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Compositeness of Tcc and X (3872) by considering decay and coupled-channels effects
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The compositeness of weakly bound states is discussed using the effective field theory from the viewpoint
of the low-energy universality. We introduce a model with coupling of the single-channel scattering to the
bare state, and study the compositeness of the bound state by varying the bare state energy. In contrast to the
naive expectation that the near-threshold states are dominated by the molecular structure, we demonstrate that
a noncomposite state can always be realized even with a small binding energy. At the same time, however,
it is shown that a fine tuning is necessary to obtain the noncomposite weakly bound state. In other words, the
probability of finding a model with the composite dominant state becomes larger with the decrease of the binding
energy, in accordance with the low-energy universality. For the application to exotic hadrons, we then discuss the
modification of the compositeness due to decay and coupled-channels effects. We quantitatively show that these
contributions suppress the compositeness, because of the increase of the fraction of other components. Finally,
as examples of near-threshold exotic hadrons, the structures of Tcc and X (3872) are studied by evaluating the
compositeness. We find the importance of the coupled-channels and decay contributions for the structures of Tcc

and X (3872), respectively.
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I. INTRODUCTION

Clarifying the internal structure of exotic hadrons is one of
the central aims of hadron physics. The recent observations
exotic hadron candidates in the heavy hadron sectors provide
opportunities for intensive studies on the structure of hadrons
[1,2]. Exotic hadrons are considered to have different internal
structures from ordinary hadrons with qqq or qq̄ as described
in the quark models.

It is remarkable that many exotic hadron candidates have
been discovered near two-hadron thresholds. For example, the
tetraquark Tcc was observed slightly below the threshold of
D0D∗+ in Tcc → D0D0π+ decay by the LHCb Collaboration
in 2021 [3,4]. Its minimum quark content ccūd̄ indicates
that Tcc is a genuine exotic state with charm C = +2. As
a charmonium-like state with C = 0, X (3872) was observed
near the D0D̄∗0 threshold in B± → K±π+π−J/ψ decay in
2003 by the Belle Collaboration [5]. X (3872) is considered
to be exotic because its mass is not in accordance with the
corresponding energy predicted by the quark model [6].

As possible internal structures of the exotic hadrons,
hadronic molecule states and multiquark states are among
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those considered. The hadronic molecule state is a loosely
bound composite system of hadrons formed by hadronic
interactions; an example is the deuteron. In contrast, the
multiquark state is a compact state of at least four quarks.
To reveal the internal structure of the exotic hadrons, many
studies are being performed from both the theoretical and
experimental sides.

The molecular nature of the bound state can be quan-
titatively studied by using the compositeness [7–14]. The
compositeness is defined as the probability of finding the
hadronic molecule component in the bound state. Theoret-
ically, the compositeness can be evaluated either from the
weak-binding relation [10,15–17] or from the residue of the
pole of the scattering amplitude [11,12]. The internal structure
of many hadrons has been studied using the compositeness
[10,14–39]. The notion of compositeness has also been ap-
plied to other systems, such as nuclei and atoms [17,40–42].

The phenomena associated with the near-threshold states
are governed by the low-energy universality [43,44]. From the
universality argument, it is expected that the near-threshold
states are dominated by the molecular component [17,45]. In
fact, Ref. [46] shows that the s-wave bound states become
completely composite in the weak-binding limit. A similar
discussion has been given regarding the cluster phenomena
in nuclear physics, such as the ground state of 8Be and the 12C
Hoyle state [47]. From these discussions of the near-threshold
states, one may naively expect that Tcc and X (3872) are the
composite dominant states.

However, the small binding energy is not the only charac-
teristic feature of Tcc and X (3872). First, both Tcc and X (3872)
decay strongly and have a finite decay width. Next, the thresh-
old channel [D0D∗+ for Tcc and D0D̄∗0 for X (3872)] has
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FIG. 1. Schematic illustrations of the Tcc system (left) and
X (3872) system (right).

an isospin partner [D∗0D+ for Tcc and D∗−D+ for X (3872)]
at a slightly higher energy. These features are illustrated in
Fig. 1. It is shown that these decay and coupled-channels
contributions modify the compositeness of the bound state
[16]. To understand the nature of Tcc and X (3872), we need to
quantitatively evaluate the contributions from the decay and
channel coupling to the compositeness.

In this work, we first demonstrate how the expectation of
the molecular nature of the near-threshold states is realized
in an explicit model calculation. We show that the shallow
bound state can be elementary dominant only with a fine
tuning of the model parameter. In most of the parameter re-
gion except for the fine-tuned case, the weakly bound state
is composite dominant, as expected from the universality. To
consider the realistic exotic hadrons, we then examine the
effects of the decay and the coupled channel to the com-
positeness. We quantitatively evaluate the modification of the
expectation from the universality due to the decay and the
coupled-channels effects. We finally apply the model to cal-
culate the compositeness of Tcc and X (3872) to clarify the
important effect for these states.

This paper is organized as follows. In Sec. II, we intro-
duce the effective field theory, and numerically calculate the
compositeness to discuss the nature of the shallow bound
state. We then consider the contributions of the four-point
contact interaction, the decay, and the channel coupling to the
compositeness in Sec. III. In Sec. IV, we estimate the com-
positeness of Tcc and X (3872) by focusing on the importance
of the decay and the coupled-channels effects. A summary of
this work is given in Sec. V.

II. WEAKLY BOUND STATES
AND LOW-ENERGY UNIVERSALITY

In this section, we discuss the composite nature of the
weakly bound states in relation to the low-energy universality.
In Sec. II A, we first construct a simple scattering model

with the nonrelativistic effective field theory where a bound
state originates from the bare state. In Sec. II B, we then
numerically compare the compositeness of typical and weakly
bound states, and discuss the deviation from the expectation of
the low-energy universality with a finite binding energy. We
also examine the validity of the weak-binding relation in this
model in Sec. II C.

A. Effective field theory

Let us introduce a nonrelativistic effective field theory to
consider the compositeness of the bound state. We construct
a model which describes the single-channel scattering of ψ1

and ψ2 coupled to the discrete state φ without the direct ψ1

and ψ2 interactions. The Hamiltonian is

Hfree = 1

2m1
∇ψ

†
1 · ∇ψ1 + 1

2m2
∇ψ

†
2 · ∇ψ2

+ 1

2M
∇φ† · ∇φ + ν0φ

†φ, (1)

Hint = g0(φ†ψ1ψ2 + ψ
†
1 ψ

†
2 φ). (2)

Here m1, m2, and M are the masses of ψ1, ψ2, and the discrete
(bare) state φ, respectively. ν0 is the energy of the bare state
φ measured from the ψ1ψ2 threshold, and g0 is the bare cou-
pling constant of the contact three-point interaction. For the
Hamiltonian in Eq. (2) to be Hermitian, g0 must be real. This
model can also be regarded as the resonance model without
the direct ψ1ψ2 interaction in Refs. [17,48].

In this paper, we focus on the two-body scattering of ψ1

and ψ2. While we have no direct interactions in this model,
the ψ1ψ2 scattering occurs through the intermediate φ state.
Regarding the s-channel exchange of φ as the effective inter-
action V (k), we can derive the on-shell T-matrix Ton(k) of the
ψ1ψ2 scattering as a function of the on-shell momentum k
from the Lippmann-Schwinger equation:

Ton(k) = V (k) + V (k)G(k)Ton(k), (3)

V (k) = g2
0

k2

2μ
− ν0

, (4)

G(k) =
∫

d3q

(2π )3

1
k2

2μ
− q2

2μ
+ i0+

, (5)

with the reduced mass of the ψ1ψ2 system μ = (1/m1 +
1/m2)−1. This model has no crossing symmetry because it
is nonrelativistic. Therefore, there are no crossed-channel
exchanges which are not realized by the vertices in the Hamil-
tonian. In fact, due to the particle number conservations, the
on-shell T-matrix in Eq. (3) is exact in the two-body sector, as
discussed in Refs. [16,48]. Because V (k) does not depend on
the off-shell momenta, the Lippmann-Schwinger equation re-
duces to an algebraic equation. At the same time, the absence
of the angular dependence of the interaction V (k) leads
to the s-wave scattering amplitude. To avoid the divergence
of the q integration in the loop function G(k), a cutoff
� is introduced as the upper applicable boundary of the
momentum in the effective field theory [48]. In this case,
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regularized G(k) becomes

G(k) = − μ

π2

[
� + ik arctan

(
−�

ik

)]
. (6)

The scattering observables are expressed by the scattering
amplitude f (k), which is related with the on-shell T-matrix
Ton(k) as f (k) = −μ/(2π )Ton(k). From Eq. (3), we obtain the
scattering amplitude f (k) as

f (k) = − μ

2π

⎡
⎣ k2

2μ
− ν0

g2
0

+ μ

π2

[
� + ik arctan

(
−�

ik

)]⎤
⎦

−1

.

(7)

For the low-energy scatterings, the inverse of the scattering
amplitude 1/ f (k) is expanded in powers of the momentum k
(the effective range expansion):

1

f (k)
= − 1

a0
+ re

2
k2 + O(k4) − ik. (8)

The scattering length a0 and the effective range re are defined
from the coefficients of the k0 and k2 terms in this expansion.
By comparing Eq. (8) with the scattering amplitude in Eq. (7),
we obtain the scattering length a0 and the effective range re in
this model:

a0 = −
[

2πν0

g2
0μ

− 2

π
�

]−1

, (9)

re = − 2π

g2
0μ

2
+ 4

π�
. (10)

We note that the effective range in Eq. (10) has an upper
bound re � 4/(π�) because g2

0 � 0 for real g0. For a finite
cutoff �, the contact interaction in the Lagrangian is smeared
to have a finite interaction range of the order of ∼1/�. In this
sense, the upper bound 4/(π�) can be regarded as the Wigner
bound [49], the upper bound of the effective range for finite
range interactions. In the � → ∞ limit under an appropriate
renormalization, we obtain re � 0. This is a feature of the
resonance model in the zero-range limit, as mentioned in
Refs. [17,48].

Suppose that this model generates a bound state with the
binding energy B. The bound state is expressed as the pole of
the scattering amplitude, and therefore the eigenmomentum
is obtained by solving the bound state condition f −1(k) = 0.
The bound state pole appears in the complex momentum plane
at k = iκ with κ = √

2μB > 0. The composite nature of the
bound state can be characterized by the compositeness X
[7–14] defined as the weight of the scattering states in the
bound state |�〉:

X =
∫

d3k

(2π )3
|〈k|�〉|2, (11)

where |k〉 is the scattering eigenstate of the free Hamiltonian
in Eq. (1) with the momentum k. The compositeness X can be
expressed by the effective interaction and the loop function as
discussed in Ref. [16]:

X = G′(−B,�)

G′(−B,�) − [V −1(−B)]′
. (12)

Using this expression, we obtain X in this model from Eqs. (4)
and (6):

X =
⎡
⎣1 + π2κ

g2
0μ

2

(
arctan

(
�

κ

)
−

�
κ

1 + (
�
κ

)2

)−1
⎤
⎦

−1

. (13)

We define the elementarity Z as the overlap of the bound state
|�〉 with the bare state |φ〉 which is the discrete eigenstate of
the free Hamiltonian created by the bare φ field at rest:

Z = |〈φ|�〉|2 = −[V −1(−B)]′

G′(−B,�) − [V −1(−B)]′
. (14)

Namely, the elementarity Z represents the fraction of the bare
state component in the bound state. From the completeness
relation with |ψ〉 and |k〉, we obtain Z + X = 1, which can
also be directly seen from Eqs. (12) and (14).

Here we mention the model dependence of the composite-
ness X in the system with the finite interaction range which
corresponds to the finite cutoff �. In the � → ∞ limit, the
compositeness X can be written using the observables such as
the scattering length a0, effective range re, and the radius of
the bound state R = 1/

√
2μB [10,16,17,50]:

X = a0

2R − a0
= 1

1 − re/R
=

√
1

1 − 2re/a0
. (15)

However, this expression in the zero-range limit does not work
quantitatively when applied to hadrons. In fact, the formula
(15) gives X ≈ 1.69 for the deuteron when the experimental
values of a0, re, and R are substituted. Because the compos-
iteness is defined as 0 � X � 1 for the stable bound state,
this indicates the insufficiency of the formula (15) for the
hadrons. This problem was recently discussed in Refs. [17,36–
38], and it has been shown that the finite range corrections are
important to address this problem.

To examine the effect of the finite interaction range, in
this work, we keep � finite in the effective field theory. The
compositeness X then depends on the value of the cutoff
(interaction range) and on the regularization method (mo-
mentum dependence of the form factor), even for a given set
of the experimental data. This is the “model dependence” of
the compositeness we will study in the following, by varying
the parameter ν0 in the effective field theory model. It should
be noted that the model dependence becomes weakened and X
approaches the universal result (15) when the binding energy
is small, as we will show in Sec. II C.

For later convenience, here we introduce the typical energy
scale Etyp associated with the model. Because the cutoff �

gives the momentum scale, we define Etyp as

Etyp = �2

2μ
. (16)

If there is a bound state, the typical binding energy is expected
to be B ∼ Etyp based on the idea of naturalness [51–54]. We
call the state with B � Etyp a weakly bound state. To ensure
that the bound state is in the applicable region of the model,
we impose the condition B � Etyp.
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FIG. 2. The compositeness X as a function of the normal-
ized bare state energy ν0/Etyp with the binding energies B = Etyp

(solid line), B = 0.01Etyp (dashed line), and B = Bcr = 0.243Etyp

(dotted line).

B. Numerical calculation

In this section, we numerically investigate the composite-
ness of bound states in the model given in Sec. II A. Before
the concrete calculations, we summarize the relations among
the model parameters. In principle, the model parameters—
the bare state energy ν0, the coupling constant g0, and the
cutoff �—can be arbitrarily chosen. However, for a given
binding energy B, the bound state condition f −1(iκ ) = 0 leads
to the expression of g2

0 with other two parameters:

g2
0(B; ν0,�) = π2

μ
(B + ν0)

[
� − κ arctan

(
�

κ

)]−1

, (17)

with κ = √
2μB. Therefore, we can reduce one degree of

freedom by fixing the binding energy B. In addition, when we
work with dimensionless quantities using �, the result does
not depend on the specific value of �.

The remaining dimensionless parameter ν0/Etyp cannot be
determined in the framework of the effective field theory.1

In this work, we vary ν0/Etyp within the allowed region to
investigate the model dependence of the compositeness. The
parameter region of ν0/Etyp is restricted as follows: (i) As
we discussed below Eq. (16), the bound state should satisfy
the condition κ � �, which leads to � − κ arctan(�/κ ) > 0.
Therefore, the sign of g2

0 in Eq. (17) coincides with the sign
of B + ν0. The coupling constant square g2

0 should be pos-
itive in Eq. (17) for the Hermitian Hamiltonian. Hence the
lower boundary of ν0/Etyp is given by −B/Etyp � ν0/Etyp.2

(ii) Because the effective field theory is applicable up to the

1ν0 is the energy of the discrete bare state and corresponds to the
quark core state in the application to hadrons. The value of ν0 may
be estimated, for instance, by the constituent quark model.

2Strictly speaking, the point ν0 = −B should be discussed with
special care, because the coupling constant vanishes and hence the
bound state pole decouples from the scattering amplitude [46]. It
is shown that the compositeness behaves as X → 1 (X → 0) with

energy scale Etyp, the upper boundary of ν0/Etyp is given
by Etyp/Etyp = 1. In summary, the allowed ν0/Etyp region is
determined as

−B/Etyp � ν0/Etyp � 1. (18)

In Fig. 2, we plot the compositeness X as a function of
normalized bare state energy ν0/Etyp.3 First, we focus on the
solid line which represents X of a bound state with the typi-
cal binding energy B = Etyp. For most of the allowed region
−1 � ν0/Etyp � 1, the compositeness X is smaller than 0.5.
In other words, the bound state with B = Etyp is elementary
dominant for most of the ν0/Etyp region. Because the ν0 de-
pendence of the compositeness can be regarded as the model
dependence, it is probable one can obtain the bound state with
X < 0.5 in a randomly chosen model. It is consistent with a
naive expectation for the model in Sec. II A because the origin
of the bound state is the bare state φ which contributes to the
elementarity.

We then discuss X of a weakly bound state. The dashed
line in Fig. 2 corresponds to the case with B = 0.01Etyp as a
representative value of a small binding energy. In this case, the
allowed region of ν0/Etyp in Eq. (18) is −0.01 � ν0/Etyp � 1.
In contrast to the typical bound state with B = Etyp, X is larger
than 0.5 for most of the allowed region of ν0/Etyp. Therefore,
with the assumption of naturalness, the weak-binding state is
mostly composite dominant, even though the bound state orig-
inates from the bare state.4 A similar observation was made
in Ref. [55] where the internal structure of exotic hadrons
was discussed in the dynamical diquark model through the
coupling of the tetraquark to the two-meson states. They show
that the near-threshold states are dominated by the meson
molecular component while the states far from the threshold
show tetraquark dominance. When we focus on the ν0 ∼ −B
region, however, the compositeness of the shallow bound state
is small. This is because the compositeness is fixed to be
zero in the ν0 → −B limit. This means that we can always
generate an elementary dominant state by choosing the bare
state energy appropriately. However, we need a fine tuning of
ν0 in the small region around ν0 ∼ −B to realize an elemen-
tary dominant state. From naturalness, such a fine tuning is
unlikely. This is also shown with the separable potential model
and the model which is designed to show the scattering effects
of a confined state in Ref. [45]. In summary, for shallow bound
states, the probability of realizing the composite dominant
state is much higher than the elementary dominant case, al-
though the latter possibility cannot be completely excluded.

At B = 0, because the coupling constant in Eq. (17) be-
comes finite [g2

0 = π2ν0/(μ�)], from Eq. (13), X = 1 holds

g0 → 0 for fixed B = 0 (B �= 0). This behavior is confirmed in the
present model as we will show below.

3Note that the compositeness X in Eq. (13) depends implicitly on
ν0 through g2

0 [see Eq. (17)].
4As discussed around Eq. (16), naturalness requires B ∼ Etyp. To

obtain the weakly bound state with B � Etyp, one needs to fine tune
the parameters of the model [54]. Here we consider naturalness in the
presence of the weakly bound state; namely, we assume that there is
no further fine tuning (ν0 ∼ −B) on top of B � Etyp.
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FIG. 3. The illustration of the definitions of νc and Pcomp with the
bound state with B = Etyp. Pcomp is the fraction of the shaded region
to the entire horizontal axis.

in the whole region of 0 � ν0/Etyp � 1. Therefore, the plot
of the compositeness in Fig. 2 becomes a step function. This
is understood from the low-energy universality [43,44]. It
is known that the compositeness X becomes unity in the
weak-binding limit B → 0 (compositeness theorem) [46].
The present model indeed follows this model independent
result. From the expectation of the low-energy universality,
the microscopic details such as the value of ν0 become ir-
relevant, and the same relation X = 1 holds for all models
in the B → 0 limit. In contrast to the finite B �= 0 case,
the elementary dominant state cannot be generated with
any ν0. By gradually decreasing the binding energy from
B = 0.01Etyp (dashed line in Fig. 2), the region of ν0 with
the elementary dominant state becomes smaller and finally
vanishes.

We search for the critical binding energy Bcr at which
the fractions of the composite dominant region and the el-
ementary dominant region of ν0/Etyp are precisely half and
half. From the numerical calculation, it turns out that Bcr =
0.243Etyp, and we plot the compositeness with Bcr as the
dotted line in Fig. 2. Namely, we expect that the composite
dominant nature of the bound state becomes prominent for
the state with B < Bcr. However, we note that Bcr = 0.243Etyp

is a value specific to the present model. The value depends
on the choice of the regularization of the function G and the
interaction Lagrangian.

As a common feature of all cases shown in Fig. 2, X
increases with ν0/Etyp. We can analytically show this behav-
ior from Eq. (13) because g2

0 monotonically increases with
ν0. In the ν0 → −B limit, the compositeness X vanishes.5

5For ν0 < −B, the compositeness X becomes negative. This is
because the norm of the bare state becomes negative for g2

0 < 0 and
the admixture of the negative norm bare state gives Z < 0. However,
here we do not consider such cases with non-Hermitian Hamiltonian
as discussed above.

FIG. 4. The fraction of the composite dominant region Pcomp as a
function of normalized binding energy B/Etyp.

When g2
0 increases, the bound state couples more strongly

to the scattering states, and the contribution of the scattering
states, and hence the compositeness X , becomes larger. This
can also be seen in the ν0 dependence of X in Eq. (13)
mentioned above. This relation between the compositeness
and the coupling constant has been discussed in the literature
[56,57]. In Ref. [56], in a similar model setup, the elementarity
Z of a bound state is evaluated, and is shown to decrease
as a function of the coupling constant. This is essentially
equivalent to the result shown in Fig. 2. In Ref. [57], the
authors discuss the nature of the bound state in the weak-
and strong-coupling limits, and conclude that the bound state
is elementary dominant (composite dominant) for the weak-
coupling (strong-coupling) case. Their result is consistent
with our analysis of ν0 ∼ −B and ν0 ∼ Etyp in Fig. 2. Be-
cause ν0 ∼ −B (ν0 ∼ Etyp) corresponds to g0 ∼ 0 (large g0)
as seen in Eq. (17), states are elementary dominant with X ∼
0 (composite dominant with X ∼ 1) in the weak-coupling
(strong-coupling) case in our model.

To quantitatively discuss the probability of finding a model
with the composite dominant bound state, we define Pcomp as
the fraction of the ν0/Etyp region with X > 0.5:

Pcomp = 1 − νc/Etyp

1 + B/Etyp
, (19)

where νc is the value of ν0 such that X = 0.5.6 The defini-
tion of νc for B = Etyp is illustrated in Fig. 3. Because X is
plotted in the region −B/Etyp � ν0/Etyp � 1, the denominator
of Eq. (19) corresponds to the length of the horizontal axis
in Fig. 3. The numerator is expressed by the width of the
shaded region. Thus, Pcomp in Eq. (19) is defined as the ratio of
the shaded region to all of the allowed region of ν0/Etyp (the
length of the horizontal axis). The explicit values for the cases
shown in Fig. 2 are found to be Pcomp = 0.25 at B = Etyp and

6If X < 0.5 in the whole ν0 region, we set νc = Etyp and hence
Pcomp = 0. In the B → 0 limit, the compositeness is always unity and
hence we define νc = −B such that Pcomp = 1.
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FIG. 5. The compositeness obtained from the model calculation (13) (solid line) and from the central value of the weak-binding relation
(21) (dashed line) with the fixed binding energy B = Etyp [panel (a)] and B = 0.01Etyp [panel (b)].

Pcomp = 0.88 at B = 0.01Etyp. Because Bcr is defined so that
the composite dominant case occupies the half of the whole
ν0/Etyp region, we obtain Pcomp = 0.5 at B = Bcr.

In Fig. 4, we plot Pcomp by varying the normalized bind-
ing energy B/Etyp. Small Pcomp at B/Etyp ∼ 1 monotonically
increases to unity by decreasing the binding energy B. This
shows that the probability of finding a model with the com-
posite dominant state is small for the typical bound states but
gradually increases along with the reduction of the binding
energy. In the small B region, Pcomp rapidly grows toward
unity. At B = 0, we have Pcomp = 1; the bound state becomes
completely composite dominant for any model, as discussed
above. Figure 4 also shows that, even when we slightly go
away from the weak-binding limit B = 0, it is expected that
Pcomp is still close to unity. This suggests that it is probable to
find the near-threshold composite dominant states with B �
Etyp. In fact, the weak-binding hadrons, nuclei, and atoms
studied in Ref. [17] are all composite dominant states.

C. Weak-binding relation

Finally, we discuss the results in the previous section by
comparing with the compositeness in the zero-range limit in
Eq. (15). For this purpose, let us consider the idealized case
when the interaction range is sufficiently small. As shown in
Refs. [10,16,17,50], the weak-binding relation gives the com-
positeness Xwb from the scattering length a0 and the radius of
the bound state R = 1/κ as follows:

Xwb = X c
wb + O

(
Rtyp

R

)
, (20)

X c
wb = a0

2R − a0
, Rtyp = max{1/�, |re|, . . . }, (21)

where re is the effective range, Rtyp is the typical length scale
of the system which is estimated as the maximum length scale
expected for a0, and X c

wb is the central value of the compos-
iteness in the weak-binding relation. For a weakly bound state
with R  Rtyp, we can neglect the correction terms O(Rtyp/R)
in Eq. (20). In this case, Xwb ≈ X c

wb is obtained only from
the observables a0 and R. This is equivalent to Eq. (15) in
the zero-range limit. Therefore, the weak-binding relation is a
model independent method to estimate the compositeness of
the shallow bound state.

In Fig. 5, we plot the compositeness X in this model
[Eq. (13)] and the central value of the compositeness from the
weak-binding relation X c

wb in Eq. (21). We use a0 in Eq. (9)
and R in this model for the calculation of X c

wb. Panel (a) shows
X (solid line) and X c

wb (dashed line) for the typical binding
case B = Etyp, and panel (b) similarly for the weak-binding
case B = 0.01Etyp. We see that the difference between X c

wb
and X is significant for B = Etyp in panel (a) while that for
B = 0.01Etyp is at most 0.1 in panel (b). Therefore, the weak-
binding relation gives a good estimation of the compositeness
for the shallow bound state. It is remarkable that the weak-
binding relation works to estimate X correctly even in the
region ν0 ∼ −B where X < 0.5 in panel (b). In Ref. [17],
the validity of the weak-binding relation is demonstrated for
composite dominant (X ∼ 1) states with a shallow binding
energy. In this work, we find that the weak-binding relation
works also for shallow but elementary dominant bound states.

It is instructive to analytically show that the exact compos-
iteness X coincides with the weak-binding one in Eq. (21) in
the small B limit. For a weakly bound state with B � Etyp

(κ � �), the arctangent term in the loop function in Eq. (6)
can be approximated as

arctan

(
�

κ

)
= π

2
+ O

( κ

�

)
. (22)

Under this approximation, the loop function G(iκ ) becomes

G(iκ ) ≈ − μ

π2

(
� − π

2
κ
)

(B � Etyp), (23)

and the scattering amplitude is given by

f (iκ ) ≈
⎡
⎣2π

μ

⎛
⎝ κ2

2μ
+ ν0

g2
0

⎞
⎠ − 2�

π
+ κ

⎤
⎦

−1

(B � Etyp).

(24)

Note that the approximation in Eq. (22) is not valid for a
large binding energy (κ > 2�/π ) where the square of the
coupling constant becomes negative, g2

0 < 0. From V and the
approximated G in Eq. (23), the compositeness X in Eq. (13)
is given by

X ≈
[

1 + 2π

Rμ2g2
0

]−1

(B � Etyp). (25)
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By using the scattering length a0 in Eq. (9), the central value
of the compositeness in Eq. (21) is obtained as

X c
wb =

[
2R

(
−2πν0

g2
0μ

+ 2

π
�

)
− 1

]−1

=
[

2R

(
π

R2g2
0μ

2
+ 1

R

)
− 1

]−1

=
[

1 + 2π

Rμ2g2
0

]−1

. (26)

In the second line, we use the bound state condition from the
scattering amplitude in Eq. (24) written using R = 1/κ:

−2π

μ

⎛
⎝− κ2

2μ
− ν0

g2
0

⎞
⎠ − 2�

π
+ κ = 0

⇔ 2�

π
− 2πν0

g2
0μ

= π

R2g2
0μ

2
+ 1

R
. (27)

From Eqs. (25) and (26), we show that the exact com-
positeness X reduces to the central value estimated by the
weak-binding relation X c

wb in the small B limit. In Ref. [16],
it is shown that there are two origins of the deviation of
estimated X c

wb from exact X . The first one comes from the
higher order terms in the derivative of the loop function, and
the second one from those in the effective range expansion
of the residue of the bound state pole. The derivative of the
approximated loop function in Eq. (23) has only the leading
order term, and hence the first deviation does not appear.
Because the scattering amplitude in Eq. (24) has no higher
order terms of O(k4), the second deviation does not arise. In
this way, we explicitly show that all the deviations disappear
in the B → 0 limit and the estimation of the compositeness us-
ing the weak-binding relation becomes exact. In this context,
it is worth noting the deviation of X c

wb from exact X in the
scattering models discussed in Ref. [17,48]. In the zero-range
model with the loop function in Eq. (23), X = X c

wb can be
shown because the inverse scattering amplitude is given up to
O(k). In contrast, X deviates from X c

wb in the resonance model
because the four-point contact interaction induces the higher
order terms of O(k4) in the effective range expansion.

III. EFFECTS OF FOUR-POINT CONTACT INTERACTION,
DECAY, AND CHANNEL COUPLING

As mentioned in the Introduction, actual exotic hadrons
have finite decay width and coupling to the additional scat-
tering channel. One can also consider the direct interaction
in the threshold channel which is absent in the model in
Sec. II. In this section, we consider the four-point contact
interaction, decay, and coupled-channels effect and show how
these contributions modify the results in the previous section.
In Sec. III A, we introduce the four-point contact interaction
in addition to the model in the previous section, and study the
contribution of the four-point interaction to the compositeness
and low-energy universality. In the same way, the decay con-
tribution and coupled-channels contribution are discussed in
Secs. III B and III C, respectively.

A. Effect of four-point contact interaction

In this section, we investigate the effect of the direct inter-
action of ψ1 and ψ2 in addition to the model in Sec. II. For this
purpose, we introduce the four-point contact interaction term
with the coupling constant λ0, and the interaction Hamiltonian
in Eq. (2) becomes

Hint = λ0(ψ†
1 ψ

†
2 ψ1ψ2) + g0(φ†ψ1ψ2 + ψ

†
1 ψ

†
2 φ). (28)

Positive λ0 > 0 (negative λ0 < 0) corresponds to a repulsive
(attractive) interaction. Because of the addition of the contact
interaction term, the effective interaction V (k) in Eq. (4) as a
function of the momentum k changes to

V (k) = λ0 + g2
0

k2

2μ
− ν0

, (29)

while the loop function G(k) in Eq. (6) remains unchanged.
The scattering amplitude f (k) is obtained as

f (k) = − μ

2π

⎡
⎣(

λ0 + g2
0

k2

2μ
− ν0

)−1

+ μ

π2

{
� + ik arctan

(
−�

ik

)}⎤
⎦

−1

. (30)

As in Sec. II A, we consider the bound state with the eigen-
momentum k = iκ and the binding energy B = κ2/(2μ). The
compositeness X is calculated from V in Eq. (29) and G in
Eq. (5):

X =

⎡
⎢⎢⎢⎣1+

g2
0π

2κ

μ2

(B + ν0)2
(
λ0− g2

0
B+ν0

)2
(

arctan
(

�
κ

)− �
κ

1+( �
κ )2

)
⎤
⎥⎥⎥⎦

−1

.

(31)

The model parameters are the bare state energy ν0, the cut-
off �, and the coupling constants λ0 and g0. As in the model
in Sec. II A, from the bound state condition f (iκ )−1 = 0 with
a fixed binding energy, g2

0 is written in terms of the binding
energy B and other model parameters:

g2
0(B; ν0, λ0,�) = (B + ν0)

⎛
⎝ π2

μ

� − κ arctan
(

�
κ

) + λ0

⎞
⎠.

(32)

Furthermore, the use of the dimensionless parameters can ab-
sorb the � dependence. Therefore, the remaining parameters
ν0 and λ0 are varied in the calculation of the compositeness.
Namely, ν0 and λ0 dependence of the compositeness can be
regarded as the model dependence in this case. As in Sec. II B,
we vary ν0/Etyp in the region −B/Etyp � ν0/Etyp � 1.7

7As in Sec. II, the lower boundary of ν0 is determined by the
condition g2

0 > 0. Note that even with the choice of ν0 in the ν0 < −B
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We now consider the relevant parameter region of λ0. From
Eq. (32), we see that g2

0 becomes negative for large negative
λ0. To avoid this problem, we introduce the lower boundary
of λ0 as λb

0, which is determined by the condition g2
0 = 0 in

Eq. (32):

λb
0 = −π2

μ

[
� − κ arctan

(
�

κ

)]−1

. (33)

Thus, λ0 should be chosen in the allowed region −|λb
0| � λ0.

Note that λb
0 depends on the binding energy B = κ2/(2μ).

We then determine the region of λ0 for the numerical
calculation. We define λcr

0 as the critical value of the attrac-
tive coupling constant which supports a bound state at B = 0
without the bare state contribution:

λcr
0 = − π2

μ�
. (34)

In fact, with λ0 = λcr
0 and g2

0 = 0, the scattering amplitude
in Eq. (30) has a pole at B = κ = 0. With a stronger at-
traction than λcr

0 , a new bound state is generated by the
four-point interaction in addition to the one developed from
the bare state. This is qualitatively different from the situ-
ation in Sec. II, where only one bound state exists below
the threshold. Therefore, for the attractive interaction, we
impose the condition λ0 in −|λcr

0 | � λ0. Because the forma-
tion of a bound state is a nonperturbative phenomenon, |λcr

0 |
can be regarded as the representative strength of the strong
coupling. Based on this consideration, we restrict λ0 � |λcr

0 |
also for the repulsive interaction. To examine the effect of the
four-point interaction to the result of Sec. II, we vary λ0 in the
region

−∣∣λcr
0

∣∣ � λ0 �
∣∣λcr

0

∣∣. (35)

Note that the relation −|λb
0| < −|λcr

0 | always holds since
κ arctan(κ/�) > 0 for any κ > 0. Thus, the condition
−|λb

0| < λ0 is guaranteed with Eq. (35) for any κ .
To observe the effect of the contact interaction with λ0, we

plot the compositeness X as a function of the normalized bare
states energy ν0/Etyp for the weak-binding case B = 0.01Etyp

in Fig. 6. The solid, dashed, and dotted lines express X with
λ0 = 0, λ0 = −|λcr

0 |, and λ0 = |λcr
0 |, respectively. As shown

in Fig. 6, the repulsive interaction |λcr
0 | > 0 decreases X and

the attractive interaction −|λcr
0 | < 0 increases X for fixed

ν0. To understand this behavior, we consider the interaction
mechanisms and their implication for the compositeness of
the bound state. In the present model, the bound state orig-
inates not only from the bare state pole but also from the
attractive four-point interaction. As discussed in Sec. II, the
bare pole term contributes to the elementarity Z . In contrast,
the attractive four-point interaction provides the composite
bound state, and hence contributes to the compositeness X .

region, g2
0 can still be positive if λ0 is sufficiently large and negative.

However, we exclude such a case because |λ0| is restricted as dis-
cussed below. In this study, we vary |λ0| up to |λcr

0 | in Eq. (34) which
is regarded as the typical value of the strong coupling. In this case,
the condition −B � ν0 should be satisfied to obtain positive g2

0.

FIG. 6. The compositeness X as a function of the normalized
bare state energy ν0/Etyp for λ0 = 0 (solid line), λ0 = −|λcr

0 | (dotted
line), and λ0 = |λcr

0 | (dashed line) with B = 0.01Etyp.

With both interactions, the compositeness of the bound state
is determined by the interplay between the bare pole term
proportional to g2

0 and the direct interaction proportional to
λ0. Because the binding energy is chosen to satisfy −B < ν0,
Eq. (32) indicates that g2

0 increases with λ0 for fixed B and
ν0. Intuitively, negative λ0 (attractive four-point interaction)
tends to increase the binding energy, and hence the coupling
to the bare pole term g2

0 should be reduced to keep the binding
energy unchanged. In contrast, g2

0 increases to compensate for
the reduction of the binding energy by the repulsive four-point
interaction with positive λ0. This relation between g2

0 and λ0,
together with the origin of the bound state discussed above,
explains the behavior of the compositeness with respect to λ0;
the introduction of the repulsive (attractive) four-point inter-
action with positive (negative) λ0 increases (decreases) g2

0 and
therefore the compositeness of the bound state X decreases
(increases).

The λ0 dependence of the compositeness can be visualized
by plotting X as a function of the normalized coupling con-
stant λ0/|λcr

0 | in Fig. 7. In this plot, we fix the bare state energy
as ν0 = 0.5Etyp and we have checked that the qualitative result
does not change for different values of ν0. The solid line
represents X for B = Etyp, and the dashed line represents for
B = 0.01Etyp. In both cases, X decreases with the increase of
λ0/|λcr

0 |, as discussed above. In Fig. 7, we see that the com-
positeness X depends on λ0 more strongly for B = 0.01Etyp

than for B = Etyp. This tendency originates in the structure of
the bound state at λ0 = 0; a stronger coupling g0 is required to
generate the deeper bound state with the same ν0, as indicated
by the smaller compositeness X for the typical bound state
with B = Etyp. The deeper bound state is less affected by the
introduced four-point interaction and hence the λ0 dependence
becomes milder.

Finally, in Fig. 8, we plot the fraction of composite domi-
nant state Pcomp as a function of the normalized binding energy
B/Etyp to discuss the low-energy universality with λ0 con-
tribution. The solid line represents Pcomp with λ0 = 0 (same
as Fig. 4), the dashed line with λ0 = |λcr

0 |, and the dotted
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FIG. 7. The compositeness X as a function of the normalized
coupling constant of the four-point interaction λ0/|λcr

0 | for B = Etyp

(solid line) and B = 0.01Etyp(dashed line). The bare state energy ν0

is fixed as ν0 = 0.5Etyp.

line with λ0 = −|λcr
0 |. For all the λ0 cases, Pcomp decreases

when the binding energy B increases. Because positive λ0 > 0
(repulsive interaction) suppresses the compositeness and νc

becomes smaller (see Fig. 6), Pcomp is also suppressed. In
contrast, attractive interaction with negative λ0 < 0 enhances
Pcomp because it induces the increase of X and the decrease of
νc in Fig. 6. At B = 0, we see that Pcomp becomes unity for all
λ0 cases. This result indicates that the bound state becomes
completely composite dominant in the B → 0 limit even with
the four-point interaction with any strength. It is consistent
with the consequence of the low-energy universality. At the
same time, the decrease rate of Pcomp depends on the strength
of the four-point interaction λ0. In other words, λ0 dependence
in Fig. 8 expresses the model dependence of Pcomp away from
the B → 0 limit.

FIG. 8. The fraction of the composite dominant region Pcomp as
a function of normalized bare state energy ν0/Etyp. The solid line
stands for Pcomp for λ0 = 0, the dashed line for repulsive λ0 = |λcr

0 |,
and the dotted line for attractive λ0 = −|λcr

0 |.

B. Effect of decay

Because the exotic hadrons generally have a decay width,
we consider the decay effect on the compositeness in this
section. To concentrate on the decay effect, here we do not in-
clude the four-point interaction and set λ0 = 0. We effectively
introduce the decay effect by letting the coupling constant
g0 be a complex number in the Hamiltonian in Eq. (2). Be-
cause the Hamiltonian is non-Hermitian, the the eigenenergy
becomes complex as

E = −B − i



2
, (36)

with the decay width 
. In the presence of the decay width 
,
the square of the coupling constant g2

0 in Eq. (17) is

g2
0 = π2

μ

(
B + i




2
+ ν0

)[
� − κ arctan

(
�

κ

)]−1

, (37)

κ =
√

2μ(B + i
/2), (38)

which is complex for 
 �= 0.
By definition, the compositeness X and elementarity Z

are complex for unstable states [16]. In fact, the composite-
ness X in this model, obtained with Eq. (13), is not a real
number with complex g2

0 and κ for the finite 
 �= 0 case.
However, we cannot interpret complex X and Z as proba-
bilities as in the case of the bound state with real X and
Z . To discuss the structure of unstable states, we need to
introduce other real quantities which can be interpreted as the
fraction of the composite (elementary) components instead
of complex X (Z). Here we employ the quantities X̃ and Z̃
defined as

X̃ = |X |
|X | + |Z| , (39)

Z̃ = |Z|
|X | + |Z| , (40)

which are proposed in Ref. [30]. For stable states without the
decay width, X̃ and Z̃ reduce to X and Z because |X | = X ,
|Z| = Z , and X + Z = 1. It is clear that X̃ and Z̃ satisfy the
sum rule:

X̃ + Z̃ = 1. (41)

In addition, it follows from the definitions in Eqs. (39) and
(40) that the relations 0 � X̃ � 1 and 0 � Z̃ � 1 hold. There-
fore, we can regard X̃ and Z̃ as the probabilities of finding
the composite and elementary components in a wave function
instead of complex X and Z . Hence we call X̃ and Z̃ the
compositeness and the elementarity, respectively.

To observe the effect of the decay, in Fig. 9, we plot
the compositeness X̃ by the solid lines as a function of the
normalized bare state energy ν0/Etyp for various B and 
. The
panels (a) and (b) [(c) and (d)] correspond to the weak-binding
(typical binding) case, and the panels (a) and (c) [(b) and
(d)] represent the state with a narrow (broad) decay width.
The bare state energy ν0 is varied in the region −B/Etyp �
ν0/Etyp � 1. For comparison, the dashed lines represent the
compositeness X̃ for the same B but with 
 = 0 (same as the
solid and dashed lines in Fig. 2). By comparing the solid and
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FIG. 9. The compositeness X̃ as a function of the normalized bare state energy ν0/Etyp for −B � ν0 � Etyp. The solid (dashed) lines repre-
sent the results with 
 �= 0 (
 = 0). Panel (a) corresponds to the case with (B, 
/2) = (0.01Etyp, 0.1Etyp ), (b) to (B, 
/2) = (0.01Etyp, Etyp ),
(c) to (B, 
/2) = (Etyp, 0.1Etyp ), and (d) to (B, 
/2) = (Etyp, Etyp ).

dashed lines, we see that the effect of the decay width gen-
erally suppresses the compositeness, while X̃ is enhanced at
small ν0 ∼ −B. Basically, the compositeness of the threshold
channel decreases when the decay width is turned on because
the coupling to the decay channel increases. This tendency
becomes prominent especially in panel (b). The behavior of
the compositeness with small ν0 is, however, governed by
X̃ at ν0 = −B. From Eqs. (13) and (17), without the decay
effects, the compositeness becomes zero in the ν0 → −B limit
because g2

0 → 0. On the other hand, with a finite width 
 �= 0,
g2

0 does not vanish at ν0 = −B:

g2
0

(
−ν0 + i




2
; ν0,�

)

= π2

μ

(
−i




2

)[
� − κ arctan

(
�

κ

)]−1

�= 0. (42)

From Eq. (13), the complex compositeness X becomes
nonzero, and X̃ in Eq. (39) becomes larger than zero. This
explains the enhancement of X̃ at ν0 ∼ −B.

Furthermore, by comparing panels (a) and (c) with (b) and
(d), we see that the ν0 dependence of X̃ becomes smaller for
larger decay width. It follows from Eq. (37) that the ν0 de-
pendence of g2

0 is negligible for |B + i
/2|  ν0. Therefore,
X̃ is less dependent on ν0, and the plot of X̃ becomes flat for
larger 
. For more quantitative discussion, let us analytically

evaluate X̃ in the large decay width limit, 
  Etyp. Because
ν0 is varied in the −B � ν0 � Etyp region and the binding
energy is restricted within B � Etyp, the relations ν0 � 
 and
B � 
 hold under the large width limit. Furthermore, because
κ = √

2μ(B + i
/2) ∼ √
iμ
 and 
  Etyp = �2/(2μ), we

find |κ|  � in this limit. In this case, the coupling constant
g2

0 in Eq. (37) behaves as

g2
0 = 3π2κ4

2μ2�3
+ · · · , (43)

from the expansion of arctan(�/κ ) for |κ|  �:

arctan(z) = z − z3

3
+ O(z5)(|z| � 1). (44)

By substituting Eq. (43) into the compositeness in Eq. (13)
and expanding the terms in the parenthesis by �/κ , we obtain
X for the large decay width limit as

X = 1
2 + · · · . (45)

Because Z = 1/2 + · · · , X̃ is calculated as

X̃ = 1
2 + · · · . (46)

Therefore, in the large width limit, X̃ approaches 1/2 for any
ν0 as expected from panels (b) and (d) in Fig. 9. It should,
however, be noted that, in the large width limit 
  Etyp, the
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FIG. 10. The fraction of the composite dominant region Pcomp

as a function of the normalized binding energy B/Etyp. The solid,
dashed, and dotted lines stand for 
 = 0, 
/2 = 0.1Etyp, and 
/2 =
Etyp, respectively.

magnitude of the eigenenergy exceeds the applicable region
of the model. Therefore, this formal limit should only be used
to understand the behavior of X̃ with increasing 
.

To study the decay effect with respect to the binding en-
ergy, we compare panel (a) with (c) where the eigenstates have
the same decay width. The decay effect (deviation of X̃ with

 �= 0 from that with 
 = 0) in panel (a) is sizable, whereas
the effect in panel (c) is almost negligible. While the half
width 
/2 = 0.1Etyp is larger than the binding energy B =
0.01Etyp in panel (a), the same decay width 
/2 = 0.1Etyp is
smaller than B = Etyp in panel (c). Therefore, we conclude
that the deviation of X̃ by the decay effect is determined by
the ratio of the binding energy to the decay width.

To discuss the low-energy universality, we define Pcomp

as in Eq. (19) but with X̃ = 0.5 as the determination of νc.
In Fig. 10, we plot Pcomp as a function of the normalized
binding energy B/Etyp in the presence of the decay width.
The solid line stands for Pcomp with 
 = 0, the dashed line
with 
/2 = 0.1Etyp, and the dotted line with 
/2 = Etyp. By
comparing the solid line with the dashed and dotted lines, we
see that Pcomp decreases when the decay width increases. This
reason is understood from the X̃ behavior in Fig. 9, where X̃
is suppressed by introducing the decay width and νc becomes
large accordingly. Therefore, the decay effect makes Pcomp

smaller than that for the stable states. From the B dependence
in Fig. 10, the deviation of the dashed and dotted lines from
the solid line becomes larger in the small B region than that
in the large B region. For a fixed 
, the ratio 
/B increases
when the binding energy B decreases. As discussed above, in
this case, the compositeness is more affected by the decay.
As a consequence, the change of νc is enhanced (see Fig. 9),
and therefore the deviation of Pcomp becomes large. At B = 0,
Pcomp �= 1 with the finite decay width in contrast to the effect
of the direct interaction in Fig. 8. With 
 �= 0, κ and g2

0 in
Eq. (37) are finite at B = 0. Therefore, the relation X̃ = 1 does
not hold with finite 
 even in the weak-binding limit B → 0,
and hence Pcomp < 1. Form the viewpoint of the universality,
it is understood from the finite scattering length because the

eigenenergy E = −B − i
/2 is nonzero for the finite 
 even
in the B → 0 limit.

We note that the decay effect can be formally described in
the effective field theory by introducing the decay channel in
the energy region lower than the binding energy in addition
to the threshold channel [16]. In this case, we can explicitly
calculate the compositeness of the decay channel. However,
in this paper, we have employed the effective single-channel
model with complex coupling constant g0 in Eq. (37), be-
cause we would like to discuss the model dependence of the
compositeness by varying the bare energy ν0 as in Sec. II. In
the coupled-channels model with the explicit decay channel,
a new parameter �ω is introduced to express the energy
difference between the threshold and decay channels as in
Sec. III C. To introduce the decay effect, �ω is not a bare
parameter but is fixed by the system. In other words, only
g0 and ν0 are the model parameters, which are constrained
by the pole condition with a fixed eigenenergy. The complex
eigenenergy of an unstable state gives two conditions from the
real and imaginary parts of the pole condition. Therefore, g0

and ν0 are uniquely determined in the model where the decay
channel is explicitly introduced. In this case, the composite-
ness X is not written as a function of a model parameter, and
we cannot discuss the model dependence of X . In contrast, the
number of parameters in the effective single-channel model
with a complex g0 is 3 (ν0, Re g0, Im g0). Therefore, there
remains one degree of freedom even when the parameters are
constrained by the pole condition. We have utilized this degree
of freedom to study the ν0 dependence of X .

C. Effect of channel coupling

In the previous section, we studied the decay effect which
arises from the couplings to the lower energy channel. In this
section, we consider the effect of the coupling to the higher
energy channel. For this purpose, we introduce the scattering
of 1 and 2 (channel 2) in addition to the ψ1ψ2 scattering
(channel 1) in the free Hamiltonian in Eq. (2):

Hfree = 1

2m1
∇ψ

†
1 · ∇ψ1 + 1

2m2
∇ψ

†
2 · ∇ψ2

+ 1

2M1
∇

†
1 · ∇1 + 1

2M2
∇

†
2 · ∇2

+ 1

2M
∇φ† · ∇φ + ω1

†
11 + ω2

†
22 + ν0φ

†φ.

(47)

where M1 and M2 are the masses of 1 and 2, and ω1 and ω2

are the energies of 1 and 2 measured from the ψ1ψ2 thresh-
old. �ω = ω1 + ω2 > 0 is the threshold energy difference
between channels 1 and 2. For the transition from channel 1
to channel 2, here we introduce the coupling of channel 2 and
the bare state φ. We employ the same coupling constant g0 as
that for channel 1 and φ. The interaction Hamiltonian leads to

Hint = g0(φ†ψ1ψ2 + ψ
†
1 ψ

†
2 φ + φ†12 + 

†
1

†
2φ). (48)

We now consider the on-shell T-matrix Ton(k) of the
coupled-channels scatterings. As in the single-channel case in

045205-11



TOMONA KINUGAWA AND TETSUO HYODO PHYSICAL REVIEW C 109, 045205 (2024)

Sec. II A, the scatterings occur through the effective interac-
tion with the bare state φ exchange. In the coupled-channel
scattering, Ton(k), the effective interaction V (k) and the loop
function G(k) are expressed by the matrices in the channel
space. In this model, the on-shell T-matrix is given by

Ton(k1) = V (k1) + V (k1)G(k1)Ton(k1), (49)

V (k1) =
(

v(k1) v(k1)
v(k1) v(k1)

)
, (50)

G(k1) =
(

G1(k1) 0
0 G2(k2(k1))

)
. (51)

Here each component of V (k) and G(k) is

v(k1) = g2
0

k2
1

2μ1
− ν0

, (52)

Gi(ki ) = − μi

π2

[
� + iki arctan

(
− �

iki

)]
, (53)

where the momentum of each channel at the energy E is

k1 =
√

2μ1E , (54)

k2(k1) =
√

2μ2(E − �ω) =
√

μ2

μ1
k2

1 − 2μ2�ω, (55)

with μ1 = (1/m1 + 1/m2)−1 and μ2 = (1/M1 + 1/M2)−1.
As before, we assume that there is a bound state. The bound

state condition for the coupled-channels scattering is given by
det(1 − GV ) = 0. This leads to

E − ν0 − g2
0[G1(k1) + G2(k2)] = 0, (56)

with E = −B. By solving this condition for g2
0, we obtain the

expression of g2
0 as

g2
0(B; ν0,�) = − B + ν0

G1(iκ1) + G2(iκ2)
, (57)

with κ1 = √
2μ1B and κ2 = √

2μ2(B + �ω).
In the coupled-channels scattering, the compositeness is

defined for each channel as X1 and X2. Xi is interpreted as the
probability of finding channel i composite state in the bound
state. As in the single-channel case, the compositenesses X1,
X2 and the elementarity Z = 1 − X1 − X2 are calculated from
the effective interaction in Eq. (52) and the loop functions in
Eq. (53). As discussed in Ref. [16], the expression of X1 is ob-
tained by replacing G → G1 and V −1 → [veff ]−1 in Eq. (13),
where veff is the effective interaction in channel 1 obtained by
eliminating the bare state and channel 2. In the present model,
the effective interaction is [16]

[veff ]
−1(k1) = 1 − G2(k2)v(k1)

[1 − G2(k2)v(k1)]v(k1) + G2(k2)v2(k1)

= v−1(k1) − G2(k2). (58)

Then the compositenesses X1 and X2 are

X1 = G′
1(iκ1)

G′
1(iκ1) + G′

2(iκ2) − [v−1]′
, (59)

X2 = G′
2(iκ2)

G′
1(iκ1) + G′

2(iκ2) − [v−1]′
, (60)

where κ1 = √
2μ1B, κ2 = √

2μ2(B + �ω), and the deriva-
tives of v−1 and the loop functions G1, G2 are given by

[v−1]′ = 1

g2
0

, (61)

G′
i(iκi) = − μ2

i

π2κi

⎡
⎢⎣arctan

(
�

κi

)
−

�
κi

1 +
(

�
κi

)2

⎤
⎥⎦, (62)

with i = 1 and 2.
For the numerical calculation, we can choose arbitrarily

μ1,2 and �ω by adjusting m1,2, M1,2, and ω1,2. With the
dimensionless parameters, the result only depends on the ratio
of μ1 and μ2. In this section, to focus on the �ω dependence,
we assume μ1 = μ2.

To quantitatively study the contribution of the coupled
channel, we plot the compositeness as a function of the nor-
malized bare state energy ν0/Etyp in Fig. 11. The solid lines
stand for X1 + X2 and the dotted lines for X1. Therefore, the
difference between the solid and dotted lines corresponds to
X2. To see the coupled-channels effect to the compositeness,
we plot X in Eq. (13) for single-channel case with same
B and ν0 by the dashed lines. Panels (a) and (b) [(c) and
(d)] correspond to the weak-binding (typical binding) case,
and panels (a) and (c) [(b) and (d)] show the results with
small (large) threshold energy difference �ω. By comparing
panels (a) with (b) and (c) with (d), we see that X2 becomes
smaller for larger threshold energy difference �ω. This is
analytically explained by the behavior of X2 in Eq. (60) in
the large �ω limit. When �ω → ∞, κ2 also goes to infinity.
This induces that G′

2 → 0 in Eq. (62) and X2 becomes zero
in Eq. (60). Intuitively, this is because the channel 2 con-
tribution vanishes when the threshold is infinitely far away.
The limit �ω → ∞ is considered only as the formal limit
to understand the behavior of X2 with large �ω. We note
that larger �ω than Etyp exceeds the applicable region of
the model.

In the opposite limit �ω → 0, we can also analytically
show that X1 = X2, because κ1 = κ2 and then G1 = G2 under
the assumption of this calculation with μ1 = μ2, so Eq. (60)
becomes identical with Eq. (59). This is because the physical
bound state couples to both the channels with an equal weight.
This behavior is reflected in panel (c), where �ω is negligibly
smaller than B and the dotted line indicates about half of the
solid line. We note that the ratio X1/X2 in the �ω → 0 limit
depends on the bare coupling strengths in channels 1 and
2. In this work, we obtain X1/X2 = 1 because the common
coupling constant g0 to both the channels is adopted in the
interaction Lagrangian in Eq. (48). With different coupling
strengths for channels 1 and 2, we obtain the ratio X1/X2 �= 1
in the �ω → 0 limit.

It is also observed in all panels in Fig. 11 that the sum
X1 + X2 (the solid line) is close to X in the single-channel
model (the dashed line). In our coupled-channels model, the
bound state is formed by the dressing of the bare state through
the coupling to the scattering states. The dressing induces
the two-body composite component to the eigenstate and
increases the compositeness. From a fixed bare state energy
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FIG. 11. The compositeness as a function of the normalized bare state energy ν0/Etyp for −B � ν0 � Etyp at fixed binding energy and
the threshold energy differences (B,�ω) = (0.01Etyp, 0.01Etyp ) [panel (a)], (B,�ω) = (0.01Etyp, Etyp ) [panel (b)], (B,�ω) = (Etyp, 0.01Etyp )
[panel (c)], and (B, �ω) = (Etyp, Etyp) [panel (d)]. The solid lines represent X1 + X2, the dotted linesX1, and the dashed lines the compositeness
in the the single-channel case.

ν0, we need the same amount of the dressing to obtain the
bound state at E = −B, irrespective of the number of coupled
channels. In the coupled-channels model, channels 1 and 2
work cooperatively to achieve the dressing equivalent to that
in the single-channel model. In other words, the composite-
ness X1 + X2 ∼ X represents the total amount needed to dress
the bare state to the bound state.

For the multichannel case, the low-energy universality
indicates that the bound state is completely dominated by
the threshold channel, namely, X1 = 1, X2 = 0, and Z = 0
in the B → 0 limit. To focus on the dominance of X1, we
define Pcomp in Eq. (19) with νc, which gives X1 = 0.5 as
the probability of finding a model with the ψ1ψ2 composite
dominant state. In Fig. 12, we plot Pcomp as a function of
the normalized binding energy B/Etyp for �ω = Etyp (dashed
line), �ω = 10Etyp (dotted line), and the single-channel case
(solid line). By comparing the three lines, we find that Pcomp

in the coupled-channels case is suppressed compared to that
in the single-channel case at the same B, and the suppression
becomes larger for smaller �ω. The reason for this is seen as
the change of νc in panels (a) and (b) in Fig. 11; νc/Etyp =
0.15 for �ω = Etyp [panel (b)] changes to νc/Etyp = 0.71 for
�ω = 0.01Etyp [panel (a)] so that the fraction of the com-
posite dominant region decreases. In Fig. 12, the dashed line
becomes zero in the region B/Etyp � 0.35, where the channel

1 compositeness X1 is always smaller than 0.5 and there is no
X1 dominant region [see panel (d) in Fig. 11]. At B = 0 in

FIG. 12. The fraction of the threshold channel composite dom-
inant region Pcomp as a function of the normalized binding energy
B/Etyp for fixed threshold energy difference. The solid line represents
the single-channel case, the dotted line �ω = 10Etyp, and the dashed
line �ω = Etyp.
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Fig. 12, Pcomp becomes unity even with the coupled-channels
effect with finite �ω. For arbitrary �ω �= 0, one can always
consider the small binding energy B such that B � �ω. In
this case, the bound state decouples from channel 2, and X2

becomes zero as discussed above in the �ω → ∞ limit. At
the same time, the bound state is completely dominated by
the composite component of the threshold channel, X1 → 1.
This is consistent with the consequence of the low-energy
universality.

IV. APPLICATION TO Tcc AND X (3872)

Based on the properties of the near-threshold states dis-
cussed so far in general cases, we now consider the application
to hadron physics. As prominent examples of weakly bound
exotic hadrons, we discuss the nature of Tcc and X (3872) by
calculating the compositeness with the effective field theory.
As mentioned in the Introduction (see Fig. 1), Tcc is observed
slightly below the D0D∗+ threshold, and the coupled chan-
nel of the isospin partner D∗0D+ exists above the threshold
channel. Similarly, X (3872) is the weakly bound state near the
D0D̄∗0 threshold, and couples to the D+D∗− channel above the
threshold. Both the states decay through the strong interaction.
Therefore, to analyze the structure of Tcc and X (3872), we
introduce both contributions of the decay and the channel
coupling discussed in Sec. III.

As mentioned in Sec. III B, for an unstable state, we need
to introduce X̃ in Eq. (39) as the compositeness because the
complex compositeness is not interpreted as a probability.
In the coupled-channels case, we define X1 and X2 as the
compositenesses of the threshold and coupled channels, re-
spectively, as in Sec. III C. To take into account both the decay
and the coupled-channels contributions, we employ X̃1 and X̃2

proposed in Ref. [30]:

X̃ j = |Xj |∑
j |Xj | + |Z| ( j = 1, 2). (63)

X̃1 and X̃2 can be interpreted as the probabilities of finding the
threshold and the coupled-channels components, respectively.

For the numerical calculation, the masses of the D mesons
are taken from the Particle Data Group (PDG) [58]. We
employ the binding energy and the decay width of Tcc

from the pole parameters in Ref. [3] and those of X (3872)
from PDG [58]:

Tcc : E = −0.36+0.044
−0.040 − i0.024+0.001

−0.007 MeV, (64)

X (3872) : E = −0.04 ± 0.06 − i0.595 ± 0.105 MeV. (65)

We use the cutoff � = mπ = 140 MeV because π can be
exchanged between the D mesons. In this case, the typi-
cal binding energy scales are obtained as Etyp = 10.13 MeV
and Etyp = 10.14 MeV for the Tcc and X (3872) systems,
respectively. The coupled-channels and decay effects are
characterized by the threshold energy difference �ω and
the decay width 
. In the Tcc case, the energy difference
between the threshold channel and the coupled channel is
�ω = 1.41 MeV, and the central value of the decay width is

 = 0.048 MeV. In the X (3872) case, the energy difference
is �ω = 8.23 MeV, and the decay width is 
 = 1.19 MeV.

In this way, we have smaller threshold energy difference �ω

and decay width 
 for Tcc, and larger �ω and 
 for X (3872),
as shown in Fig. 1. In Fig. 13, we plot the compositenesses
of Tcc [panel (a)] and X (3872) [panel (b)] as a function of the
bare state energy ν0. The solid lines represent X̃1 + X̃2, and the
dotted lines X̃1. For comparison, we show by the dashed lines
X̃1 + X̃2 with artificially setting 
 = 0. In panel (a), the solid
line almost overlaps with the dashed line and the deviation
of X̃1 + X̃2 due to the decay width is too small to observe.
This is because X̃1 + X̃2 of Tcc does not change when the
narrow decay width (0.048 MeV) is turned on. In contrast,
in panel (b), we find a sizable deviation due to the decay
effect. Although the decay width of X (3872) (1.19 MeV)
is small in hadron physics, it is nevertheless larger than the
binding energy (0.04 MeV) and the magnitude of the decay
effect reflects the ratio of the binding energy to the decay
width, as we discussed in Sec. III B. Next, we consider the
effect of the channel coupling, indicated by the difference
between the solid and dotted lines. In Fig. 13, we see that the
difference between those lines is larger in panel (a) than in
panel (b). In other words, the coupled-channels contribution
X̃2 of X (3872) is smaller than that of Tcc. This is because the
channel-coupling effect is suppressed for X (3872) with the
larger threshold energy difference in comparison with the Tcc

case. The compositeness of Tcc is also discussed in Ref. [38]
without channel couplings. They concluded the molecular
dominance of Tcc, but also pointed out that the channel cou-
pling may play an important role. In this work, we explicitly
demonstrate how the channel coupling contributes to the
compositeness.

To examine the cutoff dependence of the results, we per-
form the same analysis with cutoff � = 770 MeV, in light
of the ρ meson exchange. The results are shown in Fig. 14.
Qualitatively, we find the same tendency as in Fig. 13: strong
coupled-channels (decay) effect for Tcc [for X (3872)]. How-
ever, from quantitative comparison with Fig. 13, we find that
the coupled-channels effect is enhanced, the decay effect is
suppressed, and the compositeness is increased for the larger
cutoff. With � = 770 MeV, the typical energy scales are
Etyp = 306 MeV (Tcc) and Etyp = 307 MeV [X (3872)], and
�ω, 
, and B are now regarded as small relative to Etyp. As a
consequence, the coupled-channels effect is more emphasized
but the decay effect becomes less important. In particular, the
decrease of B/Etyp lets the system be closer to the universality
limit and hence the composite nature of the state becomes
more prominent.

With the error bars in Figs. 13 and 14, we show the com-
positeness by taking into account the experimental errors of
the eigenenergies. We find that the effect of the errors on the
results of the compositenesses of Tcc and X (3872) is quantita-
tively small, as seen in the figures. The reason is understood
as follows. The error of the binding energy of Tcc in Eq. (64) is
one order of magnitude smaller than the central value. As seen
in Figs. 13 and 14, the compositeness of Tcc is not affected
by the decay width because the width is much smaller than
the binding energy. In addition, the width of Tcc in Eq. (64)
includes the error, which mainly contributes towards reducing
the width. As a consequence, the compositeness of Tcc does
not change very much when we consider the errors of the
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FIG. 13. The compositeness X̃ as a function of the bare state energy ν0. Panel (a) [(b)] shows the result of Tcc [X (3872)]. The solid lines
stand for the sum of the compositenesses of threshold and coupled channels, X̃1 + X̃2, the dotted lines show X̃1, and the dashed lines show
X̃1 + X̃2 with setting 
 = 0. The cutoff is fixed as � = 140 MeV.

mass and width. For X (3872), the real part of the eigenen-
ergy in Eq. (65) can go above the threshold within the error.
Nevertheless, the large imaginary part weakens its impact on
the compositeness, because the errors change the magnitude
of the complex eigenenergy only slightly. In summary, the
experimental errors of the mass and width have only a minor
effect on the compositeness, thanks to the small errors of Tcc

and the (relatively) large decay width of X (3872).
It is instructive to evaluate the probability of obtaining the

model with the composite dominant state Pcomp of Tcc and
X (3872) discussed in the previous sections. Pcomp is defined
by Eq. (19) as the fraction of the parameter region where the
state is composite dominant. Here, we examine two methods
to determine νc in Eq. (19) for the different discussions. First,
by focusing on the compositeness of the threshold channel X̃1,
we can discuss the low-energy universality as in Sec. III C. In
this case, we consider Pcomp in terms of X̃1 (PX̃1

comp) with νc

determined by the condition X̃1 = 0.5. Second, because not
only X̃1 but also X̃2 contribute to the molecular component,
we can also determine νc by the condition X̃1 + X̃2 = 0.5, and
discuss PX̃1+X̃2

comp to consider the molecular nature of Tcc and
X (3872).

Let us evaluate Pcomp of Tcc and X (3872). For � = 140
MeV, we obtain

PX̃1
comp(Tcc, � = 140 MeV) = 0.45+0.049

−0.037, (66)

PX̃1
comp[X (3872), � = 140 MeV] = 0.59+0.040

−0.043. (67)

This result shows that the substantial coupled-channels and
decay effects can reduce the threshold channel compositeness
of Tcc and X (3872), even though both the states exist within
the 1 MeV region from the threshold. The molecular compo-
nent PX̃1+X̃2

comp is calculated as follows:

PX̃1+X̃2
comp (Tcc, � = 140 MeV) = 0.71+0.012

−0.008, (68)

PX̃1+X̃2
comp [X (3872), � = 140 MeV] = 0.65+0.027

−0.035. (69)

When the X̃2 component is taken into account, the composite
dominant region in the parameter space increases. For the
cutoff � = 770 MeV, we obtain the following results:

PX̃1
comp(Tcc, � = 770 MeV) = 0.85+0.019

−0.009, (70)

PX̃1
comp[X (3872), � = 770 MeV] = 0.87+0.016

−0.014, (71)

FIG. 14. Same as Fig. 13, but the cutoff is fixed as � = 770 MeV.
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PX̃1+X̃2
comp (Tcc, � = 770 MeV) = 0.94+0.004

−0.001, (72)

PX̃1+X̃2
comp [X (3872), � = 770 MeV] = 0.92+0.004

−0.008. (73)

As discussed above, the larger energy scale is introduced
by the larger cutoff, and the composite nature of the bound
state is more emphasized. In all cases, the errors of Pcomp are
small. This is because the compositeness is not affected by the
experimental error, as discussed above.

The concrete value of ν0 cannot be determined in the ef-
fective field theory, unless other physical quantities (such as
the scattering length) are given in addition to the eigenenergy.
Alternatively, one can employ a specific model to estimate
the value of ν0. For example, the constituent quark model in
Ref. [59] gives the bare energy of the four-quark state of Tcc

as ν0 = 7 MeV. From the estimated value of ν0, one can read
off the structure of Tcc and X (3872) from Fig. 13.

In summary, the molecular nature of states can be modified
by both the decay and the coupled-channels effects even if the
pole exists near the threshold, and we need to consider these
effects for the quantitative discussion of the compositeness.
In particular, the coupled-channels effect should be important
for Tcc, and decay width for X (3872), as demonstrated in
Figs. 13 and 14.

V. SUMMARY

We have discussed the structure of weakly bound states
from the viewpoint of the compositeness. Naively, the states
near the two-body s-wave threshold are expected to have a
molecule-type composite structure. In this paper, we explicitly
demonstrate that it is always possible to construct a weakly
bound noncomposite state, but only with a significant fine
tuning in the system. In other words, the realization of the
noncomposite state near the threshold is probabilistically sup-
pressed, in accordance with the low-energy universality. In
addition, we quantitatively study how this universal nature of
the near-threshold bound states can be modified by the various
effects, and examine their implications for the structure of
exotic hadrons.

We first construct an effective field theory model with a
bare state coupled to a single two-body scattering channel, and
evaluate the compositeness of the bound state in this model
within the allowed parameter region. With the assumption of
naturalness, it is shown that the bound state in this model
is usually an elementary-dominant state originating from the
bare state when the binding energy B is of the order of the

typical energy scale of the system, B ∼ Etyp. However, if the
binding energy is small (B � Etyp), then the bound state has a
high probability of being the composite-dominant state in the
parameter region of the model. We quantitatively show that
the probability of generating the composite-dominant state
gradually increases when B decreases, and finally approaches
unity in the B → 0 limit.

While this simple model captures the essential features
of the near-threshold bound states, there are various effects
present in the application to exotic hadrons. We thus general-
ize the above mentioned model by including the four-point
contact interaction, the decay effect, and the coupling to
the additional scattering channel. It is shown that the at-
tractive (repulsive) four-point contact interaction increases
(decreases) the compositeness of the bound state, because it
helps to enhance (suppress) the generation of the molecule
component. We show that the decay and coupled-channels
effects decrease the compositeness, as they induce the con-
tributions from the other components. The importance of the
decay (coupled-channels) effect is characterized by the ratio
of the decay width (the threshold energy difference) with
respect to the real part of the eigenenergy.

Finally, we consider the structure of Tcc and X (3872) in this
perspective. It is known that Tcc and X (3872) appear close
to the D0D∗+ and D0D̄∗0 thresholds, respectively, but both
states have a finite decay width and a nearby coupled channel
[D∗0D+ for Tcc and D+D∗− for X (3872)]. As expected from
the small threshold energy difference in Tcc and the sizable
decay width of X (3872), we show that the channel coupling to
D∗0D+ (the decay effect) largely influences the compositeness
of Tcc [X (3872)]. In other words, it is important to consider the
coupling to D∗0D+ (the decay effect) to quantitatively study
the internal structure of Tcc [X (3872)]. In this way, we expect
that the result of this work provides quantitative guidance
to pin down the important effects for the discussion of the
structure of near-threshold states.
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