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Thermodynamics of the parity-doublet model: Symmetric nuclear matter and the chiral transition
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We present a detailed discussion of the thermodynamics of the parity-doublet nucleon-meson model within
a mean-field theory, at finite temperature and baryon-chemical potential, with special emphasis on the chiral
transition at large baryon densities and vanishing temperature. We consider isospin-symmetric matter. We
systematically compare the parity-doublet model to a related singlet model obtained by disregarding the chiral
partner of the nucleon. After studying the ground-state properties of nuclear matter, the nuclear liquid-gas
transition, and the density modifications of the nucleon sigma term which govern the low-density regime, we
give new insight into the underlying mechanisms of the zero-temperature chiral transition occurring at several
times the nuclear saturation density. We show that the chiral transition is driven by a kind of symmetry energy that
tends to equilibrate the populations of opposite-parity baryons. This symmetry energy dictates the composition
of matter at large baryon densities, once the phase space for the appearance of the negative-parity partner is
opened. We furthermore highlight the characteristic role within the thermodynamics of the chiral-invariant mass
of the parity-doublet model. We include the chiral limit in all of our discussions in order to provide a complete
picture of the chiral transition.
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I. INTRODUCTION

Recent observations of gravitational waves from neutron
stars and neutron-star mergers have triggered a renewal in-
terest in the study of the equation of state of dense matter
at finite density and moderate temperature (for a review see
Ref. [1] and references therein). There is indeed hope that
such observations can provide useful constraints on the equa-
tion of state of dense matter, complementing the empirical
information that can be obtained from relativistic heavy-ion
collisions at various facilities.

One important question is whether nuclear matter turns
into quark matter under the conditions that prevail in the inte-
rior of neutron stars or in a neutron-star merger. To answer this
question, one needs a good knowledge of the equation of state
over a wide range of baryonic densities. From a theoretical
point of view, a determination of the equation of state at finite
baryon density is difficult. Standard lattice techniques can-
not be applied and most theoretical studies therefore rely on
models whose range of validity is difficult to control. Often,
the equation of state is built via an interpolation procedure
between the low-density region, where low-energy nuclear
physics provides information, to the very-high-density region,
where QCD perturbation theory becomes applicable. This
paper will be concerned with the general question of up to
how large a density one can reliably extrapolate models that
reproduce well the properties of nuclear matter near its ground
state.
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Dense matter is expected to undergo a number of phase
transitions (possibly reduced to smooth crossovers) as the
temperature or the baryon density increases. In this context
chiral symmetry plays a special role. Its explicit breaking
is manifest in many low-energy nuclear physics phenomena,
while lattice calculations indicate that it is restored at high
temperature, and it is likely that the same feature shows up
at high baryon density. Chiral symmetry restoration is ac-
companied by the vanishing of an order parameter, the quark
condensate, or equivalently the expectation value of a scalar
field. The chirally symmetric phase may be also character-
ized by the presence of degenerate parity doublets. It is the
identification of such massive parity doublets in early lattice
calculations that motivated the development of the so-called
parity-doublet model [2]. Since then, the evidence for parity
doubling in the baryon spectrum has received further support
from lattice calculations [3,4]. It should be noted though that
most of these evidences concern finite temperature and zero
baryon density.

In its simplest version, the parity-doublet model is a gen-
eralization of the linear sigma model [2] (see also Refs. [5,6]
for a detailed formulation). The chiral field, composed of a
scalar field and a pion field, is coupled to a baryon parity
doublet. A natural identification of the partner of the nucleon,
the dominant degree of freedom in nuclear matter, is the
N∗(1535). This is what we use in this paper, being aware of
the fact that this particular choice may not quite fit with the
present understanding of the couplings of the N∗ to π and
η (see, e.g., Refs. [5,7]). A remarkable feature of the model
is to accommodate a mass term for the baryon that is com-
patible with chiral symmetry. Thus, once chiral symmetry is
restored, the members of the doublet become degenerate, but
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remain massive. This is a distinctive feature of the model, as
compared, for instance, to extensions of the original Walecka
model [8] where the baryon mass is entirely given by the
scalar field, and therefore vanishes in the chirally symmetric
phase. Thus the parity model offers us a novel perspective on
how chiral symmetry is realized in various environments. In
spite of shortcomings, it is indeed a nice model, offering a
playground for many detailed calculations. We have used it
recently in an analysis of π − π scattering, where it was found
to yield remarkably accurate results [9].

The parity-doublet model, in its original version or in vari-
ous extensions, has been used in numerous dense-matter stud-
ies, including neutron-star matter, see, e.g., Refs. [7,10–19].
In this paper, we restrict ourselves to the simplest version of
the model, keeping only the nucleon parity-doublet degree
of freedom as described above, and ignoring other possible
degrees of freedom such as hyperons [20–22] or � excitations
of the nucleon [16]. We also leave aside interesting aspects
of chiral symmetry, in particular those associated with the
U (1)A anomaly [17]. Our main concern in this paper is to
understand in detail the dynamics of the chiral transition in the
model, in particular at finite baryon density, how this is related
via the parameter determination to low-energy nuclear matter
properties, and learning from such an analysis how reliable
can be an extrapolation to the high-density regime where the
chiral transition is predicted to occur in the model.

In our analysis, we find it instructive to compare the results
obtained in the parity-doublet model with those of simpler
models that can be viewed as extensions of the Walecka
model that account for chiral symmetry. A generic example
is the so-called chiral nucleon-meson model [23] (see also
Refs. [24,25]). Many features of this model are indeed shared
by the parity-doublet model. Our study will be limited to
a mean-field approximation, i.e., a classical field approxi-
mation for the mesons and a one-loop calculation of the
fermion determinant. The fermionic fluctuations included in
the fermion determinant play an essential role in chiral sym-
metry restoration and cannot be ignored, while at high density
the meson fluctuations are presumably corrections that can be
accounted for by a modification of the effective potential for
the mesonic fields, without introducing additional qualitative
changes. Note that the effect of fluctuations in both the chiral
nucleon-meson model and the parity-doublet model have been
studied within functional renormalization group approaches
[12,23,26]. One important conclusion of Ref. [23] is that
chiral symmetry restoration appears to take place at very high
density. The same prediction holds in the parity-doublet model
[7], which exhibits in fact a stronger stability, with symmetry
restoration taking place only for density at least ten times that
of nuclear matter. Understanding the origin of this important
feature is part of the motivation for the present study.

Although the present setup allows us to study the finite-
temperature chiral transition, and we indeed present results for
this, the approximations that we use prevent us to get a fully
quantitative or even qualitative picture. This is because, at
finite temperature and low baryon density, meson fluctuations,
in particular those of the pions, are expected to play a major
role. Treating correctly these fluctuations would be essential
to make contact for instance with chiral perturbation theory

[27,28], as well as with the resonance gas model (for a recent
review, see Ref. [29]).

Another important aspect of the present work is the sys-
tematic comparison with the chiral limit, where the explicit
symmetry-breaking term is made to vanish and the pion
becomes effectively massless. The chiral limit enters in par-
ticular the discussion of the nucleon sigma term, whose
magnitude provides a hint about the magnitude of the chiral
condensate in a baryon, and more generally in moderately
dense matter. It also happens that the nature of the chiral
transition differs in the chiral limit from what it is for the
physical pion mass. In fact, much can be understood about
the detailed dynamics of the chiral transition at finite baryon
density and vanishing temperature by contrasting the results
obtained for the physical pion mass with those of the chiral
limit.

The outline of the paper is as follows: In the next section,
we recall the basics of the parity-doublet model, its symmetry
properties, and the chiral-invariant-mass term. We also discuss
the phenomenological bosonic potential that complements the
fermionic part. In the following section, we review the param-
eter determination, trying to clarify the correlations between
the different parameters of the model, and the constraints
coming from empirical data on nuclear-matter ground-state
properties, as well as its liquid-gas transition. Section IV is
devoted to a discussion of the nucleon sigma term, focusing
in particular to uncertainties in the extrapolation between the
chiral limit and the physical point. We also study corrections
to the sigma term coming from the presence of baryonic
matter and show that an expansion in powers of the density
is not well converging. The Sec. V is devoted to a detailed
study of the chiral transition. We provide a detailed anal-
ysis of the transition in the parity-doublet model (and the
related singlet model), either at vanishing chemical potential
and finite temperature, or at vanishing temperature and finite
baryon-chemical potential. We emphasize the very different
natures of the transition in the two cases. The present study is
restricted to isospin-symmetric matter. A continuation of the
present work to asymmetric, and in particular, neutron matter
will be presented in a forthcoming publication [30].

II. PARITY-DOUBLET MODEL

In this section, we review the main features of the parity-
doublet model, fixing the notation and providing a first
qualitative discussion of its thermodynamics. We follow here
the general presentation given in Ref. [9] (with slightly differ-
ent notation).

The model that we consider consists of a baryon parity
doublet that will be eventually identified with the nucleon
N (939) and the N∗(1535) (with mass 1510 MeV [31]), which
are coupled to a set of meson fields: an isoscalar meson field σ

and its chiral partner, an isovector pion field π , and in addition
an isoscalar vector field ωμ. At moderate densities, the scalar
field σ provides attraction between the baryons, while the
vector field provides repulsion, the competition between both
leading eventually to the ground state of nuclear matter as a
self-bound system. Since we are concerned in this paper solely
with isospin-symmetric matter, we ignore a potential coupling
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of the baryons to an isovector vector field (which would play
a role in isospin-asymmetric matter, see, e.g., Refs. [11,23]).

The overall Lagrangian takes the form of a generalized
sigma model. A characteristic feature of the parity-doublet
model is to allow the baryon to acquire a mass while respect-
ing chiral symmetry. Such a mass survives chiral symmetry
restoration at high temperature or high baryon density, both
members of the doublet becoming then degenerate with the
same mass m0. We also compare the results obtained with
the parity-doublet model to those obtained with a similar
model involving only the positive-parity nucleons. Such a
model, which can be seen as a chirally symmetric extension of
Walecka-type models [8], is sometimes referred to as a chiral
nucleon-meson model [25,32]. Here we refer to it simply as to
the “singlet” model as opposed to the “doublet” model from
which it derives trivially by leaving out the negative-parity
partner. As will be seen, we learn much about the dynamics
of these models from the comparison between their singlet
and doublet versions. Note that in the singlet model, the entire
mass of the baryon is generated by the coupling of the nucleon
to the scalar field, while in the doublet model only the devia-
tion of the mass from m0 is generated by such a coupling.

A. The model

To construct the parity-doublet model, we start with two
massless Dirac spinors ψa and ψb of opposite parities, with
ψa having positive parity. Each of these spinors can be de-
composed into left and right components, e.g., ψL

a and ψR
a ,

such that γ 5ψR
a = ψR

a and γ 5ψL
a = −ψL

a . Both ψL
a and ψR

a
are isospin doublets which transform independently under the
flavor transformations of SU(2)R×SU(2)L, viz.

ψR
a → ei

αR ·τ
2 ψR

a , ψL
a → ei αL ·τ

2 ψL
a , (1)

where τ = (τ1, τ2, τ3) denotes the usual Pauli matrices, and
α = (α1, α2, α3) are the (real) parameters of the transforma-
tion. The isospin transformations correspond to transforma-
tions where αR = αL , while in a chiral transformation, the left
and right components transform in opposite ways, that is,

ψR
a → ei α·τ

2 ψR
a , ψL

a → e−i α·τ
2 ψL

a , (2)

which we may write more compactly as

ψa → ei α·τ
2 γ 5

ψa. (3)

The same properties hold for ψb, with the essential new fea-
ture that the chiral transformations of ψa and ψb are correlated
in a special fashion. In the so-called “mirror assignment,” the
left and right components of ψb transform, respectively, in the
same ways as the right and left components of ψa. That is, if in
a chiral transformation ψa transforms as indicated in Eq. (3),
then ψb transforms as

ψb → e−i α·τ
2 γ 5

ψb. (4)

This construct allows us to include in the Lagrangian a mass
term of the following form [2]:

−m0(ψ̄aγ
5ψb − ψ̄bγ

5ψa), (5)

while preserving its chiral symmetry. It is indeed easily ver-
ified, using the specific rules for the chiral transformation of
the parity partners discussed above, that this expression (5) is
invariant under a chiral transformation.

We write the Lagrangian of the model as the sum of
two contributions, LF and LB which denote respectively the
fermionic and bosonic parts of the total Lagrangian. The
fermion Lagrangian is of the form

LF = (ψ̄a ψ̄b)

(
γ μ(i∂μ − gvωμ) − ya(σ + iγ 5 �π · τ) −m0γ

5

m0γ
5 γ μ(i∂μ − gvωμ) − yb(σ − iγ 5 �π · τ)

)(
ψa

ψb

)
. (6)

Aside from the kinetic term and the mass term just discussed,
this Lagrangian exhibits the coupling of the fermions to the
mesonic fields σ , �π , and ωμ. In this paper, these mesonic fields
will be treated in the classical approximation (i.e., as classical
background fields for the fermions), and their Lagrangian
will be specified below. Let us just note at this point that in
the states to be considered, which are assumed to be both
rotationally and parity invariant, only the sigma field σ and
the zeroth component of the vector field, denoted ω, acquire
a classical value. From now on we therefore set �π = 0. The
choice of a unique coupling strength gv of the vector meson to
both ψa and ψb is convenient and in line with previous works
on the subject (see, e.g., Ref. [33]). The Yukawa couplings ya

and yb between the baryons and the chiral fields are distinct
and their values will be fixed by physical constraints.

The physical fermion states are obtained as linear combi-
nations of states with the same parity, e.g., ψa and γ 5ψb. The
coefficients of these linear superpositions are determined by
diagonalizing the mass matrix with the help of the following

orthogonal transformation:(
ψ+
ψ−

)
=
(

cos θ γ 5 sin θ

−γ 5 sin θ cos θ

)(
ψa

ψb

)
. (7)

A simple calculation yields

2θ = arctan

[
2m0

(ya + yb)σ

]
, (8)

and the masses of ψ+ and ψ−, respectively M+ and M−, are
given by

M± = 1
2

[± σ (ya − yb) +
√

σ 2(ya + yb)2 + 4m2
0

]
. (9)

The fields ψ+ and ψ− are the physical states that we asso-
ciate respectively to the nucleon N (939) and its parity partner
N∗(1535), at this level of approximation. Note that M+ < M−
implies that ya < yb, irrespective of the value of m0, that is ψb

is more strongly coupled to the chiral field than ψa.

045201-3



JÜRGEN ESER AND JEAN-PAUL BLAIZOT PHYSICAL REVIEW C 109, 045201 (2024)

FIG. 1. Fermion mass M± and singlet mass yσ as a function
of the σ field. The mass M+ features a minimum at σmin (cf. also
Refs. [34,35]).

In this physical basis the two fields ψ+ and ψ− decou-
ple (formally, as both baryons remain coupled to the same
mesonic fields). The fermionic Lagrangian can then be written
as LF = L+

F + L−
F , with

L±
F = ψ̄±(iγ μ∂μ − gvγ

0ω − M±)ψ±, (10)

whose spectrum is given by

(E±
p − gvω)2 = p2 + M2

±. (11)

The sigma field modifies the masses M± while the vector field
produces a constant (independent of the three-momentum
p) shift of the single-particle energies (opposite for parti-
cles and antiparticles). To make things clearer, we set ε±

p =
(p2 + M2

±)1/2. The energies E±
p of the particles, and Ē±

p of the
antiparticles, are then given respectively by

E±
p = ε±

p + gvω, Ē±
p = ε±

p − gvω. (12)

We readily recover the singlet model, such as for instance
the one used in Ref. [23], by dropping the parity-odd fermion
ψb in Eq. (6) and setting m0 = 0. The rotation in Eq. (7)
becomes obsolete and we may identify ψ+ ≡ ψa. The nucleon
mass then reduces to M+ = yaσ ≡ yσ = M. Hence, in con-
trast with the parity-doublet model, the nucleon mass in the
singlet model is entirely generated by the condensation of the
σ field, and it vanishes when chiral symmetry is restored.

The dependence of the baryon masses in both the singlet
and the doublet models is shown in Fig. 1. The parameters
used for this plot are those determined in the next section (see
Tables I and II). For a vanishing value of σ , the masses of the
doublet members are degenerate at the value m0. The splitting
observed between M+ and M− as σ increases is a robust
feature of the parity-doublet model. It is a direct consequence
of the diagonalization of the 2×2 mass matrix in Eq. (6),
which is involved in the definition of the physical fields. Since,
when m0 < MN , both M+ and M− eventually increase with σ

at large values of σ (in order to reach their physical values
at σ = fπ ), this initial splitting implies that M+(σ ) exhibits a

TABLE I. Set of chosen parameter values (if not stated oth-
erwise) and approximate values of derived parameters for the
parity-doublet model.

Parameter Numerical value

Chiral-invariant mass m0 [MeV] 800
Isoscalar mass mσ [MeV] 340
Landau effective mass M∗ 0.93×MN

Yukawa coupling ya 6.9
Yukawa coupling yb 13.0
Yukawa coupling y+( fπ ) 4.5
Yukawa coupling y−( fπ ) 10.6
In-medium condensate σ0 [MeV] 65.9
Taylor coefficient α3 [MeV−2] 4.4×10−1

Taylor coefficient α4 [MeV−4] −7.8×10−5

Vector coupling Gv [fm2] 1.58
Compression modulus K [MeV] 242.8
Surface tension � [MeV fm−2] 1.28

shallow minimum at a value σmin given by

σ 2
min = m2

0(ya − yb)2

yayb(ya + yb)2 . (13)

With our choice of parameters, the value of σmin is σmin/ fπ ≈
0.28. The role of this minimum of M+(σ ) in the chiral transi-
tion will be discussed later. It is also worth noticing that, with
the present choice of parameters, M+ never deviates too much
from m0, in contrast with M−.

We now complete the discussion of the Lagrangian of
the model, by specifying its mesonic part LB. Since we are
treating the meson fields in the classical approximation, only
the potential terms of LB are relevant. We set

LB = −V (ϕ2) + h(σ − fπ ) + 1
2 m2

vω
2, (14)

where ϕ2 ≡ σ 2 + π2 and fπ the pion-decay constant. Follow-
ing previous works [23,25], we express the potential V (ϕ2) as
a fourth-order polynomial in ϕ2 − f 2

π ,

V (ϕ2) =
4∑

n=1

αn

2nn!

(
ϕ2 − f 2

π

)n
, (15)

TABLE II. Set of chosen parameter values for the singlet
model (if not stated otherwise) and approximate values of derived
parameters.

Parameter Numerical value

Isoscalar mass mσ [MeV] 640
Landau effective mass M∗ 0.8×MN

Yukawa coupling ya ≡ y 10.1
In-medium condensate σ0 [MeV] 69.7
Taylor coefficient α3 [MeV−2] 2.2×10−1

Taylor coefficient α4 [MeV−4] −4.3×10−5

Vector coupling Gv [fm2] 5.44
Compression modulus K [MeV] 299.2
Surface tension � [MeV fm−2] 1.43
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FIG. 2. Thermodynamic potential in vacuum (T = 0, μB = 0),
i.e., � ≡ U .

where αn will be referred to as a Taylor coefficient. As we
see in the next section, the higher-order coefficients α3 and
α4 are needed in order to be able to reproduce nuclear matter
properties. The term hσ accounts for the explicit symmetry
breaking in the direction of the σ field. It confers the pion a
finite mass. It also prevents chiral symmetry to be restored at
high temperature and density. We often refer in this work to
the so-called “chiral limit”: this is obtained by letting h → 0,
while keeping all other parameters fixed.

The mean-field approximation that is used in this paper
consists in treating the mesonic fields as classical fields, while
keeping the fermion fluctuations to order one-loop. These
fermion fluctuations are functions of the σ field and con-
tribute therefore to the mesonic effective potential. We call
U (σ, ω) = U (σ ) − 1

2 m2
vω

2 the full resulting effective poten-
tial in vacuum, noticing that ω is nonvanishing only in the
presence of matter (see below). Note that in contrast with
previous works (see, e.g., Ref. [7]) we do not include in
the meson Lagrangian self-interactions of the vector field.
The renormalization of the one-loop fermion contribution is
detailed in Appendix A [see Eq. (A4)]. The renormalization
conditions are chosen so that the first and second derivatives
with respect to σ 2 of the fermionic one-loop contribution
vanish at σ = fπ . It follows that the corresponding derivatives
of U (σ ) coincide with those deduced from LB in Eq. (14),
i.e., they are given by α1 and α2. Note, however, that the
renormalization conditions entail a modification of the poten-
tial in the vicinity of σ = 0 which receives in fact a large
contribution from the fermion loop. There are indeed large
cancellations between the fermion loop and the potential
V (ϕ), these cancellations being more important in the parity-
doublet model than in the singlet model (see the discussion in
Appendix A). Note finally that α4 being negative, the potential
is not bounded from below [17]. However, this occurs at
values of σ that are larger than the values that are relevant
to the physics that we want to study.1

1In Ref. [17], a fifth-order term is added to make the potential
bounded from below, but we do not find it necessary to do so here.

The potentials used in our calculations are displayed in
Fig. 2. One sees that the two potentials corresponding respec-
tively to the singlet and doublet models overlap in the region
σ � fπ , as they should in order to fit the same nuclear matter
properties. The large difference between the two potentials
can be traced back in part to the large difference in the values
of mσ in the two models (640 MeV for the singlet model, and
340 MeV for the doublet model). This entails in particular
large differences in the vicinity of σ = 0 with a strong impact
on the chiral transition, as we see in Sec. V.

B. Thermodynamics

In studying the thermodynamics of the parity-doublet
model, we limit ourselves in this paper to uniform systems that
are isospin symmetric (all isospin members of the doublets are
equally occupied). We want, however, to explore the proper-
ties of equilibrium states as a function of the baryon density.
To do so, we introduce a chemical potential μB coupled to the
baryon density nB:

nB = 〈ψ̄+γ 0ψ+ + ψ̄−γ 0ψ−〉. (16)

Note that the chemical potential enters the Lagrangian density
in the same way as the component ω of the vector potential,
whose role as we have seen is to shift the single-particle
energies by a constant amount. It is then convenient at some
places to absorb this shift into a modified chemical potential
μ̃B,

μ̃B = μB − gvω. (17)

With this convention, the combination E±
p − μB that en-

ters, for instance, the expression of the statistical factors
can be written as ε±

p − μ̃B. Similarly, for the antiparticles,
whose chemical potential is opposite to that of the particles,
Ē±

p + μB 
→ ε±
p + μ̃B.

The grand canonical potential density � contains, in addi-
tion to the vacuum contribution U discussed in the previous
section, a matter contribution. The latter is the contribution of
independent fermion quasiparticles whose energies depend on
the mesonic fields. We have

� = U − 4T
∑

i=±1,
r=±1

∫
d3 p

(2π )3 ln
[
1 + e−β(εi

p−rμ̃B)], (18)

where the index i runs over the two parity states and r refers to
particles and antiparticles. The overall factor of four accounts
for the sum over spin and isospin. In the above equation, the
term proportional to T has a finite limit as T → 0, equal
to Ẽqp − μBnB, where Ẽqp denotes the quasiparticle contri-
bution to the energy density, the total energy density being
E = U + Ẽqp.

The grand canonical potential density � is a function of the
chemical potential μB and the temperature T . In addition, it
depends on the values of the fields σ and ω. These constant
fields σ and ω are to be considered as internal variables that
need to be determined, for given T and μB by the requirement
that � be stationary with respect to their variations. This leads
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to the equations

∂�

∂ω

∣∣∣∣
μB,T ;σ

= 0,
∂�

∂σ

∣∣∣∣
μB,T ;ω

= 0. (19)

The first Eq. (19) is essentially the equation of motion for the
field ω in the classical approximation where all derivatives of
the field vanish:

gvω = GvnB, Gv ≡ g2
v

m2
v

. (20)

It relates the ω field to its source, the baryon density nB. The
elimination of the ω field in favor of the baryon density allows
us to express the shift in the single-particle energies in Eq. (12)
as ±GvnB. It also yields a repulsive interaction between the
baryons, i.e., a contribution (Gv/2)n2

B to the energy density
[see Eq. (39) below].

The baryon density, nB = −∂�/∂μB|σ,ω can be decom-
posed as a sum of densities nB = n+

B + n−
B of positive-parity

(n+
B) and negative-parity (n−

B) baryons:

n±
B = 4

∑
r=±1

r
∫

d3 p

(2π )3 nF(ε±
p − rμ̃B ), (21)

where nF is the Fermi-Dirac distribution

nF(εp) = (eβεp + 1)−1. (22)

Note that only the total baryon density nB is controlled
by the chemical potential μB. However, in the present ap-
proximation, the baryon density naturally splits into separate
contributions coming from each member of the parity doublet,
with the relative sizes of each contribution being determined
by the different energies of the positive-parity (ε+

p ) versus
negative-parity (ε−

p ) baryons.
The second Eq. (19) is akin to a gap equation. It can be

written as

∂U

∂σ

∣∣∣∣
ω

= −y+n+
s − y−n−

s , (23)

where the scalar densities are given by

n±
s = ∂�

∂M±

∣∣∣∣
μB,T ;ω

= 4
∑
r=±1

∫
d3 p

(2π )3

M±
ε±

p
nF(ε±

p − rμ̃B ).

(24)

In writing Eq. (23) we have set

dM±(σ )

dσ
≡ y±(σ ), (25)

with

y± = 1

2

⎡
⎢⎣±(ya − yb) + σ (ya + yb)2√

σ 2(ya + yb)2 + 4m2
0

⎤
⎥⎦. (26)

Note the relation

y+M+ + y−M− = (
y2

a + y2
b

)
σ, (27)

which will be used later.
The scalar densities play an essential role in the restoration

of chiral symmetry, in balancing, within the gap equation, the

TABLE III. Input parameters for the initialization of the model
[23,31,36].

Parameter Numerical value

Pion decay constant fπ [MeV] 93
Pion mass mπ [MeV] 138
Nucleon mass in vacuum MN [MeV] 939
Mass of the chiral partner MN∗ [MeV] 1510
Nuclear saturation density n0 [fm−3] 0.16
Binding energy Ebind [MeV] −16

source of spontaneous symmetry breaking that is included in
the effective potential of the scalar field [U ′′(σ = 0) < 0].
The effect of the presence of matter on the σ field can be
understood qualitatively from the gap Eq. (23): the potential
in vacuum has a minimum at σ = fπ . The right-hand side of
Eq. (23) is generically negative, so that the solution of this
equation is to be found in the region where dU/dσ < 0, that
is for values of sigma smaller than fπ . In other words the
presence of matter generically tends to decrease the σ field.

Finally, let us recall that the value of � calculated with the
fields ω and σ that solve Eqs. (19) is equal to −P(μB, T ),
where P is the thermodynamic pressure.

III. DETERMINATION OF PARAMETERS

In this section we determine the parameters of the parity-
doublet model, as well as those of the singlet model, by
relating them to some well established properties of the vac-
uum and of symmetric nuclear matter in its ground state or
in its liquid-gas phase transition. The values of the physical
quantities that we aim to reproduce are indicated in Tables III
and IV. The doublet model contains the following nine param-
eters: the four Taylor coefficients α1, α2, α3, α4 of the potential
V (ϕ), Eq. (15), the parameter h of the symmetry-breaking
term, the parameter m0 in Eq. (5), the vector coupling Gv

in Eq. (20), and the Yukawa coupling constants ya and yb.

TABLE IV. Experimental values for the critical endpoint of the
nuclear liquid-gas transition [53], and the values obtained within
the doublet and singlet models (including also the respective critical
baryon chemical potential).

Observable Numerical value

Temperature Tc [MeV] 17.9 ± 0.4
Pressure Pc [MeV fm−3] 0.31 ± 0.07
Baryon density nc [fm−3] 0.06 ± 0.01
Parity-doublet model:
Tc [MeV] 18.0
Pc [MeV fm−3] 0.32
nc [fm−3] 0.06
μc [MeV] 905
Singlet model:
Tc [MeV] 17.9
Pc [MeV fm−3] 0.34
nc [fm−3] 0.06
μc [MeV] 907
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The singlet model contains only seven parameters (obtained
by eliminating m0 and yb from the list of the doublet model
parameters).

A. Vacuum state

Let us first consider the vacuum state. In this case, � =
U (ϕ, ω) where the internal variables ϕ and ω need to be
adjusted so as to satisfy Eqs. (19). The vector field ω is related
to the baryon density via Eq. (20) and vanishes in the vacuum.
Regarding ϕ, we recall that fπ denotes the minimum of the
potential in the presence of the explicit symmetry-breaking
term −h(σ − fπ ). Since the fermion loop contribution is cho-
sen so as to give vanishing contributions to the first and second
derivatives of U with respect to σ 2, one may study the vicinity
of the physical vacuum by keeping only the first two terms in
the potential V (ϕ), namely,

V (ϕ) � α1

2

(
ϕ2 − f 2

π

)+ α2

8

(
ϕ2 − f 2

π

)2
. (28)

The extrema of U (σ ) are then given by the solution of the
following gap equation:

dU

dσ
= α1σ + α2

2
σ
(
σ 2 − f 2

π

)− h = 0, (29)

where h is to be chosen so that the solution is σ = fπ . Setting
σ = fπ in the equation above, one finds α1 = h/ fπ . A further
differentiation of V (ϕ) yields the meson masses

m2
σ = α1 + α2 f 2

π , m2
π = α1, (30)

from which we get α2 = (m2
σ − m2

π )/ f 2
π . It follows in par-

ticular that h = m2
π fπ . For the physical pion mass mπ =

138 MeV, we thus have

h = m2
π fπ � 1.77×106 MeV3, (31)

with the pion-decay constant fπ = 93 MeV. Note that here
and throughout this paper mπ and fπ refer to the physical pion
mass and decay constant in vacuum. Note also that while α1

and h are directly fixed by these physical quantities, this is not
the case of α2, which depends on m2

σ , for which exists a range
of acceptable values. The Yukawa coupling constants ya and
yb are functions of σ and m0. However, the dependence on σ

can be eliminated by using the relations M+( fπ ) = MN and
M−( fπ ) = MN∗ . We obtain then

ya = 1

2 fπ

[
MN − MN∗ +

√
(MN + MN∗ )2 − 4m2

0

]
,

yb = 1

2 fπ

[
MN∗ − MN +

√
(MN + MN∗ )2 − 4m2

0

]
, (32)

so that ya and yb depend effectively only on m0. In the singlet
model, the Yukawa coupling is simply given by y = MN/ fπ .

At this point, we have determined two parameters α1 and
h and traded α2 in favor of m2

σ . We have also related ya and
yb to m0. We are therefore left with six parameters to be
determined (four for the singlet model), for which we now
turn to symmetric nuclear matter in its ground state.

B. Symmetric nuclear matter

Nuclear matter in its ground state at T = 0 exists as a
self-bound system, with vanishing pressure, at a given density
n0, commonly referred to as the “saturation” density. At this
density or below, only nucleons are present (the density of
the negative-parity partners is completely negligible). So the
singlet and doublet models differ solely by the dependence of
the nucleon mass on σ . In this section we alleviate the notation
and denote the baryon density simply as n instead of nB, and
similarly for the chemical potential μB 
→ μ.

1. Digression on the gap equations

The grand potential at zero temperature is given by

�(μ; σ, ω) = U (σ, ω) + Ẽqp(μ; σ, ω) − μn(μ; σ, ω), (33)

where

U (σ, ω) = U (σ ) − 1
2 m2

vω
2. (34)

The baryon density n and the quasiparticle energy density
Ẽqp are obtained by filling all the quasiparticle levels with
energy smaller than the chemical potential, which leads to the
expressions

n = 4
∫

p
θ (μ̃ − ε+

p ), Ẽqp = 4
∫

p
θ (μ̃ − ε+

p )E+
p , (35)

with the shorthand notation∫
p
=
∫

d3 p

(2π )3 , (36)

which we use occasionally throughout the rest of the paper.
To verify that n = −∂�/∂μ|σ,ω, we note that the constraint
Ep � μ translates into a constraint on the Fermi momentum
pF such that EpF = (p2

F + M2)1/2 + gvω = μ. This relates
the Fermi momentum, and hence the density n = 2p3

F /(3π2),
to the chemical potential.

In fact, at T = 0, the quasiparticle energy density Ẽqp is
more naturally expressed in terms of the density than in terms
of the chemical potential. We have

Ẽqp(n; σ, ω) = 4
∫

|p|<pF

d3 p

(2π )3

[√
p2 + M(σ )2 + gvω

]
. (37)

The last term in this equation gives a contribution equal to
gvωn. The chemical potential is now obtained as

μ = ∂ Ẽqp

∂n

∣∣∣∣∣
σ,ω

=
√

p2
F + M2(σ ) + gvω, (38)

which coincides with the expression given just above.
In addition to this relation, we have the two Eq. (19) that

express the stationarity of the grand potential, or equivalently
the energy density E = Ẽqp + U (σ, ω), with respect to the
fields ω and σ . The first equation relates ω to the baryon den-
sity, ω = (gv/m2

v )n, and, when combined to the contribution
gvωn contained in Ẽqp, leads to the following contribution to
the total energy density:

− 1
2 m2

vω
2 + gvωn = 1

2 Gvn2. (39)
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FIG. 3. Graphical solution of the gap equation. The green curve
represents dU/dσ as a function of σ . This curve is independent of n.
The black curves give the contribution from the scalar density −yns

as a function of σ for given density n (solid for n = n0, dotted for n =
n0/2, dashed for n = 3n0, dash-dotted for n = 6n0). Note that, in the
range of densities and values of σ relevant to the present discussion,
ns � n. The intersection point between the green curve and a black
one gives the solution σn of the gap equation for the corresponding
values of n.

In the following we denote by Eqp the contribution of the
quasiparticle energies without the repulsive vector contribu-
tion. That is, we set

E (n; σ ) = Eqp(n; σ ) + 1
2 Gvn2 + U (σ ), (40)

where

Eqp(n; σ ) = 4
∫

|p|<pF

d3 p

(2π )3

√
p2 + M(σ )2. (41)

The gap equation reads

dU (σ )

dσ
+ yns = 0, (42)

where ns = ∂Eqp/∂M|n;σ is a function of σ and pF [an an-
alytic expression is provided in Eq. (103) below]. In fact,
for a density smaller than normal nuclear matter density, the
dependence on σ is weak and, to a very good approximation,
ns � n.

An illustration of the graphical solution of the gap equa-
tion for the singlet model (in the chiral limit) is provided in
Fig. 3. In the region of interest, as we just said, ns � n and the
solution of the gap equation provides a smooth relation be-
tween n and σ . Calling σn the solution of the gap equation for
a given density n, one can calculate the total energy density
E (n; σn) = U (σn) + Eqp(n; σn) + 1

2 Gvn2. This is the strategy
that we use to calculate the nuclear matter energy per particle
as a function of density.

2. The saturation mechanism

At this point it may be useful to recall the basic mechanism
that leads to the so-called saturation of nuclear matter, that
is how the equilibrium zero-pressure state is achieved in the
present models. In nonrelativistic calculations saturation is
understood as the equilibrium state obtained when attractive

forces balance the kinetic energy and the repulsive forces. In
the present relativistic models, the repulsion is due to vector-
meson exchange. The baryon density constitutes a source for
the vector-meson field, according to Eq. (20) which may be
used to eliminate the vector field in favor of the baryon den-
sity. This yields, as we have seen, a repulsive contribution to
the energy density [see Eq. (39)], characteristic of a two-body
short-range repulsive interaction.

The mechanism of attraction is somewhat different and it
involves the variation of the nucleon mass with the strength
of the sigma field. Let us consider a system with low baryon
density. Then the sigma field is close to fπ , and the nucleon
mass does not differ much from its value in the vacuum. The
nonrelativistic approximation for the kinetic energy is valid,
and yields the following expression for the energy density

E (n; σn) = n

[
M(σn) + 3

5

p2
F

2M(σn)

]
+ Gv

2
n2 + U (σn). (43)

To obtain this equation, we have used the equation of motion
(20) relating the field ω to the baryon density. As for the field
σn, this is the solution of the gap Eq. (23). In the vicinity
of σ � fπ , U (σ ) � (m2

σ /2)σ̃ 2, where σ̃ = σ − fπ . The gap
equation reads then

m2
σ σ̃n � −yn, (44)

where we have used ns � n. At this point, we consider for
simplicity the singlet model where the mass is given by
M = yσ . Then

M(σn) = MN − Gsn, (45)

where we have set Gs ≡ y2/m2
σ and we have identified M( fπ )

to the nucleon mass MN . The energy per particle then becomes

E (n; σn)

n
� MN + 3

10

p2
F

MN
+ n

2
(Gv − Gs). (46)

This expression, valid only for small density, allows us to
understand the mechanism of attraction. In fact, at this level of
approximation, the attraction between nucleons can be seen as
the result of a simple scalar exchange between the nucleons,
leading to a contribution to the energy density analogous to
that of the vector exchange, Eq. (39), but with an opposite
sign. The behavior of the energy per particle is plotted in
Fig. 4. There is a small increase (hardly visible on the figure)
at very small density which comes from the kinetic-energy
contribution ≈n2/3. Then the linear behavior of Eq. (46) sets
in. Since Gv < Gs (for the singlet model, Gs � 9.7 fm2, while
Gv � 5.4 fm2) the resulting slope is negative and eventually
leads to a negative energy per particle.

The linear behavior of the scalar contribution is eventually
suppressed by higher-order terms, and a minimum of the en-
ergy per particle is reached. In the original Walecka model [8],
the saturation comes from the taming of the attraction due to
a modification of the relation between ns and n as n increases.
However, in the present case, an additional factor, in fact the
dominant one, comes from the nonlinear meson interactions
coded in the potential V (σ ), via the Taylor coefficients α3

and α4. These high-order terms are necessary in order to
optimize nuclear matter properties. Their presence requires a
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FIG. 4. Saturation curve, E/A = E (n)/n − MN . This is obtained
by solving the gap equation with the full potential, with in the right-
hand side either −yns or −yn = −ynB. The third curve shows the
nonrelativistic approximation to the kinetic energy.

fine tuning, involving a cancellation of large contributions in
the vicinity of σ = fπ . This impacts not only the potential in
the vicinity of σ = fπ , but also in the vicinity of σ = 0. It
affects therefore the chiral transition (see also Fig. 2 and the
associated discussion). In this context it is important to keep
in mind that some of the properties of the chiral transition that
we discuss in Sec. V depend on an extrapolation on which we
have little physical control.

To emphasize the role of α3 and α4, we have plotted in
Fig. 4 the saturation curve (i.e., the binding energy per nucleon
E/A vs the density n) obtained in the singlet model. The full
result is compared with those obtained using either the nonrel-
ativistic approximation, as in Eq. (46), or the approximation
ns � n when solving the gap equation. We see that the devia-
tions are nearly negligible for density n � n0, indicating that
both approximations are quite accurate in this density range.
However, if we were to ignore the contribution of α3 and α4,
that is use for the potential the expansion U (σ ) � (m2

σ /2)σ̃ 2,
as we did above to get the small density behavior, we would
not be able to reproduce the saturation curve (as already ob-
served in previous studies, see, e.g., Ref. [24]).

The minimum of the energy per particle E/n corresponds
to a state of zero pressure. Recall indeed that the pressure is
related to the energy density E by

P = n
dE (n)

dn
− E (n) = n2 dE/n

dn
. (47)

At saturation, the chemical potential μ = dE/dn is equal to
the energy per particle, μ0 = E (n0)/n0, so that P(n0) = 0. A
plot of the pressure as a function of the nucleon density can
be seen in Fig. 8. The curve corresponding to zero temperature
indeed reveals the existence of a point of vanishing pressure,
where furthermore the compressibility,

χ = 1

n

(
dP

dn

)−1

, (48)

is positive. Note that P(n) = P(n; σn), where σn is the so-
lution of the gap equation corresponding to the density n.
This solution can be followed by continuity in the regions

where the pressure is negative or even in regions where the
compressibility is negative and the system is unstable. The
knowledge of the energy density for all values of n between
zero and n0 is useful for estimating the surface energy, as we
shall see shortly.

3. The ground state properties

We return now to the determination of the parameters.
Since the pressure vanishes in the ground state of nuclear
matter, the chemical potential μ0 = dE/dn|n0 is equal to the
energy per baryon E (n0)/n0, which differs from MN by the
binding energy per nucleon, Ebind = −16 MeV. It follows that

μ0 = MN + Ebind = 923 MeV. (49)

Inside nuclear matter, the nucleons behave as quasipar-
ticles with energies given as a function of momentum by
[see Eq. (12)]

E+
p =

√
p2 + M2+ + Gvn = ε+

p + Gvn, (50)

where M+ is the mass of the nucleon in matter, given by
Eq. (9). It is convenient here to introduce the Landau effective
mass M∗, defined as

∂Ep

∂ p

∣∣∣∣
pF

≡ pF

M∗
, (51)

where pF /M∗ is the Fermi velocity. A simple calculation
yields

M∗ = μ0 − Gvn0 =
√

p2
F + M2+(σ0, m0). (52)

The first Eq. (52) provides a direct relation between the ef-
fective mass M∗ and the vector interaction strength Gv .2 This
formula may be also interpreted in the context of Fermi liquid
theory (see, e.g., Refs. [37,38]) where it can be written in the
form

M∗ = μ0

(
1 + F1

3

)
, (53)

where the Landau parameter F1 is directly related to the vector
coupling strength Gv: F1 = −3Gvn0/μ0.

The second Eq. (52) provides a constraint on the model
parameters. It allows us in particular to determine σ0 as a
function of m0, given a value of M∗.

As shown in Eq. (30) the Taylor coefficients α1 and α2 are
related to m2

π and m2
σ . The other coefficients, α3 and α4, are

determined from the two conditions

E (n0; σ0) = μ0n0,
∂E (n0; σ )

∂σ

∣∣∣∣
σ0

= 0, (54)

where σ0 is the value of the sigma field in nuclear matter, i.e.,
σ0 = σn0 . Note that these conditions are analogous to those

2Note that the formula (52) implies that the effective mass is the
same for the positive and negative baryons. However, for negative
baryons, the effective mass exists only when there is a Fermi sea of
negative baryons, which is not the case at the normal nuclear matter
density that we consider in this section.
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which were used to fix the values of α1 and α2 from the local
properties of the potential in the vicinity of σ = fπ . The first
condition is the condition of vanishing pressure. The second
condition is the gap equation.

At this point, all parameters have been either fully deter-
mined, or related to m0, mσ , and Gv (or mσ and Gv in the
singlet model). We then explore the range of acceptable values
of these parameters by looking at other physical properties of
nuclear matter. These concern additional ground-state proper-
ties beyond the ground-state density and binding energy, and
the characteristics (pressure, density, and temperature) of the
critical point of the liquid-gas transition.

Among the ground-state properties that are commonly re-
ferred to in this context are the surface tension � and the
compression modulus K . A further quantity is the nucleon
sigma term, which will be the object of the next section.
We find it useful here to review briefly the derivations of �

and K as this provides insight into their dependence on the
parameters and the uncertainties in their determination.

The surface tension is typically computed by considering a
semi-infinite slab of nuclear matter, whose density is uniform
in the x and y direction, but varies from n0 to zero in the z
direction, i.e., the density is a function n(z). Surface properties
have been studied in relativistic models similar to the present
ones for a long time, solving field equations, or using semi-
classical approximations (see, e.g., Refs. [39–41] for some
representative calculations). Here we follow a phenomeno-
logical approach, based on semiclassical and nonrelativistic
approximations. We write the total energy per unit surface
area as the following functional of the density n(z) (see, e.g.,
Ref. [42]):

�[n] =
∫ +∞

−∞
dz

[
E (n) + C

2n

(
dn

dz

)2

− μ0n

]
. (55)

In this expression, E (n) = E (n; σn) is the energy density of
uniform nuclear matter, calculated as indicated earlier in this
section [see Eq. (40)], with σn the solution of the gap equa-
tion for the density n, and μ0 is the saturation chemical
potential, equal to E (n0)/n0. The gradient term may be seen
as a phenomenological contribution, which takes value only in
the surface region. The parameter C controls the shape of the
density profile and the particular functional form (1/n)dn/dz
finds its origin in the so-called extended Thomas Fermi ap-
proximation (see Ref. [42] and references therein). Finally,
the term μ0n, once integrated over z, is the energy the system
would have if all the nucleons were carrying the same energy
per particle as in the bulk.

The surface energy �[n] in Eq. (55) is a functional of the
density n(z). By requiring this functional to be stationary with
respect to variations of n, one gets

μ0 = dE
dn

+ C

2n2

(
dn

dz

)2

− C

n

d2n

dz2
, (56)

which is easily seen to be equivalent to the equation

C

2n

(
dn

dz

)2

+ μ0n − E (n) = const. (57)

FIG. 5. Saturation curves for both the singlet and doublet mod-
els. Only the part between n = 0 and n = n0 contributes to the
surface energy. The small difference between the blue and green
curves in the region 0 � n � n0 entails a significant difference in the
estimate of the surface tension, that correlates to the different values
of the compression modulus in the two models.

To determine the constant in the right-hand side of this equa-
tion, we note that, as z → −∞, the density goes to the normal
nuclear matter density n0, which is constant. The derivative
drops, and we are left with μ0 − E (n0)/n0 which vanishes.
Thus the constant is zero. It follows therefore that, when
calculated with the solution of the above differential equation,
the surface tension can be written in the form

� =
∫ +∞

−∞
dz 2[E (n) − μ0n]. (58)

On the other hand, from Eq. (57), we get

dn

dz
= −

√
(2n/C)[E (n) − μ0n], (59)

so that, finally,3

� =
∫ n0

0
dn

√
2C

[E (n)

n
− μ0

]
. (60)

With the particular choice that we have made for the gradient
contribution in Eq. (55), the formula above shows that the
surface energy is obtained by integrating the deviation of the
energy per particle with respect to its saturation value. The
final result is then sensitive to the details of the saturation
curve in the region 0 � n � n0 (see Fig. 5). Note that this in-
volves regions where the pressure is negative and also regions
where the system is mechanically unstable with a negative
compressibility. In the present case, the stabilizing agent is
the gradient term in Eq. (55).

To estimate the surface tension, we need not only the
saturation curve, but also the parameter C. This is estimated
as follows: It turns out that the solution of the differential

3In the recent literature (see, e.g., Refs. [24,25,32]), the surface
tension has been estimated as � = ∫ fπ

σ0
dσ

√
2�(μ0; σ ), where � is

the grand potential evaluated for the saturation chemical potential.
The connection to the calculation presented here is unclear to us.
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Eq. (57) overlaps very precisely with the function n(z) =
n0/(1 + ez/a). One may then chose C so that a, which mea-
sures the surface thickness, takes a given value. We have
chosen a = 0.5 fm, which is within the range of values ex-
tracted from nuclear densities (see, e.g., Refs. [43,44]). With
this choice, we get � = 1.43 MeV/fm2 for the singlet model,
and � = 1.28 MeV/fm2 for the doublet model. These values
are larger than the typical values extracted from the analysis
of the masses of nuclei which would favor a value � � 1.2
MeV/fm2 [43]. Note that the values of � are approximately
proportional to the compression modulus (see Tables I and
II), which appears to be a generic feature of this kind of
models. For instance in Ref. [41], it is argued that both �

and a are inversely proportional to mσ , the ratio being roughly
proportional to the compression modulus. Here, since we keep
the surface thickness constant, � itself becomes proportional
to K .

We turn now to the compression modulus K , whose cal-
culation can be done in two complementary ways. Some
elements of these calculations will be useful later when we
discuss the chiral transition in Sec. V. Let us recall that K is
defined as

K = 9n0
dμ

dn

∣∣∣∣
n0

, (61)

where the derivative is to be evaluated at the saturation density
n0. The calculation of the derivative proceeds as follows:

dμ

dn
= ∂μ

∂n

∣∣∣∣
σ

+ ∂μ

∂σ

∣∣∣∣
n

dσ

dn
, (62)

where μ is given by

μ =
√

p2
F + M2+ + Gvn. (63)

We have then

∂μ

∂σ

∣∣∣∣
n

= y+
M+
M∗

,
∂μ

∂n

∣∣∣∣
σ

= Gv + π2

2pF M∗
. (64)

To calculate dσ/dn we differentiate the gap equa-
tion dU/dσ + y+n+

s = 0 and obtain

dσ

dn
= − y+

m2
σ0

∂n+
s

∂n

∣∣∣∣
σ

, (65)

where

m2
σ0

= d2U

dσ 2
+ n+

s
d2M+
dσ 2

+ y+
∂n+

s

∂σ

∣∣∣∣
n

, (66)

all derivatives being evaluated for σ = σ0. Collecting all these
results, we obtain

dμ

dn

∣∣∣∣
n0

= Gv + π2

2pF M∗
− y2

+
m2

σ0

M+
M∗

∂n+
s

∂n

∣∣∣∣
σ0

. (67)

The second way to proceed amounts to calculate dn/dμ,
with n given by

n = 4
∫

p
θ (μ − E+

p ). (68)

Taking the derivative with respect to the chemical potential,
one gets

dn

dμ
= 4

∫
p
δ
(
μ − E+

p

)(
1 − dE+

p

dn

dn

dμ

)

= N0

(
1 − f +

0

dn

dμ

)
, (69)

where

N0 = 2pF M∗
π2

(70)

is the density of state at the Fermi surface, and F0 = N0 f +
0 is

a Fermi-liquid parameter, defined as

f +
0 ≡ dE+

p

dn
= Gv + y+

M+
M∗

dσ

dn
, (71)

where the expression (50) of E+
p has been used. At this point

we have obtained

dn

dμ
= N0

1 + F0
. (72)

By substituting the expression (65) of dσ/dn in Eq. (71), one
easily shows that this expression agrees with that given in
Eq. (67) for dμ/dn. The familiar form of the compression
modulus follows [37]:

K = 3
p2

F

μ0

1 + F0

1 + F1/3
. (73)

The value of the compression modulus of the singlet model
is larger than the value extracted from the analysis of giant
monopoles excitations of large nuclei (see, e.g., Ref. [45]4),
even when compared with the largest values suggested in
Ref. [48]. For the parity-doublet model, the value obtained
is compatible with the latter estimate. Note that neither the
values of � nor that of K have been used in adjusting the
parameters. These values result from fixing parameters such
as α3 and α4 using constraints discussed earlier in this section.

4. Final choices of parameters

Figure 6 demonstrates the capability of the parity-doublet
model to reproduce empirical data. Because of the sensitivity
of the results to the value of M∗ we display parameter bands
for three different ratios M∗/MN in the mσ − m0-plane for
which the respective values listed in Table IV are matched
(within indicated error bars). There is a clear correlation be-
tween mσ and m0, suggesting that an increase of m0 can be
compensated by a decrease in mσ . Although this correlation is
the result of a complicated balance between several effects,
involving the interplay of many parameters, the following
remark could make it more intuitive. This is based on the
dependence of the equilibrium value σ0 of the sigma field.
We note that an increase of mσ naturally leads to an increase

4The value adopted in the present paper, K = 230 ± 20 MeV, is
based on a rough update of the analysis of Ref. [45], taking into
account the most recent data [46,47].
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(c)

(b)

(a)

FIG. 6. Parameter bands for the parity-doublet model in the
mσ − m0 plane matching experimental data (within error bars) of
Table IV (and including the compression modulus drawn here as
the band K = 230 ± 20 MeV). Shown is the result for the effective
mass (a) M∗/MN = 0.91, (b) 0.93, and (c) 0.95. The gray-shaded area
indicates parameter sets leading to Tc > 30 MeV for the liquid-gas
transition.

of the value of σ0 (i.e., it gives a value of σ0 closer to fπ ).
Similarly, by noticing that M+(σ0; m0) is fixed by the value
of M∗ once the density is fixed, we see that by decreasing
m0, one increases the difference M+(σ0; m0) − m0, which can
be compensated again by increasing the value of σ0 [given
that the Yukawa couplings are fixed by Eq. (32)]. Note that
the correlations discussed here are similar to those observed

in previous studies of the parity-doublet model (see, e.g.,
Refs. [7,17,33,49,50]). In particular, the large sensitivity as
well as the irregular shape of the parameter band of the critical
density nc with respect to the Landau mass is remarkable and
demonstrates that many effects play a role here.

Choices of parameters corresponding to maximally over-
lapping zones are of course preferred, since in these zones
more properties of nuclear matter are reproduced. In fact, for
M∗/MN = 0.93, one finds a zone in the regime of 300 MeV �
mσ � 450 MeV and 730 MeV � m0 � 820 MeV in which all
data ranges of Table IV are matched (even for the compres-
sion modulus K). It is in this region that we have fixed our
parameters. These are listed in Table I. This is of course not
a unique choice, and there exist other acceptable regions of
the parameter space, involving in particular smaller values of
m0. We have however several reasons to prefer a choice of a
relatively small σ mass in combination with a large value of
m0. We have shown in a previous paper that such a combina-
tion successfully reproduces pion-pion scattering lengths [9].
Studies of nuclear properties within the parity-doublet model
also favor a large m0 (see, e.g., Ref. [50]). Furthermore, a look
at Fig. 40 in Appendix A reveals that a small value of m0

implies large cancellations of quantities of order 2 to 3 GeV
for the range of values of σ relevant for nuclear matter, which
looks unnatural. We note in addition that a large value of m0

seems to be favored by recent studies of the parity-doublet
model (see, e.g., Ref. [51]), and by lattice calculations about
the composition of the proton mass assigning only a minor
fraction to quark scalar condensates [52].

When further decreasing or increasing the Landau effec-
tive mass, we observe that these complete overlap zones
either shrink and move to even larger m0 and smaller mσ

[see Fig. 6(c)], or move away from the preferred region of
large m0 and small mσ [see Fig. 6(a)], both of which we do
not favor for the reasons mentioned above.5 The values that
we eventually obtain for the critical endpoint of the liquid-gas
transition (with the chosen parameter set) are also listed in
Table IV.

A similar analysis can be made for the singlet model.
The results are illustrated in Fig. 7, which reveals a clear
correlation between the effective mass (or the vector cou-
pling) and the sigma mass. This is to be expected. Indeed,
an increase in the effective mass implies a decrease of the
effective vector coupling Gv , hence a reduction of the repul-
sion between the nucleons. This can be compensated by a
reduction of the attraction, controlled by Gs = y2/m2

σ , hence
by an increase of m2

σ since the Yukawa coupling y is fixed to
the value MN/ fπ . The overlap region would suggest a value
for M∗ � 0.85 (respecting again K for the moment), but at the
cost of mσ � 700 MeV. We therefore choose M∗/MN = 0.8
corresponding to a not too large σ mass, similar to those
values quoted in Ref. [23] and accepting that this yields a
compression modulus which is too high (as reported earlier).
Comparing the corresponding parameters given in Table II

5Nevertheless, we could equally have chosen e.g., M∗/MN = 0.94
(not shown) with slightly different values for m0 and mσ , but we do
not expect drastic changes in the results.
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FIG. 7. Parameter bands for the singlet model in the mσ −
M∗/MN -plane matching experimental data (within error bars) of
Table IV (and including the compression modulus K = 230 ±
20 MeV). The region called “initialization fail” consists of param-
eters for which the initialization conditions were not met, e.g., the
solution of the gap Eq. (23) corresponds to a local maximum, not a
minimum.

with those of the doublet model in Table I, one observes that
one gets a larger σ0, smaller α3 and α4 (in absolute values),
and larger Gv . The larger value of Gv reflects the strongest
attraction mechanism of the singlet model so that saturation
requires more repulsion. The larger value of σ0 is correlated to
the larger value of the σ mass in the singlet model, as already
mentioned.

5. The liquid-gas phase transition

The liquid-gas transition is an important property of nu-
clear matter. The transition occurs at densities lower than the
saturation density and at a temperature of the order of the
binding energy or lower. The transition occurs as the result of
the competition between entropy effects and binding-energy
effects, and the properties of this transition are directly related
to the ground-state properties of nuclear matter (binding en-
ergy, compressibility, effective mass). The various isothermal
curves in Fig. 8 indicate how this transition occurs. These

FIG. 8. Equation of state (pressure P as a function of baryon
density nB) for various temperatures.

curves are obtained by following continuously the solution
of the gap equation as the density increases. As already
mentioned, such solutions are found to exist even in regions
of negative pressure, or regions between the spinodal points
(where the derivative of the pressure vanishes) in which the
compressibility is negative and the system is a priori unstable.
When the temperature increases, nuclear matter continues to
exist as a (metastable) self-bound system of zero pressure. For
a slightly positive pressure, it can coexist with a low-density
vapor. As the temperature continues to increase the self-bound
system ceases to exist, the pressure becoming positive for all
values of the density, while coexistence between two phases
is still possible. This phase coexistence remains possible until
the critical temperature is reached, above which the pressure
becomes a monotonically increasing function of n.

The values of the thermodynamic variables at the critical
point can be extracted from nucleus-nucleus collisions [53].
They are listed in the Table IV, together with the correspond-
ing values obtained in the two models for the chosen values
of the parameters. One sees that both models, with the present
choices of parameters, account rather well for these character-
istic properties of the liquid-gas transition.

IV. THE NUCLEON SIGMA TERM

A. Definitions

The pion-nucleon sigma term σN is defined as the matrix
element6

σN = m̄[〈N | q̄q |N〉 − 〈q̄q〉0]. (74)

In this equation, q̄q = ūu + d̄d , m̄ = (mu + md )/2, and we
ignore isospin symmetry breaking (i.e., mu = md ). Further-
more, q̄q stands for the spatial integral

∫
x q̄(x)q(x). The sigma

term provides a measure of the scalar density within the
nucleon and of the direct contribution of light quarks to the nu-
cleon mass (for reviews on the sigma term, see Refs. [54,55]).

The Feynman-Hellmann theorem allows us to relate the
expectation value of q̄q to that of the symmetry-breaking part
of the QCD Hamiltonian [56]

m̄
d

dm̄
〈H〉 = m̄

〈
d

dm̄
HSB

〉
= m̄〈q̄q〉, (75)

where the expectation value of the Hamiltonian H is taken in
a ground state or with the statistical density operator at finite
temperature and density (see later where the same strategy
is formulated in terms of the gap equation). The important
point is that only the explicit symmetry-breaking term in the
Hamiltonian, denoted HSB, contributes to the derivative with
respect to m̄. By using Eq. (75) one can write the following
expression for the sigma term:

σN = m̄
dMN

dm̄
, (76)

where MN = 〈N |H |N〉 − 〈0|H |0〉 is the nucleon mass.

6The nucleon states are normalized so that 〈p′, s′| p, s〉 =
(2π )3δ(3)(p′ − p)δs′s, with p the three-momentum and s the spin
projection.
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FIG. 9. The nucleon mass M+, as a function of ĥ, in both the
singlet and doublet models.

Experimentally, the sigma term is deduced from the
measurement of the πN scattering amplitudes, including con-
straints from pionic atoms. Most recent determinations yield
a value σN � 60 MeV [57,58], somewhat larger than the tra-
ditionally accepted value σ � 45 MeV [59], and definitely
larger than the value obtained in lattice calculations, σ �
40 MeV (see, e.g., Ref. [60] and references therein). For a
discussion of this discrepancy between experimental determi-
nations and lattice calculations see Refs. [61,62].

In the context of dense-matter studies, the nucleon sigma
term is interesting in that it provides information on the
“resistance” to chiral symmetry restoration by measuring
the change in hadronic properties induced by the small ex-
plicit symmetry-breaking term proportional to the quark mass.
More broadly, the sigma term informs us on how the presence
of (dilute) matter affects the average scalar field which the
nucleon mass is sensitive to. We later consider larger densities
leading eventually to chiral symmetry restoration. In this high-
density regime, the sigma term looses its interest since, as we
see, density-dependent corrections are large and may not lead
to a convergent expansion.

In this section, we provide estimates of σN within the
singlet and doublet models. It turns out that these estimates
depend sensitively on precisely how one does the calculation.
This leads to uncertainties, which are particularly important
in the parity-doublet model, and which have to do with the
extrapolation from the physical point to the chiral limit. Thus,
by expanding the nucleon mass about its value in the chiral
limit, we may define

σN = m̄
dMN

dm̄

∣∣∣∣
m̄→0

� MN (m̄) − MN (m̄ = 0), (77)

where the limit m̄ → 0 does not concern the first factor m̄
(for which we should use the “physical” value of m̄), but
only the point where the derivative is evaluated. If the nucleon
mass MN depended linearly on m̄, all the way from the chiral
limit to the physical point, it would not matter whether the
derivative is evaluated at the physical point or at the chiral
limit. However, in the parity-doublet model, this linearity is
only approximately verified (see Fig. 9). In the singlet model
an almost perfect linearity is observed, and as a result the

TABLE V. Summary of estimates of the nucleon sigma term.

Estimate Parity-doublet model Singlet model

(0) [MeV] 55.8 42.1
(1) [MeV] 50.2 40.6
(2) [MeV] 43.1 38.8
(3) [MeV] 68.6 43.7

various estimates of σN end up being closer to each other
(see Table V below).

B. Remarks on the chiral limit

At this point, it is useful to recall that chiral symmetry
leads to a number of model-independent relations in the vicin-
ity of the chiral limit. To see how these are implemented
in the present model, we look at the variation of various
parameters as a function of the strength ĥ of the explicit
symmetry-breaking term. To avoid confusion, we denote by
ĥ this parameter, reserving h for its physical value h = m2

π fπ
[see Eq. (31)]. We base our analysis on Eq. (29), which is
strictly valid only in the vicinity of the physical point. It is of
course trivial to proceed to a numerical evaluation involving
the complete potential V (ϕ), which we do later. The present
analysis provides useful analytical understanding of the re-
sults of such numerical calculations.

We start by rewriting the vacuum gap Eq. (29) in the
following way:

1

σ

dV (σ )

dσ
= α1 + α2

2

(
σ 2 − f 2

π

) = ĥ

σ
. (78)

The solution for ĥ = h is σ = fπ . In the chiral limit, ĥ = 0,
the solution σχ is given by

σ 2
χ − f 2

π = −2
α1

α2
= −2

m2
π f 2

π

m2
σ − m2

π

, (79)

where we have kept the parameters α1 and α2 at their “physical
values” as ĥ → 0. The last expression in Eq. (79) reflects the
competition between explicit symmetry breaking (the numer-
ator) and spontaneous symmetry breaking (the denominator).
The decrease of the effective value of fπ as one moves to the
chiral limit is generic (and in qualitative agreement with chiral
perturbation theory): with our choice of sign, h is positive,
and so is the value σχ at the minimum of the potential, with
σχ < fπ . Anticipating the next section, we note here that the
results of the numerical evaluations indicate a larger shift
in the doublet model than in the singlet model. Given that
the value of m2

σ in the doublet model is smaller than in the
singlet model (see Tables I and II), this result is in quali-
tative agreement with formula (79). The prediction of chiral
perturbation theory is � fπ = σχ − fπ ≈ −6 MeV, while one
finds � fπ ≈ −4 MeV and � fπ ≈ −13 MeV in the singlet
and doublet models, respectively.7

7The comparison with chiral perturbation theory is of course only
indicative, since in the present approximation, the chiral logarithms
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FIG. 10. The squared pion mass m̂2
π as a function of ĥ, illustrat-

ing its nonlinear behavior in the doublet model.

Let us now consider an arbitrarily small value of ĥ and ex-
pand the solution σĥ around its chiral limit σχ . By combining
Eq. (78) with the corresponding equation for ĥ = 0, one gets

α2

2

(
σ 2

ĥ
− σ 2

χ

) = ĥ

σĥ

. (80)

Assuming the difference between σĥ and σχ to be small, we
get

σĥ − σχ � ĥ

α2σ 2
χ

, (81)

which is indeed linear in ĥ at small ĥ, with a quadratic correc-
tion. The value m̂π of the pion mass for an arbitrary value of
ĥ is given by

m̂2
π = α1 + α2

2

(
σ 2

ĥ
− f 2

π

) = ĥ

σĥ

, (82)

where the first equality follows from taking the second deriva-
tive of the potential V (ϕ) in Eq. (28), and the second one
from Eq. (78). In the chiral limit m̂π vanishes as it should. For
the physical value ĥ = h we get instead m̂2

π = α1 = m2
π . More

generally m̂2
π = ĥ/σĥ, where σĥ is given by the solution of the

Eq. (80) above. Thus the leading-order expression of m̂2
π is

linear in ĥ, with a correction quadratic in ĥ. A plot of m̂2
π as a

function of ĥ is given in Fig. 10. A small nonlinearity is visible
for the parity-doublet model (the relation for the singlet model
is nearly perfectly linear). As we see, this nonlinearity impacts
the value of σN . Similarly, the sigma mass is given by

m̂2
σ = α1 + α2σ

2 + α2

2

(
σ 2 − f 2

π

)
= m2

σ − 3m2
π + 3m̂2

π . (83)

Thus the sigma mass squared is reduced to the value m2
σ −

3m2
π in the chiral limit.

are not included in our model estimates. A thorough discussion of
the relation between the nucleon and the pion masses can be found
in Ref. [57].

C. Various estimates of σN

We now return to the numerical evaluation of the sigma
term. All estimates are done with the parameters determined
in the previous section. No attempt is made to use the (un-
certain) experimental values of σN to improve the choice of
parameters. We assume that the effect of the quark masses
is captured by the symmetry-breaking term proportional to ĥ,
i.e., that the small variations in m̄ are proportionally to small
variations in ĥ. It is then straightforward to obtain an estimate
of σN , since from the assumption just mentioned, we can write

σ
(1)
N = m̄

dMN

dm̄

∣∣∣∣
m̄→0

= h
dMN

dĥ

∣∣∣∣
ĥ→0

, (84)

where the superscript (1) is meant to specify the particular es-
timate of σN considered at this point. It follows from Eq. (84)
that

σ
(1)
N

h
= y+

(
σχ

) dσĥ

dĥ

∣∣∣∣
ĥ→0

, (85)

where σĥ denotes the solution of Eq. (80), while σχ is the
corresponding solution in the chiral limit. On the left-hand
side of Eq. (84) is h = m2

π fπ . The derivative dσĥ/dĥ|ĥ→0 is
the chiral susceptibility in the chiral limit,

dσĥ

dĥ

∣∣∣∣
ĥ→0

= 1

m̂2
σ (σχ )

. (86)

Note that, in the parity-doublet model, it is much enhanced as
compared with its value 1/m2

σ in the physical point [the simple
formula above, Eq. (83), yields m̂2

σ (σχ ) = m2
σ − 3m2

π ]. We
then end up with the following formula for our first estimate
of σN :

σ
(1)
N = m2

π fπ
y+(σχ )

m̂2
σ (σχ )

, (87)

which is valid in the linear order in the symmetry-breaking pa-
rameter h ∝ m̄. This formula is consistent with Refs. [63–66].
It has the expected qualitative structure. The first term m2

π fπ
measures the deviation of the physical point from the chi-
ral limit, the quantity y+(σχ ) measures the response of the
nucleon mass to a change in the sigma field near the chiral
limit, and the factor 1/m̂2

σ (σχ ) is the chiral susceptibility. The
numerical evaluation of Eq. (87) yields σ

(1)
N = 50.2 MeV.

Note that we could also estimate directly σN from Eq. (77),
taking the finite difference rather than the derivative. Because
M(ĥ) is not strictly linear in ĥ, one gets a slightly larger value,
σ

(0)
N = 55.8 MeV.

An alternative to the calculation presented above consists,
as often done, in replacing the derivative with respect to
ĥ or m̄ by a derivative with respect to m2

π , exploiting the
expectably proportional relation between the two quantities.
In the present case, this brings a difference though, because
the relation is not strictly linear all the way to the physical
point, in particular in the doublet model. Indeed the pion mass
satisfies the relation (82), m̂2

π = ĥ/σĥ, with σĥ a solution of
Eq. (80). Thus the relation between m̂2

π and ĥ may deviate
from a linear behavior as one approaches the physical point
(see Fig. 10). Ignoring this nonlinear correction one finds the
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following estimate:

σ
(2)
N = m2

π

dMN

dm̂2
π

∣∣∣∣
m̂2

π →0

= m2
πσχ

y+(σχ )

m̂2
σ (σχ )

, (88)

which differs from Eq. (87) by the sole substitution of fπ by
σχ . Because, as we have seen, σχ differs much from fπ in the
parity-doublet model, the estimate of (88) is much lower than
σ

(1)
N , σ

(2)
N = 43.1 MeV.

Finally, we consider a fourth estimate, which is relevant to
the forthcoming discussion related to the effect of the baryon
density. We note that we could read Eq. (77) in two ways.
Either as the expansion of the nucleon mass around the chiral
limit, which we have done in the estimates above. Or as an
expansion around the physical point toward the chiral limit, in
which case the derivative should be evaluated at the physical
point rather than in the chiral limit. Because MN (ĥ) is not a
strictly linear function of ĥ (see Fig. 9) the derivative dMN/dm̄
takes different values depending on where it is evaluated. By
evaluating the derivative at the physical point, one gets

σ
(3)
N = h

dMN

dĥ

∣∣∣∣
ĥ=h

= m2
π fπ

y+
m2

σ

= 68.6 MeV, (89)

where y+ is evaluated at σ = fπ . The various estimates that
we have discussed in this section are summarized in Table V.
The spread in the values obtained with the parity-doublet
model is larger than with the singlet model. This, as we have
argued at several places, is due to the enhanced nonlinearities
of the relations connecting the chiral limit to the physical point
within the parity-doublet model.

D. Density dependence of σN

The nucleon sigma term provides a measure of the scalar
density (or quark condensate) inside a nucleon (as compared
with the vacuum). It may also be used, more broadly, to esti-
mate how the presence of baryonic matter modifies the quark
condensate. This is most easily seen by using the Feynman-
Hellmann theorem, which yields

m̄ 〈q̄q〉nB = m̄ 〈q̄q〉0 + m̄
d

dm̄
[E (nB ) − E (0)], (90)

where 〈q̄q〉0 denotes the condensate in vacuum. As a first
orientation, and repeating a standard argument [56], we con-
sider a low-density gas of independent nucleons, for which the
energy density is given by

E (nB ) − E (0) = 4
∫

|p|<pF

d3 p

(2π )3

√
p2 + M2

N (91)

and pF = (3π2nB/2)1/3. By differentiating this expression
with respect to m̄ at fixed baryon density, one gets

m̄ 〈q̄q〉nB = m̄ 〈q̄q〉0 + nsσN , (92)

where ns is the average scalar density and the factor σN orig-
inates from the derivative of the nucleon mass with respect
to m̄. On the other hand, by applying the Feynman-Hellmann
theorem to the vacuum state, and using for the vacuum the
present model, one gets

m̄〈q̄q〉0 = −h〈σ 〉0, (93)

where the right-hand side follows from E (0) = U = V (σ ) −
hσ . This equation allows us to identify the quark condensate
with the expectation value of the scalar field.

By using in Eq. (93) the physical value of h, h = m2
π fπ ,

and the vacuum expectation value of the σ field 〈σ 〉0 = fπ ,
one gets the Gell-Mann–Oakes–Renner (GOR) relation8

m̄〈q̄q〉0 = −m2
π f 2

π . (94)

By combining these results, it follows that

〈σ 〉nB

〈σ 〉0
= 〈q̄q〉nB

〈q̄q〉0
� 1 − σ

(3)
N ns

f 2
π m2

π

, (95)

where, for small enough baryon density, we can set ns � nB.
What the relation (95) then says is that, in the low-baryon-
density regime, each additional nucleon occupies a region
initially filled with vacuum. Since the quark condensate is
lower in the nucleon than in the vacuum, the presence of
the new nucleon decreases the average value of the quark
condensate, or equivalently, of the average σ field. The for-
mula (95) predicts a linear decrease of the quark condensate
with increasing baryon density. It suggests a reduction of
the condensate in normal nuclear matter by about 1/3 of its
vacuum value, as well as a restoration of chiral symmetry at
about three times nuclear matter density. However, this linear
estimate neglects the effects of the interaction, which we now
consider.

To make contact with the previous literature [63,67], we
generalize the formula (95) as follows:

〈q̄q〉nB

〈q̄q〉0
� 1 − σ̄N (nB ) nB

f 2
π m2

π

, (96)

where we have set ns ≈ nB, an approximation which remains
valid for a baryon density up to normal nuclear matter density.
The effect of interactions is thus considered as a (model-
dependent) modification of the nucleon sigma term, σN 
→
σ̄N (nB ).

To take the interactions into account, we use the complete
expression of the energy density [see Eq. (33)], and determine
σ by solving the gap equation

dV (σ )

dσ
= h − y+n+

s � h − y+nB. (97)

The last term, in which we have approximated the scalar
density by the baryon density, represents the matter contribu-
tion. We see that this contribution opposes that of the explicit
symmetry-breaking term h. It tends to drive the system to a
chirally symmetric state; that is, it leads to a reduction of
the value of σ . To solve the gap equation for small baryon
densities, we assume the following expansion for the solution:

σ (nB ) = σ (0) + σ (1)nB + 1
2σ (2)n2

B + · · · , (98)

with σ (0) = fπ , and we expand y+ and dU/dσ . The co-
efficients σ (1), σ (2), . . . are determined by solving the gap

8Note that the Feynman-Hellmann theorem holds for any value
of m̄, so that this is, strictly speaking, a generalization of the GOR
relation, whose original derivation from current algebra invokes the
chiral limit.
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FIG. 11. Density dependence of the chiral condensate in the
parity-doublet model. The full solution to the gap equation (solid
line) is successively approximated for small baryon density nB by
a linear function proportional to σ

(3)
N (black dotted line) and higher

Taylor polynomials of O(n2
B ) (dash-double-dotted line), O(n5

B )
(dash-dotted line), and O(n6

B ) (dashed line). The gray dotted line
indicates the difference to the full solution when approximating n+

s

by nB, which can be seen to be an excellent approximation in this
range of densities.

equation to the required order. One obtains then, e.g., to order
n2
B,

σ (nB ) = fπ − y+( fπ )

m2
σ

nB

+ y+( fπ )

{
1

m4
σ

dy+
dσ

∣∣∣∣
fπ

− y+( fπ )

2m6
σ

∂3U

∂σ 3

∣∣∣∣
fπ

}
n2
B.

(99)

The density-dependent nucleon sigma term, as defined in
Eq. (96), is then given by

σ̄N (nB ) = σ
(3)
N − dy+

dσ

∣∣∣∣
fπ

(
σ

(3)
N

)2
nB

m2
π fπy+( fπ )

+
(
σ

(3)
N

)3
nB

2m4
π f 2

π y+( fπ )

∂3U

∂σ 3

∣∣∣∣
fπ

. (100)

We have recognized in the first correction the expression (89)
of the sigma term. The first term of O(nB ) in Eq. (100) re-
duces the nucleon sigma term, as y+( fπ ) as well as its first
derivative are positive, while the second term enhances or
reduces σN (depending on the sign of the derivative of U ). The
effect of these corrections, together with higher-order ones, is
illustrated in Fig. 11. As suggested by the plots in this figure,
the systematic expansion in powers of the density does not
converge well. The full solution of the gap equation, obtained
numerically, has a smooth behavior and yields a reduction
of about 30% of the sigma field at nuclear matter density, in
agreement with the value of σ0 quoted in Table I.

It is straightforward to obtain the corresponding correc-
tions for the singlet model, in which case the first contribution
in Eq. (100) vanishes since the Yukawa coupling carries no σ

dependence. As the potential U contains high powers of the σ

field, the expression (100) may be seen as the generalization

FIG. 12. Density dependence of the chiral condensate in the sin-
glet model. Analogous plot to Fig. 11.

of the enhancement of σN discussed in Ref. [63] for a bosonic
potential of quartic order in σ . The results of the correspond-
ing analysis are plotted in Fig. 12.

V. CHIRAL-SYMMETRY RESTORATION

The analysis of the σ term in the previous section reveals
that nonlinear effects play an increasingly important role as
the density increases, and that an expansion of the value
of the σ field in powers of the density has a limited range
of validity. In this section, we turn to a more thorough
study of the dependence of the sigma field on the baryon
density, and we extend our analysis to finite temperature.

We start by considering the general behavior of the scalar
field in the presence of matter at finite temperature and baryon
density. Figures 13 and 14 display the contour plots of the
magnitude of the sigma field in the T − μB plane, for the sin-
glet and doublet models. There are similarities and differences
between the two models that are clearly visible on these plots.
The first similarity concerns the regime of low density-low
temperature, where the two models exhibit remarkably similar
behaviors: this is the regime of nuclear matter, with the well

FIG. 13. Phase diagram of the singlet model: Isoscalar conden-
sate σ as a function of temperature T and baryon chemical potential
μB. Contours of constant σ are given every 10 MeV.
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FIG. 14. Phase diagram of the doublet model: Isoscalar conden-
sate σ as a function of temperature T and baryon chemical potential
μB. Contours of constant σ are given every 10 MeV.

identified first-order liquid-gas transition at low temperature.
That the two models behave in the same way in this regime
should not come as a surprise since their respective parameters
are precisely adjusted to reproduce nuclear matter properties,
which they do, as we have seen in Sec. III.

A further similarity is visible as one moves up along the
temperature axis at low baryon density. In this case, the dom-
inant degrees of freedom are nucleons and antinucleons, the
parity partners becoming to be significantly populated only at
larger temperatures. As we see, at vanishing baryon density,
the chiral transition is a second-order one in both models in
the chiral limit, and as suggested by the contours in these
figures, it occurs within the same temperature range (in fact, at
nearly the same temperature). These second-order transitions
are smeared out to smooth crossovers for physical pion mass.
A further interesting observation is that the contour lines of
constant σ in Fig. 13 start to “bend over” in the crossover
region for large temperatures and chemical potentials, which
is not the case in Fig. 14. The contours are in general shaped
by the self-consistent solution of the gap equation for σ , where
the right-hand side is essentially given by the scalar density,
such that the scalar density behaves in the same way. As
it will be seen shortly, this different behavior with respect
to the contour lines is accompanied by a different cancel-
lation mechanism regarding the logarithmic contributions of
the bosonic potential upon chiral symmetry restoration (in the
chiral limit).

Things are different at zero temperature. Indeed, Fig. 14
suggests a first-order chiral transition in the parity-doublet
model, and this is indeed so. The contour lines of σ = 20 MeV
and σ = 30 MeV tend to overlap for T close to zero. This
indicates a rapid decrease or even a vertical drop of σ as a
function of μB, which suggests the chiral transition to be of
first order, and which will be verified shortly. In this case, the
structure of the parity-doublet model plays an important role,
as we discuss in detail in the later part of this section. In the
singlet model the chiral transition at T = 0 is a second-order
transition in the chiral limit and a mere crossover for finite
pion mass. The latter can readily be inferred from the well
separated contour lines in the regime of low temperature and

FIG. 15. First-order chiral transition in the parity-doublet model,
as a function of μB and m̂π . The pion mass m̂π varies continuously
between the chiral limit (m̂π = 0) and the physical value mπ =
138 MeV. In the chiral limit, the first-order transition line (black)
ends in a tricritical point (black dot) at Ttri � 33 MeV and μtri �
1460 MeV. Above Ttri, the transition line is of second order. Values
of (T, μB ) on the red surface correspond to a first-order transition.
The first-order transition line (red) for physical pion mass terminates
in the critical endpoint (CEP) at (Tc, μc ) � (8.5 MeV, 1580 MeV).

large chemical potential in Fig. 13, beyond the liquid-gas
transition occurring around 0.9 GeV.

A summary of the phase diagram of the parity-doublet
model in the T − μB plane, featuring the chiral transition,
is given in Fig. 15. There, we also indicate the dependence
on the pion mass, which varies from m̂π = 0 (chiral limit)
to its physical value m̂π = mπ . In the chiral limit, the chiral
transition is first order at small temperature, and turns into a
second-order transition at the critical point as the temperature
increases. The critical point depends on the pion mass and
decreases towards the physical point. Its location as a function
of m̂π delineates the region of first-order transition (indicated
by the red surface in Fig. 15), and terminates in the critical
endpoint denoted “CEP” in Fig. 15 when m̂π = mπ .

Figures 16 and 17 display respectively the coexistence
region of the chiral transition in the T − nB plane for physical
pion mass as well as in the chiral limit. At a temperature
below the temperature Tc of the critical endpoint, two differ-
ent phases of matter with different densities coexist. These
two phases, labeled A and B, have the same thermodynamic
pressure and baryon-chemical potential. While the density of
phase A increases with increasing T in the case of the physical
pion mass, it decreases in the chiral limit, whereas the density
of phase B decreases in both cases. The composition of the
two phases A and B with respect to nucleons and their chiral
partners will be further discussed at the end of this section,
both for physical pion mass as well as in the chiral limit.

In the rest of this section, we analyze further the transi-
tion in the two cases of zero temperature or zero chemical
potential.

A. The chiral transition in the singlet model

Since only the positive-parity baryons (the nucleons) are
involved in the singlet model, we omit the subscript + on all
quantities (M+ 
→ M, y+ 
→ y, etc.).
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FIG. 16. Phase coexistence in the T − nB plane (for physical
pion mass), where the density is measured in unit of the nuclear
matter density n0. The points A and B represent the two coexisting
phases with identical pressure and baryon chemical potential at a
given temperature. In the low-density phase A, chiral symmetry is
still broken (σ > 0), while in the high-density phase B chiral sym-
metry is restored (σ approaches zero). With increasing temperature,
the critical chemical potential decreases (see Fig. 15) and the coexis-
tence region terminates at a critical endpoint (CEP) characterized by
(Tc, nc ) � (8.5 MeV, 2.01 fm−3).

1. The transition at T = 0

The variation of the σ field as a function of the baryon
chemical potential is displayed in Fig. 18. The first-order
liquid-gas transition is clearly visible for a value of the chem-
ical potential of order 0.9 GeV. We are concerned here with
the chiral transition that takes place for a larger chemical
potential. As suggested by the plots, this transition is in fact a
simple crossover for the physical pion mass. However, in the
chiral limit, it becomes a continuous second-order transition,
as we verify in this section.

The value of the sigma field is obtained as a function of
the baryon density by solving the gap Eq. (23). For the singlet

FIG. 17. Phase coexistence in the T − nB plane (in the chiral
limit). Analogous plot to Fig. 16. The black dot denoted “CP” corre-
sponds to the tricritical point in Fig. 15.

FIG. 18. The average σ field at zero temperature as a function of
the baryon chemical potential μB in the singlet model (dark green:
physical pion mass; light green: chiral limit).

model this equation reads simply

dU

dσ
= −yns, (101)

where the zero-temperature scalar density is given by (pF is
the Fermi momentum)

ns = 4M
∫

|p|�pF

1√
p2 + M2

. (102)

The integral can be calculated analytically as a function of
x ≡ M/pF , which yields

ns

nB
= 3x

2

[√
1 + x2 − x2 sinh−1

(
1

x

)]
, (103)

a monotonically increasing function of x, going from zero to
one as x runs from zero to ∞. This function has two simple
limits. The first one is that of the low-density or large-mass
limit, M � pF or x → ∞. This limit is a nonrelativistic limit.
It can be obtained simply by expanding the denominator of
the integrand in Eq. (102) in powers of p2/M2. The leading
order gives ns ≈ nB, independent of σ . By including the first
correction, we get

ns

nB
� 1 − 3

10x2
+ O

(
1

x4

)
, (x → ∞). (104)

The second limit corresponds to the small-mass or large-
density limit, relevant for the chiral transition. We have, for
x → 0,

ns

nB
� 3x

2
+ 3

4
x3[2 ln (x/2) + 1] + O(x4). (105)

Again the limiting behavior can be easily obtained by noticing
that, when pF � M, the mass in the denominator in Eq. (102)
can be ignored. One then gets ns ≈ M p2

F /π2, in agreement
with the formula (105) above. The logarithmic correction in
Eq. (105) originates from a potential infrared logarithmic di-
vergence, as M → 0, of the integral involved in the derivative
of ns with respect to M. The same logarithmic contribution
arises in the expansion of the kinetic contribution to the energy
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density, which reads (with z ≡ pF /M)

4
∫

|p|�pF

√
p2 + M2 = M4

4π2
[z
√

z2 + 1(2z2 + 1) − sinh−1 z]

� M4

2π2

{
z4 + z2 + 1

8
[1 − 4 ln (2z)]

}
,

(106)

where the last line provides the large-z expansion up to the
logarithmic correction. We shall verify shortly that the log-
arithmic contributions ∝σ 4 ln σ cancel out when solving the
gap equation.

To study the vicinity of the chiral transition we assume that,
in the chiral limit, the potential U (σ ) has the following form
near σ = 0:

U (σ ) � U0 − r

2
σ 2 + u

4
σ 4 − lσ 4 ln

σ

fπ
, (107)

where U0 is a constant and l is obtained from Eq. (A4), l =
y4/(4π2). The value of r can also be obtained from Eq. (A4),
r = (1452 MeV)2. However, the presence of the logarithm
makes the fourth derivative ill defined. The value of u is then
obtained from a numerical fit. One gets u ≈ 140.

It follows from Eq. (107) that

1

σ

dU

dσ
� −r + (u − l )σ 2 − y4σ 2

π2
ln

σ

fπ
. (108)

On the other hand, by using the expansion (105) above for ns

one gets

yns

σ
� y2

π2

(
p2

F + y2σ 2

2
− y2σ 2 ln

2pF

yσ

)
. (109)

It follows that, for small σ and leaving aside the trivial solu-
tion corresponding to the maximum of U , one can write the
gap equation in the following form:

−r + y2 p2
F

π2
+
(

u + y4

4π2
− y4

π2
ln

2pF

y fπ

)
σ 2 = 0. (110)

Note that the logarithmic terms proportional to σ 2 ln σ have
canceled, as anticipated, leaving their trace in a simple renor-
malization of the parameter u.

The critical density is obtained from the solution of the
gap Eq. (110) corresponding to σ = 0. This yields the critical
value of the Fermi momentum p2

c = π2r/y2, corresponding to
a critical density

nc = 2π

3

(
r

y2

)3/2

≈ 5.06n0. (111)

A simple calculation shows that in the vicinity of nc, σ

behaves as a function of nc − n as

σ �
(

y6

π2rũ2

)1/4√
nc − n, (112)

with

ũ = u + y4

4π2

(
1 − 2 ln

4π2r

y4 f 2
π

)
. (113)

FIG. 19. Condensate σ at zero temperature as a function of the
baryon density nB in the singlet model. Results for physical pion
mass are given in dark green, those of the chiral limit in light green.
The black dashed line (“crit.”) represents the analytic solution (112)
valid near nc. The dash-dotted line shows the linear density approxi-
mation proportional to the sigma term σ

(3)
N . See also Fig. 28.

The square root behavior is characteristic of mean-field the-
ory, and the formula above reproduces accurately the behavior
of σ as can be seen in Fig. 19.

Note that the critical density nc depends only on the value
of r, which itself depends crucially on the renormalization of
the coefficients of (σ 2 − f 2

π ) and (σ 2 − f 2
π )2, as well as on

the Taylor coefficients α3 and α4. These quantities have been
adjusted in order to fit nuclear matter properties. This is an
illustration of the strong correlation that exists in this model
between the nuclear matter properties near its ground state,
and the chiral transition.

The graphical solution of the gap equation provides insight
on how the phase transition proceeds (see Fig. 3). The graphi-
cal solution indicates that as nB increases starting from values
of the order of n0, the intersection point moves to smaller
and smaller values of σ , while the corresponding scalar den-
sity increases. The scalar density reaches a maximum value
when the intersection point coincides with the point where
d2U/dσ 2 = 0, as we verify shortly. This occurs for n ≈ 4n0.
From that point on, the scalar density rapidly decreases with
further increase of the baryon density and eventually vanishes
at the transition. For small values of σ , ns(σ ) is linear in
σ [see Eq. (105)], and the transition takes place when the
corresponding slope matches that of dU/dσ at σ = 0, that
is when y∂ns/∂σ � y2 p2

F /π2 = r, which is the critical value
of the Fermi momentum determined above. Note that, at the
transition, m2

σ ≡ d2U/dσ 2 + y∂ns/∂σ |nB = 0.9

9This definition of the sigma mass follows directly from the second
derivative of the energy density with respect to σ , at fixed baryon
density. In the present context it is consistent with the general con-
siderations of Ref. [68] about the chiral critical mode in this class of
sigma models.
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To determine the maximum of ns as a function of nB, we
note that

dns

dnB
= ∂ns

∂nB

∣∣∣∣
σ

+ ∂ns

∂σ

∣∣∣∣
nB

dσ

dnB
, (114)

so that the requirement that ns be a maximum as a function of
nB yields the relation

∂ns

∂nB

∣∣∣∣
σ

= − ∂ns

∂σ

∣∣∣∣
nB

dσ

dnB
. (115)

By taking the derivative of the solution of the gap equa-
tion with respect to nB [cf. again Eq. (65)], one obtains

dσ

dnB
= − y

m2
σ

∂ns

∂nB

∣∣∣∣
σ

, (116)

which can be used to simplify the condition (115) above into

m2
σ = y

∂ns

∂σ

∣∣∣∣
nB

. (117)

On the other hand,

m2
σ = d2U

dσ 2
+ y

∂ns

∂σ

∣∣∣∣
nB

. (118)

By comparing the two expressions above for m2
σ , one con-

cludes that ns reaches its maximum value when the second
derivative of U vanishes.

The square of the σ mass, Eq. (118), informs us on the
stability of the solution. In fact it is easy to verify that the
solution is always stable. For n < nc, m2

σ is positive, and it
vanishes at the transition, as we have seen. Above the transi-
tion, σ remains equal to zero, and the dependence of m2

σ on
the density is dictated by the corresponding dependence of
∂ns/∂σ = yp2

F /π2 on the density. It follows that, above the
transition, we have

m2
σ = m2

π � y2

π2

(
p2

F − p2
c

)
, (119)

where the equality m2
σ = m2

π reflects the fact that chiral
symmetry is restored (σ = 0). Above the transition, these
degenerate masses increase with increasing density.

So far, we have examined the transition in the chiral limit.
It is interesting to consider also what happens for the physical
value of the pion mass, that is when the linear term hσ is
present in the potential. This term not only affects the behavior
of the potential near σ = fπ but also near σ = 0. With h non-
vanishing, the potential (107) reads (ignoring the logarithmic
contribution)

U (σ ) � U0 − r

2
σ 2 + u

4
σ 4 − hσ. (120)

The presence of the term hσ entails a modification of the gap
equation in the vicinity of σ = 0 which is easily understood
with the graphical solution of Fig. 3. Since dU/dσ |σ=0 = −h,
the corresponding green curve in Fig. 3 is shifted downwards
by h. It follows that, when the density reaches the value
corresponding to the critical density for h = 0, that is when
r = y2 p2

F /π2, the intersection of the (shifted) green line with
a black line occurs at finite σ , rather than at σ = 0. Then,

as the density increases beyond that point, σ continues to
decrease with increasing density. This behavior can also be
deduced from the explicit form of the gap equation, which for
the potential (120), is given by(

−r + y2 p2
F

π2

)
σ + uσ 3 = h. (121)

This shows in particular that the value σ = 0 is reached only
asymptotically, i.e., when pF → ∞. One can also use this
equation to verify that m2

σ never vanishes.
As an alternative to solving the gap equation, one may

obtain σ as a function of nB by solving a simple differen-
tial equation. Consider indeed Eq. (116). After noticing that
∂ns/∂nB|σ = M/M∗, we may rewrite this equation as follows:

dσ

dnB
= − y

m2
σ

M

M∗
. (122)

The right-hand side of this equation is a known function of σ

and nB. It can then be integrated from some initial condition
all the way to the chiral transition, and beyond. Since this is
a first-order differential equation, the solution is determined
by the initial condition, i.e., by σ (nB = 0). This depends on
the value of ĥ: σ (nB = 0) = σχ for ĥ = 0, and σ (nB = 0) =
fπ for ĥ = h. Note that the integration does not depend on
ĥ: the only place where ĥ enters is the potential U and only
its second derivative enters the expression of m2

σ in Eq. (118).
Thus ĥ enters only the initial condition. It implies that whether
the transition is second order or a mere crossover is entirely
dictated by the initial condition for the differential Eq. (122),
a rather remarkable feature.

2. The transition at μB = 0

As is the case at finite density, the increase of the fermion
scalar density is the driving term for the decrease of σ . For
vanishing baryon density and finite temperature, the scalar
density is given by

ns(T ) = 8M
∫

p

nF(εp)

εp
, (123)

where the factor eight accounts for the antiparticle contribu-
tions in addition to spin and isospin of the nucleons. It can be
written as the following integral (with z ≡ M/T ):

ns(T ) = 4

π2
MT 2I (z) = 4T 3

π2
zI (z), (124)

where

I (z) =
∫ ∞

0
dx

x2

√
x2 + z2

1

e
√

x2+z2 + 1
. (125)

The integral can be calculated analytically when z = 0: I (0) =
π2/12. It is a rapidly decreasing function of z (see Fig. 20). It
starts to be non-negligible when z � 6. This is in line with
what we see in Fig. 21 where the scalar field starts to drop
when T is of the order of 150 MeV (≈940/6 MeV). This is
the temperature at which the scalar density starts to increase
significantly. Until that temperature is reached, the sigma
field remains at its vacuum value and so do the masses of
the nucleons and antinucleons. As the temperature increases
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FIG. 20. The integral I (z) defined in Eq. (125) and related
functions.

above 150 MeV, the scalar density increases, which entails
the decrease of σ and of the nucleon mass.

In the vicinity of the transition, and in the chiral limit,
we may set M = 0 in the integral that multiplies M in the
expression of ns given above. We get

ns(T ) � M

3
T 2. (126)

By using the same approximate expression for U as in
Eq. (107), one easily solves the gap equation and gets

Tc =
√

3r

y2
≈ 249 MeV. (127)

To obtain the behavior of σ (T ) in the vicinity of Tc requires
more work. There are logarithmic contributions both in the
function I (z) and in the potential that cancel each other,
as is the case at finite density. The logarithmic contribution
from the fermion loop is obtained from the well-known high-
temperature expansion [69], which leads to

ns � M
T 2

3
+ M3

π2

(
γE − 1

2
+ ln

M

πT

)
, (128)

FIG. 21. Condensate σ at zero baryon chemical potential as a
function of temperature T in the singlet model. The dashed line
(“crit.”) shows the critical behavior (129).

with the Euler-Mascheroni constant γE. By examining
Eq. (108) one verifies easily that the logarithmic contribution
cancels out, as announced. By following the same steps as at
finite density one then obtains the critical behavior

σ �
(

4y2r

3ũ2

)1/4√
Tc − T , (129)

where

ũ = u + y4

π2

(
γE − 3

4
− 1

2
ln

3π2r

y4 f 2
π

)
. (130)

The effect of the physical pion mass is to smear out the
second-order transition found within the chiral limit, turning
it into a smooth crossover where σ only asymptotically ap-
proaches zero (cf. again the dark green line in Fig. 21).

B. The chiral transition in the doublet model

We start with the transition at μB = 0. This is a second-
order transition which bears a strong similarity with the
corresponding one in the singlet model. Then we discuss the
transition at T = 0, which is a first-order transition with very
specific features.

1. The chiral transition at μB = 0

In the parity-doublet model, the gap equation reads
[see Eq. (23)]

dU

dσ
= −y+n+

s − y−n−
s , (131)

where the scalar densities n±
s are given by expressions similar

to that of the singlet model [Eq. (103)], in which one substi-
tutes M 
→ M±, respectively. It follows that the solution of the
gap equation for the sigma field exhibits similar behavior as
that of the singlet model. In particular, σ starts to decrease
only after a temperature of the order of 150 MeV. Then n+

s
increases as T increases. When the temperature reaches a
value ≈200 MeV, the density of the negative-parity baryons,
n−

s , starts to increase [this is lower than the anticipated value
≈1500/6 MeV—see the discussion after Eq. (124)—because
the mass of the negative-parity baryons has already decreased
when they start to be populated]. Eventually, the masses of the
two parity states become (approximately) equal, and the chiral
symmetry is restored.

As is the case in the singlet model, shortly before the
transition occurs, the density n+

s starts to decrease rapidly with
increasing temperature. In the vicinity of the transition and in
the chiral limit, we have

n±
s (T ) = 4

π2
M±T 2I (z±), z± ≡ M±

T
, (132)

where I (z) is the integral (125). To linear order the masses M±
are given by [see Eq. (9)]

M± � m0 ± σ

2
(ya − yb). (133)

045201-22



THERMODYNAMICS OF THE PARITY-DOUBLET MODEL: … PHYSICAL REVIEW C 109, 045201 (2024)

FIG. 22. Condensate σ at zero baryon chemical potential as a
function of temperature T in the parity-doublet model (dark blue
shows physical pion mass, light blue shows chiral limit). The dashed
line (“crit.”) represents the approximate solution (139).

The expansion of n±
s (T ) for small σ reads then

n±
s (T )�4T 2

π2

[
m0 ± σ

2
(ya − yb)

][
I (z0) ± σ

2T
(ya − yb)I ′(z0)

]
.

(134)

We have also, again to linear order in σ [see Eq. (26)],

y± � 1

2

[
±(ya − yb) + (ya + yb)2 σ

2m0

]
. (135)

It follows that the right-hand side of the gap equation can be
written as

− y+n+
s − y−n−

s

� −σ
4T 2

π2

[(
y2

a + y2
b

)
I (z0) + z0I ′(z0)

2
(ya − yb)2

]
, (136)

where we have used Eq. (27). The critical temperature is then
determined by the equation

r = 4T 2

π2

[(
y2

a + y2
b

)
I0 + z0I ′

0

2
(ya − yb)2

]
, (137)

where I0 = I (z0), z0 = m0/T , and I ′(z) = dI (z)/dz. We even-
tually find

Tc ≈ 248 MeV, (138)

with r ≈ (634 MeV)2, which we obtained in the same fashion
as before.

The determination of the critical behavior with respect to
temperature requires more work, but proceeds as in the case
of the singlet model. We just quote the result (see Fig. 22)

σ �
√

r̃

ũ

√
Tc − T , (139)

where

r̃ = 4

π2

[
2Tc
(
y2

a + y2
b

)
Ic − m0

2
(ya + yb)2I ′

c

− m0zc

2
(ya − yb)2I ′′

c

]
, (140)

FIG. 23. Condensate σ at zero temperature as a function of
baryon chemical potential μB in the parity-doublet model (dark blue
shows physical pion mass, light blue shows chiral limit).

ũ = u + 1

4Tcπ2

{
Tc

zc
(ya + yb)2[4(ya − yb)2 + (ya + yb)2]I ′

c

+ Tc(ya − yb)2[2(ya + yb)2 + (ya − yb)2]I ′′
c

+ m0

3
(ya − yb)4I ′′′

c

}
, (141)

with zc = m0/Tc, Ic = I (zc). The coupling u is given by the
fourth derivative of the bosonic potential at the origin,

u = 1

6

∂4U

∂σ 4

∣∣∣∣
σ=0

≈ 207, (142)

which does not exhibit a divergence at σ = 0 (contrary to the
singlet model).

2. Transition at T = 0

In contrast with what happens in the singlet model, in
the doublet model, and for our choice of parameters, the
zero-temperature chiral transition is discontinuous both in the
chiral limit, and for the physical pion mass. This is illustrated
in Fig. 23 which displays the value of the σ field as a function
of the baryon-chemical potential. Both the liquid-gas transi-
tion and the chiral transition manifest themselves as jumps in
the value of σ for μB � 0.9 GeV (liquid-gas transition) and
μB � 1.55 GeV (chiral transition).

To start understanding the mechanisms at work in the chiral
transition, it is instructive to look first at the variations of
the populations of positive (B+) and negative (B−) parity
baryons as the chemical potential increases. This is illustrated
in Fig. 24. One sees that the B− density remains negligible un-
til the immediate vicinity of the transition, where it increases
very rapidly (albeit by a small amount). At the same time the
rate of increase of the B+ density diminishes, the B+ density
eventually decreasing for the physical pion mass. The total
baryon density continues to increase, roughly linearly with
increasing μB, until the transition where it makes a small posi-
tive jump. Above the transition the B+ and B− populations are
equal (in the chiral limit), as expected once chiral symmetry is
restored (σ = 0) and M+ = M−. For the physical pion mass,
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FIG. 24. The densities n+
B and n−

B as functions of the baryon-
chemical potential. The coloring (physical pion mass or chiral limit)
coincides with the one of Fig. 23. The respective total baryon density
nB = n+

B + n−
B is given in black or gray.

the chiral symmetry is restored only asymptotically, and the
transition, while remaining of first order, is smoother: the B+
density starts to drop at the transition, and continues to do
so after, until it begins to grow and eventually merges with the
growing B− density at asymptotically large chemical potential
or density.

The solution of the gap equation provides the value of σ

as a function of the baryon density. The graphical solution
(in the chiral limit) is illustrated in Fig. 25 for two values of
the density that are close to that corresponding to the chiral
transition. The dashed vertical line indicates the value σmin

of σ that corresponds to the minimum of M+. For σ = σmin,
y+ = 0 so that the line −y+n+

s crosses the dashed line on the
horizontal axis. At small and intermediate density, there are
no B− present in the system and the line corresponding to
−y−n−

s coincides with the horizontal axis while the black line
coincides with the red one. The situation is then similar to that
represented in Fig. 3 for the singlet model. The solution of
the gap equation is given by the intersection of the red curve
with the blue curve and for a large interval of densities, the
corresponding value of σ decreases very slowly as the density
increases. We explain shortly this specific behavior. As the
density gets closer to the transition value, the B− start to
appear, and their contribution is indicated by the orange curve
(which crosses the vertical dashed line at the same place as the
black line since, as we have seen, for σ = σmin, y+n+

s = 0).
When the density of B− starts to increase, things develop
rapidly, leading eventually to a jump of the black curve so
that it intercepts the blue curve only at σ = 0. This jump in σ

corresponds of course to the first-order transition.
The (absolute) maximum of the right-hand side of the gap

equation can be determined as in the singlet model. We note
that

d (y±n±
s )

dnB
= y±

∂n±
s

∂nB

∣∣∣∣
σ

+ y±
∂n±

s

∂σ

∣∣∣∣
nB

dσ

dnB

+ n±
s

d2M±
dσ 2

dσ

dnB
, (143)

FIG. 25. Gap equation in the parity-doublet model. Note that
given the large value of m0, the scalar densities coincide with the
respective baryon density; that is, n±

s � n±
B.

where we use the concise notation a±b± = a+b+ + a−b−.
Requiring that y±n±

s be a maximum as a function of nB, one
gets

y±
∂n±

s

∂nB

∣∣∣∣
σ

= −
(

y±
∂n±

s

∂σ

∣∣∣∣
nB

+ n±
s

d2M±
dσ 2

)
dσ

dnB
. (144)

On the other side, by taking the derivative of the gap equa-
tion with respect to nB, one gets

dσ

dnB
= − y±

m2
σ

∂n±
s

∂nB

∣∣∣∣
σ

, (145)

with

m2
σ = d2U

dσ 2
+ n±

s
d2M±
dσ 2

+ y±
∂n±

s

∂σ

∣∣∣∣
nB

. (146)

The combination of Eqs. (144) and (145) yields the condition

m2
σ = y±

∂n±
s

∂σ

∣∣∣∣
nB

+ n±
s

d2M±
dσ 2

. (147)

By comparing this expression of m2
σ with the general formula

(146) above, one concludes that the maximum of y±n±
s occurs

when

d2U

dσ 2
= 0, (148)
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FIG. 26. Effective mass M∗ as a function of density (dark blue
shows physical pion mass, light blue shows chiral limit). The black
and gray lines represent the mass M− of the negative-parity baryons
(up to threshold) for physical pion mass and in the chiral limit,
respectively.

which matches the corresponding finding within the sin-
glet model. Note, however, that the field dependence of the
Yukawa couplings induces a slight displacement of the loca-
tion of the maximum of the scalar density n+

s with respect to
the inflection point of the potential, in contrast with the singlet
model.

The analysis of the gap equation reveals interesting fea-
tures of the transition: (i) The slow increase of σ over a
wide range of densities. (ii) The role of the value σmin which
controls the overall “topology” of the graphical solution of the
gap equation, as we have just discussed. (iii) The rapid growth
of the B− population above some threshold. Note also that
from the point of view of the baryon density, the transition
is weakly first order, meaning that the relative jump in the
baryon density is small at the transition. We now analyze these
various features.

We start with the threshold for the population of negative-
parity baryons [point (iii)]. In Fig. 26 is plotted the effective
mass M∗ as a function of density. One sees that, between
nB = 5n0 and 11n0, the increase of M∗ with increasing den-
sity is nearly linear. This can be understood in the following
way: We have M∗ = (p2

+ + M2
+)1/2, where p+ is the Fermi

momentum of the B+ baryons. In this range of densities, M+
depends weakly on σ , which furthermore does not vary much
with density, as we shall see. It is then easily verified that
in the range 2n0 to 11n0, the function M∗ = (p2

+ + M2
+)1/2

for constant M+ is nearly linear as a function of nB ∼ p3
+.

The black line in Fig. 26 represents the variation of M− with
density. In contrast with M+, the dependence of M− on σ is
much stronger: it drops by nearly a factor of two as σ drops
from fπ to zero. The intersection of the black line with the
blue line (gray and light blue in the chiral limit, respectively)
defines the B− threshold (cf. also Ref. [70]):

M− =
√

p2
F + M2+, (149)

where we have substituted p+ by the baryon Fermi momen-
tum pF since the B− density vanishes at threshold. Since both

FIG. 27. Condensate σ at zero temperature as a function of
baryon density nB in the parity-doublet model (for physical pion
mass). The blue dashed line represents the result obtained by con-
tinuously integrating the differential Eq. (151).

M− and M+ are functions of σ , this equation defines a relation
between the baryon density nB and the value of the sigma field
σ at threshold. By using the explicit expressions of the mass
M− and M+, Eq. (9), we can rewrite this relation as follows:

p2
F = σ (yb − ya)

√
σ 2(ya + yb)2 + 4m2

0. (150)

The relation (150) between σ and the Fermi momentum pF

(or equivalently the baryon density) marks the boundary of
the gray zone in Fig. 27.

To complete the determination of the B− threshold, we
need to know the value of σ at the threshold, that is the
function σ (nB ) that is obtained by solving the gap equation.
This is what we turn to now, which will give us the opportunity
to explain the origin of the very slow increase of σ over a
wide range of baryon densities [point (i) above]. Rather than
solving directly the gap equation, we may rely on Eqs. (145)
and (146): Before the B− threshold, one can ignore n−

s . Fur-
thermore, because of the mass m0, n+

s starts to differ from
nB only when p+ � m0. For m0 = 800 MeV, this inequality
is not satisfied until nB � 28n0. So in the relevant range of
densities, n+

s � nB is an excellent approximation. Thus, in
Eqs. (145) and (146) above, we can substitute ns by nB, set
M+/M∗ = 1, and also ignore the two derivatives ∂n+

s /∂σ |nB .
We obtain then

dσ

dnB
� −y+

(
d2U

dσ 2
+ nB

d2M+
dσ 2

)−1

, (151)

where d2M+/dσ 2 is given explicitly in Eq. (A5). The equa-
tion above can be considered as a differential equation for
σ (nB ). Integrating this equation from the initial condition
σ (nB = 0) = fπ yields the dashed curve in Fig. 27 which
almost perfectly overlaps with the exact solution all the way
to the B− threshold. Since the sigma field varies little over a
large part of the integration range, we may get a qualitative
understanding of the long plateau seen in Fig. 27. Indeed, in
the region where the sigma field is nearly constant, the inte-
grand is of the form (a + bnB )−1, with a and b two constants,
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FIG. 28. Condensate σ at zero temperature as a function of
baryon density nB in the parity-doublet model. The solutions to the
gap equation were computed in discrete steps of the baryon chemical
potential (between μB = 0 and μB = 1.8 GeV; cf. Fig. 23). Results
for physical pion mass are given in dark blue, those of the chiral
limit in light blue. The dash-dotted line shows the linear density
approximation proportional to the sigma term σ

(3)
N .

and the integral exhibits only a smooth, logarithmic variation
with respect to nB.

In fact, it is interesting to continue the integration by
ignoring the negative-parity baryons. As indicated by the
blue dashed line in Fig. 27, the obtained function con-
tinues its smooth decrease. Because the coefficient y+ in
Eq. (151) vanishes at σ = σmin this behavior is expected to
continue asymptotically until σ reaches this value σmin where
dσ/dnB → 0. In the graphical solution of the gap equation (in
the chiral limit), this corresponds to the red line becoming
vertical, i.e., coinciding with the gray dashed line. One may
combine this argument with Eq. (150) for the B− onset, by
plugging into this formula the value σ = σmin. Since the de-
crease of σ with increasing nB given by Eq. (151) is only
logarithmic, this is not a very stringent lower bound. This can
be seen from Fig. 27. The relation (150) delineates the gray
zone, and its intersection with the dashed line corresponding
to σmin provides the estimate of the lower bound, about 7.5n0.

Once the threshold is passed, the σ field rapidly
decreases.10 This phenomenon amplifies itself. As the

10As we point out in this work, essential features of the solution
of the gap equation in the parity-doublet model do not depend
significantly on the specific choice of parameters that we made in
the allowed parameter band of Fig. 6, (m0, mσ ) = (800, 340) MeV
and M∗/MN = 0.93, leading to the chiral transition around 12.5n0.
For example, if we would have chosen the pair (m0, mσ ) =
(760, 400) MeV for M∗/MN = 0.93, we get σmin ≈ 23 MeV and
the chiral transition takes place at about 13n0. Another example
with larger m0 would be the pair (m0, mσ ) = (840, 300) MeV for
M∗/MN = 0.94, for which we have σmin ≈ 30 MeV and the chiral
transition to occur around 14n0. So the delay of the chiral transition
to densities typically beyond 10n0 is robust, for “large” values of
m0, although the critical density may vary to some extent and the
transition order may change to a mere crossover depending on the
specific choice of parameters, cf. Ref. [7] and Appendix B.

population of B− increases, so does the quantity y−n−
s in the

right-hand side of the gap equation. This leads to a decrease of
the magnitude of σ which entails a decrease of the mass M−.
In turn, this opens further the phase space allowed to the B−,
allowing the Fermi momentum p− to increase, which in turn
contributes to the increase of y−n−

s . Figure 28 summarizes the
physical solutions of the gap equations for both the physical
pion mass and the chiral limit, together with the initial linear
decrease controlled by the nucleon sigma term.

To understand better the underlying mechanism, and in
particular what drives the increase of the B− population, let
us consider the total energy density. This is a function of n+

B,
n−
B, and σ :

E (n+
B, n−

B; σ ) = E+
qp(n+

B; σ ) + E−
qp(n−

B; σ ) + 1
2 Gvn2

B + U (σ ).
(152)

The equilibrium state is determined by the minimum of
E (n+

B, n−
B; σ ) with respect to all three variables, subjected

to the constraint that nB = n+
B + n−

B, that is the uncon-
strained minimum of E (n+

B, n−
B; σ ) − μB(n+

B + n−
B ), with μB

the baryon-chemical potential. The minimization with respect
to σ consistently yields again the gap equation,

∂E
∂σ

∣∣∣∣
n+
B,n−

B

= 0 = dU

dσ
+ y+n+

s + y−n−
s . (153)

The minimization with respect to n+
B and n−

B yields

∂E
∂n±

B

∣∣∣∣
σ

≡ μ± = μB. (154)

This equation translates into the equality of the chemical
potentials μ+ = μ− = μB, with

μ± =
√

p2± + M2± + GvnB, (155)

or equivalently

p2
+ − p2

− = M2
− − M2

+. (156)

At threshold, p− = 0. The condition above says that by turn-
ing a B+ into a B−, one gains the energy associated with
the drop of the Fermi momentum from p+ to p− = 0, but
at threshold this is just compensated by the mass difference.
However, as the density increases, M− decreases, more than
M+ does, so that there is a net energy gain resulting when
increasing the number of B− rather than the number of B+ as
one increases nB. In other words, what drives the transition is
a form of “symmetry energy.”

To quantify the effect, we note that the right-hand side of
Eq. (156) is a known function of σ . To solve for p± at constant
nB, we introduce the Fermi momentum pF = (3π2nB/2)1/3

and set p−/pF = α1/3 and p+/pF = (1 − α)1/3. We obtain
then

f (α) ≡ (1 − α)2/3 − α2/3 = M2
− − M2

+
p2

F

. (157)

The function f (α) is a decreasing function of α, going from
1 to −1 as alpha runs from zero to one. In fact, since M−
is always bigger than M+, only f (α) � 0 is relevant, which
limits α to values between 0 and 1/2. At threshold, α = 0,
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FIG. 29. Energy density as a function of α for different nB (for
physical pion mass). Dots indicate the respective minima. Gray lines
from left to right indicate nB = 12n0, 13n0, 14n0, and 15n0; magenta
line indicates the last value before the transition (nB ≈ 12.44n0); or-
ange line indicates the first value after the transition (nB ≈ 12.77n0).

and the right-hand side is unity. As one increases the baryon
density, one increases pF in the denominator, while the nu-
merator is an increasing function of σ , and σ decreases as the
density increases. It follows that the right-hand side becomes
smaller than unity as nB increases beyond threshold, and the
equation has a solution α > 0, with α growing with increasing
density. This confirms that as nB increases, the population of
B− grows.

To see that this growth corresponds to a gain in energy, we
consider the variation of E (n+

B, n−
B; σ ) first by restricting the

variations to be such that nB = n−
B + n+

B is constant, as well
as σ . Setting as above

α = n−
B

nB
,

n+
B

nB
= 1 − α, (158)

we note that since pF and σ are kept constant, only E±
qp de-

pends on α. In other words, the α dependence of the symmetry
energy is entirely contained in the sum of the quasiparticle
energies. We have [see Eq. (106)]

E±
qp = M4

±
4π2

[z±
√

z2± + 1(2z2
± + 1) − sinh−1 z±], (159)

where z± ≡ p±/M±. Substituting in the expressions

z− = α1/3 pF

M−
, z+ = (1 − α)1/3 pF

M+
, (160)

one finds that E+
qp + E−

qp exhibits a minimum as a function of
α. At threshold, the minimum is at α = 0, but as one moves
closer to the transition, the minimum occurs for positive α, in
agreement with the argument above.

It is straightforward to calculate numerically the full energy
density for a given value of the baryon density, taking into
account the effect of the scalar interactions. This amounts to
take into account the variation of σ as a function of α as given
by the gap Eq. (153). The results of such a calculation are
displayed in Figs. 29 and 30, respectively, for the physical
pion mass and the chiral limit. The minimum at finite value of
α and its evolution with increasing density is clearly visible,

FIG. 30. Energy density as a function of α for different nB
(in the chiral limit). Color code equivalent to Fig. 29. Gray lines
from left to right indicate nB = 11n0 (dashed), 11.6n0 (dash-dotted),
11.75n0 (long-dashed), 11.8n0 (dotted), and 12.5n0 (dash-double-
dotted); magenta line indicates nB ≈ 11.41n0; orange line indicates
nB ≈ 12.04n0. Note that the last two gray dots (for nB = 11.8n0

and 12.5n0) coincide with the orange dot. The lines demonstrate in
particular how the original minimum at small α becomes a saddle
point for increasing density (around 11.8n0).

in particular in the case of the finite pion mass. In the chiral
limit, the evolution before the transition is more restricted.

It is instructive to calculate the expansion of the energy
density around its minimum, as this will provide insight into
the effect of the interactions. To do so, let us denote respec-
tively by σ̄ and n̄±

B the values of σ and the densities n±
B at

the minimum. These are obtained by solving Eqs. (153) and
(154). Keeping nB fixed, we then expand the energy density
in quadratic order in the fluctuation δn−

B (= − δn+
B). We then

obtain the symmetry energy density in the form

δ2E � 1

2

[
1

N+
0

+ 1

N−
0

− (y+M+ − y−M−)2

m2
σ M2∗

]
(δn−

B )2, (161)

with δ2E is shorthand notation for E (n−
B, n+

B, σ ) −
E (n̄−

B, n̄+
B, σ̄ ) expanded to second order in δn−

B. In deriving
Eq. (161) we made use of the relation

∂σ

∂n±
B

= − y±
m2

σ

M±
M∗

, (162)

together with μ+ = μ− at the minimum. Note that the coeffi-
cient of (δn−

B )2 in the expression (161) can vanish. This indeed
occurs, as one can see on the plot related to the chiral limit.
As the density increases, a minimum develops at α = 1/2
corresponding to the symmetric system with n−

B = n+
B. At the

same time the minimum at small α gets shifted to higher
energy and disappears as a minimum (when the coefficient
vanishes) leaving eventually the symmetric minimum as the
only stable one. We shall see that the coefficient of δn−

B in
the expression (161) enters the expression of the derivatives
dn±

B/dnB as given below, and its vanishing in the chiral limit
is related to a softening of the symmetry energy near the
transition.
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FIG. 31. Compressibilities in the chiral limit of the parity-
doublet model.

To see that, we need to digress on the compressibility of the
system and how it evolves as one approaches the transition.
The formulas for the compressibility obtained above for a
single species of baryon can be generalized to include the
contribution of the negative-parity partners. We have, with
nB = n+

B + n−
B,

dn±
B

dμB
= 4

∫
p
δ(μB − E±

p )

(
1 − dE±

p

dnB

dnB
dμB

)
. (163)

In analogy with the calculation of the compression modulus
performed in Sec. III [see Eq. (71)], we set

f ±
0 = dE±

p

dnB
= Gv + y±

M±
M∗

dσ

dnB
, (164)

so that11

dn±
B

dμB
= N±

0

(
1 − f ±

0

dnB
dμB

)
, N±

0 = 2p±M∗
π2

. (165)

By using nB = n+
B + n−

B, we obtain from the formulas above

dnB
dμB

(1 + F0) = N0, (166)

with N0 = N+
0 + N−

0 and F0 = N+
0 f +

0 + N−
0 f −

0 , thereby re-
covering the expression for the full compression modulus [see
Eq. (72)].

As can be seen in Fig. 31, the total compressibility
(in the chiral limit), proportional to dnB/dμB, increases
rapidly before the transition, as the growing population of the
negative-parity baryons starts to contribute significantly to the
total density. At the transition, the compressibility exhibits a
negative jump and returns to a value slightly larger than before
the transition region. We may separate the contributions of B−

11Note that these derivatives dn±
B/dμB are closely related to the

susceptibilities studied in Refs. [51,71]. Since the densities n+
B and

n−
B are internal variables of a coupled system, we refrain here to

attribute these derivatives a physical meaning beyond that of indicat-
ing the rates of change of the B+ and B− populations as the system
approaches the chiral transition.

FIG. 32. The derivatives dn±
B/dnB as functions of nB for phys-

ical pion mass, together with the bounds (169). The derivatives are
plotted with nB starting at the B− threshold.

and B+ to the compressibility. These contributions, dn±
B/dμB,

are also plotted in Fig. 31. They exhibit opposite behaviors
close to the transition, the B− contribution increasing with
increasing μB while the B+ contribution decreases at nearly
an identical rate. At the transition, dn+

B/dμB almost vanishes.
From the formulas above, we can obtain the variation of

the B+ population. We get

dn+
B

dnB
=

1
N−

0
+ f −

0 − f +
0

1
N+

0
+ 1

N−
0

, (167)

and a similar formula for dn−
B/dnB obtained by exchanging

plus and minus. The difference f −
0 − f +

0 is given by

f −
0 − f +

0 = y−M− − y+M+
M∗

dσ

dnB
. (168)

Since y−M− > y+M+ and dσ/dnB < 0, f −
0 − f +

0 < 0. It fol-
lows that

dn+
B

dnB
<

p+
p+ + p−

,
dn−

B
dnB

>
p−

p+ + p−
. (169)

Note that these bounds correspond to the values of the
derivatives obtained by neglecting the interactions; that is, by
ignoring the contribution of f −

0 − f +
0 in Eq. (167). A plot of

dn±
B/dnB as a function of nB is given in Fig. 32 for the case

of the physical pion mass, together with the bounds given in
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the formula above. To understand the origin of the large peaks
in these derivatives, we recall that

dσ

dnB
= − 1

m2
σ

(
y+

∂n+
s

∂nB

∣∣∣∣
σ

+ y−
∂n−

s

∂nB

∣∣∣∣
σ

)
. (170)

We have

∂n±
s

∂n±
B

∣∣∣∣
σ

= M±
M∗

. (171)

By using this relation together with nB = n+
B + n−

B, we obtain

dσ

dnB
= − 1

m2
σ M∗

(
y+M+

dn+
B

dnB
+ y−M−

dn−
B

dnB

)

= −y+M+ − y−M−
m2

σ M∗

dn+
B

dnB
− y−M−

m2
σ M∗

. (172)

We may then combine Eq. (172) with Eq. (167) to get an
equation which controls the variation of n±

B as a function of
nB. We get

dn+
B

dnB
=

1
N−

0
+ y−M−

m2
σ M2∗

(y+M+ − y−M−)

1
N+

0
+ 1

N−
0

− 1
m2

σ M2∗
(y+M+ − y−M−)2 , (173)

and similarly for n−
B. Note that dn+

B/dnB = 1 − dn−
B/dnB.

Consider first the derivative dn−
B/dnB. At the B− threshold,

N−
0 ∝ p− vanishes, so that the derivative goes to zero. Since

y−M− − y+M+ remains positive, the derivative is positive.
However, the denominator is the difference of two positive
numbers and it can potentially vanish. In fact, we recognize
in this denominator the curvature of the symmetry energy ob-
tained in Eq. (161). There is thus a direct correlation between
the softening of the symmetry energy and the peak in the
derivative dn−

B/dnB as a function of nB.
The corresponding derivative dn+

B/dnB can be analyzed
similarly. Its initial value is one, for p− → 0. The main differ-
ence with the B− case is that the numerator in Eq. (173) may
change sign. It indeed does so for the physical pion mass, as
shown in Fig. 32: thus, as the B− population starts to grow,
the B+ population first continues to grow and then starts to
decrease with increasing nB. In the chiral limit, the (negative)
peak is replaced by an infinite slope approaching the corre-
sponding density from below. This is connected with the fact
that the B+ contribution to the compressibility never vanishes
in the chiral limit (the chiral transition occurs before).

The previous discussion relies on the solution of the gap
equation. We have already mentioned that an alternative to
solving the gap equation is to solve a differential equation for
the function σ (nB ). This is easily done for densities below the
B− threshold, where Eq. (172) reduces to [see also Eq. (151)]

dσ

dnB
= − y+

m2
σ

M+
M∗

. (174)

However, as soon as the B− appear, we need an additional
equation that controls the composition of matter as a function
of nB. This additional equation is provided by the Eq. (173)
for dn+

B/dnB. The right-hand side of these equations, where
m2

σ is given by Eq. (146), are known functions of σ and nB.
They can be integrated together in order to obtain σ and n+

B

FIG. 33. Flow lines (a) σ (nB ) and (b) n+
B(nB ) obtained by solv-

ing the coupled Eqs. (172) and (173). The horizontal dashed line in
panel (a) indicates the value σmin. The black line corresponds to the
B− threshold, M∗ = M−. Note that, for the bottom panel, this is just
a straight line since at the B− threshold, dn+

B/dnB = 1.

as functions of nB. In Fig. 33 we plot resulting flow lines
obtained by fixing the initial condition on the line that cor-
responds to the B− threshold (and initialize Eq. (173) with
a tiny density for the negative-parity baryons, n−

B > 0, in the
sense of a perturbation). The integration of Eq. (174) from
some initial condition at nB = 0 will bring the system on a
point of the black line. Typical initial conditions depend on the
value of the pion mass, with the dark blue dot corresponding
to the physical pion mass, and the light blue dot to the chiral
limit. Note that the solution emanating from the light blue
dot terminates at some finite value of σ (indicated by a small
black dot). This is where σ drops to zero, and the system of
differential equations runs into a divergence, corresponding to
the vanishing symmetry energy (161). In contrast, the solution
emanating from the dark blue dot reaches σ = 0 only asymp-
totically. Interestingly, these flow lines indicate the expected
behavior as one increases the pion mass beyond its physical
value. This we cannot do in the standard approach, since this
would amount to exploring regions where the potential U (σ )
is not bounded from below. As the plots suggest, the variations
of σ with nB becomes smoother as the pion mass increases.
For sufficiently large values one may expect the transition to
turn into a mere crossover.
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FIG. 34. Zero-temperature pressure in the parity-doublet model
as a function of nB (for physical pion mass). The black horizontal
line represents the Maxwell construction corresponding to the chiral
transition (the colored dots correspond to the densities of the colored
lines in Fig. 29).

Figure 33 furthermore demonstrates how the population of
the B+ changes once the system passed the B− threshold,
where the horizontal dashed line shows the density n+

B that
pairs the value σmin by virtue of Eq. (149), and σmin marks
the lowest value on the threshold line that can be reached
by integration of Eq. (174). Finally, the flow lines n+

B(nB )
indicate where to expect a reduction of the B+ in favor of the
B− population.

The advantage of the approach based on the differential
equations is that it allows us to follow continuously the evo-
lution of the system even in regions where the corresponding
phases are not stable. In the chiral limit, it also leads us to
expect a discontinuous behavior characteristic of a first-order
transition. However, the approach does not allow us to de-
termine precisely the location and nature of the transition.
To do so, we need to calculate the pressure as a function
of the chemical potential, or the pressure as a function of
density and rely on the Maxwell construction. The latter is
presented in Figs. 34 and 35, for both the physical pion mass
and the chiral limit. For the case of the physical pion mass, one
can follow the pressure continuously as the baryon density
increases, even in the unphysical region. In the chiral limit,
one is prevented to do so because σ exhibits a jump from a
finite value to zero.

Finally, let us comment on the structure of the phases at
the chiral transition. The transition being first order, at the
critical chemical potential, there is phase coexistence. This
was already shown in Figs. 16 (for physical pion mass) and 17
(in the chiral limit) as a function of temperature and baryon
density. Let us focus on the zero-temperature case. At the
phase transition, a chirally symmetric phase develops, whose
density is slightly above that of the broken phase (this cor-
responds to the small jumps in density observed in Fig. 28
for both datasets). When analyzed in terms of the populations
n+
B and n−

B, the coexistence regions for physical pion mass
split as indicated in Fig. 36. It is clearly visible that the B−
become populated already before the transition, n−

B > 0. The
two coexistence regions are roughly mirror-imaged to each

FIG. 35. Zero-temperature pressure in the parity-doublet model
as a function of nB (in the chiral limit). The black horizontal line
represents the Maxwell construction corresponding to the chiral tran-
sition (the colored dots correspond to the densities of the colored
lines in Fig. 30). Approaching the transition from below, one can
follow continuously the pressure as a function of increasing density
up to the point where the sigma fields jumps to zero.

other, with the fraction n−
B/n+

B being closer to one in the
large-density phase (where chiral symmetry is approximately
restored). Regarding the same illustration in the chiral limit,
see Fig. 37, one finds that the two corresponding coexistence
regions merge in the sense that they coincide in the black
middle line. This line contains the phase B with now identical
populations of the B+ and B−, i.e., n+

B = n−
B, whereas in phase

A we still have n−
B/n+

B < 1. The two densities being equal
in phase B is of course induced by the restoration of chiral
symmetry (σ = 0), hence the masses of the B+ and B− being
degenerate. We finally note that the middle line between the
two coexistence regions is not vertical but slightly distorted to
the left with increasing T (towards smaller densities), which
finds its explanation in the fact that the total baryon density
of phase B is larger than the one of phase A (recall the
positive jumps in nB = n+

B + n−
B occurring at the first-order

transitions, as shown in Fig. 28).

VI. CONCLUSIONS

We present a detailed discussion of the thermodynamics
of the parity-doublet model for isospin-symmetric matter in
a mean-field approach, basically covering the entire phase
diagram in the T − μB plane. This model features the parity
doublet of the positive-parity nucleon and its negative-parity
chiral partner with the chiral-invariant mass m0 that confers
the doublet a nonzero bulk mass in the high-energy regime,
where chiral symmetry is restored. We give special emphasis
to the zero-temperature phase structure and the chiral tran-
sition, thereby extrapolating from low-density nuclear matter
to the large-density regime of several times the nuclear sat-
uration density n0. The model parameters are adjusted so
that empirical data of nuclear matter in its ground state and
the critical endpoint of the nuclear liquid-gas transition are
reproduced.
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FIG. 36. Illustration of the composition of coexisting phases. The points A and B correspond to the points A and B of Fig. 16. The
concentration of negative-parity baryons is greater in phase B (chirally symmetric) than in phase A. The x-axis labels correspond respectively
to the two gray “blobs,” i.e., n−

B/n0 to the left one and n+
B/n0 to the right one, both data drawn on a single axis. This means that, e.g., the

densities n+
B and n−

B of phase A add up to the total baryon density nB = n+
B + n−

B of point A given in Fig. 16.

To provide a rather complete picture of the chiral transition
occurring at large baryon densities and vanishing temperature
and to understand and identify the underlying mechanisms
at work, we systematically contrast the findings within the
doublet model to the corresponding results within the singlet
model. The singlet model is obtained by ignoring the influence
of the chiral partner as a whole, such that the bulk mass m0 is
lost and the nucleon mass is exclusively generated by chiral
symmetry breaking at low energies (i.e., the nucleon becomes
massless in the chiral-restored phase).

Regarding the zero-temperature chiral transition, the effect
of the mass m0 is that it locks the scalar density to the baryon
density throughout a large range of densities relevant for the
discussion of the phase structure. This is a direct consequence
of the fact that the fraction of the nucleon mass resulting from
chiral symmetry breaking is substantially reduced as com-
pared with the singlet model, where the mass is proportional
to the σ condensate. The increase of the scalar density with
increasing μB is necessary to drive the “melting” of the σ

condensate in order to restore chiral symmetry at large μB.

FIG. 37. Same as Fig. 36 in the chiral limit and corresponding to
Fig. 17. The two formerly separate gray blobs merge and coincide in
the black middle line, as the populations of B+ and B− are identical
in phase B.

Another important effect is the splitting of the mass spectrum
of the opposite parity baryons, which creates a nontrivial
minimum of the nucleon mass at σmin, with 0 < σmin < fπ .
It turned out that these two effects decelerate the melting of
the σ condensate when approaching σmin from above, starting
from its initial value of σ = fπ in vacuum. In consequence,
the chiral transition within the doublet model, where σ → 0,
gets significantly delayed. The opening of the phase space for
populating the negative-parity baryons, which is suppressed
for small baryon densities, is then necessary to cross the value
of σmin and eventually bring down the condensate to (approx-
imately) zero. For the chosen set of parameters, the chiral
transition in the singlet model occurs at nB ≈ 5n0, whereas
in the doublet model it only occurs at about 12n0, thus at
densities more than twice as high as in the singlet model.

Concerning the order of the chiral phase transition at zero
temperature, we found a first-order transition within the dou-
blet model for physical pion mass as well as in the chiral limit
(where the pion mass vanishes). These first-order transitions
are accompanied by a jump in density, and by the coexistence
of two phases with the same pressure and baryon-chemical
potential. In the large-density phase of these two coexisting
phases, the chiral symmetry is (approximately) restored, and
in the low-density phase, it is still broken. In contrast, in
the singlet model, the transition is of second order in the
chiral limit, which is smeared out to a crossover for physical
pion mass. Its continuous character in the singlet model even
allowed us to determine the critical behavior in the vicinity of
the transition. For zero chemical potential and finite tempera-
ture, the chiral transition is of second order in the chiral limit
in both the doublet and singlet models, and a smooth crossover
in the case of physical pion mass.

The comparison of results obtained in the chiral limit
with those obtained for a finite pion mass is very instructive.
Results are “sharper” in the chiral limit. For example, in
the singlet model, the chiral transition is of second order in
the chiral limit, while it becomes a continuous crossover
for the finite pion mass, as mentioned above. Moreover, we
combine the study of the chiral transition at large densities
with a detailed discussion of the nucleon sigma term σN at
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low baryon densities, which describes the initial decrease of
the average σ field as soon as the vacuum gets populated
with dilute matter. This discussion is then completed by the
computation of respective density modifications of σN . Also,
by calculating various estimates for the sigma term, we find
that its value can be much affected by nonlinear effects in the
relation between the chiral limit and the physical point. As a
result, the value obtained in the doublet model is somewhat
larger than in the singlet model.

We have seen that the presence of the massive baryon
doublet affects the nature of the chiral phase transition, and
its dynamics, in a significant way. In particular, the dynamics
of the phase transition at zero temperature and finite baryon
density turned out to be very interesting. We have identified
the role of a kind of symmetry energy as the driving force
for the chiral transition in order to equilibrate the respective
baryon densities of the two opposite parity baryons, once the
phase space for populating the chiral partner is opened. This
symmetry energy dictates the composition of matter at large
baryon densities around the chiral transition, i.e., the fraction
of positive to negative-parity baryons. We furthermore investi-
gate in great detail the overall “topology” of the corresponding
gap equations that provide the physical solutions of the system
and exploit the character of their density derivatives as first-
order differential equations to get an alternative view on the
important ingredients for the chiral transition.

In summary, the doublet model features a rich phase struc-
ture that offers an interesting playground for many detailed
calculations. It provides an interesting perspective on how
chiral symmetry may be restored, allowing for the presence
of massive parity doublets in the symmetric phase, for which
there is some evidence from lattice calculations at finite tem-
perature [3,4].

We also identify some limitations of the model, and there
are also limitations of the calculations presented in this paper:
There are uncertainties in the phenomenological parametriza-
tion of the effective potential for the mesonic degrees of
freedom. We use an expansion in powers of the chiral field,
as commonly done, and we use the simplest form, ignoring
for instance self-interactions of the vector field. The param-
eters of the potential are adjusted so as to reproduce nuclear
matter properties, but the same potential is used all the way
to the region of vanishing σ field when discussing the chi-
ral transition. This is clearly an uncertain extrapolation, for
which we have very little control. One particular consequence
of this extrapolation is the strong correlation that it induces
between the chiral transition and the liquid-gas transition,
which one could consider a priori as two distinct physical
phenomena.

We take into account the (one-loop) fermionic fluctuations,
but we ignore the mesonic ones. Fermionic fluctuations con-
tribute significantly to the scalar densities, which play an
essential role in the chiral transition. Mesonic fluctuations
presumably do not play much of a role at vanishing tem-
perature, and some of them have been taken into account
in functional renormalization group calculations [12,26].
However, mesonic fluctuations are certainly important at van-
ishing baryon density and finite temperature. Since they are
ignored in the present paper, one should keep in mind that

the results that we have obtained at finite temperature and
small baryon density may change quantitatively (and perhaps
even qualitatively) once these fluctuations are taken into
account.

In spite of these shortcomings, there is interest to fur-
ther analyze the physical content of the model, exploring
for instance its predictions for neutron matter (and isospin-
asymmetric matter in general [30]). Finally, more input from
QCD computations would be helpful to further constrain
the phase structure, especially at large densities and low
temperatures, although this currently remains an intricate
problem.
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APPENDIX A: RENORMALIZED VACUUM
FLUCTUATIONS

The renormalized fermionic vacuum contribution to the
thermodynamic potential can be written as a function of the
baryon masses as follows (see, e.g., Ref. [72]):

�ln(σ ) = −
∑
i=±

Mi(σ )4

4π2
ln

Mi(σ )

M+( fπ )
. (A1)

The subtraction point has been chosen to be the nucleon
mass in vacuum, M+( fπ ) ≡ MN . The other renormalization
condition (related to mass and coupling constant divergences)
are conveniently implemented by subtracting the second-order
polynomial δ�ln,

δ�ln =
2∑

n=0

1

n!

∂n�ln

(∂σ 2)n

∣∣∣∣
f 2
π

(
σ 2 − f 2

π

)n
, (A2)

such that the total renormalized vacuum contribution then
reads

�vacuum = �ln − δ�ln. (A3)

The above subtraction guarantees that the vacuum con-
tribution from the baryon loop vanishes for σ = fπ as well
as its first and second-order derivatives with respect to σ 2.
This entails a modification of the initial values α1 = m2

π and
α2 = (m2

σ − m2
π )/ f 2

π of the first two Taylor coefficients of the
classical potential V (ϕ). The full bosonic potential U then
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reads:

U =
{

m2
π

2
+ 1

8π2 fπ

[
M3

+y+ +
(

1 + 4 ln
M−
M+

)
M3

−y−

]}(
σ 2 − f 2

π

)

+
{

m2
σ − m2

π

8 f 2
π

+ 1

32π2 f 3
π

[
7 fπM2

+y2
+ + fπ

(
7 + 12 ln

M−
M+

)
M2

−y2
− + M3

+

(
2 fπy2

+−
M+ + M−

− y+

)

+
(

1 + 4 ln
M−
M+

)
M3

−

(
2 fπy2

+−
M+ + M−

− y−

)]}(
σ 2 − f 2

π

)2

+
4∑

n=3

αn

2nn!

(
σ 2 − f 2

π

)n − h(σ − fπ ) − 1

2
m2

vω
2 −

∑
i=±

Mi(σ )4

4π2
ln

Mi(σ )

M+
+ M4

−
4π2

ln
M−
M+

, (A4)

where the quantities M+, M−, y+, y−, and y+− are evaluated
at σ = fπ (e.g., M+ = M+( fπ ) = MN ). We have used the
relation

d2M±(σ )

dσ 2
= 2y2

+−
M+ + M−

, (A5)

with

y+− = m0(ya + yb)√
σ 2(ya + yb)2 + 4m2

0

. (A6)

It is interesting to note that, in the parity-doublet model, the
potential logarithmic contributions in ln σ cancel out near σ =
0. In the vicinity of σ = 0, the next-to-last term in Eq. (A4)
can be expanded as a polynomial in σ 2 with coefficients that
depend on ya, yb, m0, and, up to order σ 4, on ln(m0/MN ).
Such a cancellation is specific to the parity-doublet model and
it does not take place in the singlet model. In both models
though, the contribution of �vacuum to the second and fourth
derivatives of U (σ = 0) are large and negative and nearly
cancel those of V (ϕ). To appreciate the magnitude of these

FIG. 38. Bosonic potential in vacuum � = U showing the mag-
nitude of its various contributions. The orange curve shows the
potential V (σ ) − h(σ − fπ ), without the fermion loop contribution.
The magenta curve shows the potential including the renormalized
fermion loop, but with α3 = α4 = 0. The gray curve shows the full
potential U (σ ). The dark red curve shows the quartic approximation
to V (σ ) − h(σ − fπ ).

cancellations, we have plotted various contributions to U (σ )
in Figs. 38 and 39, for the singlet and doublet models, respec-
tively. It can be seen that the subtractions, which are mostly
constrained by the physics near σ = fπ , affect also signifi-
cantly the region near σ = 0, hence impacting the properties
of the chiral transition.

At large values of σ , the logarithmic contribution makes
U unbounded from below, a well-known feature of the one-
loop contribution [72]. This phenomenon is delayed to larger
values of sigma by the contributions of order (σ 2 − f 2

π )n in
V (ϕ), with n = 3, 4. With the present parameters, the second
derivative of U (σ ) with respect to σ remains positive until
σ � 110 MeV. We could extend somewhat this region by in-
cluding higher-order terms in V (ϕ) [17]. However, since most
of the physics discussed in this paper concerns the range of
sigma values between zero and fπ , we do not find it necessary.
The vacuum contribution �vacuum is depicted in Fig. 40 as a
function of σ and m0. This plot shows a large and positive
contribution at small values of σ , the larger the smaller the
mass m0. This explains why small values of m0 are not favored
for the description of nuclear matter properties, since in the
relevant range of σ values (σ ≈ 60 MeV), this would entail
cancellations of contributions of order 1 GeV. In contrast, for
m0 � 800 MeV, �vacuum is of the order of a few hundreds of
MeV for the relevant values of σ .

FIG. 39. Same as Fig. 38 but for the parity-doublet model.
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FIG. 40. Contour plot of the vacuum contribution �vacuum to the
thermodynamic potential of the parity-doublet model.

APPENDIX B: CHANGING PARTNER

There are arguments suggesting that the identification of
the N∗ as the chiral partner of the nucleon may not be the
optimum choice. Hence the authors of Ref. [7] considered the
possibility of a partner with mass 1200 MeV. They obtained
a much lower value for the chiral transition density. We can
explain simply this result. To do so consider the expression
(150) which relates the density to the sigma field at the B−
onset. Recalling that the Yukawa couplings are fixed by the
masses of the parity partners, we can express this relation as a
function of �M = (MN∗ − MN )/2 and M̄ = (MN∗ + MN )/2.
One gets, with σ̄ = σ/ fπ ,

p2
+ = 4σ̄�Mm0

√
1 + σ̄ 2

(
M̄2/m2

0 − 1
)
. (B1)

As we see from this expression, p2
+ is proportional to �M.

Changing the mass of the partner from 1510 to 1200 MeV
means �M going from 571 to 261 MeV. This gives almost a
factor of two, which translates by nearly a factor of three in
the density. At the same time, it can be verified that σmin does
not change much. We have

σ 2
min

f 2
π

= m2
0(m1 − m2)2(

m1m2 − m2
0

)[
(m1 + m2)2 − 4m2

0

] , (B2)

where m1 = MN and m2 is the mass of the parity partner. It
can be verified indeed that σmin varies very little in the range

FIG. 41. Showing the effect of a reduced mass for the parity
partner.

of variation of m2 (and beyond), going from 0.28 fπ to 0.21 fπ
as m2 goes from 1510 to 1200 MeV (keeping m0 = 800 MeV).
It follows from our estimate of the lower bound given earlier
that the value of the sigma field at the B− threshold does
not change much and that we may expect a factor of three
reduction in the value of the critical density. This is confirmed
by Fig. 41.

Changing the mass of the partner has therefore an im-
portant impact on the value of the chiral transition density.
Another parameter that can potentially impact this den-
sity is the chiral-invariant mass m0. However, the effect
is much more modest. Choosing m0 = 500 MeV for in-
stance leaves the chiral transition density in the vicinity
of 10n0.
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