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Superfast quarks in deuterium
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An extension to our previous study on nuclear parton distribution functions (nPDFs) [Kim and Miller, Phys.
Rev. C 106, 055202 (2022)] using light-front holographic quantum chromodynamics (LFHQCD) [Brodsky, de
Teramond, Dosch, and Erlich, Phys. Rep. 584, 1 (2015)] is presented. We apply the effects of nucleon motion
inside the nucleus (Fermi motion/smearing) to deuterium, extending our deuterium nPDFs to the superfast, x >

1, region [Frankfurt and Strikman, Phys. Rep. 160, 235 (1988)] where we estimate our results to be reasonable
up to x ≈ 1.7. We utilize four different deuteron wave functions (AV18, NijmI, NijmII, Nijm93). We find that our
model, with no additional new parameters, shows very good agreement with deuterium EMC ratio data obtained
from the BONuS experiment [Fenker et al., Nucl. Instrum. Methods Phys. Res. A 592, 273 (2008); Baillie
et al. (CLAS Collaboration), Phys. Rev. Lett. 108, 142001 (2012); 108, 199902(E) (2012); Tkachenko et al.
(CLAS Collaboration), Phys. Rev. C 89, 045206 (2014); 90, 059901(E) (2014); Griffioen et al., Phys. Rev. C 92,
015211 (2015)]. Looking beyond conventional nuclear physics, and in anticipation of 12 GeV experiments at
Jefferson Lab, we use a LFHQCD ansatz to predict the contributions of an exotic six-quark state to the deuteron
F2 structure function, F D

2 , in the superfast region. We find that the effects of using other potentials are about
the same magnitude as six-quark effects—both have small effects in x < 1, but have significant contributions at
x > 1.

DOI: 10.1103/PhysRevC.109.045203

I. INTRODUCTION

Parton distribution functions are ubiquitous in particle
physics because they describe the relationship between quan-
tum chromodynamics’ (QCDs) basic degrees of freedom,
quarks and gluons (partons), and the physical observable
states, hadrons. This makes their nuclear counterparts, nuclear
PDFs (nPDFs), indispensable tools towards understanding the
emergence of intrinsic nuclear properties from the dynam-
ics of their constituent partons. Although parametrizations
of nPDFs exist for several nuclei (e.g., [1–4]), they are not
as robust as free proton PDFs [5,6] due to a lack of exper-
imental data over a wide kinematic range (for review, see
[7]). However, programs to extract nPDFs have been, and are
continued to be, supported with the operation of the CERN
Large Hadron Collider, a possible 12 GeV upgrade at Jeffer-
son Lab (JLab), and upcoming Electron-Ion Collider (EIC).
It is clear that understanding nPDFs, the interplay between
nuclear physics and quantum chromodynamics (QCD), is of
great interest and a fundamental goal in nuclear science.

The first experimental observation that nPDFs are different
than free nucleon PDFs was by the European Muon Collabo-
ration (EMC) [8,9]. They found the ratio of iron to deuterium
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structure functions to be less than unity in the region 0.3 <

x < 0.7, dubbed the EMC effect; see, e.g., the review [10].
Since then, studies over several decades have discovered more
effects in DIS structure function ratios, those being shad-
owing (x < 0.1) [11–13] and antishadowing (0.1 < x < 0.3)
[12,14,15]. With definitive explanations yet to be confirmed,
there has been much experimental and theoretical effort in
understanding these x < 1 effects.

However, a domain that has received less attention over
the years lies in x > 1, dubbed the superfast region [11]. This
region directly probes the short range structure of the nuclear
force, delving into nuclear phenomena at high densities [11].
The superfast region garners interest because it directly probes
the junction between nuclear physics and QCD; quarks with
x > 1 cannot be produced by the QCD dynamics of a single
free nucleon, they must be generated due to inter-nucleon
interactions. As a result, unlike quarks inside a free nucleon,
a quark inside a nucleus can have a momentum fraction as
large as x = A, where A is the mass number of the nucleus.
Therefore, working towards understanding intersections be-
tween nuclear physics and QCD must involve investigating
superfast quarks.

Nuclear DIS at high-x gives us an opportunity to probe the
superfast region. By extracting the DIS F2 structure function
of the nucleus, F A

2 , we can study the x > 1 momentum distri-
butions of quarks inside a nucleus. To date, three experiments
have undergone such an investigation: The BCDMS Collabo-
ration at CERN [16], the CCFR Collaboration at Fermi Lab
[17], and most recently at JLab [18]. However, the trends
of F A

2 at high-x, extracted from all three experiments, do
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not agree with each other. The experiment at JLab originally
reported results in agreement with BCDMS [18]. However, a
recent study by Freese et al. [19] improved on the Q2 evolution
procedure used in the JLab study, obtaining results slightly in
favor of BCDMS, but overall not strongly aligning with either
of the two experiments. There is still much experimental work
to be done in extracting the behavior of F A

2 in the superfast
region. The possible 12 GeV beam energy upgrade at JLab
hopes to accomplish this by improving on its predecessors
results. The experiment aims to extract F A

2 at an even larger x
threshold, in kinematics where quasielastic contributions and
scaling violations in the cross section are minimized [20,21].

In contrast to experimental progress, there has been little
theoretical work towards F A

2 at x > 1 (see review [11] and
Ref. [22] for discussion on proposed models). This study
focuses on developing a light-front holographic quantum
chromodynamics (LFHQCD) model for F D

2 and predict its
behavior in the x > 1, superfast region. The contents of this
paper are as follows. In Sec. II, the light-front (LF) convo-
lution model developed in Refs. [11,23] is introduced, which
connects nuclear and bound-nucleon F2 structure functions.
The model achieves this by incorporating the conventional
nuclear physics of Fermi motion (nucleon motion inside the
nucleus) to bound-nucleon structure functions, outputting F A

2
for 0 < x < A—our first steps into the superfast region. Fol-
lowing this, we will discuss what will be used as inputs into
the convolution model: the LF density matrix of nucleons
inside deuterium [11,23], and LFHQCD model for bound-
nucleon PDFs [24]. Afterwards, results for the convolution
model are presented for different deuteron wave functions
(AV18, NijmI, NijmII, Nijm93). In Sec. III, a six-quark
LFHQCD ansatz for deuterium is introduced and incorporated
into results in Sec. II. Our concluding remarks and discussion
are given in Sec. IV.

II. NUCLEAR STRUCTURE FUNCTIONS

The central theoretical objective to be addressed is the nu-
clear structure function F A

2 (x, Q2). Within the parton model,
F A

2 (x, Q2) is connected to unpolarized nPDFs of flavor f ,

f A(x, Q2). With the goal of understanding how nuclear dy-
namics impacts the QCD dynamics of its constituent partons,
a theoretical relationship between nPDFs and nucleonic PDFs
must be utilized. This can be achieved by expressing nPDFs
as a convolution between nucleonic PDFs and a nuclear LF
density matrix, incorporating the effects of Fermi motion to
nucleonic PDFs (see Refs. [11,23] for discussion and deriva-
tion). Furthermore, discovery of the EMC effect (see original
work [8]) tells us that the momentum distributions of quarks
inside bound nucleons are different than those of free nu-
cleons. Therefore, nucleonic PDFs in the convolution model
should be replaced with respective bound PDFs. Thus for
F A

2 (x, Q2), in the Bjorken limit (photon virtuality, Q2, and
energy, ν, go to infinity at fixed x = Q2/2mν. Note that in
this study, we are using isospin symmetry where m = (mp +
mn)/2, introducing negligible errors in our calculations), the
convolution formula takes the following form [11,23]:

F A
2 (x, Q2) =

∑
N

∫ A

x

dα

α

∫
d2k⊥ ρN/A(α, k⊥)

× F̃ N
2 (x/α, α, k⊥, Q2), (1)

where ρN/A(α, k⊥) is the LF density matrix of nucleon N
inside nucleus A, F̃ N

2 (x/α, α, k⊥, Q2) is the bound nucleon
F2 structure function, k⊥ is the transverse momentum of the
nucleon, and α = A k+/k+

A is the scaled LF momentum frac-
tion carried by nucleon N inside nucleus A. Note that F̃ N

2 is
a function of α and k⊥, in addition to x/α and Q2, due to
medium modifications.

In this study, we investigate the F2 structure function of the
deuteron, F D

2 (x, Q2). To do so, Eq. (1) tells us that we need
to determine its LF density matrix, ρN/D(α, k⊥), and bound
nucleon structure functions, F̃ N

2 (x/α, α, k⊥, Q2).

A. Deuteron light-front density matrix

The nuclear LF density matrix for nucleon N inside nu-
cleus A is formally defined in terms of the nuclear LF wave
function (LFWF), ψA [11,23]:

ρN/A(α, k⊥) =
∫ [

A∏
i=1

dαi

αi
d2ki⊥

]
ψ

†
A(α1, . . . , αA, k1⊥, . . . , kA⊥) ψA(α1, . . . , αA, k1⊥, . . . , kA⊥)

× δ(1)

(
1 −

∑A
i=1 αi

A

)
δ(2)

(
A∑

i=1

ki⊥

)⎧⎨
⎩

(Z, A−Z )∑
i=1

αi δ
(1)(α − αi ) δ(2)(k⊥ − ki⊥)

⎫⎬
⎭, (2)

where the upper limit of the sum in the curly brackets is Z for
the proton and A − Z for the neutron. The LF density matrix
obeys the baryon and momentum sum rules:

∑
N

∫ A

0

dα

α

∫
d2k⊥ ρN/A(α, k⊥) = A, (3)

∑
N

∫ A

0

dα

α

∫
d2k⊥ α ρN/A(α, k⊥) = A. (4)

References [11,23], by neglecting all but the nucleonic
degrees of freedom and identifying the internal pn configu-
rations in the deuteron through the pn LF momentum,

k =
√

m2 + k2
⊥

α(2 − α)
− m2, (5)
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are able to connect the deuteron LFWF, ψD, to its nonrela-
tivistic wave function, ψNR:

|ψD(k)|2 = |ψNR(k)|2
√

m2 + k2. (6)

Equation (6) leads to the following expression for the LF
density matrix of protons and neutrons in deuterium:

ρpn/D(α, k⊥) = |ψNR(k)|2
2 − α

√
m2 + k2, (7)

where the subscript pn was used as the proton and neutron
have identical LF density matrices in the deuteron. One can
check that Eq. (7) obeys both sum rules.

B. Bound nucleon F2 structure function

For the bound nucleon F2 structure function, we utilize
the phenomenological model developed in Ref. [24]. The
model employed LFHQCD, a semiclassical approximation
to QCD that displays remarkable connections between LF
dynamics and gravity in a higher-dimensional anti–de Sitter
(AdS) space. It succeeds in reproducing many dynamical
and spectroscopic features of QCD, such as Regge trajecto-
ries and elastic form factors for mesons and hadrons [25].
The model in Ref. [24], which we will refer as the nuclear
LFHQCD (nLFHQCD) model for brevity, outputs closed-
form expressions for valence nPDFs that are dependent on
two phenomenological parameters, δrp/A and δrn/A. The pa-
rameters are proportional to the average virtuality, a quantity
that measures the average off-shell-ness of a nucleon inside
the nucleus. The nPDFs were used to construct F̃ N

2 , given by

F̃ N
2

(
x, Q2

o

) = 4
9 x ũN

(
x, Q2

o

) + 1
9 x d̃N

(
x, Q2

o

)
= F N

2

(
x, Q2

o

)+ 5
3 x

(
q4

(
x, Q2

o

)−q3
(
x, Q2

o

))
δrN/A,

(8)

ũp
(
x, Q2

o

) = (
3
2 − 3δrp/A

)
q3

(
x, Q2

o

)
+(

1
2 + 3δrp/A

)
q4

(
x, Q2

o

)
, (9)

d̃ p
(
x, Q2

o

) = (−3δrp/A)q3
(
x, Q2

o

) + (
1 + 3δrp/A

)
q4

(
x, Q2

o

)
,

(10)

where ũp(x) and d̃ p(x) are the medium-modified proton up
and down valence PDFs, respectively, F N

2 is the structure
function of free nucleon N , and Qo is the matching scale
between LFHQCD and perturbative QCD, Q0 = 1.06 ± 0.15
GeV [26]. The neutron valence PDFs are obtained by re-
placing ũp → d̃n, d̃ p → ũn, and δrp/A → δrn/A. The function
qτ (x, Q2

o ) is given by

qτ

(
x, Q2

o

) = �(τ − 1
2 )√

π�(τ − 1)
(1 − w(x))τ−2 w(x)−1/2 w′(x),

(11)

w(x) = x1−xe−a(1−x)2
(12)

with normalization ∫ 1

0
dx qτ

(
x, Q2

o

) = 1, (13)

where the flavor-independent parameter a = 0.531 ± 0.037
and τ is the number of constituents. The modified structure
functions were used to construct F A

2 , and numerical results for
the phenomenological parameters were obtained by fitting to
EMC ratio data in the region 0.3 � x � 0.7 (EMC region).
The results of the fitting were successful in reproducing EMC
ratio data for a variety of nuclei. Having the correct behavior
in the EMC region, the nLFHQCD model is an excellent
candidate for F̃ N

2 .
In the nLFHQCD model, the virtuality is not kinematical.

In other words, nLFHQCD uses the average virtuality of a
bound nucleon inside a nucleus, characterized by a single,
nucleus-dependent number, and does not depend on detailed
values of nucleon kinematics. This is because the model treats
the nuclear potential as a constant. To improve on this we
will use an ansatz motivated by results in Ref. [24], where
δrp/A(α, k⊥) and δrn/A(α, k⊥) are proportional to virtuality
which depends on nucleon kinematics, up to a constant

δrN/A(α, k⊥) = −η VN/A(α, k⊥) θ (1 − α). (14)

Here, VN/A(α, k⊥) is the virtuality of bound nucleon N in-
side nucleus A, η is a nucleus-independent fitting parameter,
and θ (1 − α) is the Heaviside step function. The nLFHQCD
model was constructed to incorporate off-shell effects for
single nucleons that are limited to carry α < 1 momentum
fraction. Therefore, extending off-shell effects beyond α > 1
would exceeding the model’s limits of applicability, hence the
Heaviside step function in Eq. (14).

For the deuteron, in the center of mass frame, we use the
following definition for virtuality:

Vpn/D(α, k⊥) ≡ k−
D − (k−

p + k−
n )

k−
D

= 1

m2
D

(
m2

D − 4
m2 + k2

⊥
α(2 − α)

)
, (15)

instead of V ≡ (k2 − m2)/m2, as used in Ref. [24]. This is
because the convolution formula in Eq. (1) was obtained by
using LF perturbation theory, where intermediate states are
on mass shell, k2 = m2, but off their energy shells, k−

D �= k−
p +

k−
n . Equation (15) is constructed to be negative, which is re-

quired to obtain the correct modification for the EMC region.
The connection between ‘LF’ virtuality, Eq. (15), and equal-
time (ET) virtuality, V ≡ (k2 − m2)/m2, within the BLC-PLC
model used in Ref. [24] is discussed in Appendix A.

For completeness, we would like to mention the work of
Ref. [27], which uses the soft-wall AdS/QCD model to study
the elastic form factors and structure functions of deuterium—
another example of using AdS/QCD models to study nuclei.
They accomplished this by working with an effective action
that comprised of vector fields dual to the deuteron. From this
effective action they were able to obtain expressions for the
form factors and achieved very good fits to experimental data.

III. LIGHT-FRONT CONVOLUTION MODEL RESULTS

First, we would like to stress that all the structure func-
tion results in this study become less reliable for x >≈ 1.7.
Probing larger values of x requires knowledge of the nucleon
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FIG. 1. A plot of the interpolated AV18 nucleon momentum dis-
tribution in deuterium in the region 0 < k < 10 fm−1.

momentum distribution at high momenta, where nucleons
begin to overlap significantly. Here, QCD effects will begin
to contribute to the dynamics, and the picture of nucleonic
degrees of freedom begin to break down. As a result, the
approximation used to obtain Eq. (6) becomes invalid at mo-
menta needed to probe x >≈ 1.7. The estimate was obtained
by using Eq. (5) and setting k⊥ = 0, assuming that nucleonic
degrees of freedom begin to break down when the nucleon
momenta reach around the mass of the proton, ≈1000 MeV.
However, by imposing the inclusive quark counting rule for
F D

2 in Ref. [28], under the assumption that F D
2 has no off-shell

effects at x > 1, one can determine the asymptotic α → 2
behavior of the deuteron LFWF in the convolution model.
More discussion can be found in Appendix B.

For the nucleon momentum distribution in deuterium,
|ψNR(k)|2, we used the AV18 wave function [29], unless stated
otherwise, and the following normalization was used:∫ ∞

0
|ψNR(k)|24πk2dk = 1. (16)

The momentum distribution was tabulated for finite points of
k, the magnitude of the total momentum, and an interpolator
was used. Figure 1 presents the nucleon momentum distri-

FIG. 2. The proton and neutron LF density matrices for deu-
terium, divided by α, as a function of α, the momentum fraction of
the nucleon in the nucleus weighted by A.

FIG. 3. DIS F2 structure functions on a logarithmic y-axis, eval-
uated at Q2 = 1.12 GeV2. The solid black line is the sum of the free
proton and neutron structure functions and the solid red line was
obtained by using Eq. (1).

bution in deuterium for a k range of 0 < k < 10 fm−1. The
tabulated data was in the range 0 < k < 20 fm−1, anything
outside this range was evaluated to be 0.

Using the AV18 momentum distribution, we obtained the
LF density matrix by using Eq. (7). The LF density matrix for
nucleons in deuterium, divided by α, is presented in Fig. 2.

Finally, using Eq. (1) we obtained F D
2 , evaluated at Q2 =

1.12 GeV2. The results are presented in Fig. 3. The value
used for the constant η in Eq. (14) was taken to be 0.4 ± 0.1,
motivated by results in the nLFHQCD model [24]. Discussion
on η in the blob-like component - point-like component (BLC-
PLC) model can be found in Appendix A.

Figure 4 presents results for F D
2 , Eq. (1), using the Ni-

jmegen (NijmI, NijmII, Nijm93) [30,31] and AV18 wave
functions [29], displaying the model’s sensitivity to different

FIG. 4. (Top) Results for F D
2 , Eq. (1), using different deuteron

wave functions. The sold red line uses the AV18 wave function and
the dashed, dotted, and dot-dashed red lines use the NijmI, NijmII,
and Nijm93 wave functions, respectively. (Bottom) The ratios of the
Nijm F D

2 results with respect to the AV18 results. Note that NijmI
and NijmII lines are overlapped.
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FIG. 5. All DIS F2 quantities are evaluated at Q2 = 1.12 GeV2.
The solid red line is the convolution model nLFHQCD result using
Eq. (1), the dot-dashed blue line was obtained by using free nu-
cleon structure functions in Eq. (1), where the superscript CV means
‘convolution’, and the filled black points are experimental results
obtained from the BONuS experiment [32–35].

nucleon-nucleon potentials. All deuteron wave functions were
normalized according to Eq. (16). We find that results using
different nucleon-nucleon potentials agree in the x < 1 region,
and begin to diverge when x > 1, with differences as large at
50%.

Figure 5 presents the results for the EMC ratio for
deuterium. All DIS F2 quantities are evaluated at Q2 =
1.12 GeV2. Our results for F D

2 /(F p
2 + F n

2 ) give a χ2 = 1.03,
in very good agreement with data obtained from the BONuS
experiment, which extracted F n

2 /F D
2 by using a spectator

tagging technique on semi-inclusive electron-deuteron colli-
sions [32–35]. Notice that simply applying Fermi smearing to
F p

2 + F n
2 yields a deuterium EMC effect that captures data as

well with a χ2 = 1.18.

IV. ADDITION OF SIX-QUARK CLUSTER

With the LF convolution model F D
2 result, we can now ex-

plore ideas outside conventional nuclear physics by including
QCD effects in the superfast region. Motivated towards under-
standing intersections between nuclear physics and QCD, we
model the PDFs for an exotic six-quark state to make predic-
tions on its contribution to F D

2 (see Ref. [36] for discussion on
hidden color states and the behavior of form factors at large
Q2 in deuterium). Deuterium can occupy a six-quark state
through quantum fluctuations, causing the proton and neutron
to overlap completely. This six-quark cluster/bag, compared
to a bound proton and neutron, allows for a greater sharing
of momentum between the quarks in deuterium, enhancing
the distribution of high-momentum quarks [20]. However,
since most of deuteron’s properties can be described by the
picture of a bound proton and neutron with pionic effects, we
expect the six-quark bag probability, P6q, to be very small.
A previous study investigated the contribution of a six-quark
state to the b1 structure function of the deuteron [37]. The
study used a six-quark probability of P6q = 0.15% to match

FIG. 6. Comparison between xq3(x, Q2) distribution used in
bound-nucleon PDFs in Eqs. (9), (10), and the six-quark PDF ansatz
used in Eq. (19), xq6(x/2, Q2)/2, evaluated at Q2 = 1.12 GeV2.

the experimental extraction of b1 at x = 0.452 by the HER-
MES Collaboration [38]. Since this value for the probability
was obtained from fitting to one point, we will use it as a
conservative upper bound for P6q.

Now we need to model the PDF of a six-quark hadronic
state in order to get its DIS F2 structure function,

F 6q
2 (x, Q2) = 4

9

x

2
u6q(x/2, Q2) + 1

9

x

2
d6q(x/2, Q2), (17)

where u6q(x/2, Q2) and d6q(x/2, Q2) are the up and down
PDFs of the six-quark state. To include the contributions of
a six-quark cluster to F D

2 , we added Eq. (17) to Eq. (1),
multiplying both terms by a six-quark probability factor—not
applying the convolution model to Eq. (17) as a six-quark
cluster does not have moving-nucleonic components:

F D
2 (x, Q2) = (1.0 − P6q )

∑
N

∫ A

x

dα

α

∫
dk⊥ ρN/D(α, k⊥)

× F̃ N
2 (x/α, α, k⊥, Q2) + P6qF 6q

2 (x, Q2). (18)

Now, the theoretical issue is to determine an ansatz for the
PDFs of a six-quark state in deuterium.

A. LFHQCD six-quark ansatz

We use the LFHQCD formalism to describe the quark
PDFs of a six-quark cluster as

u6q
(
x/2, Q2

o

) = d6q
(
x/2, Q2

o

) = 3
2 q6

(
x/2, Q2

o

)
. (19)

The six-quark PDFs use the same qτ as in Eq. (11), which in-
corporates Regge behavior at small x, and inclusive counting
rules at x → 1. Furthermore, we focus on the contributions
of the valence quarks and do not include the contributions of
higher Fock states in Eq. (19). Figure 6 shows a comparison
between xq3(x, Q2), used in the bound-nucleon PDFs, and the
exotic six-quark PDF ansatz, xq6(x/2, Q2)/2.
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FIG. 7. (Top) DIS F2 structure functions on a logarithmic y axis.
All F2 quantities are evaluated at Q2 = 1.12 GeV2. (Bottom) The
ratios F D

2 (P6q )/F D
2 (P6q = 0%). The predicted six-quark contribution

is displayed as a filled-in red volume, but is difficult to discern on
the top plot with the given axis scaling. The lower boundary of the
volume is P6q = 0% and the upper boundary is P6q = 0.15%. The
red dotted and dashed lines display P6q = 0.05% and P6q = 0.005%,
respectively, and are shown to clarify the trend of F D

2 with varying
F 6q

2 contributions.

By combining Eqs. (17), (19) we obtained

F 6q
2 (x, Q2

o ) = 5

9

x

2

(
3

2
q6

(
x/2, Q2

o

))
. (20)

Notice that the argument of q6 is x/2, this ensures that the
up and down six-quark PDFs extend to x = 2. Figure 7
presents the predictions of the LFHQCD six-quark model
to our convolution model results from Sec. II, evaluated
at Q2 = 1.12 GeV2. Notice that six-quark contributions
dominate at x > 1.

Figure 8 presents the same information as Fig. 17,
but as a function of the Nachtmann variable, ξ = 2x/(1 +√

1 + 4m2x2/Q2), a common prescription for target mass
corrections and displays scaling even at large values of ξ

(for more discussion see Refs. [18,20,39]). The results are
evaluated at Q2 = 10 GeV2, kinematics that are within the
proposed reach of 12 GeV JLab experiments [20,21]. To ac-
complish this, the PDFs are evolved to a higher scale with the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equa-
tions [40–42] using the APFEL package [43]. The inputs for
DGLAP evolution, such as the initial scale, renormalization
scheme, and heavy quark thresholds, are identical to the ones
used to study PDFs in LFHQCD in Ref. [26].

V. DISCUSSION AND CONCLUSION

The results presented in this paper are an extension to
our previous study in Ref. [24]. Focusing on the deuteron,
we applied Fermi motion effects using a variety of different
wave functions to extend the nLFHQCD model beyond x > 1
with reasonable model predictions up to x ≈ 1.7. In doing
so, we found that our model is in very good agreement to
BONuS data for the EMC ratio [32–35], and that the effects

FIG. 8. (Top) DIS F2 structure functions on a logarithmic y-
axis, as a function of the Nachtmann variable, ξ , evaluated at
Q2 = 10 GeV2. (Bottom) The ratios F D

2 (P6q )/F D
2 (P6q = 0%). The

predicted six-quark contribution is displayed as a filled-in red vol-
ume, but is difficult to discern on the top plot with the given axis
scaling. The lower boundary of the volume is P6q = 0% and the
upper boundary is P6q = 0.15%. The red dotted and dashed lines
display P6q = 0.05% and P6q = 0.005%, respectively, and are shown
to clarify the trend of F D

2 with varying F 6q
2 contributions.

of different nucleon-nucleon potentials become significant in
the superfast region. On top of conventional nuclear physics,
we implemented the contributions of an exotic six-quark state
to F D

2 using a LFHQCD ansatz [27]. We found that the six-
quark distribution enhances the x > 1 region, while minimally
affecting x < 1—displaying correct qualitative behavior as a
six-quark cluster allows for a greater sharing of momentum
between quarks, enhancing the high-momentum behavior of
F D

2 , while minimally affecting the low-momentum region. We
displayed the predictions of the six-quark ansatz to F D

2 for 0 <

P6q < 0.15% in Fig. 7, with the upper bound in P6q motivated
by Ref. [37]. We found that a small six-quark probability,
P6q = 0.15% can lead to large enhancements in the superfast
region, enhancements greater than 25% for x > 1.6. Further-
more, we found that the effects of different nucleon-nucleon
potentials are around the same magnitude as six-quark effects
in our model. With the proposed 12 GeV experiments at JLab,
we hope to test these predictions against experimental data
in the near future. Deviations from the following predictions
could be an indication of more interesting physics in the
superfast region.
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APPENDIX A: RELATIONSHIP BETWEEN LIGHT-FRONT
AND EQUAL-TIME VIRTUALITY IN BLC-PLC MODEL

First, we need to determine the connection between
Eq. (15) and the nucleon-nucleon potential. Using LF pertur-
bation theory one can obtain the Weinberg equation, which
in the vicinity of the deuteron bound state, becomes the fol-
lowing Schrodinger-like equation for the wave function of the
deuteron without spin and isospin effects [23,44]:(

M2
1,2 − M2

D

)
ψD(α, k⊥) = �(α, k⊥)

=
∫

V (α′, k′
⊥, α, k⊥)ψD(α′, k′

⊥)

× dα′

α′(2 − α′)
d2k′

⊥
(2π )3

, (A1)

M2
1,2 = 4

m2 + k2
⊥

α(2 − α)
. (A2)

Here, M2
1,2 is the invariant mass of the two nucleon system,

M2
D is the squared mass of the deuteron, V (α′, k′

⊥, α, k⊥)
is the nucleon-nucleon potential, and ψD(α, k⊥) is the LF
deuteron wave function. The symbol �(α, k⊥) is also known
as the bound state vertex function. Neglecting all but nucle-
onic degrees of freedom and identifying the pn components
of the deuteron wave function, we can use Eq. (5) to relate the
LF deuteron wave equation to the conventional nonrelativistic
Schrodinger equation for deuterium:

4
(
k2 + k2

D

)
ψD(k) = �(k)

=
∫

V (k, k′) ψD(k′)
d3k′

(2π )3
√

m2 + k′2 ,

(A3)

where k2
D = m2 − (M2

D / 4). Using Eq. (15), we can express
the left-hand side of Eq. (A3) as

4
(
k2 + k2

D

)
ψD(k) = −M2

D Vpn/D(k) ψD(k). (A4)

With Eqs. (A3), (A4), we get

Vpn/D(α, k⊥) = − 1

M2
D

�(k)

ψD(k)
, (A5)

displaying the relationship between LF virtuality for the
deuteron, the deuteron wave function, and the nucleon-
nucleon potential.

Now we want to apply the BLC-PLC model used in
Ref. [24] to Eq. (A5). Note that the BLC-PLC model neglects
spin and isospin effects, and treats the nuclear potential with a
number, thus Eq. (A5) is applicable. The simplified nucleon-
nucleon potential in momentum space must take the following
form to match the potential used in the BLC-PLC model:

V (k, k′) = (2m)2 |UNN | (2π )3 δ(3)(k − k′), (A6)

where |UNN | is the simplified nucleon-nucleon potential used
for deuteron in the BLC-PLC model, and the (2m)2 factor is
the relativistic normalization factor which connects relativistic
and nonrelativistic scattering matrix elements. Plugging in

Eq. (A6) into Eq. (A5) we obtain

Vpn/D(α, k⊥) = − (2m)2

M2
D

|UNN |√
m2 + k2

, (A7)

which in the nonrelativistic limit, and taking 2m ≈ MD, be-
comes

Vpn/D(α, k⊥) ≈ −|UNN |
m

. (A8)

Reference [24] uses V = (m2 + k2)/m2 and obtained the
following expression for virtuality:

V = −2 |U |
m

. (A9)

Thus we find that LF virtuality is exactly half the ET virtuality
in the BLC-PLC model. Defining the average virtuality as

〈Vnp/D〉 =
∫ A

0

dα

α

∫
d2k⊥Vnp/D(α, k⊥) ρnp/D(α, k⊥),

(A10)

we obtain 〈Vnp/D〉 = −0.0235, which corresponds to a value
of −0.047 if using ET virtuality. This is in agreement with the
average ET virtuality obtained in Ref. [45]. With Eq. (A8) we
determine, using results in Ref. [24],

δrpn/D(α, k⊥) = −m

4

Vnp/D(k)

�̄
. (A11)

Relating Eq. (A11) with Eq. (14), we find that the constant
η = m/(4�̄). In our study, we used η = 0.4 ± 0.1 which gives
�̄ ≈ 587 ± 147 GeV, in agreement with the BLC-PLC model
which limits �̄ to be greater than or equal to the difference
between the Roper resonance and nucleon mass.

APPENDIX B: ASYMPTOTIC α → 2 BEHAVIOR OF THE
DEUTERON LF WAVE FUNCTION USING THE

CONVOLUTION MODEL

Due to approximations used to obtain Eq. (6) breaking
down at large momenta, it is not possible to conclusively pre-
dict the asymptotic x → 2 behavior of F D

2 in the convolution
model. However, we can make progress in the converse situ-
ation and understand the asymptotic behavior of the deuteron
LFWF model by imposing quark counting rule constraints
[28] to F D

2 . Starting from Eq. (1) and assuming no off-
shell modifications to F D

2 at x > 1, we expand ρ(α, k⊥) and
F N

2 (x/α) around α = 2, as taking the limit x → 2 causes
α → 2 as well:

lim
x→2

F D
2 (x, Q2) ≈ lim

x→2

∑
N

∫ A

x

dα

2

∫
d2k⊥

× [ρN/D(2, k⊥) + ρ ′
N/D(2, k⊥)(α−2)+. . .]

×
[
F N

2 (x/2) − x

4
F N ′

2 (x/2)(α − 2) + . . .
]
.

(B1)
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In the limit as x → 2, we use the inclusive quark counting
rule of Ref. [28], which is obeyed in LFHQCD, to replace
F N

2 with (1 − x
2 )3. Performing the α integration one can find

that ρN/D(2, k⊥) terms go as (1 − x
2 )4, ρ ′

N/D(2, k⊥) terms as
(1 − x

2 )5, and so on. Therefore, if you restrict F D
2 to obey

inclusive quark counting rules, F D
2 ∼ (1 − x

2 )9, it must be that
the dominant α dependence of ρN/D in the limit of α → 2 goes
like

lim
α→2

ρN/D(α, k⊥) ∼ (α − 2)5. (B2)

The relationship between the LF density matrix and LFWF
for the deuteron is

ρN/D(α, k⊥) = |ψD(α, k⊥)|2
2 − α

. (B3)

Thus with the constraint that F D
2 obeys inclusive count-

ing rules the convolution model predicts that the α

dependence, in the limit of α → 2, of the deuteron
LFWF is as

|ψD(α, k⊥)| ∼ (α − 2)3. (B4)
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