Compositeness of T_{cc} and X(3872) by considering decay and coupled-channels effects

Tomona Kinugawa^{10*} and Tetsuo Hyodo^{10†}

Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397, Japan

(Received 4 April 2023; revised 18 January 2024; accepted 28 February 2024; published 10 April 2024)

The compositeness of weakly bound states is discussed using the effective field theory from the viewpoint of the low-energy universality. We introduce a model with coupling of the single-channel scattering to the bare state, and study the compositeness of the bound state by varying the bare state energy. In contrast to the naive expectation that the near-threshold states are dominated by the molecular structure, we demonstrate that a noncomposite state can always be realized even with a small binding energy. At the same time, however, it is shown that a fine tuning is necessary to obtain the noncomposite weakly bound state. In other words, the probability of finding a model with the composite dominant state becomes larger with the decrease of the binding energy, in accordance with the low-energy universality. For the application to exotic hadrons, we then discuss the modification of the compositeness due to decay and coupled-channels effects. We quantitatively show that these contributions suppress the compositeness, because of the increase of the fraction of other components. Finally, as examples of near-threshold exotic hadrons, the structures of T_{cc} and X(3872) are studied by evaluating the compositeness. We find the importance of the coupled-channels and decay contributions for the structures of T_{cc} and X(3872), respectively.

DOI: 10.1103/PhysRevC.109.045205

I. INTRODUCTION

Clarifying the internal structure of exotic hadrons is one of the central aims of hadron physics. The recent observations exotic hadron candidates in the heavy hadron sectors provide opportunities for intensive studies on the structure of hadrons [1,2]. Exotic hadrons are considered to have different internal structures from ordinary hadrons with qqq or $q\bar{q}$ as described in the quark models.

It is remarkable that many exotic hadron candidates have been discovered near two-hadron thresholds. For example, the tetraquark T_{cc} was observed slightly below the threshold of D^0D^{*+} in $T_{cc} \rightarrow D^0D^0\pi^+$ decay by the LHCb Collaboration in 2021 [3,4]. Its minimum quark content $cc\bar{u}\bar{d}$ indicates that T_{cc} is a genuine exotic state with charm C = +2. As a charmonium-like state with C = 0, X(3872) was observed near the $D^0\bar{D}^{*0}$ threshold in $B^{\pm} \rightarrow K^{\pm}\pi^+\pi^-J/\psi$ decay in 2003 by the Belle Collaboration [5]. X(3872) is considered to be exotic because its mass is not in accordance with the corresponding energy predicted by the quark model [6].

As possible internal structures of the exotic hadrons, hadronic molecule states and multiquark states are among

those considered. The hadronic molecule state is a loosely bound composite system of hadrons formed by hadronic interactions; an example is the deuteron. In contrast, the multiquark state is a compact state of at least four quarks. To reveal the internal structure of the exotic hadrons, many studies are being performed from both the theoretical and experimental sides.

The molecular nature of the bound state can be quantitatively studied by using the compositeness [7–14]. The compositeness is defined as the probability of finding the hadronic molecule component in the bound state. Theoretically, the compositeness can be evaluated either from the weak-binding relation [10,15–17] or from the residue of the pole of the scattering amplitude [11,12]. The internal structure of many hadrons has been studied using the compositeness [10,14–39]. The notion of compositeness has also been applied to other systems, such as nuclei and atoms [17,40–42].

The phenomena associated with the near-threshold states are governed by the low-energy universality [43,44]. From the universality argument, it is expected that the near-threshold states are dominated by the molecular component [17,45]. In fact, Ref. [46] shows that the *s*-wave bound states become completely composite in the weak-binding limit. A similar discussion has been given regarding the cluster phenomena in nuclear physics, such as the ground state of ⁸Be and the ¹²C Hoyle state [47]. From these discussions of the near-threshold states, one may naively expect that T_{cc} and X(3872) are the composite dominant states.

However, the small binding energy is not the only characteristic feature of T_{cc} and X(3872). First, both T_{cc} and X(3872)decay strongly and have a finite decay width. Next, the threshold channel $[D^0D^{*+}$ for T_{cc} and $D^0\bar{D}^{*0}$ for X(3872)] has

^{*}kinugawa-tomona@ed.tmu.ac.jp

[†]hyodo@tmu.ac.jp

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP³.

FIG. 1. Schematic illustrations of the T_{cc} system (left) and X(3872) system (right).

an isospin partner $[D^{*0}D^+$ for T_{cc} and $D^{*-}D^+$ for X(3872)] at a slightly higher energy. These features are illustrated in Fig. 1. It is shown that these decay and coupled-channels contributions modify the compositeness of the bound state [16]. To understand the nature of T_{cc} and X(3872), we need to quantitatively evaluate the contributions from the decay and channel coupling to the compositeness.

In this work, we first demonstrate how the expectation of the molecular nature of the near-threshold states is realized in an explicit model calculation. We show that the shallow bound state can be elementary dominant only with a fine tuning of the model parameter. In most of the parameter region except for the fine-tuned case, the weakly bound state is composite dominant, as expected from the universality. To consider the realistic exotic hadrons, we then examine the effects of the decay and the coupled channel to the compositeness. We quantitatively evaluate the modification of the expectation from the universality due to the decay and the coupled-channels effects. We finally apply the model to calculate the compositeness of T_{cc} and X(3872) to clarify the important effect for these states.

This paper is organized as follows. In Sec. II, we introduce the effective field theory, and numerically calculate the compositeness to discuss the nature of the shallow bound state. We then consider the contributions of the four-point contact interaction, the decay, and the channel coupling to the compositeness in Sec. III. In Sec. IV, we estimate the compositeness of T_{cc} and X(3872) by focusing on the importance of the decay and the coupled-channels effects. A summary of this work is given in Sec. V.

II. WEAKLY BOUND STATES AND LOW-ENERGY UNIVERSALITY

In this section, we discuss the composite nature of the weakly bound states in relation to the low-energy universality. In Sec. II A, we first construct a simple scattering model

with the nonrelativistic effective field theory where a bound state originates from the bare state. In Sec. II B, we then numerically compare the compositeness of typical and weakly bound states, and discuss the deviation from the expectation of the low-energy universality with a finite binding energy. We also examine the validity of the weak-binding relation in this model in Sec. II C.

A. Effective field theory

Let us introduce a nonrelativistic effective field theory to consider the compositeness of the bound state. We construct a model which describes the single-channel scattering of ψ_1 and ψ_2 coupled to the discrete state ϕ without the direct ψ_1 and ψ_2 interactions. The Hamiltonian is

$$\mathcal{H}_{\text{free}} = \frac{1}{2m_1} \nabla \psi_1^{\dagger} \cdot \nabla \psi_1 + \frac{1}{2m_2} \nabla \psi_2^{\dagger} \cdot \nabla \psi_2 + \frac{1}{2M} \nabla \phi^{\dagger} \cdot \nabla \phi + \nu_0 \phi^{\dagger} \phi, \qquad (1)$$

$$\mathcal{H}_{\text{int}} = g_0(\phi^{\dagger}\psi_1\psi_2 + \psi_1^{\dagger}\psi_2^{\dagger}\phi). \tag{2}$$

Here m_1, m_2 , and M are the masses of ψ_1, ψ_2 , and the discrete (bare) state ϕ , respectively. v_0 is the energy of the bare state ϕ measured from the $\psi_1\psi_2$ threshold, and g_0 is the bare coupling constant of the contact three-point interaction. For the Hamiltonian in Eq. (2) to be Hermitian, g_0 must be real. This model can also be regarded as the resonance model without the direct $\psi_1\psi_2$ interaction in Refs. [17,48].

In this paper, we focus on the two-body scattering of ψ_1 and ψ_2 . While we have no direct interactions in this model, the $\psi_1\psi_2$ scattering occurs through the intermediate ϕ state. Regarding the *s*-channel exchange of ϕ as the effective interaction V(k), we can derive the on-shell T-matrix $T_{on}(k)$ of the $\psi_1\psi_2$ scattering as a function of the on-shell momentum *k* from the Lippmann-Schwinger equation:

V

$$T_{\rm on}(k) = V(k) + V(k)G(k)T_{\rm on}(k), \qquad (3)$$

$$Y(k) = \frac{g_0^2}{\frac{k^2}{2\mu} - \nu_0},\tag{4}$$

$$G(k) = \int \frac{d^3q}{(2\pi)^3} \frac{1}{\frac{k^2}{2\mu} - \frac{q^2}{2\mu} + i0^+},$$
 (5)

with the reduced mass of the $\psi_1\psi_2$ system $\mu = (1/m_1 + 1/m_2)^{-1}$. This model has no crossing symmetry because it is nonrelativistic. Therefore, there are no crossed-channel exchanges which are not realized by the vertices in the Hamiltonian. In fact, due to the particle number conservations, the on-shell T-matrix in Eq. (3) is exact in the two-body sector, as discussed in Refs. [16,48]. Because V(k) does not depend on the off-shell momenta, the Lippmann-Schwinger equation reduces to an algebraic equation. At the same time, the absence of the angular dependence of the interaction V(k) leads to the *s*-wave scattering amplitude. To avoid the divergence of the *q* integration in the loop function G(k), a cutoff Λ is introduced as the upper applicable boundary of the momentum in the effective field theory [48]. In this case,

regularized G(k) becomes

$$G(k) = -\frac{\mu}{\pi^2} \left[\Lambda + ik \arctan\left(-\frac{\Lambda}{ik}\right) \right].$$
 (6)

The scattering observables are expressed by the scattering amplitude f(k), which is related with the on-shell T-matrix $T_{\text{on}}(k)$ as $f(k) = -\mu/(2\pi)T_{\text{on}}(k)$. From Eq. (3), we obtain the scattering amplitude f(k) as

$$f(k) = -\frac{\mu}{2\pi} \left[\frac{\frac{k^2}{2\mu} - \nu_0}{g_0^2} + \frac{\mu}{\pi^2} \left[\Lambda + ik \arctan\left(-\frac{\Lambda}{ik}\right) \right] \right]^{-1}.$$
(7)

For the low-energy scatterings, the inverse of the scattering amplitude 1/f(k) is expanded in powers of the momentum *k* (the effective range expansion):

$$\frac{1}{f(k)} = -\frac{1}{a_0} + \frac{r_e}{2}k^2 + \mathcal{O}(k^4) - ik.$$
(8)

The scattering length a_0 and the effective range r_e are defined from the coefficients of the k^0 and k^2 terms in this expansion. By comparing Eq. (8) with the scattering amplitude in Eq. (7), we obtain the scattering length a_0 and the effective range r_e in this model:

$$a_0 = -\left[\frac{2\pi v_0}{g_0^2 \mu} - \frac{2}{\pi}\Lambda\right]^{-1},$$
(9)

$$r_e = -\frac{2\pi}{g_0^2 \mu^2} + \frac{4}{\pi \Lambda}.$$
 (10)

We note that the effective range in Eq. (10) has an upper bound $r_e \leq 4/(\pi \Lambda)$ because $g_0^2 \geq 0$ for real g_0 . For a finite cutoff Λ , the contact interaction in the Lagrangian is smeared to have a finite interaction range of the order of $\sim 1/\Lambda$. In this sense, the upper bound $4/(\pi \Lambda)$ can be regarded as the Wigner bound [49], the upper bound of the effective range for finite range interactions. In the $\Lambda \rightarrow \infty$ limit under an appropriate renormalization, we obtain $r_e \leq 0$. This is a feature of the resonance model in the zero-range limit, as mentioned in Refs. [17,48].

Suppose that this model generates a bound state with the binding energy *B*. The bound state is expressed as the pole of the scattering amplitude, and therefore the eigenmomentum is obtained by solving the bound state condition $f^{-1}(k) = 0$. The bound state pole appears in the complex momentum plane at $k = i\kappa$ with $\kappa = \sqrt{2\mu B} > 0$. The composite nature of the bound state can be characterized by the compositeness *X* [7–14] defined as the weight of the scattering states in the bound state $|\Phi\rangle$:

$$X = \int \frac{d^3k}{(2\pi)^3} |\langle \boldsymbol{k} | \Phi \rangle|^2, \qquad (11)$$

where $|\mathbf{k}\rangle$ is the scattering eigenstate of the free Hamiltonian in Eq. (1) with the momentum \mathbf{k} . The compositeness X can be expressed by the effective interaction and the loop function as discussed in Ref. [16]:

$$X = \frac{G'(-B,\Lambda)}{G'(-B,\Lambda) - [V^{-1}(-B)]'}.$$
 (12)

Using this expression, we obtain X in this model from Eqs. (4) and (6):

$$X = \left[1 + \frac{\pi^2 \kappa}{g_0^2 \mu^2} \left(\arctan\left(\frac{\Lambda}{\kappa}\right) - \frac{\frac{\Lambda}{\kappa}}{1 + \left(\frac{\Lambda}{\kappa}\right)^2}\right)^{-1}\right]^{-1}.$$
 (13)

We define the elementarity Z as the overlap of the bound state $|\Phi\rangle$ with the bare state $|\phi\rangle$ which is the discrete eigenstate of the free Hamiltonian created by the bare ϕ field at rest:

$$Z = |\langle \phi | \Phi \rangle|^2 = \frac{-[V^{-1}(-B)]'}{G'(-B,\Lambda) - [V^{-1}(-B)]'}.$$
 (14)

Namely, the elementarity Z represents the fraction of the bare state component in the bound state. From the completeness relation with $|\psi\rangle$ and $|k\rangle$, we obtain Z + X = 1, which can also be directly seen from Eqs. (12) and (14).

Here we mention the model dependence of the compositeness X in the system with the finite interaction range which corresponds to the finite cutoff Λ . In the $\Lambda \rightarrow \infty$ limit, the compositeness X can be written using the observables such as the scattering length a_0 , effective range r_e , and the radius of the bound state $R = 1/\sqrt{2\mu B}$ [10,16,17,50]:

$$X = \frac{a_0}{2R - a_0} = \frac{1}{1 - r_e/R} = \sqrt{\frac{1}{1 - 2r_e/a_0}}.$$
 (15)

However, this expression in the zero-range limit does not work quantitatively when applied to hadrons. In fact, the formula (15) gives $X \approx 1.69$ for the deuteron when the experimental values of a_0 , r_e , and R are substituted. Because the compositeness is defined as $0 \leq X \leq 1$ for the stable bound state, this indicates the insufficiency of the formula (15) for the hadrons. This problem was recently discussed in Refs. [17,36–38], and it has been shown that the finite range corrections are important to address this problem.

To examine the effect of the finite interaction range, in this work, we keep Λ finite in the effective field theory. The compositeness X then depends on the value of the cutoff (interaction range) and on the regularization method (momentum dependence of the form factor), even for a given set of the experimental data. This is the "model dependence" of the compositeness we will study in the following, by varying the parameter ν_0 in the effective field theory model. It should be noted that the model dependence becomes weakened and X approaches the universal result (15) when the binding energy is small, as we will show in Sec. II C.

For later convenience, here we introduce the typical energy scale E_{typ} associated with the model. Because the cutoff Λ gives the momentum scale, we define E_{typ} as

$$E_{\rm typ} = \frac{\Lambda^2}{2\mu}.$$
 (16)

If there is a bound state, the typical binding energy is expected to be $B \sim E_{typ}$ based on the idea of naturalness [51–54]. We call the state with $B \ll E_{typ}$ a weakly bound state. To ensure that the bound state is in the applicable region of the model, we impose the condition $B \leq E_{typ}$.

FIG. 2. The compositeness X as a function of the normalized bare state energy v_0/E_{typ} with the binding energies $B = E_{typ}$ (solid line), $B = 0.01E_{typ}$ (dashed line), and $B = B_{cr} = 0.243E_{typ}$ (dotted line).

B. Numerical calculation

In this section, we numerically investigate the compositeness of bound states in the model given in Sec. II A. Before the concrete calculations, we summarize the relations among the model parameters. In principle, the model parameters the bare state energy v_0 , the coupling constant g_0 , and the cutoff Λ —can be arbitrarily chosen. However, for a given binding energy *B*, the bound state condition $f^{-1}(i\kappa) = 0$ leads to the expression of g_0^2 with other two parameters:

$$g_0^2(B;\nu_0,\Lambda) = \frac{\pi^2}{\mu}(B+\nu_0) \left[\Lambda - \kappa \arctan\left(\frac{\Lambda}{\kappa}\right)\right]^{-1}, \quad (17)$$

with $\kappa = \sqrt{2\mu B}$. Therefore, we can reduce one degree of freedom by fixing the binding energy *B*. In addition, when we work with dimensionless quantities using Λ , the result does not depend on the specific value of Λ .

The remaining dimensionless parameter v_0/E_{typ} cannot be determined in the framework of the effective field theory.¹ In this work, we vary v_0/E_{typ} within the allowed region to investigate the model dependence of the compositeness. The parameter region of v_0/E_{typ} is restricted as follows: (i) As we discussed below Eq. (16), the bound state should satisfy the condition $\kappa \leq \Lambda$, which leads to $\Lambda - \kappa \arctan(\Lambda/\kappa) > 0$. Therefore, the sign of g_0^2 in Eq. (17) coincides with the sign of $B + v_0$. The coupling constant square g_0^2 should be positive in Eq. (17) for the Hermitian Hamiltonian. Hence the lower boundary of v_0/E_{typ} is given by $-B/E_{typ} \leq v_0/E_{typ}$.² (ii) Because the effective field theory is applicable up to the energy scale E_{typ} , the upper boundary of v_0/E_{typ} is given by $E_{typ}/E_{typ} = 1$. In summary, the allowed v_0/E_{typ} region is determined as

$$-B/E_{\rm typ} \leqslant \nu_0/E_{\rm typ} \leqslant 1. \tag{18}$$

In Fig. 2, we plot the compositeness X as a function of normalized bare state energy v_0/E_{typ} .³ First, we focus on the solid line which represents X of a bound state with the typical binding energy $B = E_{typ}$. For most of the allowed region $-1 \le v_0/E_{typ} \le 1$, the compositeness X is smaller than 0.5. In other words, the bound state with $B = E_{typ}$ is elementary dominant for most of the v_0/E_{typ} region. Because the v_0 dependence of the compositeness can be regarded as the model dependence, it is probable one can obtain the bound state with X < 0.5 in a randomly chosen model. It is consistent with a naive expectation for the model in Sec. II A because the origin of the bound state is the bare state ϕ which contributes to the elementarity.

We then discuss X of a weakly bound state. The dashed line in Fig. 2 corresponds to the case with $B = 0.01E_{typ}$ as a representative value of a small binding energy. In this case, the allowed region of v_0/E_{typ} in Eq. (18) is $-0.01 \le v_0/E_{typ} \le 1$. In contrast to the typical bound state with $B = E_{typ}$, X is larger than 0.5 for most of the allowed region of v_0/E_{typ} . Therefore, with the assumption of naturalness, the weak-binding state is mostly composite dominant, even though the bound state originates from the bare state.⁴ A similar observation was made in Ref. [55] where the internal structure of exotic hadrons was discussed in the dynamical diquark model through the coupling of the tetraquark to the two-meson states. They show that the near-threshold states are dominated by the meson molecular component while the states far from the threshold show tetraquark dominance. When we focus on the $v_0 \sim -B$ region, however, the compositeness of the shallow bound state is small. This is because the compositeness is fixed to be zero in the $v_0 \rightarrow -B$ limit. This means that we can always generate an elementary dominant state by choosing the bare state energy appropriately. However, we need a fine tuning of v_0 in the small region around $v_0 \sim -B$ to realize an elementary dominant state. From naturalness, such a fine tuning is unlikely. This is also shown with the separable potential model and the model which is designed to show the scattering effects of a confined state in Ref. [45]. In summary, for shallow bound states, the probability of realizing the composite dominant state is much higher than the elementary dominant case, although the latter possibility cannot be completely excluded.

At B = 0, because the coupling constant in Eq. (17) becomes finite $[g_0^2 = \pi^2 v_0 / (\mu \Lambda)]$, from Eq. (13), X = 1 holds

 $^{{}^{1}}v_{0}$ is the energy of the discrete bare state and corresponds to the quark core state in the application to hadrons. The value of v_{0} may be estimated, for instance, by the constituent quark model.

²Strictly speaking, the point $v_0 = -B$ should be discussed with special care, because the coupling constant vanishes and hence the bound state pole decouples from the scattering amplitude [46]. It is shown that the compositeness behaves as $X \to 1$ ($X \to 0$) with

 $g_0 \rightarrow 0$ for fixed B = 0 ($B \neq 0$). This behavior is confirmed in the present model as we will show below.

³Note that the compositeness X in Eq. (13) depends implicitly on v_0 through g_0^2 [see Eq. (17)].

⁴As discussed around Eq. (16), naturalness requires $B \sim E_{typ}$. To obtain the weakly bound state with $B \ll E_{typ}$, one needs to fine tune the parameters of the model [54]. Here we consider naturalness in the presence of the weakly bound state; namely, we assume that there is no further fine tuning ($\nu_0 \sim -B$) on top of $B \ll E_{typ}$.

FIG. 3. The illustration of the definitions of v_c and P_{comp} with the bound state with $B = E_{typ}$. P_{comp} is the fraction of the shaded region to the entire horizontal axis.

in the whole region of $0 \le v_0/E_{typ} \le 1$. Therefore, the plot of the compositeness in Fig. 2 becomes a step function. This is understood from the low-energy universality [43,44]. It is known that the compositeness X becomes unity in the weak-binding limit $B \rightarrow 0$ (compositeness theorem) [46]. The present model indeed follows this model independent result. From the expectation of the low-energy universality, the microscopic details such as the value of v_0 become irrelevant, and the same relation X = 1 holds for all models in the $B \rightarrow 0$ limit. In contrast to the finite $B \neq 0$ case, the elementary dominant state cannot be generated with any v_0 . By gradually decreasing the binding energy from $B = 0.01E_{typ}$ (dashed line in Fig. 2), the region of v_0 with the elementary dominant state becomes smaller and finally vanishes.

We search for the critical binding energy B_{cr} at which the fractions of the composite dominant region and the elementary dominant region of v_0/E_{typ} are precisely half and half. From the numerical calculation, it turns out that $B_{cr} =$ $0.243E_{typ}$, and we plot the compositeness with B_{cr} as the dotted line in Fig. 2. Namely, we expect that the composite dominant nature of the bound state becomes prominent for the state with $B < B_{cr}$. However, we note that $B_{cr} = 0.243E_{typ}$ is a value specific to the present model. The value depends on the choice of the regularization of the function *G* and the interaction Lagrangian.

As a common feature of all cases shown in Fig. 2, X increases with v_0/E_{typ} . We can analytically show this behavior from Eq. (13) because g_0^2 monotonically increases with v_0 . In the $v_0 \rightarrow -B$ limit, the compositeness X vanishes.⁵

FIG. 4. The fraction of the composite dominant region P_{comp} as a function of normalized binding energy B/E_{typ} .

When g_0^2 increases, the bound state couples more strongly to the scattering states, and the contribution of the scattering states, and hence the compositeness X, becomes larger. This can also be seen in the v_0 dependence of X in Eq. (13) mentioned above. This relation between the compositeness and the coupling constant has been discussed in the literature [56,57]. In Ref. [56], in a similar model setup, the elementarity Z of a bound state is evaluated, and is shown to decrease as a function of the coupling constant. This is essentially equivalent to the result shown in Fig. 2. In Ref. [57], the authors discuss the nature of the bound state in the weakand strong-coupling limits, and conclude that the bound state is elementary dominant (composite dominant) for the weakcoupling (strong-coupling) case. Their result is consistent with our analysis of $v_0 \sim -B$ and $v_0 \sim E_{typ}$ in Fig. 2. Because $v_0 \sim -B$ ($v_0 \sim E_{typ}$) corresponds to $g_0 \sim 0$ (large g_0) as seen in Eq. (17), states are elementary dominant with $X \sim$ 0 (composite dominant with $X \sim 1$) in the weak-coupling (strong-coupling) case in our model.

To quantitatively discuss the probability of finding a model with the composite dominant bound state, we define P_{comp} as the fraction of the ν_0/E_{typ} region with X > 0.5:

$$P_{\rm comp} = \frac{1 - \nu_c / E_{\rm typ}}{1 + B / E_{\rm typ}},\tag{19}$$

where v_c is the value of v_0 such that X = 0.5.⁶ The definition of v_c for $B = E_{typ}$ is illustrated in Fig. 3. Because X is plotted in the region $-B/E_{typ} \leq v_0/E_{typ} \leq 1$, the denominator of Eq. (19) corresponds to the length of the horizontal axis in Fig. 3. The numerator is expressed by the width of the shaded region. Thus, P_{comp} in Eq. (19) is defined as the ratio of the shaded region to all of the allowed region of v_0/E_{typ} (the length of the horizontal axis). The explicit values for the cases shown in Fig. 2 are found to be $P_{comp} = 0.25$ at $B = E_{typ}$ and

⁵For $v_0 < -B$, the compositeness X becomes negative. This is because the norm of the bare state becomes negative for $g_0^2 < 0$ and the admixture of the negative norm bare state gives Z < 0. However, here we do not consider such cases with non-Hermitian Hamiltonian as discussed above.

⁶If X < 0.5 in the whole v_0 region, we set $v_c = E_{typ}$ and hence $P_{comp} = 0$. In the $B \to 0$ limit, the compositeness is always unity and hence we define $v_c = -B$ such that $P_{comp} = 1$.

FIG. 5. The compositeness obtained from the model calculation (13) (solid line) and from the central value of the weak-binding relation (21) (dashed line) with the fixed binding energy $B = E_{typ}$ [panel (a)] and $B = 0.01E_{typ}$ [panel (b)].

 $P_{\text{comp}} = 0.88$ at $B = 0.01E_{\text{typ}}$. Because B_{cr} is defined so that the composite dominant case occupies the half of the whole v_0/E_{typ} region, we obtain $P_{\text{comp}} = 0.5$ at $B = B_{\text{cr}}$.

In Fig. 4, we plot P_{comp} by varying the normalized binding energy B/E_{typ} . Small P_{comp} at $B/E_{\text{typ}} \sim 1$ monotonically increases to unity by decreasing the binding energy *B*. This shows that the probability of finding a model with the composite dominant state is small for the typical bound states but gradually increases along with the reduction of the binding energy. In the small *B* region, P_{comp} rapidly grows toward unity. At B = 0, we have $P_{\text{comp}} = 1$; the bound state becomes completely composite dominant for any model, as discussed above. Figure 4 also shows that, even when we slightly go away from the weak-binding limit B = 0, it is expected that P_{comp} is still close to unity. This suggests that it is probable to find the near-threshold composite dominant states with $B \ll$ E_{typ} . In fact, the weak-binding hadrons, nuclei, and atoms studied in Ref. [17] are all composite dominant states.

C. Weak-binding relation

Finally, we discuss the results in the previous section by comparing with the compositeness in the zero-range limit in Eq. (15). For this purpose, let us consider the idealized case when the interaction range is sufficiently small. As shown in Refs. [10,16,17,50], the weak-binding relation gives the compositeness X_{wb} from the scattering length a_0 and the radius of the bound state $R = 1/\kappa$ as follows:

$$X_{\rm wb} = X_{\rm wb}^c + \mathcal{O}\bigg(\frac{R_{\rm typ}}{R}\bigg),\tag{20}$$

$$X_{\rm wb}^c = \frac{a_0}{2R - a_0}, \quad R_{\rm typ} = \max\{1/\Lambda, |r_e|, \dots\},$$
 (21)

where r_e is the effective range, R_{typ} is the typical length scale of the system which is estimated as the maximum length scale expected for a_0 , and X_{wb}^c is the central value of the compositeness in the weak-binding relation. For a weakly bound state with $R \gg R_{typ}$, we can neglect the correction terms $\mathcal{O}(R_{typ}/R)$ in Eq. (20). In this case, $X_{wb} \approx X_{wb}^c$ is obtained only from the observables a_0 and R. This is equivalent to Eq. (15) in the zero-range limit. Therefore, the weak-binding relation is a model independent method to estimate the compositeness of the shallow bound state.

In Fig. 5, we plot the compositeness X in this model [Eq. (13)] and the central value of the compositeness from the weak-binding relation X_{wb}^c in Eq. (21). We use a_0 in Eq. (9) and R in this model for the calculation of X_{wb}^c . Panel (a) shows X (solid line) and X_{wb}^c (dashed line) for the typical binding case $B = E_{typ}$, and panel (b) similarly for the weak-binding case $B = 0.01 E_{typ}$. We see that the difference between X_{wb}^c and X is significant for $B = E_{typ}$ in panel (a) while that for $B = 0.01E_{\text{typ}}$ is at most 0.1 in panel (b). Therefore, the weakbinding relation gives a good estimation of the compositeness for the shallow bound state. It is remarkable that the weakbinding relation works to estimate X correctly even in the region $\nu_0 \sim -B$ where X < 0.5 in panel (b). In Ref. [17], the validity of the weak-binding relation is demonstrated for composite dominant $(X \sim 1)$ states with a shallow binding energy. In this work, we find that the weak-binding relation works also for shallow but elementary dominant bound states.

It is instructive to analytically show that the exact compositeness *X* coincides with the weak-binding one in Eq. (21) in the small *B* limit. For a weakly bound state with $B \ll E_{typ}$ ($\kappa \ll \Lambda$), the arctangent term in the loop function in Eq. (6) can be approximated as

$$\arctan\left(\frac{\Lambda}{\kappa}\right) = \frac{\pi}{2} + \mathcal{O}\left(\frac{\kappa}{\Lambda}\right).$$
 (22)

Under this approximation, the loop function $G(i\kappa)$ becomes

$$G(i\kappa) \approx -\frac{\mu}{\pi^2} \left(\Lambda - \frac{\pi}{2} \kappa \right) \quad (B \ll E_{\text{typ}}),$$
 (23)

and the scattering amplitude is given by

$$f(i\kappa) \approx \left[\frac{2\pi}{\mu} \left(\frac{\frac{\kappa^2}{2\mu} + \nu_0}{g_0^2}\right) - \frac{2\Lambda}{\pi} + \kappa\right]^{-1} \quad (B \ll E_{\text{typ}}).$$
(24)

Note that the approximation in Eq. (22) is not valid for a large binding energy ($\kappa > 2\Lambda/\pi$) where the square of the coupling constant becomes negative, $g_0^2 < 0$. From V and the approximated G in Eq. (23), the compositeness X in Eq. (13) is given by

$$X \approx \left[1 + \frac{2\pi}{R\mu^2 g_0^2}\right]^{-1} \quad (B \ll E_{\text{typ}}).$$
 (25)

By using the scattering length a_0 in Eq. (9), the central value of the compositeness in Eq. (21) is obtained as

$$X_{\rm wb}^{c} = \left[2R\left(-\frac{2\pi\nu_{0}}{g_{0}^{2}\mu} + \frac{2}{\pi}\Lambda\right) - 1\right]^{-1}$$
$$= \left[2R\left(\frac{\pi}{R^{2}g_{0}^{2}\mu^{2}} + \frac{1}{R}\right) - 1\right]^{-1}$$
$$= \left[1 + \frac{2\pi}{R\mu^{2}g_{0}^{2}}\right]^{-1}.$$
(26)

In the second line, we use the bound state condition from the scattering amplitude in Eq. (24) written using $R = 1/\kappa$:

$$-\frac{2\pi}{\mu} \left(\frac{-\frac{\kappa^2}{2\mu} - \nu_0}{g_0^2} \right) - \frac{2\Lambda}{\pi} + \kappa = 0$$

$$\Leftrightarrow \frac{2\Lambda}{\pi} - \frac{2\pi\nu_0}{g_0^2\mu} = \frac{\pi}{R^2 g_0^2 \mu^2} + \frac{1}{R}.$$
 (27)

From Eqs. (25) and (26), we show that the exact compositeness X reduces to the central value estimated by the weak-binding relation X_{wb}^c in the small *B* limit. In Ref. [16], it is shown that there are two origins of the deviation of estimated X_{wb}^c from exact X. The first one comes from the higher order terms in the derivative of the loop function, and the second one from those in the effective range expansion of the residue of the bound state pole. The derivative of the approximated loop function in Eq. (23) has only the leading order term, and hence the first deviation does not appear. Because the scattering amplitude in Eq. (24) has no higher order terms of $\mathcal{O}(k^4)$, the second deviation does not arise. In this way, we explicitly show that all the deviations disappear in the $B \rightarrow 0$ limit and the estimation of the compositeness using the weak-binding relation becomes exact. In this context, it is worth noting the deviation of X_{wb}^c from exact X in the scattering models discussed in Ref. [17,48]. In the zero-range model with the loop function in Eq. (23), $X = X_{wb}^c$ can be shown because the inverse scattering amplitude is given up to $\mathcal{O}(k)$. In contrast, X deviates from X_{wb}^c in the resonance model because the four-point contact interaction induces the higher order terms of $\mathcal{O}(k^4)$ in the effective range expansion.

III. EFFECTS OF FOUR-POINT CONTACT INTERACTION, DECAY, AND CHANNEL COUPLING

As mentioned in the Introduction, actual exotic hadrons have finite decay width and coupling to the additional scattering channel. One can also consider the direct interaction in the threshold channel which is absent in the model in Sec. II. In this section, we consider the four-point contact interaction, decay, and coupled-channels effect and show how these contributions modify the results in the previous section. In Sec. III A, we introduce the four-point contact interaction in addition to the model in the previous section, and study the contribution of the four-point interaction to the compositeness and low-energy universality. In the same way, the decay contribution and coupled-channels contribution are discussed in Secs. III B and III C, respectively.

A. Effect of four-point contact interaction

In this section, we investigate the effect of the direct interaction of ψ_1 and ψ_2 in addition to the model in Sec. II. For this purpose, we introduce the four-point contact interaction term with the coupling constant λ_0 , and the interaction Hamiltonian in Eq. (2) becomes

$$\mathcal{H}_{\rm int} = \lambda_0 (\psi_1^{\dagger} \psi_2^{\dagger} \psi_1 \psi_2) + g_0 (\phi^{\dagger} \psi_1 \psi_2 + \psi_1^{\dagger} \psi_2^{\dagger} \phi).$$
(28)

Positive $\lambda_0 > 0$ (negative $\lambda_0 < 0$) corresponds to a repulsive (attractive) interaction. Because of the addition of the contact interaction term, the effective interaction V(k) in Eq. (4) as a function of the momentum *k* changes to

$$V(k) = \lambda_0 + \frac{g_0^2}{\frac{k^2}{2\mu} - \nu_0},$$
(29)

while the loop function G(k) in Eq. (6) remains unchanged. The scattering amplitude f(k) is obtained as

$$f(k) = -\frac{\mu}{2\pi} \left[\left(\lambda_0 + \frac{g_0^2}{\frac{k^2}{2\mu} - \nu_0} \right)^{-1} + \frac{\mu}{\pi^2} \left\{ \Lambda + ik \arctan\left(-\frac{\Lambda}{ik}\right) \right\} \right]^{-1}.$$
 (30)

As in Sec. II A, we consider the bound state with the eigenmomentum $k = i\kappa$ and the binding energy $B = \kappa^2/(2\mu)$. The compositeness X is calculated from V in Eq. (29) and G in Eq. (5):

$$X = \left[1 + \frac{\frac{g_0^2 \pi^2 \kappa}{\mu^2}}{(B + \nu_0)^2 \left(\lambda_0 - \frac{g_0^2}{B + \nu_0}\right)^2 \left(\arctan\left(\frac{\Lambda}{\kappa}\right) - \frac{\Lambda}{1 + \left(\frac{\Lambda}{\kappa}\right)^2}\right)}\right]^{-1}.$$
(31)

The model parameters are the bare state energy ν_0 , the cutoff Λ , and the coupling constants λ_0 and g_0 . As in the model in Sec. II A, from the bound state condition $f(i\kappa)^{-1} = 0$ with a fixed binding energy, g_0^2 is written in terms of the binding energy *B* and other model parameters:

$$g_0^2(B;\nu_0,\lambda_0,\Lambda) = (B+\nu_0) \left(\frac{\frac{\pi^2}{\mu}}{\Lambda-\kappa \arctan\left(\frac{\Lambda}{\kappa}\right)} + \lambda_0\right).$$
(32)

Furthermore, the use of the dimensionless parameters can absorb the Λ dependence. Therefore, the remaining parameters ν_0 and λ_0 are varied in the calculation of the compositeness. Namely, ν_0 and λ_0 dependence of the compositeness can be regarded as the model dependence in this case. As in Sec. II B, we vary ν_0/E_{typ} in the region $-B/E_{typ} \leq \nu_0/E_{typ} \leq 1.^7$

⁷As in Sec. II, the lower boundary of v_0 is determined by the condition $g_0^2 > 0$. Note that even with the choice of v_0 in the $v_0 < -B$

We now consider the relevant parameter region of λ_0 . From Eq. (32), we see that g_0^2 becomes negative for large negative λ_0 . To avoid this problem, we introduce the lower boundary of λ_0 as λ_0^b , which is determined by the condition $g_0^2 = 0$ in Eq. (32):

$$\lambda_0^{\rm b} = -\frac{\pi^2}{\mu} \left[\Lambda - \kappa \arctan\left(\frac{\Lambda}{\kappa}\right) \right]^{-1}.$$
 (33)

Thus, λ_0 should be chosen in the allowed region $-|\lambda_0^b| \leq \lambda_0$. Note that λ_0^b depends on the binding energy $B = \kappa^2/(2\mu)$.

We then determine the region of λ_0 for the numerical calculation. We define λ_0^{cr} as the critical value of the attractive coupling constant which supports a bound state at B = 0 without the bare state contribution:

$$\lambda_0^{\rm cr} = -\frac{\pi^2}{\mu\Lambda}.$$
(34)

In fact, with $\lambda_0 = \lambda_0^{cr}$ and $g_0^2 = 0$, the scattering amplitude in Eq. (30) has a pole at $B = \kappa = 0$. With a stronger attraction than λ_0^{cr} , a new bound state is generated by the four-point interaction in addition to the one developed from the bare state. This is qualitatively different from the situation in Sec. II, where only one bound state exists below the threshold. Therefore, for the attractive interaction, we impose the condition λ_0 in $-|\lambda_0^{cr}| \leq \lambda_0$. Because the formation of a bound state is a nonperturbative phenomenon, $|\lambda_0^{cr}|$ can be regarded as the representative strength of the strong coupling. Based on this consideration, we restrict $\lambda_0 \leq |\lambda_0^{cr}|$ also for the repulsive interaction. To examine the effect of the four-point interaction to the result of Sec. II, we vary λ_0 in the region

$$-\left|\lambda_{0}^{\mathrm{cr}}\right| \leqslant \lambda_{0} \leqslant \left|\lambda_{0}^{\mathrm{cr}}\right|. \tag{35}$$

Note that the relation $-|\lambda_0^b| < -|\lambda_0^{cr}|$ always holds since $\kappa \arctan(\kappa/\Lambda) > 0$ for any $\kappa > 0$. Thus, the condition $-|\lambda_0^b| < \lambda_0$ is guaranteed with Eq. (35) for any κ .

To observe the effect of the contact interaction with λ_0 , we plot the compositeness *X* as a function of the normalized bare states energy ν_0/E_{typ} for the weak-binding case $B = 0.01E_{typ}$ in Fig. 6. The solid, dashed, and dotted lines express *X* with $\lambda_0 = 0$, $\lambda_0 = -|\lambda_0^{cr}|$, and $\lambda_0 = |\lambda_0^{cr}|$, respectively. As shown in Fig. 6, the repulsive interaction $|\lambda_0^{cr}| > 0$ decreases *X* and the attractive interaction $-|\lambda_0^{cr}| < 0$ increases *X* for fixed ν_0 . To understand this behavior, we consider the interaction mechanisms and their implication for the compositeness of the bound state. In the present model, the bound state originates not only from the bare state pole but also from the attractive four-point interaction. As discussed in Sec. II, the bare pole term contributes to the elementarity *Z*. In contrast, the attractive four-point interaction provides the compositeness *X*.

PHYSICAL REVIEW C 109, 045205 (2024)

FIG. 6. The compositeness *X* as a function of the normalized bare state energy v_0/E_{typ} for $\lambda_0 = 0$ (solid line), $\lambda_0 = -|\lambda_0^{cr}|$ (dotted line), and $\lambda_0 = |\lambda_0^{cr}|$ (dashed line) with $B = 0.01E_{typ}$.

With both interactions, the compositeness of the bound state is determined by the interplay between the bare pole term proportional to g_0^2 and the direct interaction proportional to λ_0 . Because the binding energy is chosen to satisfy $-B < \nu_0$, Eq. (32) indicates that g_0^2 increases with λ_0 for fixed B and v_0 . Intuitively, negative λ_0 (attractive four-point interaction) tends to increase the binding energy, and hence the coupling to the bare pole term g_0^2 should be reduced to keep the binding energy unchanged. In contrast, g_0^2 increases to compensate for the reduction of the binding energy by the repulsive four-point interaction with positive λ_0 . This relation between g_0^2 and λ_0 , together with the origin of the bound state discussed above, explains the behavior of the compositeness with respect to λ_0 ; the introduction of the repulsive (attractive) four-point interaction with positive (negative) λ_0 increases (decreases) g_0^2 and therefore the compositeness of the bound state X decreases (increases).

The λ_0 dependence of the compositeness can be visualized by plotting X as a function of the normalized coupling constant $\lambda_0/|\lambda_0^{\rm cr}|$ in Fig. 7. In this plot, we fix the bare state energy as $v_0 = 0.5E_{typ}$ and we have checked that the qualitative result does not change for different values of v_0 . The solid line represents X for $B = E_{typ}$, and the dashed line represents for $B = 0.01E_{typ}$. In both cases, X decreases with the increase of $\lambda_0/|\lambda_0^{\rm cr}|$, as discussed above. In Fig. 7, we see that the compositeness X depends on λ_0 more strongly for $B = 0.01 E_{typ}$ than for $B = E_{typ}$. This tendency originates in the structure of the bound state at $\lambda_0 = 0$; a stronger coupling g_0 is required to generate the deeper bound state with the same v_0 , as indicated by the smaller compositeness X for the typical bound state with $B = E_{typ}$. The deeper bound state is less affected by the introduced four-point interaction and hence the λ_0 dependence becomes milder.

Finally, in Fig. 8, we plot the fraction of composite dominant state P_{comp} as a function of the normalized binding energy B/E_{typ} to discuss the low-energy universality with λ_0 contribution. The solid line represents P_{comp} with $\lambda_0 = 0$ (same as Fig. 4), the dashed line with $\lambda_0 = |\lambda_0^{\text{cr}}|$, and the dotted

region, g_0^2 can still be positive if λ_0 is sufficiently large and negative. However, we exclude such a case because $|\lambda_0|$ is restricted as discussed below. In this study, we vary $|\lambda_0|$ up to $|\lambda_0^{cr}|$ in Eq. (34) which is regarded as the typical value of the strong coupling. In this case, the condition $-B \leq v_0$ should be satisfied to obtain positive g_0^2 .

FIG. 7. The compositeness X as a function of the normalized coupling constant of the four-point interaction $\lambda_0/|\lambda_0^{cr}|$ for $B = E_{typ}$ (solid line) and $B = 0.01E_{typ}$ (dashed line). The bare state energy ν_0 is fixed as $\nu_0 = 0.5E_{typ}$.

line with $\lambda_0 = -|\lambda_0^{cr}|$. For all the λ_0 cases, P_{comp} decreases when the binding energy *B* increases. Because positive $\lambda_0 > 0$ (repulsive interaction) suppresses the compositeness and ν_c becomes smaller (see Fig. 6), P_{comp} is also suppressed. In contrast, attractive interaction with negative $\lambda_0 < 0$ enhances P_{comp} because it induces the increase of *X* and the decrease of ν_c in Fig. 6. At B = 0, we see that P_{comp} becomes unity for all λ_0 cases. This result indicates that the bound state becomes completely composite dominant in the $B \rightarrow 0$ limit even with the four-point interaction with any strength. It is consistent with the consequence of the low-energy universality. At the same time, the decrease rate of P_{comp} depends on the strength of the four-point interaction λ_0 . In other words, λ_0 dependence in Fig. 8 expresses the model dependence of P_{comp} away from the $B \rightarrow 0$ limit.

FIG. 8. The fraction of the composite dominant region P_{comp} as a function of normalized bare state energy ν_0/E_{typ} . The solid line stands for P_{comp} for $\lambda_0 = 0$, the dashed line for repulsive $\lambda_0 = |\lambda_0^{\text{cr}}|$, and the dotted line for attractive $\lambda_0 = -|\lambda_0^{\text{cr}}|$.

B. Effect of decay

Because the exotic hadrons generally have a decay width, we consider the decay effect on the compositeness in this section. To concentrate on the decay effect, here we do not include the four-point interaction and set $\lambda_0 = 0$. We effectively introduce the decay effect by letting the coupling constant g_0 be a complex number in the Hamiltonian in Eq. (2). Because the Hamiltonian is non-Hermitian, the the eigenenergy becomes complex as

$$E = -B - i\frac{\Gamma}{2},\tag{36}$$

with the decay width Γ . In the presence of the decay width Γ , the square of the coupling constant g_0^2 in Eq. (17) is

$$g_0^2 = \frac{\pi^2}{\mu} \left(B + i\frac{\Gamma}{2} + \nu_0 \right) \left[\Lambda - \kappa \arctan\left(\frac{\Lambda}{\kappa}\right) \right]^{-1}, \quad (37)$$
$$\kappa = \sqrt{2\mu(B + i\Gamma/2)}, \quad (38)$$

which is complex for $\Gamma \neq 0$.

By definition, the compositeness X and elementarity Z are complex for unstable states [16]. In fact, the compositeness X in this model, obtained with Eq. (13), is not a real number with complex g_0^2 and κ for the finite $\Gamma \neq 0$ case. However, we cannot interpret complex X and Z as probabilities as in the case of the bound state with real X and Z. To discuss the structure of unstable states, we need to introduce other real quantities which can be interpreted as the fraction of the composite (elementary) components instead of complex X (Z). Here we employ the quantities \tilde{X} and \tilde{Z} defined as

$$\tilde{X} = \frac{|X|}{|X| + |Z|},$$
(39)

$$\tilde{Z} = \frac{|Z|}{|X| + |Z|},$$
(40)

which are proposed in Ref. [30]. For stable states without the decay width, \tilde{X} and \tilde{Z} reduce to X and Z because |X| = X, |Z| = Z, and X + Z = 1. It is clear that \tilde{X} and \tilde{Z} satisfy the sum rule:

$$\tilde{X} + \tilde{Z} = 1. \tag{41}$$

In addition, it follows from the definitions in Eqs. (39) and (40) that the relations $0 \le \tilde{X} \le 1$ and $0 \le \tilde{Z} \le 1$ hold. Therefore, we can regard \tilde{X} and \tilde{Z} as the probabilities of finding the composite and elementary components in a wave function instead of complex *X* and *Z*. Hence we call \tilde{X} and \tilde{Z} the compositeness and the elementarity, respectively.

To observe the effect of the decay, in Fig. 9, we plot the compositeness \tilde{X} by the solid lines as a function of the normalized bare state energy v_0/E_{typ} for various *B* and Γ . The panels (a) and (b) [(c) and (d)] correspond to the weak-binding (typical binding) case, and the panels (a) and (c) [(b) and (d)] represent the state with a narrow (broad) decay width. The bare state energy v_0 is varied in the region $-B/E_{typ} \leq v_0/E_{typ} \leq 1$. For comparison, the dashed lines represent the compositeness \tilde{X} for the same *B* but with $\Gamma = 0$ (same as the solid and dashed lines in Fig. 2). By comparing the solid and

FIG. 9. The compositeness \tilde{X} as a function of the normalized bare state energy ν_0/E_{typ} for $-B \leq \nu_0 \leq E_{typ}$. The solid (dashed) lines represent the results with $\Gamma \neq 0$ ($\Gamma = 0$). Panel (a) corresponds to the case with $(B, \Gamma/2) = (0.01E_{typ}, 0.1E_{typ})$, (b) to $(B, \Gamma/2) = (0.01E_{typ}, E_{typ})$, (c) to $(B, \Gamma/2) = (E_{typ}, 0.1E_{typ})$, and (d) to $(B, \Gamma/2) = (E_{typ}, E_{typ})$.

dashed lines, we see that the effect of the decay width generally suppresses the compositeness, while \tilde{X} is enhanced at small $v_0 \sim -B$. Basically, the compositeness of the threshold channel decreases when the decay width is turned on because the coupling to the decay channel increases. This tendency becomes prominent especially in panel (b). The behavior of the compositeness with small v_0 is, however, governed by \tilde{X} at $v_0 = -B$. From Eqs. (13) and (17), without the decay effects, the compositeness becomes zero in the $v_0 \rightarrow -B$ limit because $g_0^2 \rightarrow 0$. On the other hand, with a finite width $\Gamma \neq 0$, g_0^2 does not vanish at $v_0 = -B$:

$$g_0^2 \left(-\nu_0 + i\frac{\Gamma}{2}; \nu_0, \Lambda \right)$$

= $\frac{\pi^2}{\mu} \left(-i\frac{\Gamma}{2} \right) \left[\Lambda - \kappa \arctan\left(\frac{\Lambda}{\kappa}\right) \right]^{-1} \neq 0.$ (42)

From Eq. (13), the complex compositeness X becomes nonzero, and \tilde{X} in Eq. (39) becomes larger than zero. This explains the enhancement of \tilde{X} at $\nu_0 \sim -B$.

Furthermore, by comparing panels (a) and (c) with (b) and (d), we see that the v_0 dependence of \tilde{X} becomes smaller for larger decay width. It follows from Eq. (37) that the v_0 dependence of g_0^2 is negligible for $|B + i\Gamma/2| \gg v_0$. Therefore, \tilde{X} is less dependent on v_0 , and the plot of \tilde{X} becomes flat for larger Γ . For more quantitative discussion, let us analytically

evaluate \hat{X} in the large decay width limit, $\Gamma \gg E_{typ}$. Because ν_0 is varied in the $-B \leq \nu_0 \leq E_{typ}$ region and the binding energy is restricted within $B \leq E_{typ}$, the relations $\nu_0 \ll \Gamma$ and $B \ll \Gamma$ hold under the large width limit. Furthermore, because $\kappa = \sqrt{2\mu(B + i\Gamma/2)} \sim \sqrt{i\mu\Gamma}$ and $\Gamma \gg E_{typ} = \Lambda^2/(2\mu)$, we find $|\kappa| \gg \Lambda$ in this limit. In this case, the coupling constant g_0^2 in Eq. (37) behaves as

$$g_0^2 = \frac{3\pi^2 \kappa^4}{2\mu^2 \Lambda^3} + \cdots,$$
 (43)

from the expansion of $\arctan(\Lambda/\kappa)$ for $|\kappa| \gg \Lambda$:

$$\arctan(z) = z - \frac{z^3}{3} + \mathcal{O}(z^5)(|z| \ll 1).$$
 (44)

By substituting Eq. (43) into the compositeness in Eq. (13) and expanding the terms in the parenthesis by Λ/κ , we obtain X for the large decay width limit as

$$X = \frac{1}{2} + \cdots . \tag{45}$$

Because $Z = 1/2 + \cdots, \tilde{X}$ is calculated as

$$\tilde{X} = \frac{1}{2} + \cdots . \tag{46}$$

Therefore, in the large width limit, \tilde{X} approaches 1/2 for any ν_0 as expected from panels (b) and (d) in Fig. 9. It should, however, be noted that, in the large width limit $\Gamma \gg E_{typ}$, the

FIG. 10. The fraction of the composite dominant region P_{comp} as a function of the normalized binding energy B/E_{typ} . The solid, dashed, and dotted lines stand for $\Gamma = 0$, $\Gamma/2 = 0.1E_{\text{typ}}$, and $\Gamma/2 = E_{\text{typ}}$, respectively.

magnitude of the eigenenergy exceeds the applicable region of the model. Therefore, this formal limit should only be used to understand the behavior of \tilde{X} with increasing Γ .

To study the decay effect with respect to the binding energy, we compare panel (a) with (c) where the eigenstates have the same decay width. The decay effect (deviation of \tilde{X} with $\Gamma \neq 0$ from that with $\Gamma = 0$) in panel (a) is sizable, whereas the effect in panel (c) is almost negligible. While the half width $\Gamma/2 = 0.1E_{typ}$ is larger than the binding energy $B = 0.01E_{typ}$ in panel (a), the same decay width $\Gamma/2 = 0.1E_{typ}$ is smaller than $B = E_{typ}$ in panel (c). Therefore, we conclude that the deviation of \tilde{X} by the decay effect is determined by the ratio of the binding energy to the decay width.

To discuss the low-energy universality, we define $P_{\rm comp}$ as in Eq. (19) but with $\tilde{X} = 0.5$ as the determination of v_c . In Fig. 10, we plot $P_{\rm comp}$ as a function of the normalized binding energy B/E_{typ} in the presence of the decay width. The solid line stands for P_{comp} with $\Gamma = 0$, the dashed line with $\Gamma/2 = 0.1 E_{typ}$, and the dotted line with $\Gamma/2 = E_{typ}$. By comparing the solid line with the dashed and dotted lines, we see that $P_{\rm comp}$ decreases when the decay width increases. This reason is understood from the \tilde{X} behavior in Fig. 9, where \tilde{X} is suppressed by introducing the decay width and v_c becomes large accordingly. Therefore, the decay effect makes $P_{\rm comp}$ smaller than that for the stable states. From the *B* dependence in Fig. 10, the deviation of the dashed and dotted lines from the solid line becomes larger in the small B region than that in the large B region. For a fixed Γ , the ratio Γ/B increases when the binding energy B decreases. As discussed above, in this case, the compositeness is more affected by the decay. As a consequence, the change of v_c is enhanced (see Fig. 9), and therefore the deviation of P_{comp} becomes large. At B = 0, $P_{\text{comp}} \neq 1$ with the finite decay width in contrast to the effect of the direct interaction in Fig. 8. With $\Gamma \neq 0$, κ and g_0^2 in Eq. (37) are finite at B = 0. Therefore, the relation $\tilde{X} = 1$ does not hold with finite Γ even in the weak-binding limit $B \rightarrow 0$, and hence $P_{\rm comp} < 1$. Form the viewpoint of the universality, it is understood from the finite scattering length because the

eigenenergy $E = -B - i\Gamma/2$ is nonzero for the finite Γ even in the $B \rightarrow 0$ limit.

We note that the decay effect can be formally described in the effective field theory by introducing the decay channel in the energy region lower than the binding energy in addition to the threshold channel [16]. In this case, we can explicitly calculate the compositeness of the decay channel. However, in this paper, we have employed the effective single-channel model with complex coupling constant g_0 in Eq. (37), because we would like to discuss the model dependence of the compositeness by varying the bare energy v_0 as in Sec. II. In the coupled-channels model with the explicit decay channel, a new parameter $\Delta \omega$ is introduced to express the energy difference between the threshold and decay channels as in Sec. III C. To introduce the decay effect, $\Delta \omega$ is not a bare parameter but is fixed by the system. In other words, only g_0 and v_0 are the model parameters, which are constrained by the pole condition with a fixed eigenenergy. The complex eigenenergy of an unstable state gives two conditions from the real and imaginary parts of the pole condition. Therefore, g_0 and v_0 are uniquely determined in the model where the decay channel is explicitly introduced. In this case, the compositeness X is not written as a function of a model parameter, and we cannot discuss the model dependence of X. In contrast, the number of parameters in the effective single-channel model with a complex g_0 is 3 (ν_0 , Re g_0 , Im g_0). Therefore, there remains one degree of freedom even when the parameters are constrained by the pole condition. We have utilized this degree of freedom to study the v_0 dependence of X.

C. Effect of channel coupling

In the previous section, we studied the decay effect which arises from the couplings to the lower energy channel. In this section, we consider the effect of the coupling to the higher energy channel. For this purpose, we introduce the scattering of Ψ_1 and Ψ_2 (channel 2) in addition to the $\psi_1\psi_2$ scattering (channel 1) in the free Hamiltonian in Eq. (2):

$$\mathcal{H}_{\text{free}} = \frac{1}{2m_1} \nabla \psi_1^{\dagger} \cdot \nabla \psi_1 + \frac{1}{2m_2} \nabla \psi_2^{\dagger} \cdot \nabla \psi_2 + \frac{1}{2M_1} \nabla \Psi_1^{\dagger} \cdot \nabla \Psi_1 + \frac{1}{2M_2} \nabla \Psi_2^{\dagger} \cdot \nabla \Psi_2 + \frac{1}{2M} \nabla \phi^{\dagger} \cdot \nabla \phi + \omega_1 \Psi_1^{\dagger} \Psi_1 + \omega_2 \Psi_2^{\dagger} \Psi_2 + \nu_0 \phi^{\dagger} \phi.$$
(47)

where M_1 and M_2 are the masses of Ψ_1 and Ψ_2 , and ω_1 and ω_2 are the energies of Ψ_1 and Ψ_2 measured from the $\psi_1\psi_2$ threshold. $\Delta \omega = \omega_1 + \omega_2 > 0$ is the threshold energy difference between channels 1 and 2. For the transition from channel 1 to channel 2, here we introduce the coupling of channel 2 and the bare state ϕ . We employ the same coupling constant g_0 as that for channel 1 and ϕ . The interaction Hamiltonian leads to

$$\mathcal{H}_{\text{int}} = g_0(\phi^{\dagger}\psi_1\psi_2 + \psi_1^{\dagger}\psi_2^{\dagger}\phi + \phi^{\dagger}\Psi_1\Psi_2 + \Psi_1^{\dagger}\Psi_2^{\dagger}\phi). \quad (48)$$

We now consider the on-shell T-matrix $T_{on}(k)$ of the coupled-channels scatterings. As in the single-channel case in

Sec. II A, the scatterings occur through the effective interaction with the bare state ϕ exchange. In the coupled-channel scattering, $T_{on}(k)$, the effective interaction V(k) and the loop function G(k) are expressed by the matrices in the channel space. In this model, the on-shell T-matrix is given by

$$T_{\rm on}(k_1) = V(k_1) + V(k_1)G(k_1)T_{\rm on}(k_1),$$
(49)

$$V(k_1) = \begin{pmatrix} v(k_1) & v(k_1) \\ v(k_1) & v(k_1) \end{pmatrix},$$
(50)

$$G(k_1) = \begin{pmatrix} G_1(k_1) & 0\\ 0 & G_2(k_2(k_1)) \end{pmatrix}.$$
 (51)

Here each component of V(k) and G(k) is

$$v(k_1) = \frac{g_0^2}{\frac{k_1^2}{2\mu_1} - \nu_0},$$
(52)

$$G_i(k_i) = -\frac{\mu_i}{\pi^2} \bigg[\Lambda + ik_i \arctan\left(-\frac{\Lambda}{ik_i}\right) \bigg], \qquad (53)$$

where the momentum of each channel at the energy E is

$$k_1 = \sqrt{2\mu_1 E},\tag{54}$$

$$k_2(k_1) = \sqrt{2\mu_2(E - \Delta\omega)} = \sqrt{\frac{\mu_2}{\mu_1}k_1^2 - 2\mu_2\Delta\omega}, \quad (55)$$

with $\mu_1 = (1/m_1 + 1/m_2)^{-1}$ and $\mu_2 = (1/M_1 + 1/M_2)^{-1}$.

As before, we assume that there is a bound state. The bound state condition for the coupled-channels scattering is given by det(1 - GV) = 0. This leads to

$$E - v_0 - g_0^2 [G_1(k_1) + G_2(k_2)] = 0,$$
 (56)

with E = -B. By solving this condition for g_0^2 , we obtain the expression of g_0^2 as

$$g_0^2(B;\nu_0,\Lambda) = -\frac{B+\nu_0}{G_1(i\kappa_1)+G_2(i\kappa_2)},$$
(57)

with $\kappa_1 = \sqrt{2\mu_1 B}$ and $\kappa_2 = \sqrt{2\mu_2 (B + \Delta \omega)}$.

In the coupled-channels scattering, the compositeness is defined for each channel as X_1 and X_2 . X_i is interpreted as the probability of finding channel *i* composite state in the bound state. As in the single-channel case, the compositenesses X_1 , X_2 and the elementarity $Z = 1 - X_1 - X_2$ are calculated from the effective interaction in Eq. (52) and the loop functions in Eq. (53). As discussed in Ref. [16], the expression of X_1 is obtained by replacing $G \rightarrow G_1$ and $V^{-1} \rightarrow [v_{\text{eff}}]^{-1}$ in Eq. (13), where v_{eff} is the effective interaction in channel 1 obtained by eliminating the bare state and channel 2. In the present model, the effective interaction is [16]

$$[v_{\text{eff}}]^{-1}(k_1) = \frac{1 - G_2(k_2)v(k_1)}{[1 - G_2(k_2)v(k_1)]v(k_1) + G_2(k_2)v^2(k_1)}$$
$$= v^{-1}(k_1) - G_2(k_2).$$
(58)

Then the compositenesses X_1 and X_2 are

$$X_1 = \frac{G'_1(i\kappa_1)}{G'_1(i\kappa_1) + G'_2(i\kappa_2) - [v^{-1}]'},$$
(59)

$$X_2 = \frac{G'_2(i\kappa_2)}{G'_1(i\kappa_1) + G'_2(i\kappa_2) - [v^{-1}]'},$$
(60)

where $\kappa_1 = \sqrt{2\mu_1 B}$, $\kappa_2 = \sqrt{2\mu_2 (B + \Delta \omega)}$, and the derivatives of v^{-1} and the loop functions G_1, G_2 are given by

$$[v^{-1}]' = \frac{1}{g_0^2},\tag{61}$$

$$G'_{i}(i\kappa_{i}) = -\frac{\mu_{i}^{2}}{\pi^{2}\kappa_{i}} \left[\arctan\left(\frac{\Lambda}{\kappa_{i}}\right) - \frac{\frac{\Lambda}{\kappa_{i}}}{1 + \left(\frac{\Lambda}{\kappa_{i}}\right)^{2}} \right], \quad (62)$$

with i = 1 and 2.

For the numerical calculation, we can choose arbitrarily $\mu_{1,2}$ and $\Delta \omega$ by adjusting $m_{1,2}$, $M_{1,2}$, and $\omega_{1,2}$. With the dimensionless parameters, the result only depends on the ratio of μ_1 and μ_2 . In this section, to focus on the $\Delta \omega$ dependence, we assume $\mu_1 = \mu_2$.

To quantitatively study the contribution of the coupled channel, we plot the compositeness as a function of the normalized bare state energy v_0/E_{typ} in Fig. 11. The solid lines stand for $X_1 + X_2$ and the dotted lines for X_1 . Therefore, the difference between the solid and dotted lines corresponds to X_2 . To see the coupled-channels effect to the compositeness, we plot X in Eq. (13) for single-channel case with same B and v_0 by the dashed lines. Panels (a) and (b) [(c) and (d)] correspond to the weak-binding (typical binding) case, and panels (a) and (c) [(b) and (d)] show the results with small (large) threshold energy difference $\Delta \omega$. By comparing panels (a) with (b) and (c) with (d), we see that X_2 becomes smaller for larger threshold energy difference $\Delta \omega$. This is analytically explained by the behavior of X_2 in Eq. (60) in the large $\Delta \omega$ limit. When $\Delta \omega \rightarrow \infty$, κ_2 also goes to infinity. This induces that $G'_2 \rightarrow 0$ in Eq. (62) and X_2 becomes zero in Eq. (60). Intuitively, this is because the channel 2 contribution vanishes when the threshold is infinitely far away. The limit $\Delta \omega \rightarrow \infty$ is considered only as the formal limit to understand the behavior of X_2 with large $\Delta \omega$. We note that larger $\Delta \omega$ than E_{typ} exceeds the applicable region of the model.

In the opposite limit $\Delta \omega \to 0$, we can also analytically show that $X_1 = X_2$, because $\kappa_1 = \kappa_2$ and then $G_1 = G_2$ under the assumption of this calculation with $\mu_1 = \mu_2$, so Eq. (60) becomes identical with Eq. (59). This is because the physical bound state couples to both the channels with an equal weight. This behavior is reflected in panel (c), where $\Delta \omega$ is negligibly smaller than *B* and the dotted line indicates about half of the solid line. We note that the ratio X_1/X_2 in the $\Delta \omega \to 0$ limit depends on the bare coupling strengths in channels 1 and 2. In this work, we obtain $X_1/X_2 = 1$ because the common coupling constant g_0 to both the channels is adopted in the interaction Lagrangian in Eq. (48). With different coupling strengths for channels 1 and 2, we obtain the ratio $X_1/X_2 \neq 1$ in the $\Delta \omega \to 0$ limit.

It is also observed in all panels in Fig. 11 that the sum $X_1 + X_2$ (the solid line) is close to X in the single-channel model (the dashed line). In our coupled-channels model, the bound state is formed by the dressing of the bare state through the coupling to the scattering states. The dressing induces the two-body composite component to the eigenstate and increases the compositeness. From a fixed bare state energy

FIG. 11. The compositeness as a function of the normalized bare state energy v_0/E_{typ} for $-B \le v_0 \le E_{typ}$ at fixed binding energy and the threshold energy differences $(B, \Delta \omega) = (0.01E_{typ}, 0.01E_{typ})$ [panel (a)], $(B, \Delta \omega) = (0.01E_{typ}, E_{typ})$ [panel (b)], $(B, \Delta \omega) = (E_{typ}, 0.01E_{typ})$ [panel (c)], and $(B, \Delta \omega) = (E_{typ}, E_{typ})$ [panel (d)]. The solid lines represent $X_1 + X_2$, the dotted lines X_1 , and the dashed lines the compositeness in the the single-channel case.

 ν_0 , we need the same amount of the dressing to obtain the bound state at E = -B, irrespective of the number of coupled channels. In the coupled-channels model, channels 1 and 2 work cooperatively to achieve the dressing equivalent to that in the single-channel model. In other words, the compositeness $X_1 + X_2 \sim X$ represents the total amount needed to dress the bare state to the bound state.

For the multichannel case, the low-energy universality indicates that the bound state is completely dominated by the threshold channel, namely, $X_1 = 1$, $X_2 = 0$, and Z = 0in the $B \rightarrow 0$ limit. To focus on the dominance of X_1 , we define P_{comp} in Eq. (19) with v_c , which gives $X_1 = 0.5$ as the probability of finding a model with the $\psi_1\psi_2$ composite dominant state. In Fig. 12, we plot P_{comp} as a function of the normalized binding energy B/E_{typ} for $\Delta \omega = E_{typ}$ (dashed line), $\Delta \omega = 10 E_{\text{typ}}$ (dotted line), and the single-channel case (solid line). By comparing the three lines, we find that P_{comp} in the coupled-channels case is suppressed compared to that in the single-channel case at the same *B*, and the suppression becomes larger for smaller $\Delta \omega$. The reason for this is seen as the change of v_c in panels (a) and (b) in Fig. 11; $v_c/E_{typ} =$ 0.15 for $\Delta \omega = E_{\text{typ}}$ [panel (b)] changes to $\nu_c/E_{\text{typ}} = 0.71$ for $\Delta \omega = 0.01 E_{\text{typ}}$ [panel (a)] so that the fraction of the composite dominant region decreases. In Fig. 12, the dashed line becomes zero in the region $B/E_{typ} \ge 0.35$, where the channel

1 compositeness X_1 is always smaller than 0.5 and there is no X_1 dominant region [see panel (d) in Fig. 11]. At B = 0 in

FIG. 12. The fraction of the threshold channel composite dominant region P_{comp} as a function of the normalized binding energy B/E_{typ} for fixed threshold energy difference. The solid line represents the single-channel case, the dotted line $\Delta \omega = 10E_{\text{typ}}$, and the dashed line $\Delta \omega = E_{\text{typ}}$.

Fig. 12, P_{comp} becomes unity even with the coupled-channels effect with finite $\Delta \omega$. For arbitrary $\Delta \omega \neq 0$, one can always consider the small binding energy *B* such that $B \ll \Delta \omega$. In this case, the bound state decouples from channel 2, and X_2 becomes zero as discussed above in the $\Delta \omega \rightarrow \infty$ limit. At the same time, the bound state is completely dominated by the composite component of the threshold channel, $X_1 \rightarrow 1$. This is consistent with the consequence of the low-energy universality.

IV. APPLICATION TO T_{cc} AND X(3872)

Based on the properties of the near-threshold states discussed so far in general cases, we now consider the application to hadron physics. As prominent examples of weakly bound exotic hadrons, we discuss the nature of T_{cc} and X(3872) by calculating the compositeness with the effective field theory. As mentioned in the Introduction (see Fig. 1), T_{cc} is observed slightly below the D^0D^{*+} threshold, and the coupled channel of the isospin partner $D^{*0}D^+$ exists above the threshold channel. Similarly, X(3872) is the weakly bound state near the $D^0\bar{D}^{*0}$ threshold, and couples to the D^+D^{*-} channel above the threshold. Both the states decay through the strong interaction. Therefore, to analyze the structure of T_{cc} and X(3872), we introduce both contributions of the decay and the channel coupling discussed in Sec. III.

As mentioned in Sec. III B, for an unstable state, we need to introduce \tilde{X} in Eq. (39) as the compositeness because the complex compositeness is not interpreted as a probability. In the coupled-channels case, we define X_1 and X_2 as the compositenesses of the threshold and coupled channels, respectively, as in Sec. III C. To take into account both the decay and the coupled-channels contributions, we employ \tilde{X}_1 and \tilde{X}_2 proposed in Ref. [30]:

$$\tilde{X}_j = \frac{|X_j|}{\sum_j |X_j| + |Z|} (j = 1, 2).$$
(63)

 \tilde{X}_1 and \tilde{X}_2 can be interpreted as the probabilities of finding the threshold and the coupled-channels components, respectively.

For the numerical calculation, the masses of the *D* mesons are taken from the Particle Data Group (PDG) [58]. We employ the binding energy and the decay width of T_{cc} from the pole parameters in Ref. [3] and those of X(3872) from PDG [58]:

$$T_{cc}: E = -0.36^{+0.044}_{-0.040} - i0.024^{+0.001}_{-0.007} \text{ MeV},$$
(64)

$$X(3872): E = -0.04 \pm 0.06 - i0.595 \pm 0.105$$
 MeV. (65)

We use the cutoff $\Lambda = m_{\pi} = 140$ MeV because π can be exchanged between the *D* mesons. In this case, the typical binding energy scales are obtained as $E_{typ} = 10.13$ MeV and $E_{typ} = 10.14$ MeV for the T_{cc} and X(3872) systems, respectively. The coupled-channels and decay effects are characterized by the threshold energy difference $\Delta \omega$ and the decay width Γ . In the T_{cc} case, the energy difference between the threshold channel and the coupled channel is $\Delta \omega = 1.41$ MeV, and the central value of the decay width is $\Gamma = 0.048$ MeV. In the X(3872) case, the energy difference is $\Delta \omega = 8.23$ MeV, and the decay width is $\Gamma = 1.19$ MeV.

In this way, we have smaller threshold energy difference $\Delta \omega$ and decay width Γ for T_{cc} , and larger $\Delta \omega$ and Γ for X(3872), as shown in Fig. 1. In Fig. 13, we plot the compositenesses of T_{cc} [panel (a)] and X(3872) [panel (b)] as a function of the bare state energy v_0 . The solid lines represent $\tilde{X}_1 + \tilde{X}_2$, and the dotted lines X_1 . For comparison, we show by the dashed lines $\tilde{X}_1 + \tilde{X}_2$ with artificially setting $\Gamma = 0$. In panel (a), the solid line almost overlaps with the dashed line and the deviation of $\tilde{X}_1 + \tilde{X}_2$ due to the decay width is too small to observe. This is because $\tilde{X}_1 + \tilde{X}_2$ of T_{cc} does not change when the narrow decay width (0.048 MeV) is turned on. In contrast, in panel (b), we find a sizable deviation due to the decay effect. Although the decay width of X(3872) (1.19 MeV) is small in hadron physics, it is nevertheless larger than the binding energy (0.04 MeV) and the magnitude of the decay effect reflects the ratio of the binding energy to the decay width, as we discussed in Sec. III B. Next, we consider the effect of the channel coupling, indicated by the difference between the solid and dotted lines. In Fig. 13, we see that the difference between those lines is larger in panel (a) than in panel (b). In other words, the coupled-channels contribution \tilde{X}_2 of X(3872) is smaller than that of T_{cc} . This is because the channel-coupling effect is suppressed for X(3872) with the larger threshold energy difference in comparison with the T_{cc} case. The compositeness of T_{cc} is also discussed in Ref. [38] without channel couplings. They concluded the molecular dominance of T_{cc} , but also pointed out that the channel coupling may play an important role. In this work, we explicitly demonstrate how the channel coupling contributes to the compositeness.

To examine the cutoff dependence of the results, we perform the same analysis with cutoff $\Lambda = 770$ MeV, in light of the ρ meson exchange. The results are shown in Fig. 14. Qualitatively, we find the same tendency as in Fig. 13: strong coupled-channels (decay) effect for T_{cc} [for X(3872)]. However, from quantitative comparison with Fig. 13, we find that the coupled-channels effect is enhanced, the decay effect is suppressed, and the compositeness is increased for the larger cutoff. With $\Lambda = 770$ MeV, the typical energy scales are $E_{typ} = 306 \text{ MeV} (T_{cc}) \text{ and } E_{typ} = 307 \text{ MeV} [X(3872)], \text{ and}$ $\Delta \omega$, Γ , and B are now regarded as small relative to E_{typ} . As a consequence, the coupled-channels effect is more emphasized but the decay effect becomes less important. In particular, the decrease of B/E_{typ} lets the system be closer to the universality limit and hence the composite nature of the state becomes more prominent.

With the error bars in Figs. 13 and 14, we show the compositeness by taking into account the experimental errors of the eigenenergies. We find that the effect of the errors on the results of the compositenesses of T_{cc} and X(3872) is quantitatively small, as seen in the figures. The reason is understood as follows. The error of the binding energy of T_{cc} in Eq. (64) is one order of magnitude smaller than the central value. As seen in Figs. 13 and 14, the compositeness of T_{cc} is not affected by the decay width because the width is much smaller than the binding energy. In addition, the width of T_{cc} in Eq. (64) includes the error, which mainly contributes towards reducing the width. As a consequence, the compositeness of T_{cc} does not change very much when we consider the errors of the

FIG. 13. The compositeness \tilde{X} as a function of the bare state energy v_0 . Panel (a) [(b)] shows the result of T_{cc} [X (3872)]. The solid lines stand for the sum of the compositenesses of threshold and coupled channels, $\tilde{X}_1 + \tilde{X}_2$, the dotted lines show \tilde{X}_1 , and the dashed lines show $\tilde{X}_1 + \tilde{X}_2$ with setting $\Gamma = 0$. The cutoff is fixed as $\Lambda = 140$ MeV.

mass and width. For X(3872), the real part of the eigenenergy in Eq. (65) can go above the threshold within the error. Nevertheless, the large imaginary part weakens its impact on the compositeness, because the errors change the magnitude of the complex eigenenergy only slightly. In summary, the experimental errors of the mass and width have only a minor effect on the compositeness, thanks to the small errors of T_{cc} and the (relatively) large decay width of X(3872).

It is instructive to evaluate the probability of obtaining the model with the composite dominant state P_{comp} of T_{cc} and X(3872) discussed in the previous sections. P_{comp} is defined by Eq. (19) as the fraction of the parameter region where the state is composite dominant. Here, we examine two methods to determine v_c in Eq. (19) for the different discussions. First, by focusing on the compositeness of the threshold channel \tilde{X}_1 , we can discuss the low-energy universality as in Sec. III C. In this case, we consider P_{comp} in terms of \tilde{X}_1 ($P_{\text{comp}}^{\tilde{X}_1}$) with v_c determined by the condition $\tilde{X}_1 = 0.5$. Second, because not only \tilde{X}_1 but also \tilde{X}_2 contribute to the molecular component, we can also determine v_c by the condition $\tilde{X}_1 + \tilde{X}_2 = 0.5$, and discuss $P_{\text{comp}}^{\tilde{X}_1+\tilde{X}_2}$ to consider the molecular nature of T_{cc} and X(3872).

Let us evaluate P_{comp} of T_{cc} and X(3872). For $\Lambda = 140$ MeV, we obtain

$$P_{\text{comp}}^{X_1}(T_{cc}, \Lambda = 140 \text{ MeV}) = 0.45_{-0.037}^{+0.049},$$
 (66)

$$P_{\text{comp}}^{X_1}[X(3872), \Lambda = 140 \text{ MeV}] = 0.59_{-0.043}^{+0.040}.$$
 (67)

This result shows that the substantial coupled-channels and decay effects can reduce the threshold channel compositeness of T_{cc} and X(3872), even though both the states exist within the 1 MeV region from the threshold. The molecular component $P_{comp}^{\tilde{X}_1+\tilde{X}_2}$ is calculated as follows:

$$P_{\text{comp}}^{\tilde{X}_1+\tilde{X}_2}(T_{cc}, \Lambda = 140 \text{ MeV}) = 0.71_{-0.008}^{+0.012},$$
 (68)

$$P_{\text{comp}}^{\tilde{X}_1+\tilde{X}_2}[X(3872), \Lambda = 140 \text{ MeV}] = 0.65_{-0.035}^{+0.027}.$$
 (69)

When the \tilde{X}_2 component is taken into account, the composite dominant region in the parameter space increases. For the cutoff $\Lambda = 770$ MeV, we obtain the following results:

$$P_{\text{comp}}^{X_1}(T_{cc}, \Lambda = 770 \text{ MeV}) = 0.85^{+0.019}_{-0.009},$$
 (70)

$$P_{\text{comp}}^{X_1}[X(3872), \Lambda = 770 \text{ MeV}] = 0.87_{-0.014}^{+0.016}, (71)$$

FIG. 14. Same as Fig. 13, but the cutoff is fixed as $\Lambda = 770$ MeV.

$$P_{\text{comp}}^{\bar{X}_1 + \bar{X}_2}(T_{cc}, \Lambda = 770 \text{ MeV}) = 0.94_{-0.001}^{+0.004},$$
 (72)

$$P_{\text{comp}}^{X_1+X_2}[X(3872), \Lambda = 770 \text{ MeV}] = 0.92^{+0.004}_{-0.008}.$$
 (73)

As discussed above, the larger energy scale is introduced by the larger cutoff, and the composite nature of the bound state is more emphasized. In all cases, the errors of $P_{\rm comp}$ are small. This is because the compositeness is not affected by the experimental error, as discussed above.

The concrete value of v_0 cannot be determined in the effective field theory, unless other physical quantities (such as the scattering length) are given in addition to the eigenenergy. Alternatively, one can employ a specific model to estimate the value of v_0 . For example, the constituent quark model in Ref. [59] gives the bare energy of the four-quark state of T_{cc} as $v_0 = 7$ MeV. From the estimated value of v_0 , one can read off the structure of T_{cc} and X(3872) from Fig. 13.

In summary, the molecular nature of states can be modified by both the decay and the coupled-channels effects even if the pole exists near the threshold, and we need to consider these effects for the quantitative discussion of the compositeness. In particular, the coupled-channels effect should be important for T_{cc} , and decay width for X(3872), as demonstrated in Figs. 13 and 14.

V. SUMMARY

We have discussed the structure of weakly bound states from the viewpoint of the compositeness. Naively, the states near the two-body *s*-wave threshold are expected to have a molecule-type composite structure. In this paper, we explicitly demonstrate that it is always possible to construct a weakly bound noncomposite state, but only with a significant fine tuning in the system. In other words, the realization of the noncomposite state near the threshold is probabilistically suppressed, in accordance with the low-energy universality. In addition, we quantitatively study how this universal nature of the near-threshold bound states can be modified by the various effects, and examine their implications for the structure of exotic hadrons.

We first construct an effective field theory model with a bare state coupled to a single two-body scattering channel, and evaluate the compositeness of the bound state in this model within the allowed parameter region. With the assumption of naturalness, it is shown that the bound state in this model is usually an elementary-dominant state originating from the bare state when the binding energy B is of the order of the

typical energy scale of the system, $B \sim E_{typ}$. However, if the binding energy is small ($B \ll E_{typ}$), then the bound state has a high probability of being the composite-dominant state in the parameter region of the model. We quantitatively show that the probability of generating the composite-dominant state gradually increases when *B* decreases, and finally approaches unity in the $B \rightarrow 0$ limit.

While this simple model captures the essential features of the near-threshold bound states, there are various effects present in the application to exotic hadrons. We thus generalize the above mentioned model by including the four-point contact interaction, the decay effect, and the coupling to the additional scattering channel. It is shown that the attractive (repulsive) four-point contact interaction increases (decreases) the compositeness of the bound state, because it helps to enhance (suppress) the generation of the molecule component. We show that the decay and coupled-channels effects decrease the compositeness, as they induce the contributions from the other components. The importance of the decay (coupled-channels) effect is characterized by the ratio of the decay width (the threshold energy difference) with respect to the real part of the eigenenergy.

Finally, we consider the structure of T_{cc} and X(3872) in this perspective. It is known that T_{cc} and X(3872) appear close to the D^0D^{*+} and $D^0\bar{D}^{*0}$ thresholds, respectively, but both states have a finite decay width and a nearby coupled channel $[D^{*0}D^+$ for T_{cc} and D^+D^{*-} for X(3872)]. As expected from the small threshold energy difference in T_{cc} and the sizable decay width of X(3872), we show that the channel coupling to $D^{*0}D^+$ (the decay effect) largely influences the compositeness of T_{cc} [X(3872)]. In other words, it is important to consider the coupling to $D^{*0}D^+$ (the decay effect) to quantitatively study the internal structure of T_{cc} [X(3872)]. In this way, we expect that the result of this work provides quantitative guidance to pin down the important effects for the discussion of the structure of near-threshold states.

ACKNOWLEDGMENTS

The authors thank Atsushi Hosaka, Rich Lebed, Eulogio Oset, and Hagop Sazdjian for useful comments and discussions. This work was supported in part by the Grants-in-Aid for Scientific Research from JSPS (Grants No. JP23KJ1796, No. JP22K03637, and No. JP18H05402). This work was supported by JST, the establishment of university fellowships towards the creation of science technology innovation, Grant No. JPMJFS2139.

- F.-K. Guo, C. Hanhart, Ulf-G. Meißner, Q. Wang, Q. Zhao, and B.-S. Zou, Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018).
- [2] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, The *XYZ* states: Experimental and theoretical status and perspectives, Phys. Rep. 873, 1 (2020).
- [3] LHCb Collaboration, Study of the doubly charmed tetraquark T_{cc}^+ , Nat. Commun. **13**, 3351 (2022).
- [4] LHCb Collaboration, Observation of an exotic narrow doubly charmed tetraquark, Nat. Phys. 18, 751 (2022).
- [5] S.-K. Choi *et al.* (Belle Collaboration), Observation of a narrow charmonium-like state in exclusive $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}J/\psi$ decays, Phys. Rev. Lett. **91**, 262001 (2003).
- [6] S. Godfrey and N. Isgur, Mesons in a relativized quark model with chromodynamics, Phys. Rev. D 32, 189 (1985).
- [7] S. Weinberg, Elementary particle theory of composite particles, Phys. Rev. 130, 776 (1963).

- [8] S. Weinberg, Quasiparticles and the Born series, Phys. Rev. 131, 440 (1963).
- [9] S. Weinberg, Systematic solution of multiparticle scattering problems, Phys. Rev. 133, B232 (1964).
- [10] S. Weinberg, Evidence that the deuteron is not an elementary particle, Phys. Rev. 137, B672 (1965).
- [11] T. Hyodo, D. Jido, and A. Hosaka, Compositeness of dynamically generated states in a chiral unitary approach, Phys. Rev. C 85, 015201 (2012).
- [12] F. Aceti and E. Oset, Wave functions of composite hadron states and relationship to couplings of scattering amplitudes for general partial waves, Phys. Rev. D 86, 014012 (2012).
- [13] T. Hyodo, Structure and compositeness of hadron resonances, Int. J. Mod. Phys. A 28, 1330045 (2013).
- [14] F. Aceti, L. R. Dai, L. S. Geng, E. Oset, and Y. Zhang, Mesonbaryon components in the states of the baryon decuplet, Eur. Phys. J. A 50, 57 (2014).
- [15] Y. Kamiya and T. Hyodo, Structure of near-threshold quasibound states, Phys. Rev. C 93, 035203 (2016).
- [16] Y. Kamiya and T. Hyodo, Generalized weak-binding relations of compositeness in effective field theory, Prog. Theor. Exp. Phys. 2017, 023D02 (2017).
- [17] T. Kinugawa and T. Hyodo, Structure of exotic hadrons by a weak-binding relation with finite-range correction, Phys. Rev. C 106, 015205 (2022).
- [18] V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova, and A. Kudryavtsev, Evidence that the $a_0(980)$ and $f_0(980)$ are not elementary particles, Phys. Lett. B **586**, 53 (2004).
- [19] C. W. Xiao, F. Aceti, and M. Bayar, The small K_{π} component in the K* wave functions, Eur. Phys. J. A **49**, 22 (2013).
- [20] T. Hyodo, Structure of near-threshold s-wave resonances, Phys. Rev. Lett. 111, 132002 (2013).
- [21] T. Sekihara and S. Kumano, Determination of compositeness of the $\Lambda(1405)$ resonance from its radiative decay, Phys. Rev. C **89**, 025202 (2014).
- [22] G.-Y. Chen, W.-S. Huo, and Q. Zhao, Identifying the structure of near-threshold states from the line shape, Chin. Phys. C 39, 093101 (2015).
- [23] F. Aceti, E. Oset, and L. Roca, Composite nature of the $\Lambda(1520)$ resonance, Phys. Rev. C **90**, 025208 (2014).
- [24] A. Martínez Torres, E. Oset, S. Prelovsek, and A. Ramos, Reanalysis of lattice QCD spectra leading to the $D_{s0}^*(2317)$ and $D_{s1}^*(2460)$, J. High Energy Phys. 05 (2015) 153.
- [25] T. Sekihara, T. Hyodo, and D. Jido, Comprehensive analysis of the wave function of a hadronic resonance and its compositeness, Prog. Theor. Exp. Phys. 2015, 063D04 (2015).
- [26] T. Sekihara and S. Kumano, Constraint on $K\bar{K}$ compositeness of the $a_0(980)$ and $f_0(980)$ resonances from their mixing intensity, Phys. Rev. D **92**, 034010 (2015).
- [27] F. S. Navarra, M. Nielsen, E. Oset, and T. Sekihara, Testing the molecular nature of $D_{s0}^*(2317)$ and $D_0^*(2400)$ in semileptonic B_s and *B* decays, Phys. Rev. D **92**, 014031 (2015).
- [28] C. Garcia-Recio, C. Hidalgo-Duque, J. Nieves, L. L. Salcedo, and L. Tolos, Compositeness of the strange, charm, and beauty odd parity Λ states, Phys. Rev. D 92, 034011 (2015).
- [29] U.-G. Meißner and J. A. Oller, Testing the $\chi_{c1} p$ composite nature of the $P_c(4450)$, Phys. Lett. B **751**, 59 (2015).
- [30] T. Sekihara, T. Arai, J. Yamagata-Sekihara, and S. Yasui, Compositeness of baryonic resonances: Application to the $\Delta(1232)$, N(1535), and N(1650) resonances, Phys. Rev. C **93**, 035204 (2016).

- [31] Z.-H. Guo and J. A. Oller, Probabilistic interpretation of compositeness relation for resonances, Phys. Rev. D 93, 096001 (2016).
- [32] Z.-H. Guo and J. A. Oller, Resonance on top of thresholds: The $\Lambda_c(2595)^+$ as an extremely fine-tuned state, Phys. Rev. D 93, 054014 (2016).
- [33] J.-X. Lu, H.-X. Chen, Z.-H. Guo, J. Nieves, J.-J. Xie, and L.-S. Geng, $\Lambda_c(2595)$ resonance as a dynamically generated state: The compositeness condition and the large N_c evolution, Phys. Rev. D **93**, 114028 (2016).
- [34] X.-W. Kang and J. A. Oller, Different pole structures in line shapes of the X(3872), Eur. Phys. J. C 77, 399 (2017).
- [35] A. Esposito, L. Maiani, A. Pilloni, A. D. Polosa, and V. Riquer, From the line shape of the X (3872) to its structure, Phys. Rev. D 105, L031503 (2022).
- [36] Y. Li, F.-K. Guo, J.-Y. Pang, and J.-J. Wu, Generalization of Weinberg's compositeness relations, Phys. Rev. D 105, L071502 (2022).
- [37] J. Song, L. R. Dai, and E. Oset, How much is the compositeness of a bound state constrained by a and r_0 ? The role of the interaction range, Eur. Phys. J. A **58**, 133 (2022).
- [38] M. Albaladejo and J. Nieves, Compositeness of S-wave weaklybound states from next-to-leading order Weinberg's relations, Eur. Phys. J. C 82, 724 (2022).
- [39] M. Mikhasenko, Effective-range expansion of the T_{cc}^+ state at the complex $D^{*+}D^0$ threshold, arXiv:2203.04622.
- [40] E. Braaten, H. W. Hammer, and M. Kusunoki, Comment on "Ramsey fringes in a Bose-Einstein condensate between atoms and molecules", arXiv:cond-mat/0301489.
- [41] R. A. Duine and H. T. C. Stoof, Dynamics of a Bose-Einstein condensate near a Feshbach resonance, Phys. Rev. A 68, 013602 (2003).
- [42] R. Schmidt and T. Enss, Excitation spectra and rf-response near the polaron-to-molecule transition from the functional renormalization group, Phys. Rev. A 83, 063620 (2011).
- [43] E. Braaten and H. W. Hammer, Universality in few-body systems with large scattering length, Phys. Rep. 428, 259 (2006).
- [44] P. Naidon and S. Endo, Efimov physics: A review, Rep. Prog. Phys. 80, 056001 (2017).
- [45] C. Hanhart, J. R. Pelaez, and G. Rios, Remarks on pole trajectories for resonances, Phys. Lett. B 739, 375 (2014).
- [46] T. Hyodo, Hadron mass scaling near the *s*-wave threshold, Phys. Rev. C 90, 055208 (2014).
- [47] H. Horiuchi, K. Ikeda, and Y. Suzuki, Molecule-like structures in nuclear system, Prog. Theor. Phys. Suppl. 52, 89 (1972).
- [48] E. Braaten, M. Kusunoki, and D. Zhang, Scattering models for ultracold atoms, Ann. Phys. (NY) 323, 1770 (2008).
- [49] I. Matuschek, V. Baru, F.-K. Guo, and C. Hanhart, On the nature of near-threshold bound and virtual states, Eur. Phys. J. A 57, 101 (2021).
- [50] J. A. Oller, New results from a number operator interpretation of the compositeness of bound and resonant states, Ann. Phys. (NY) 396, 429 (2018).
- [51] G. 't Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59, 135 (1980).
- [52] M. J. G. Veltman, The infrared-ultraviolet connection, Acta Phys. Pol. B 12, 437 (1981).
- [53] X.-W. Kang and J. A. Oller, *P*-wave coupled-channel scattering of $B_s\pi$, $B_s^*\pi$, $B\overline{K}$, $B^*\overline{K}$ and the puzzling *X*(5568), Phys. Rev. D **94**, 054010 (2016).

- [54] U. van Kolck, Weinberg's compositeness, Symmetry 14, 1884 (2022).
- [55] R. F. Lebed and S. R. Martinez, Diabatic representation of exotic hadrons in the dynamical diquark model, Phys. Rev. D 106, 074007 (2022).
- [56] H. Sazdjian, The interplay between compact and molecular structures in tetraquarks, Symmetry 14, 515 (2022).
- [57] C. Hanhart and A. Nefediev, Do near-threshold molecular states mix with neighboring $\overline{Q}Q$ states?, Phys. Rev. D **106**, 114003 (2022).
- [58] P. A. Zyla *et al.* (Particle Data Group), Review of particle physics, Prog. Theor. Exp. Phys. **2020**, 083C01 (2020).
- [59] M. Karliner and J. L. Rosner, Discovery of doubly-charmed Ξ_{cc} baryon implies a stable $bb\bar{u}\bar{d}$ tetraquark, Phys. Rev. Lett. **119**, 202001 (2017).