y

. (G15)
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The final result has the shape of a Fourier integral:

PXY (u) =
∫ +∞

−∞

dk

2π
exp [−iku]

×
exp

[− k(kμ2
Y σ 2

X +kμ2
X σ 2

Y −2iμX μY )
2+2k2σ 2

X σ 2
Y

]√
1 + k2σ 2

X σ 2
Y

. (G16)

In analogy to the quotient distribution, the limiting case μX =
μY = 0 shall be analyzed. The Fourier coefficients become

Fk[0, σX ; 0, σY ] = 1√
1 + k2σ 2

X σ 2
Y

. (G17)

The result for the product distribution can in this case be
written with a modified Bessel function of the second kind
Kn(z):

PXY (u) = K0
( |u|

σX σY

)
πσX σY

. (G18)

This is the analog of Eq. (G9) from the case of the quotient
distribution. For unit standard deviations, Eq. (G18) becomes
simply K0(|u|)/π , which is the analog of Eq. (G10).

For the product distribution, especially one limiting case is
of interest for this paper, namely, where the standard deviation
of one random variable almost vanishes (i.e., σY → 0). The
characteristic function becomes

lim
σY →0

Fk = exp

(
−k

(
kμ2

Y σ 2
X − 2iμX μY

)
2

)
. (G19)

Substituting Eq. (G19) into Eq. (G16) and solving the integral
gives the result:

PXY (u) =
exp

( − (u−μX μY )2

2μ2
Y σ 2

X

)
√

2π |μY ||σX | , (G20)

which is indeed a Gaussian probability distribution function.
This result is used in Appendix D.
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