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Phenomenological reexamination of two-photon-exchange corrections to the proton
recoil-polarization ratio μpGE/GM utilizing electron-proton elastic scattering experimental data
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In this work, we have phenomenologically reexamined the ε dependence of the proton’s recoil-polarization
ratio R = μpGE/GM for possible two-photon-exchange (TPE) corrections beyond the one-photon-exchange
(OPE) or Born approximation. High-precision Rosenbluth measurements of σR(ε, Q2) taken at Q2 = 2.64, 3.20,
and 4.10 GeV2 were used to extract the TPE coefficients needed to provide an estimate of the size of the TPE
corrections to the ratio R, and construct the two TPE Y(M,E )(ε, Q2) amplitudes. Our results suggest that the ratio R
shows very small (negligible) enhancement with ε, less than 0.40% in magnitude, with values consistent with the
OPE prediction for the Q2 range studied. We also compare our results to previous phenomenological extractions
and several theoretical calculations.
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I. INTRODUCTION

The proton’s elastic electromagnetic form factors (FFs),
electric GE (Q2) and magnetic GM (Q2) FFs, are key ingre-
dients needed to characterize the internal structure of the
proton, which help enhance and extend our understanding of
hadronic physics and quantum chromodynamics (QCD). They
are also key inputs to many studies and analyses aimed at
understanding composite particles and their nuclear structures
[1–5]. However, the experimentally reported proton’s FF ratio
R = μpGE/GM = μpRp as measured using the Rosenbluth
separation method [6] and the high-Q2 recoil polarization
method [7–9] in the one-photon-exchange (OPE) or Born-
approximation differs almost by a factor of three at high Q2

[10–12]. Such discrepancy in the ratio R has suggested a sys-
tematic difference between the two techniques. To reconcile
the two ratios, it was speculated that missing higher-order
radiative corrections, and in particular a two-photon exchange
(TPE) correction [13–15] to the elastic electron-proton (ep)
scattering cross section σR(ε, Q2), should be applied. Here, ε

is the virtual photon longitudinal polarization parameter, and
Q2 is the four-momentum transfer squared.

Several dedicated studies aimed at understanding the effect
of TPE on elastic ep scattering observables were performed.
On the theoretical side [16–60], the TPE corrections are rather
small, on the few percentile level, but exhibit significant angu-
lar dependence at high Q2. Phenomenologically [13,61–87],
several studies have attempted to quantify the size of TPE
contributions to σR by using combined ep elastic-scattering
experimental data, and assuming that the recoil-polarization
ratio R is rather insensitive to ε, the TPE effect is linear in
ε and does not destroy the experimentally observed linearity
in σR, and it vanishes as ε → 1 (Regge limit) [13,63–77].
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Other studies tried to extract the TPE amplitudes using fewer
assumptions and constraints but rather with relatively large
uncertainties [66,67,69,76,79]. See Refs. [88–90] for detailed
reviews. On the experimental side, some studies focused on
examining the ε dependence of σR [63,64,68], but no deviation
from linearity as predicted in the Born-approximation was
observed. Some measurements were performed to examine
the ε dependence of the ratio R at Q2 = 2.50 GeV2 [91], GEp-
2γ Collaboration, and the ratio was found to be essentially
independent of ε, in agreement with the OPE prediction. Some
experiments were dedicated to measure the size of TPE contri-
butions by measuring the positron-proton and electron-proton
elastic-scattering cross sections ratio Re+e− (ε, Q2) [92–95],
because any deviation of the ratio Re+e− from unity is an
evidence for TPE effect. All these measurements were car-
ried out for Q2 � 2.10 GeV2, below where the discrepancy
on the ratio R is significant, and reported significant TPE
contributions at low ε and moderate Q2, in agreement with
hadronic TPE predictions [17]. The CLAS [92,93] and VEPP-
3 Collaborations [94] measured the ratio Re+e− in the range
0.2 GeV2 � Q2 � 1.5 GeV2, and provided precise measure-
ments of Re+e− at Q2 ≈ 1.0 and 1.5 GeV2. The measured ratio
Re+e− is larger than unity and exhibits ε dependence at low
ε points, which is a clear evidence for a sizable hard-TPE
correction at larger Q2 values consistent with the ratio R
discrepancy at Q2 values of 1.0–1.6 GeV2. In addition, the
ratio Re+e− showed clear deviation and change of sign from
the exact calculations, high proton mass limit at Q2 = 0 [96],
and the finite-Q2 calculations for a point-proton [88]. The
OLYMPUS experiment [95] measured the ratio Re+e− in the
range 0.165 GeV2 � Q2 � 2.038 GeV2. The measured ratio
is below unity at high ε points, showing a dip below unity
for ε � 0.7, and then it changes sign and starts to increase
gradually, above unity, with decreasing ε showing a clear
enhancement for ε � 0.6 reaching about 2% at ε = 0.46.
As world data on the ratio Re+e− are all accumulated for
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Q2 < 2.1 GeV2, below the region where the discrepancy on
the ratio R is significant, the assumption whether hard-TPE
corrections could account for the discrepancy on R is still an
open question. Therefore, precise Re+e− measurements at high
Q2 are clearly needed. In addition, the Q2 = 2.50 GeV2 value
used in Ref. [91] to measure and examine the ε dependence
of the ratio R was not a good choice for the experiment
because the TPE correction to R is very small as the elastic
and �(1232) resonance contributions very much cancel each
other [66]. Therefore, in this work we extend the Q2 range and
reexamine phenomenologically the ε dependence of the ratio
R at Q2 = 2.64, 3.20, and 4.10 GeV2. We provide an estimate
of the size of the TPE correction to the ratio R and extract the
TPE amplitudes using combined unpolarized and polarized ep
elastic scattering experimental data.

II. TWO-PHOTON-EXCHANGE AMPLITUDES

Depending on the Q2 values, the TPE amplitudes (gener-
alized form factors) are usually calculated based on hadronic-
and pQCD-based calculations. At small to moderate Q2 val-
ues, the hadronic approach is mainly valid, and the TPE
processes are typically mediated by the production of virtual
hadrons and/or hadronic resonances in the intermediate state.
Based on the hadronic intermediate state involved, the TPE
amplitudes can be described in terms of elastic pure nucleon,
and inelastic multiparticles processes such as pπ , pππ with
emphasis on the �(1232) resonance, Roper resonance, and
πN (pion + nucleon) contributions. The πN contribution
can also split further into contributions coming from differ-
ent particle waves or channels such as the P33 channel and
higher total angular momentum J = 1/2 and 3/2 contribu-
tions. These contributions are only the first terms of an infinite
expansion of the total πN contribution, and it is unclear when
such a series will converge eventually. At high Q2 values, the
quark approach is applicable, and the nucleon is treated as a
system of interacting partons in the intermediate state, where
their interactions are described by perturbative quantum chro-
modynamics (pQCD).

In the hadronic-type approach, the most important con-
tribution is the elastic contribution, which impacts mainly
GM . Kondratyuk et al. [18] investigated the effect of adding
the �(1232) resonance [18], assuming zero width for the
�(1232) resonances, and other several light resonances [19]
on the cross section. The effect is smaller than the elas-
tic contribution, with the largest contribution coming from
the �(1232) resonance, and other resonances contributions
ended up partially canceling each other. Ahmed, Blunden,
and Melnitchouk [54] calculated the contributions of excited
intermediate-state resonances to the TPE corrections to σR in
the range of 0.50 GeV2 � Q2 � 5.00 GeV2. They accounted
for all four- and three-star spin-1/2 and spin-3/2 resonances
with mass below 1.80 GeV, including the six isospin-
1/2 states N (1440)1/2+, N (1520)3/2−, N (1535)1/2−,
N (1650)1/2−, N (1710)1/2+, and N (1720)3/2+ and the
three isospin-3/2 states �(1232)3/2+, �(1620)1/2−, and
�(1700)3/2−. In the low-Q2 region up to ≈1 GeV2 and
aside from the �(1232)3/2+, both the N (1520)3/2− and
N (1535)1/2− resonances gave the most significant con-
tributions and with almost a complete cancellation of

the N (1520)3/2− contribution by that coming from the
sum of other higher-mass resonances. That results in a
net correction that is well approximated by that coming
from the �(1232)3/2+ resonance. For Q2 � 2.0 GeV2, the
�(1232)3/2+ contribution to the TPE correction is overtaken
by that of the N (1520)3/2−, which has opposite sign, and
therefore the suppression of the TPE cross section relative
to the nucleon elastic contribution by the �(1232)3/2+ is
neutralized by the N (1520)3/2− contribution. Therefore, for
Q2 � 3.0 GeV2, higher mass resonances increase the magni-
tude of the TPE correction to σR and this is due mainly to
the growth of the negative N (1520)3/2− and N (1535)1/2−
resonances contributions, where they tend to overcompensate
the positive �(1232)3/2+ contributions. Blunden and Mel-
nitchouk [44] examined the TPE corrections to σR within
the dispersive approach, where they included both the nu-
cleon and intermediate states involving the spin-3/2 and
isospin-3/2 � baryons, and also reported a suppression of the
�(1232) contributions to the TPE cross section. Kondratyuk
and Blunden [19] performed calculation of resonance TPE
contributions and have also identified the N (1520)3/2− and
�(1232)3/2+ resonance contributions as the most significant.
Their nucleon and �(1232) contributions at Q2 = 4.0 GeV2

and small ε are in excellent agreement with those obtained
in Ref. [54], however, their N(1520) is smaller in magnitude
due to the different parametrization used of the resonance
electrocoupling at the hadronic vertices. In a similar study,
Borisyuk and Kobushkin [34] also investigated the impact of
adding the �(1232) resonance contribution with zero width
on both the cross section and the TPE amplitudes. The
�(1232) resonance has affected mainly the δGE/GM ampli-
tude, while the elastic contribution impacted GM . The size
of the �(1232) resonance contribution is found to grow in
magnitude with increasing Q2, exceeding that of the elastic
contribution at large Q2, resulting in a relatively large correc-
tion to the recoil-polarization ratio R. For Q2 > 3.0 GeV2, the
total correction to R coming from both elastic and �(1232)
contributions δR = (δel + δ�) was way larger than the ex-
perimentally quoted systematic uncertainty. However, when
the δR correction was applied to the experimental R data,
R became negative at Q2 = 8.5 GeV2. The effect of πN
hadronic intermediate state with emphasis on the P33 channel
including a realistic �(1232) resonance width, shape, and cor-
responding background [35] is also investigated. The �(1232)
resonance contribution is found to be very negligible com-
pared with the elastic one at low Q2. However, the impact on
the TPE δGE/GM amplitude is large and grows in magnitude
for Q2 � 2.50 exceeding that of the elastic intermediate state
in agreement with their previous results [34]. However, the
size of the correction to the ratio R at high Q2 is ≈30% smaller
than their previous results. Calculations of the TPE amplitudes
accounting for hadronic intermediate state, which included
the πN system with higher total angular momentum, J = 1/2
and 3/2, for eight πN different channels were also performed
[36]. In these calculations, a finite resonance width, realistic
resonance shape and form factors, and nonresonant back-
ground were considered. The largest contributions came from
channels with quantum numbers of the lightest resonances
dominated mainly by the contribution of the P33 channel.
However, the correction to the ratio R at high Q2 is smaller
but sizable and grows roughly linearly with increasing Q2
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as a result of cancellation of the different channels contribu-
tions. Tomalak, Pasquini, and Vanderhaeghen [46] evaluated
the TPE correction to σR within the dispersive framework in
the extended range 0.064 GeV2 � Q2 � 1.0 GeV2. In addi-
tion to the elastic contributions, they have accounted for all
πN intermediate-state contributions. A contour integration in
the complex plane was performed in order to evaluate the
imaginary part of the TPE amplitudes with nucleon inter-
mediate state. To utilize the dispersion relation, the contour
was allowed to be deformed and a dipole shaped nucleon
form factors were used so as the integral can be analytically
continuous into some unphysical region. They also used input
pion electroproduction amplitudes taken from the MAID 2007
parametrizations [97]. Their results are in good agreement
with the empirical extraction of the TPE cross section of
Ref. [61] at high ε, but disagree at low ε.

At high Q2 values, the TPE corrections are calculated
mainly within the framework of GPDs [26,27] and pQCD
[20–22,33,43]. Afanasev et al. [27] calculated TPE cor-
rections to σR assuming different formalisms for GPDs.
Calculations of TPE corrections to σR within the framework
of pQCD for a proton target incorporating wave functions
based on QCD sum rules were performed by Borisyuk and
Kobushkin [33]. The TPE δGM/GM amplitude shows linearity
in ε, and grows logarithmically with increasing Q2 reach-
ing about 3.5% of the Born amplitude at Q2 = 30.0 GeV2.
They also suggested the possibility of smooth connection
with hadronic calculations, assuming an elastic intermediate
state, at lower Q2 values. At high Q2, on the other hand,
both the GPDs- and pQCD-type calculations yielded different
results, indicating the inadequacy of the hadronic approach for
Q2 � 3.0 GeV2.

Calculations of TPE corrections to σR based on QCD fac-
torization approach within the framework of the soft-collinear
effective theory (SCET) arising from both the soft- and
hard-spectator scattering contributions at moderately large Q2

values of 2.64, 3.20, and 4.10 GeV2 were also performed [22].
The cross section σR showed some deviation from linearity
at small ε at Q2 = 2.64 GeV2. The nonlinearity with ε in-
creased with increasing Q2 in agreement with hadronic-type
calculations at moderate Q2 values. The two TPE YM and Y3

amplitudes showed weak Q2 dependence and behaved oppo-
sitely with ε with nonvanishing values as ε → 1.

III. PHENOMENOLOGICAL TWO-PHOTON
EXCHANGE APPROACH

In this section, we lay down the procedure together with the
constraints and assumptions used to estimate the size of the
TPE correction to the recoil-polarization ratio R and extract
the TPE amplitudes. Based on the theoretical framework of
Borisyuk and Kobushkin [66], the reduced cross section σR

and the recoil-polarization ratio R after correction for TPE
contributions are expressed as

σR(ε, Q2) = G2
M

[
1 + εR2

p

τ
+ 2YM (ε, Q2)+2εR2

p

τ
YE (ε, Q2)

]
,

(1)

R(ε, Q2) = Rp

[
1 + YE (ε, Q2) − YM (ε, Q2)

− ε(1 − ε)

1 + ε
Y3(ε, Q2)

]
, (2)

where GM is the true magnetic FF of the proton, Rp is the Born
value of the recoil-polarization ratio R, and Y(E ,M,3) are the real
parts of the TPE amplitudes and functions of ε and Q2.

(1) As the TPE amplitudes are on the few percentile levels,
the last term ε(1 − ε)/(1 + ε)Y3 in Eq. (2) is too small
compared with the remaining terms and can be safely
neglected. Therefore, in this work, we only extract the
two TPE amplitudes Y(M,E )(ε, Q2).

(2) Based on Eq. (2), the ratio R is a function of both
ε and Q2. Therefore, we Taylor expand R(ε, Q2) in
terms of ε and Q2 as R(ε, Q2) = a0(Q2) + a1(Q2)ε +
a2(Q2)ε2, where a0(Q2) = Rp is the Born (OPE) value
of R and is a function of Q2 only. Because the TPE
correction to R vanishes as ε → 1 (Regge limit), that
suggests that a1(Q2) = −a2(Q2), and the ratio R can
finally be expressed as

R(ε, Q2) = Rp + a1(Q2)ε(1 − ε), (3)

where the second term represents the TPE correction
to the ratio R.

(3) Equating the ratio R from Eqs. (2) and (3), we can
express the two TPE amplitudes YE and YM as

YE (ε, Q2) = YM (ε, Q2) + a1ε(1 − ε)

Rp
. (4)

(4) Because of the experimentally observed linearity of
σR, where σR exhibits no (or very weak) nonlinearity
in ε, and to reserve as possible the linearity of σR, we
parametrize YM (ε, Q2) linearly in ε as

YM (ε, Q2) = b1(Q2)(ε − 1), (5)

which clearly vanishes in the Regge limit.
(5) Using Eqs. (4) and (5), σR as given by Eq. (1) is now

expressed as

σR(ε, Q2) = G2
M

[
1 + εR2

p

τ

+ 2

(
1 + εR2

p

τ

)
b1(Q2)(ε − 1)

+ 2a1(Q2)Rp

τ
ε2(1 − ε)

]
. (6)

(6) Precision Rosenbluth measurements of σR from
Ref. [10] taken at Q2 = 2.64, 3.20, and 4.10 GeV2

are used in this analysis. At fixed Q2 value, we
constrain both the ratio Rp and G2

M in Eq. (6).
For Rp, we constrain its value along with its as-
sociated uncertainty to μpRp = [1/1 + 0.1430Q2 −
0.0086Q4 + 0.0072Q6], with an absolute uncertainty
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δ2
Rp

(Q2)=μ−2
p {(0.006)2 + [0.015 ln(1 + Q2)]2} based

on the parametrization of Ref. [75]. For G2
M (Q2), and

because of the experimentally observed linearity of
σR with ε, we first fit σR linearly to the form σR =
[c1(Q2) + c2(Q2)ε], where c(1,2)(Q2) are the fit param-
eters, and then we extract G2

M (Q2) by equating the
two expressions for σR(ε = 1, Q2) yielding G2

M (Q2) =
[c1(Q2) + c2(Q2)]/[1 + (R2

p/τ )] [69,76]. Finally, σR

data at Q2 = 2.64, 3.20, and 4.10 GeV2 are fitted to
Eq. (6), and the parameters of the fit a1(Q2) and b1(Q2)
at each Q2 value are extracted. The TPE corrections to
R and the TPE amplitudes at each Q2 value are then
constructed using Eqs. (3), (4), and (5). This will be
referred to as the “σR Fit” throughout the text.

Relevant to this work, Guttmann et al. [69] (based on the
theoretical framework of Guichon and Vanderhaeghen [13])
determined the ε dependence of the three TPE amplitudes
Y(M,E ,3) around Q2 = 2.50 GeV2 using high-precision data
on the ratios R and Pl/PBorn

l determined by the GEp-2γ

Collaboration [91], and σR at Q2 = 2.64 GeV2 from the super-
Rosenbluth experiment [10]. The ratio R was fitted to the
functional form R = Rp + Bεc(1 − ε)d , where Rp is the Born
(OPE) value, and B, c, and d are constants. The constant B was
effectively zero for a range of different values of c and d , and
all values of R were equal within their error bars. They con-
cluded that the precision of the experimental data of Ref. [69]
did not allow for the ε-dependent part in addition to the
constant value of R to be extracted. They fitted R to its Born
value, which yielded: R = 0.693 ± 0.006stat ± 0.010sys. The
ratio Pl/PBorn

l shows a decrease for ε → 0. Although in qual-
itative agreement with perturbative QCD (pQCD) [20,33],
the ratio Pl/PBorn

l at Q2 = 2.50 GeV2 falls off faster than
the pQCD prediction. Therefore, the ratio Pl/PBorn

l was fit to
two different functional forms: Pl/PBorn

l = 1 + alε
4(1 − ε)1/2

(Fit I), and Pl/PBorn
l = 1 + alε ln(1 − ε)(1 − ε)1/2 (Fit II),

giving a value of al = 0.11 ± 0.03stat ± 0.06sys for Fit I, and
al = −0.032 ± 0.008stat ± 0.020sys for Fit II. Throughout the
text, the TPE amplitudes extracted using Fit I (II) will be
referred to as the “Guttmann Fit I” (“Guttmann Fit II”). Note
that our functional form for R, Eq. (3), is similar to that
used in Ref. [69] with B = c = d = 1, although no justifica-
tion was given to why such a functional form was used in
Ref. [69]. It is worth mentioning here that the three TPE am-
plitudes Y(M,E ,3)(ε, Q2) defined in Ref. [13] and extracted in
Refs. [69,76] are the real parts of the TPE amplitudes relative
to the magnetic form factor GM (generalized form factors):
YM = δGM/GM , YE = δGE/GM , and Y3 = (ν/M2)δG3/GM .
On the other hand, the TPE amplitudes Y(M,E ,3)(ε, Q2) based
on the framework of Borisyuk and Kobushkin [66], Eqs. (1)
and (2), are defined as YM = δGM/GM and YE = δGE/GE , and
Y3 = δG3/GM = (ν/4M2)δG3/GM . While the amplitude Y3 is
the same in both Refs. [13,66] with the definition of ν differs
by a factor of four, the two amplitudes Y(M,E ) are different.
For better comparison between the different theoretical ex-
tractions, we put the Y(M,E ) amplitudes from Refs. [13,66]
on equal footing and relate them using YM = δGM/GM =
(δGM/GM + εY3) and YE = δGE/GE = (δGE/GM + Y3)/Rp.

IV. RESULTS AND DISCUSSION

Following the procedure outlined in Sec. III, we fit pre-
cision σR measurements from Ref. [10] taken at Q2 = 2.64,
3.20, and 4.10 GeV2 to Eq. (6), and extract the TPE coeffi-
cients a1(Q2) and b1(Q2) at each Q2 value. Figure 1 shows the
results of the fit at the Q2 value listed in the figure. Excellent
fits were achieved, with the reduced χ2 values of the fit χ2

ν are
generally reasonable with values χ2

ν = 0.37, 0.51, and 0.13,
for Q2 = 2.64, 3.20, and 4.10 GeV2, respectively. The results
of the fits are listed in Table I. Unlike the TPE coefficient
b1(Q2), the coefficient a1(Q2) is clearly less constrained with
uncertainty way larger than its central value. In addition, we
perform a simultaneous global fit combining the data for the ε

dependence of R at Q2 = 2.50 GeV2 from Ref. [91], 3ε points,
and σR measurements at a similar Q2 value of 2.64 GeV2 from
Ref. [10] with 5ε points. When performing the fit, Eq. (3) for
R and Eq. (6) for σR were used, and the best fit parameters,
the TPE coefficient a1(Q2) and b1(Q2), were obtained by
minimizing the χ2 function defined as

χ2 =
Nσ∑
i=1

[
σ

(i)
R,data − σ

(i)
R,theo.

�σ
(i)
R,data

]2

+
Npol.∑
i=1

[
R(i)

p,data − R(i)
p,theo.

�R(i)
p,data

]2

.

(7)

As the measurements were taken at slightly different
Q2 value, we set the Born Rp value in Eq. (2) to Rp =
0.6930 ± 0.006, as given by Ref. [69], and Rp = 0.6896 ±
0.020 in Eq. (6), as determined based on the parametrization
of Ref. [75], to account for the difference. Note, however, that
the one-parameter fit of Ref. [91] yielded R = Rp = 0.6923 ±
0.0058. This will be referred to as the “Glob. Fit” throughout
the text. A reasonable fit was achieved with χ2

ν = χ2/ν =
1.32 for ν = (Npoint − Nparam.) = 6 degrees of freedom. The
global fit at Q2 = 2.64 GeV2 is in excellent agreement with
the σR Fit and is also shown in Fig. 1 for comparison.
While both fits yield a consistent value for b1(Q2) at Q2 =
2.64 GeV2, the a1(Q2) value obtained using the global fit has
an opposite sign with much improved uncertainty compared
with that obtained using the σR Fit.

Having obtained the TPE coefficients a1(Q2) and b1(Q2),
the ε dependence of the ratio R and the two TPE amplitudes
Y(E ,M ) can now be constructed at each Q2 value. Figure 2
shows the ε dependence of the ratio R as extracted from this
work. For Q2 = 2.64 GeV2, we show the results of both the σR

and global fits along with their uncertainty bands as computed
using the covariance matrix of the fits. Note that the one-point
experimental R value from Ref. [98], shown as a solid red
triangle in Fig. 2, was not included in the Global Fit and
was only shown for comparison. We also compare the results
to several previous theoretical predictions: hadronic calcu-
lations which account for all the proton intermediate states
[17] “Hadronic,” partonic calculations which account for hard
scattering of the electron by embedded quarks inside the nu-
cleon through generalized parton distributions (GPDs) [27]
“GPD,” perturbative QCD (pQCD) calculations [20], which
used two different light-front-proton distribution amplitude
parametrizations from Ref. [60] “COZ,” and Ref. [43] “BLW,”
and electron structure function calculations which account for
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FIG. 1. The reduced cross section σR as a function of ε (solid
red squares) from Ref. [10] at the Q2 value listed in the fig-
ure. Also shown are our σR Fit based on Eq. (6) (solid black
line), and the global fit based on Eq. (3) (long dashed dark-
green line) for comparison. The global fit is only performed
at Q2 = 2.64 GeV2.

FIG. 2. (a) The ratio R as a function of ε at Q2 = 2.50 GeV2

from Ref. [91] (solid dark-green squares) and Ref. [98] (solid red tri-
angle). Also shown are our σR Fit (solid dark line), “Glob. Fit” (long
dashed dark-green line) at Q2 = 2.64 GeV2 along with their uncer-
tainty bands (long dashed black line) and (small dashed dark-green
line), respectively, and the Born set value (small dashed-red line) as
given by Ref. [69]. (b) The theoretical predictions: “Hadronic” [17]
(long dashed-dotted black line), “GPD” [27] (long dashed blue line),
pQCD [20] (“COZ” [60] (large dotted cyan line), and “BLW” [43]
(long dashed-dotted cyan line), and “SF” [28] (long dashed-dotted
blue line).
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TABLE I. The values of the fit parameters for the TPE coeffi-
cients a1(Q2) and b1(Q2). The χ 2

ν value of the fit is also listed.

Fit type Q2 (GeV2) (b1 ± �b1 ) × 10−2 (a1 ± �a1 ) × 10−2 χ 2
ν

σR Fit 2.64 +2.49 ± 0.32 +0.42 ± 2.80 0.37
Global Fit 2.64 +2.48 ± 0.39 −0.39 ± 0.98 1.32

σR Fit 3.20 +3.27 ± 0.36 −0.54 ± 3.62 0.51
σR Fit 4.10 +4.53 ± 0.41 +0.41 ± 6.10 0.13

all higher-order radiative corrections in the leading-logarithm
approximation from Ref. [28] “SF.” Note that our results
based on the two fits have slightly different R value at ε = 0
(Born Rp value) due to the slightly different constrained Rp

value in each fit. All theoretical calculations have widely pre-
dictions and sizable ε dependence for R, except for the “SF”
calculations which do not predict any measurable ε depen-
dence. Note that the “SF” prediction in Fig. 2 has been offset
by −0.0067 for clarity with respect to the one-parameter fit
result of R = 0.6923 ± 0.0058 obtained by Ref. [91]. Both
fits suggest that the ratio R exhibits no (very negligible) ε

dependence, with R reaching maximum deviation from its
Born Rp value of δR = R − Rp = +0.29%(−0.27%) at ε =
0.50 based on the σR (Global) fit result. Our results are in
excellent agreement with the experimental data within their
uncertainties, and in a good agreement with the “SF” calcu-
lations, but disagree strongly with the other shown theoretical
predictions.

For Q2 = 3.20 GeV2, the ratio R decreases below its Born
Rp value with increasing ε reaching maximum deviation of
δR = −0.38% at ε = 0.50. The ratio then starts to increase
again reaching Rp at ε = 1. For Q2 = 4.10 GeV2, the ratio
R behaves rather differently as it increases above its Born
Rp value with increasing ε reaching maximum deviation of
δR = +0.29% at ε = 0.50 and then starts to decrease again
reaching Rp at ε = 1. Therefore, and for the three Q2 points
considered in this study, the ratio R shows very small (negli-
gible) enhancement with ε, with a value consistent with the
Born-approximation (OPE) prediction.

Figure 3 shows the ε dependence of the two TPE ampli-
tudes Y(M,E ) at Q2 = 2.64 GeV2 as extracted from this work
based on both fits. We also compare our results to previous
phenomenological extractions from Ref. [76], labeled “IQ,”
and Ref. [69], labeled Guttmann Fit I and Guttmann Fit II.”
We also compare our results to several previous hadronic
TPE calculations assuming different intermediate states: elas-
tic “BK: elastic” [32], elastic + �(1232) resonance “BK:
elastic + �(1232)” [34], elastic + πN (P33 channel) “BK:
elastic + P33” [35], elastic + πN (spin-1/2 and -3/2 channels)
“BK: elastic + πN” [36], and to calculations based on QCD
factorization within the SCET approach from Ref. [22] “KV.”
For the KV calculations, we only show the YM amplitude but
not YE as the latter requires knowledge of the quark transverse
momenta distribution and cannot be calculated in a leading
twist QCD-type calculation.

We start by examining YM . The amplitude is on the few-
percentage-point level, and behaves linearly in ε. Note that
both fits yield identical results for YM , and so YM based on

FIG. 3. The ε dependence of the TPE amplitudes at Q2 =
2.64 GeV2 from this work: YM (top) (solid black line), and YE (bot-
tom) (σR Fit: solid red line, and Glob. Fit: small dashed dark-green
line). In addition, we compare our results to previous phenomeno-
logical extractions from Ref. [76] IQ (dashed magenta line), and
Ref. [69] Guttmann Fit I (dashed black line) and Guttmann Fit II
(long-dashed black line). Also shown are several previous hadronic
TPE calculations: BK: elastic [32] (dashed red line), BK: elastic
+ �(1232) [34] (long-dashed red line), BK: elastic + P33 [35] (solid
magenta line), BK: elastic + πN [36] (dashed-dotted dark-green
line), and calculations based on QCD factorization within the SCET
approach KV [22] (dotted blue line).

the σR Fit result is only shown. Our results in general are
in reasonably good qualitative agreement with previous IQ,
Guttmann Fit I, and Guttmann Fit II phenomenological extrac-
tions, and hadronic and KV theoretical calculations showing
the overall falloff of YM with decreasing ε, but they show
clear deviation from the IQ extraction at low ε. For YE , the
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FIG. 4. The ε dependence of the TPE amplitudes Y(M,E ) as ex-
tracted from this work at the Q2 listed in the figure: This Work:
YM , YE solid (black, red), respectively. Also shown are previous
phenomenological extractions [76]: IQ: YM , YE long-dashed (black,
red) line, respectively, and hadronic calculations assuming different
intermediate states: elastic: YM , YE (solid, dashed-dotted) cyan line,
respectively, from Ref. [32], and elastic + πN with spin-1/2 and
-3/2 channels labeled as elastic + πN : YM , YE dotted (black, red)
line, respectively, from Ref. [36].

amplitude is also on the few-percentage-point level, and be-
haves linearly in ε. The two fits yield opposite behavior in ε as
the TPE coefficient a1 has different sign, Table I. Our results
are also in reasonably good qualitative agreement with all
shown phenomenological extractions with the IQ extraction
yielding clear deviation at low ε, but disagree with hadronic
calculations because they all predict positive amplitude for the
entire ε range.

Figure 4 shows the ε dependence of the Y(M,E ) amplitudes
as extracted from this work at Q2 = 3.20 and 4.10 GeV2,
labeled as “This Work: YM , YE ”. In addition, we compare

our results to previous phenomenological extractions [76],
labeled as “IQ: YM , YE ”, and hadronic calculations labeled
as “elastic: YM , YE ” from Ref. [32], and “elastic + πN :
YM , YE ” from Ref. [36], which account for both elastic and
intermediate-state contributions containing the πN system
with higher angular-momentum contributions from J = 1/2
and J = 3/2 for eight different πN channels. As Q2 increases,
both amplitudes grow in magnitude. The YM amplitude con-
tinues to behave linearly in ε, and the YE amplitude starts
to exhibit more linearity in ε with increasing Q2 value. Our
YM is in a reasonable qualitative agreement with previous
phenomenological extractions and hadronic TPE calculations
showing the overall falloff of YM with decreasing ε. Our
YE is also in reasonable qualitative agreement with previous
phenomenological extractions but deviates substantially from
hadronic TPE calculations as they predict opposite behavior
with positive YE .

V. CONCLUSIONS

In this work, we have reexamined the ε dependence
of the recoil-polarization ratio R = μpGE/GM for possi-
ble TPE corrections beyond the Born-approximation (OPE).
High-precision Rosenbluth measurements of σR taken from
Ref. [10] at Q2 = 2.64, 3.20, and 4.10 were fitted to Eq. (6),
and the two TPE coefficients a1(Q2) and b1(Q2) were ex-
tracted, and then used to construct the TPE correction to R,
Eq. (3), and the two TPE amplitudes Y(M,E )(ε, Q2), Eqs. (4)
and (5). For the three Q2 points considered in this work,
the ratio R shows negligible enhancement with ε with max-
imum deviation of R from its Born (OPE) Rp value reaching
δR = +0.29%, −0.38%, and +0.29% at ε = 0.50 for Q2 =
2.64, 3.20, and 4.10 GeV2, respectively, suggesting that the
value of R is consistent with the Born-approximation (OPE)
prediction. The extracted amplitudes Y(M,E )(ε, Q2) are on the
few-percentage-points level and increase in magnitude with
increasing Q2. For the entire Q2 range considered in this study,
both Y(M,E ) amplitudes behave consistently linearly with ε as
Q2 increases. Our YM generally is in a reasonable qualitative
agreement with previous phenomenological extractions and
theoretical TPE calculations showing the overall falloff of YM

with decreasing ε. Our YE is also is in a reasonable qualita-
tive agreement with previous phenomenological extractions
but disagrees strongly with hadronic TPE calculations of
Refs. [32,36].

We have also performed a global fit using Eqs. (3) and
(6), where we combined data for the ε dependence of R at
Q2 = 2.50 GeV2 from Ref. [91], and σR measurements at
Q2 = 2.64 GeV2 from Ref. [10]. The extracted TPE b1(Q2)
coefficient is consistent with that obtained using the σR Fit.
On the other hand, while the magnitude of the TPE a1(Q2)
coefficient is still consistent with that obtained using the σR

Fit, it has an opposite sign. Again, R shows no significant en-
hancement with ε with δR = −0.27% at ε = 0.50 consistent
with the results of the σR Fit, and in good agreement with
the “SF” predictions [28]. Our YM is identical to that obtained
using the σR Fit and is in a reasonable qualitative agreement
with previous phenomenological extractions and theoretical
TPE calculations. For YE , both fits yield opposite behavior
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in ε, and they are in reasonable qualitative agreement with
previous phenomenological extractions but strongly disagree
with theoretical TPE calculations.
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