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This paper formalizes the use of integral and differential cumulants for measurements of multiparticle
event-by-event transverse momentum fluctuations, rapidity fluctuations, as well as net-charge fluctuations. This
enables the introduction of multiparticle balance functions, defined based on differential correlation functions
(factorial cumulants), that suppress two- and three-prong resonance decays effects and enable measurements
of underlying long-range correlations obeying quantum number conservation constraints. These multiparticle
balance functions satisfy simple sum rules determined by quantum number conservation. It is additionally shown
that these multiparticle balance functions arise as an intrinsic component of high-order net-charge cumulants.
This implies that the magnitude of these cumulants, measured in a specific experimental acceptance, is strictly
constrained by charge conservation and primarily determined by the rapidity and momentum width of these
balance functions. The paper also presents techniques to reduce the computation time of differential correlation
functions up to order n = 10 based on the methods of moments.
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I. INTRODUCTION

A variety of two-particle integral and differential correla-
tion functions have been developed and deployed towards the
analysis of particle production in heavy-ion collisions [1–4].
Correlation functions formulated as functions of rapidity and
azimuth angle differences have enabled, in particular, the
discovery of away-side jet suppression in large collision sys-
tems [5,6]. Subsequent measurements of long-range particle
correlations in both large and small collision systems have ad-
ditionally enabled detailed studies of the collision dynamics.
Of particular interest are two-particle number correlations, R2,
based on normalized two-particle differential cumulants [3,4],
transverse momentum (pT) correlation functions, P2, designed
to study pT fluctuations [7], and G2, designed for the study
of viscous effects based on their longitudinal broadening in
A–A collisions [2,8,9]. Differential two-particle correlation
functions have been studied for charge-inclusive (CI) particle
pairs as well as charge-dependent (CD) pairs. The latter are
of particular interest because they relate to charge balance
functions, which provide a tool to study the correlation length,
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in momentum space, of charge balancing particles. Balance
functions were initially developed to investigate the presence
of isentropic expansion and delayed hadronization in large
collision systems [10–12]. In that context, they were defined
according to

B(p2|p1) ≡ 1
2 [ρ(b, p2|a, p1) − ρ(b, p2|b, p1)

+ ρ(a, p2|b, p1) − ρ(a, p2|a, p1)], (1)

where ρ(b, p2|a, p1) is the conditional density of particles of
type b in momentum bin p2 given the existence of a particle
of type a in a bin p1. The labels a and b were then meant
to refer to the charge of (specific) hadrons. For instance, b
could refer to positive kaons whereas a identifies negative
kaons. Balance functions were later shown to also be sensi-
tive to quark susceptibilities [13] as well as the diffusivity
of light quarks [14,15]. Recent works have shown they are
best measured in terms of differential two-particle cumulants
and feature simple sum-rule that might be instrumental in the
study of thermal hadron production [16–18].

Two-particle correlation functions are by construction
dominated by contributions from two particle correlated pro-
duction processes such as hadronic decays and jet production.
They are also nominally sensitive to higher-order particle
correlations even though they cannot specifically discrimi-
nate such higher-order processes. In many instances, it is
these higher-order correlation processes that are of interest
to investigate particle production and properties of the mat-
ter produced in A–A collisions. As a first example, consider
measurements of transverse momentum fluctuation deviates.
Correlators of transverse momentum deviates were initially
invoked as a proxy to study temperature fluctuations in A–A
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collisions [19]. However, it may be argued that fluctuations
observed in A–A collisions are strictly driven by initial state
conditions [20]. There is thus interest in establishing the
magnitude of such collective fluctuations. The use of the mul-
tiple particle pT integral correlator has then been advocated
to study the effects of initial fluctuations [21,22]. However
note that ongoing studies may suffer from short-range cor-
relations (a.k.a. nonflow) and it might thus be desirable to
develop differential analysis techniques that enable rapidity
gaps designed to suppress short-range correlations. As a sec-
ond example of interest, consider charge, strangeness, and
baryon balance functions. In this case also, one expects the
correlations to receive sizable contributions from two- and
three-prong particle decays as well as short-range correlation
from jets. There is thus an interest in obtaining higher-order
correlation functions that are sensitive to charge (strangeness,
baryon) balance but suppress contributions from decays and
jets and it is the primary purpose of this work to develop such
multiparticle balance functions. As in studies of anisoptropic
flow measurements, multiparticle cumulants, of order n =
4, 6, . . ., shall be used to suppress lower order correlations
and obtain multiparticle balance functions. Unfortunately,
measurements and calculations of higher-order cumulants
nominally require several nested loops to include contribu-
tions from all n-tuplets of interest on an event-by-event basis.
Although such calculations are conceptually simple and re-
main practical for collisions and experimental acceptances
featuring a modest particle multiplicity, they become pro-
hibitively CPU intensive for large multiplicities. Fortunately,
a number of techniques have been developed, particularly
in the context of anisotropic flow analyses, to reduce the
computational challenge of handling large multiplicities and
high-order cumulants [23]. One such application successfully
deployed in the context of anisotropic flow studies and to-
wards the computation of higher moment deviates relies of
the method of moments [21]. A second purpose of this paper
is to further develop this method towards measurements of
differential multiparticle correlations of inclusive as well as
identified particle species.

This paper is organized as follows. First, Sec. II presents
a discussion detailing the need for higher-order integral and
differential correlators based on several examples. Higher-
order correlators are then introduced in Sec. III in terms
of integral and differential cumulants of arbitrary order as
well as expectation values of the form 〈〈q1q2 · · · qn〉〉 and
〈〈�q1�q2 · · · �qn〉〉, where qi, i = 1, . . . , n represent parti-
cle variables of interest (e.g., transverse momentum, charge,
etc.) and �qi = qi − 〈〈q〉〉, i = 1, . . . , n, are their deviates
relative to their event ensemble average 〈〈q〉〉. Techniques to
compute these expectation values based on the method of
moments are presented in Secs. III C and III D. Equipped
with these different correlators and computing tools, the no-
tion of multiparticle balance function is then introduced in
Sec. IV. Finally, multiparticle balance functions are consid-
ered in Sec. V in the context of measurements of net-charge
cumulants and it is shown that net-charge cumulants of all
orders are explicitly constrained by charge conservation. The
paper is summarized in Sec. VI. Given much of the cal-
culations performed in this work are somewhat tedious and

lengthy, details of these calculations are presented in several
appendices. Appendix A presents calculation methods and
formula for moments, cumulants, factorial moments, and fac-
torial cumulants for single and multivariable systems, as well
as for the net charge of particles measured in a specific ac-
ceptance �. Appendix B extends these formula to differential
correlations. General formula for the computations of deviates
of the form 〈〈�q1�q2 · · · �qm〉〉 are derived in Appendix C
while equations for the calculation of correlators of the form
〈〈q1q2 · · · qm p1 · · · pn〉〉 are listed in Appendix D. Finally,
Appendix E lists definitions of multiparticle balance functions
up to order n = 10.

II. MOTIVATIONS

Let us consider single particle densities of particles of type
α, denoted ρα

1 ( �p), and n-particle densities of mixed species
α1, . . . , αn, denoted ρα1···αn

n ( �p1, . . . , �pn). In general, mixed n-
particle densities, ρα1···αn

n ( �p1, . . . , �pn), correspond to the yield
(per event) of n-tuplets of particles of types α1, α2, . . . , αn at
momenta �p1, . . . , �pn. Such n-tuplets may arise from a single
process yielding n correlated (mixed) particles, or combina-
tions of processes jointly yielding n-particles. In general, the
particle categories α and β may be either identical, distinct,
or partially overlapping. This evidently impacts the calcula-
tion of integral factorial moments and integral cumulants as
discussed in further details in Sec. III A. To focus a study on
correlated particles exclusively, one commonly relies on the
notions of integral and differential correlation function cumu-
lants. Indeed recall that, by construction, integration of ρα

1 ( �p)
over a specific kinematic range � yields the average number
of particles of type α in this acceptance, whereas integration
of two-, three-, or n-mixed-particle densities yield the average
number of pairs, triplets, and more generally n-tuplets of such
groupings of particles. These integrals do not discriminate
correlated from uncorrelated particles.

Differential cumulants and their integrals are of particular
interest because they identically vanish in the absence of n
or more particle correlations. They are thus an essential tool
for the study of particle production. They can also be straight-
forwardly corrected for uncorrelated particle losses (detection
efficiency). This feature is exploited in the formulation of
number correlation function ratios such as

Rαβ

2 ( �p1, �p2) ≡ ρ
αβ

2 ( �p1, �p2) − ρα
1 ( �p1)ρβ

1 ( �p2)

ρα
1 ( �p1)ρβ

1 ( �p2)

≡ Cαβ

2 ( �p1, �p2)

ρα
1 ( �p1)ρβ

1 ( �p2)
≡ Fαβ

2

Fα
1 Fβ

1

, (2)

with C2, the second-order cumulant, and F1 and F2, the first
and second-order factorial cumulants, respectively. The ratios
R2 are said to be robust against particle losses, i.e., indepen-
dent of efficiencies provided these are approximately constant
within the acceptance of a measurement [24]. Differential
correlation functions Cn( �p1, . . . , �pn) and their integrals Fn

are formally defined in Sec. III. Ratios of factorial cumu-
lants, similarly formulated, have also been used in recent
studies [2,4]. They too feature the property of robustness
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against particle (efficiency) losses. Particular combinations of
differential and integral ratios Rαβ

2 have also been used in
the context of relative yield fluctuation studies and balance
functions [25]. Integral and differential correlation functions
have also been used to study fluctuations of specific kinematic
variables. Fluctuations of event-wise total transverse momen-
tum, in particular, have been proposed to study temperature
and energy fluctuations in the initial stage of heavy-ion colli-
sions. Voloshin et al. [19] showed fluctuations measures are
best formulated in terms of transverse momentum deviates

�pT,1�pT,2 according to

〈〈�pT,1�pT,2〉〉 ≡
∫
�

�pT,1�pT,2 ρ2( �p1, �p2) d �p1 d �p2∫
�

ρ2( �p1, �p2) d �p1 d �p2
. (3)

This integral correlator is commonly reported in terms of a
dimensionless ratio 〈〈�pT,1�pT,2〉〉/〈〈pT〉〉2 [26,27]. A differ-
ential version of this dimensionless correlator was also used
[2,4,7,28] and can be written according to

P2(y1, ϕ1, y2, ϕ2) ≡ 1

〈〈pT〉〉2

∫
�

�pT,1�pT,2 ρ2(pT,1, y1, ϕ1, pT,2y2, ϕ2) d pT,1d pT,2∫
�

ρ2(pT,1, y1, ϕ1, pT,2, y2, ϕ2) d pT,1d pT,2
. (4)

A generalization of 〈〈�pT,1�pT,2〉〉 to four particle correlations was first proposed by Voloshin [26] towards the study of
temperature and energy fluctuations. The study of third and fourth pT moments, defined according to

〈〈�pT,1�pT,2�pT,3〉〉 = 1

〈〈pT〉〉3

∫
�

�pT,1�pT,2�pT,3 ρ3( �p1, �p2, �p3) d �p1 d �p2 d �p3∫
�

ρ3( �p1, �p2, �p3) d �p1 d �p2 d �p3
, (5)

〈〈�pT,1�pT,2�pT,3�pT,4〉〉 = 1

〈〈pT〉〉4

∫
�

�pT,1�pT,2�pT,3�pT,4 ρ4( �p1, �p2, �p3, �p4) d �p1 d �p2 d �p3 d �p4∫
�

ρ4( �p1, �p2, �p3, �p4) d �p1 d �p2 d �p3 d �p4
, (6)

was proposed to probe initial stage fluctuations [21]. It is good
to note that Eqs. (3)–(6) can in principle be simplified by
replacing the number densities ρn( �p1, . . . , �pn) by probability
densities pn( �p1, . . . , �pn) defined according to

pn( �p1, . . . , �pn) ≡ ρn( �p1, . . . , �pn)∫
�

ρn( �p1, . . . , �pn)d �p1 · · · d �pn
. (7)

In practice, however, such a substitution is not particularly
useful because, experimentally, one does not measure ρn

directly but rather obtain “estimators” (statistics) of such den-
sities based on sums over the many particles of measured
events. For instance, for pairs, triplets, and quadruplets, one
could write inclusive estimator according to

〈〈�pT�pT(y1, y2)〉〉 =
∑

i �= j �pT,i�pT,i

〈〈Npairs(y1, y2)〉〉 , (8)

〈〈�pT�pT�pT(y1, y2, y3)〉〉 =
∑

i �= j �=k �pT,i�pT,i�pT,k

〈〈Ntriplets(y1, y2, y3)〉〉 , (9)

〈〈�pT�pT�pT�pT(y1, y2, y3, y4)〉〉 =
∑

i �= j �=k �=l �pT,i�pT,i�pT,k�pT,l

〈〈Nquads(y1, y2, y3, y4)〉〉 , (10)

where the sum in the numerators proceeds over parti-
cles in bins at rapidities y1, . . . , yn, whereas Npairs(y1, y2),
Ntriplets(y1, y2, y3), Nquads(y1, y2, y3, y4) denote the number of
pairs, triplets, and quadruplets of particles in rapidity bins at
y1, . . . , yn in a given event.

Measurements of the correlators (5) and (6) were recently
reported by the ALICE collaboration [22]. Clearly, it is trivial
to also consider differential versions of these two correlators
and such generalizations of P2(y1, ϕ1, y2, ϕ2) might be useful
to carry out higher moment analyses with finite rapidity gaps.
Additionally, as we discuss in the next sections, extension to
particle correlators of this form to n > 4 particles are readily
accessible based on the methods of moments presented in
Sec. III C

The integral and differential correlation functions,
Eqs. (3)–(6), may also be applicable to the study of other

types of fluctuations. For instance, replacing �pT,i by
rapidity deviates �yi ≡ yi − 〈〈y〉〉, where yi are the rapidities
of particles i = 1, . . . , N of an event, it becomes possible to
study event-by-event fluctuations in the rapidity of particles.
Such fluctuations might provide an alternative way to probe
the longitudinal correlation length (rapidity) of produced
particles.

The multiparticle correlators and the set of tools for
their extraction presented in Sec. III provide a basis for the
extension of former techniques used for measurements of
transverse momentum correlations, rapidity correlations, as
well as charge correlations (including baryon and strangeness
numbers correlations) heretofore completed mostly at low
orders n � 4. These techniques also connect to measurements
of anisotropic flow and correlations between flow and other
variables discussed elsewhere [23].
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The techniques, whether used with a single or several
variables, are nominally very powerful because they enable
joint measurements involving many particles simultaneously.
However, it is also clear that the complexity of such measure-
ments can quickly grow out of hand. For instance, assuming
an interest in the rapidity, transverse momentum, and azimuth
of particles, one would nominally get differential observables
〈〈�q1�q2 · · · �qn〉〉 featuring 3 × n degrees of freedom. Mea-
suring such features would then require collecting data in as
many as 3 × n dimensions. Clearly, a considerable reduction
of this “feature” space is required to enable the feasibility of
measurements both in terms of data volumes (i.e., capturing
sufficiently many n-tuples of particles to cover all partitions
of the feature space with meaningful values) and in terms of
its representation and interpretation. While we do not wish
to preclude or dismiss possibilities of complex multidimen-
sional analyses, we focus the discussion, as a kind of extended
motivation, on some basic applications of the formalism and
methods presented later in this work towards some specific
physics analyses.

On general grounds, one can classify analyses of potential
interest based on the number of kinematic partitions being
used (i.e., partition of the 3 × n momentum space), the num-
ber of observables of interest (e.g., transverse momentum,
pT, rapidity, y, charge, anisotropic flow coefficients, etc.)
and the number of particle types or species being considered
(e.g., inclusive charged particles, positively versus negatively
charged particles, specific species such as pions, kaons, etc.).
We thus organize the discussion in terms of few use cases,
beginning with the simplest case involving a single variable q,
and next considering progressively more and more complex
use cases involving two variables: q, p, as well as several
variables.

Analyses based on a single variable q are already quite
popular and have featured studies of fluctuations of transverse
momentum, net charge, etc. However, most prior analyses
have been limited to two particles [2,7,8,28] and only few
recent works have undertaken higher number of particles
[22,26]. Notable exceptions evidently include measurements
of anisotropic flow based on multiparticle cumulants [29],
multiparticle correlations between arbitrary numbers of par-
ticles of interest selected for their strangeness, heavy flavor,
and conserved charges [30] as well as older works [31–33].

Measurements of pT (alternatively y or q, etc.) correlations
〈〈�pT,1�pT,2 · · ·�pT,n〉〉 involving n � 4 particles of a given
type of particle in a specific acceptance can be readily un-
dertaken based on the methods discussed in Sec. III. Various
types of scaling are evidently possible to obtain dimensionless
observables and assess the evolution of n-order momentum
correlators as a function of the A–A collision centrality or
produced particle multiplicity. An obvious choice is the inclu-
sive momentum average 〈〈pT〉〉 already used in several studies
[2,7,8] but other choices of scaling have also been discussed
[21]. Differential measurements can then be achieved, for in-
stance, by studying the magnitude of 〈〈�pT,1�pT,2 · · ·�pT,n〉〉
versus the width of the acceptance in rapidity.

Analyses involving two variables, q and p, are of interest,
for instance, towards the study of some specific observable
(e.g., anisotropic flow, transverse momentum fluctuations, or

net-charge fluctuations) in two kinematic partitions separated
by a finite-size rapidity gap.

Considering examples of pT fluctuation studies, let qi and
pi represent the transverse momentum of particles measured
in two distinct rapidity acceptance ranges �A and �B of equal
widths separated by a finite rapidity gap �η, as schematically
illustrated in Fig. 1. One can then measure correlators of the
form 〈〈�q1�p1〉〉, 〈〈�q1�q2�p1�p2〉〉, etc., at any order to
determine the strength of n = 2, 4, etc., transverse momen-
tum correlations as a function of the width of the rapidity
gap. Measurements of transverse momentum fluctuations and
correlations have been thus far mostly limited to two-particle
studies and implemented with a single acceptance bin [34–37]
or in a fully differential manner [2,8]. The methods discussed
in Sec. III, however, enable differential measurements in-
volving multiple n � 4 particles. It then becomes possible to
study momentum correlations arising from initial state fluc-
tuations [21] while suppressing the influence of short-range
correlations (a.k.a. nonflow) associated with hadron decays
and jet fragmentation. Letting qi, i = 1, . . ., represent the pT

of particles in partition A, and pi, i = 1, . . . represent the
pT of particles in partition B, the described methods allow
to obtain 〈〈q1q2 · · · qn p1 p2 · · · pn〉〉 and the n-order deviates
〈〈�q1�q2 · · · �qn�p1�p2 · · ·�pn〉〉 corresponding to pT cor-
relators involving n particles from partition A and n particles
from partition B. As in flow studies, one expects that it be-
comes possible to progressively suppress resonance and jet
contributions by increasing the rapidity gap �η between par-
titions A an B. The analysis can also be made more differential
by also using bins in azimuth as illustrated in Figs. 1(c) and
1(d), thereby enabling the suppression of or focus on back-to-
back jet contributions.

The methodology can readily be adopted also for measure-
ments of charge correlations and, as it will be introduced,
multiparticle balance functions. In this case, qi and pi repre-
sent the charge of particles in partitions A and B. Then generic
charge correlators 〈〈q1q2 · · · qn p1 p2 · · · pn〉〉 and their deviates
〈〈�q1�q2 · · · �qn�p1�p2 · · ·�pn〉〉 can be obtained and, it
will be seen, these can then be related to multiparticle balance
functions.

Two other use cases based on two variables qi and pi

are worth mentioning. One involves the study of two dis-
tinct physics observables (e.g., charge, pT, rapidity, etc.) in
a single kinematic partition whereas the other involves the
measurement of a specific particle observable, e.g., the pT,
for two types of particle species. In the first case, the variable
qi and pi represent the two observables of interest whereas
in the second they tag the species of interest. These latter use
cases enable multiparticle correlations with specific species or
between identical particles in two distinct pT ranges.

The examples discussed in the previous paragraphs are
readily extended towards the computation of correlation func-
tions involving three or more kinematic partitions and particle
types. Of particular interest is the determination of multiple
particle balance functions. Although it may not be practi-
cal to conduct analyses involving explicit computation of
more than three or four kinematic partitions or species, it
remains possible to consider balance functions involving large
number of particles towards the study of long-range multi-
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FIG. 1. Schematic illustrations of four-particle correlation analyses involving a finite rapidity gap to suppress resonance decays and other
short-range correlations. The horizontal and vertical axes η and ϕ, respectively, denote the pseudorapidity and azimuthal coordinates of mea-
sured particles. Gray areas schematically indicate the azimuthal (ϕ) and pseudorapidity (η) acceptance of measurements. Panels (a, b) illustrate
measurement involving negatively and positively charged particles in valid unlike sign combinations into two distinct ranges of pseudorapidity
(full azimuthal coverage) separated by a rapidity gap �η. Panels (c, d) illustrate four-particle inclusive correlation measurements involving a
finite rapidity gap and a specific coverage in azimuth, which enable acceptance configurations sensitive to (c) back-to-back particle production
or (d) out-of-back-to-back emission.

particle correlations constrained by charge conservation (or
other quantum number conservation laws). Let us first con-
sider measurements of four-particle balance functions based
on two kinematic partitions A and B separated by a finite
rapidity gap, as illustrated in Figs. 1(a) and 1(b). The parti-
tions A and B could be azimuthally symmetric (i.e., with full
azimuth coverage 0 � ϕ < 2π ), or feature partial coverage
to focus or suppress contributions from back-to-back jets, as
schematically illustrated in Figs. 1(c) and 1(d), respectively,
of the same figure. Figure 1(a) illustrates a measurement
involving two positively charged particles in B and two neg-
atively particles in A. A measurement of the multiparticle
balance function shall then be sensitive to the strength (or
probability) of processes featuring four correlated particles
separated by a finite rapidity gap. Since four-prong resonance
decays are relatively few, this would reveal the likelihood of
long-range correlations determined by stringlike fragmenta-
tion processes. In contrast, the analysis illustrated in Fig. 1(b)
would focus on correlated quartets featuring two nearby pairs
of unlike sign particles. These could be produced by string-
like fragmentation processes yielding four or more correlated
particles, but they could also result from string fragmenta-
tion producing two neutral objects, each decaying into pairs
of +ve and −ve particles. An explicitly selection of the
charge states to be measured in partitions A and B might
thus enable a discriminating study of the relative yields of
distinct processes. Indeed, an analysis of the dependence of
the relative strengths of processes depicted in Figs. 1(a) and
1(b) could shed additional light on particle production pro-
cess in elementary collisions. An analysis of the correlation

strength performed as a function of the rapidity gap might then
provide better sensitivity to the correlation length of string
break up processes. Additionally, such analyses conducted as
a function of collision centrality and beam energy in large
systems (A–A), and comparisons to dependencies observed in
small systems (e.g., pp and p–A), might then reveal whether
this correlation length evolves with energy density, system
size, collision energy, etc. Clearly, the position and size of
measurement bins can be varied. Figure 1(c) illustrates a
measurement geometry emphasizing back-to-back jet emis-
sion whereas Fig. 1(d) suppresses such processes and thus
enables the study of long-range nonjet and not resonance
decay processes such as longitudinal string fragmentation.
Obviously, a wide variety of other detection geometries can
be implemented to explicitly favor or inhibit specific particle
processes.

Analyses probing correlations of three or four particles of
different charge, strangeness, and baryon number are also of
interest and are possible with the framework presented in this
paper. For illustrative purposes, consider the two scenarios
displayed in Fig. 2. Figure 2(a) illustrates a measurement
involving a neutral 
(uds) antibaryon and a proton (uud) in
rapidity partition A, observed jointly with a negative �−(dss)
baryon and a neutral 
(uds) antibaryon in rapidity partition
B, which simultaneously probes baryon and strangeness bal-
ancing. Similarly, Fig. 2(b) shows a measurement involving
a neutral 
(uds) baryon and an proton (uud) in partition A
measured jointly with a negative �−(sss) baryon and a posi-
tive �

+
(dss) antibaryon in partition B, which probes charge,

strangeness, and baryon number balancing all at once.
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FIG. 2. Examples of measurements involving a 
 antibaryon and a proton in rapidity partition A with (a) a �− baryon and a neutral

 antibaryon or (b) an �− baryon and a �

+
antibaryon in partition B. The horizontal and vertical axes η and φ, respectively, denote the

pseudorapidity and azimuthal coordinates of measured particles. Gray areas schematically indicate the azimuthal (ϕ) and pseudorapidity (η)
acceptance of measurements.

In general, a large number of such particle species combi-
nations could be established to study charge (Q), strangeness
(S), baryon number (B), and isospin I3 balancing. The tools
could also be applied to charmness (C) and/or bottomness (B)
balancing.

III. MULTIPARTICLE CORRELATION FUNCTIONS

A. Cumulants and factorial cumulants

As already mentioned, to focus a study on correlated par-
ticles exclusively, one relies on the notions of integral and
differential correlation function cumulants. Differential cu-
mulants have been discussed in details elsewhere [23,29]. In
the context of this work, it suffices to remember they can be
“reverse engineered” by listing all cluster decompositions of
n-tuple densities. As such, single-, two-, and three-particle
mixed-density cumulants may be obtained by writing [25]

Cα
1 ( �p1) ≡ ρα

1 ( �p1), (11)

Cα1α2
2 ( �p1, �p2) ≡ ρ

α1α2
2 ( �p1, �p2) − Cα1

1 ( �p1)Cα2
1 ( �p2)

= ρ
α1α2
2 ( �p1, �p2) − ρ

α1
1 ( �p1)ρα2

1 ( �p2), (12)

Cα1α2α3
3 ( �p1, �p2, �p3) ≡ ρ

α1α2α3
3 ( �p1, �p2, �p3)

−
∑
(3)

Cα1α2
2 ( �p1, �p2)Cα3

1 ( �p3)

−Cα1
1 ( �p1)Cα2

1 ( �p2)Cα3
1 ( �p3), (13)

where the notation
∑

(k) stands for a sum over k-ordered
permutations of the labels α1, α2, and α3, as well as the
corresponding momentum vectors �p1, �p2, and �p3. For n = 3,
substitution of first and second-order cumulants and expan-
sion of the permutations yield

Cα1α2α3
3 ( �p1, �p2, �p3)

= ρ
α1α2α3
3 ( �p1, �p2, �p3) − ρ

α1α2
2 ( �p1, �p2)ρα3

1 ( �p3)

− ρ
α1α3
2 ( �p1, �p3)ρα2

1 ( �p2) − ρ
α2α3
2 ( �p2, �p3)ρα1

1 ( �p1)

+ 2ρ
α1
1 ( �p1)ρα2

1 ( �p2)ρα3
1 ( �p3). (14)

Higher-order cumulants are computed and listed in Ap-
pendix A.

Mixed cumulants Cα1···αn
n ( �p1, . . . , �pn) nominally feature

3 × n degrees of freedom and are, as such, challenging to
measure and visually represent. The dimensionality, and thus
the number of degrees of freedom, can fortunately be reduced
by integrating over several coordinates. Considering the den-
sities, when all coordinates are integrated within acceptances
�k , k = 1, 2, . . . , n, one obtains mixed factorial moments. For
instance, the integration of ρα

1 ( �p) over a specific kinematic
range � yields the average number of particles of type α

in this acceptance, whereas integration of two-, three-, or
n-mixed-particle densities yield the average number of pairs,
triplets, and more generally n-tuplets of such groupings of par-
ticles. These averages are known as mixed factorial moments,
herewith denoted f α1···αn

n , and computed according to

f α
1 ≡

∫
�

ρα
1 ( �p)d �p = 〈Nα〉, (15)

f α1α2
2 ≡

∫
�α1

∫
�α2

ρ
α1α2
2 ( �p1, �p2)d �p1d �p2

= 〈Nα1 (Nα2 − δα1α2 )〉, (16)

f α1α2α3
3 ≡

∫
�α1

· · ·
∫

�α3

ρ
α1α2α3
3 ( �p1, �p2, �p3)d �p1d �p2d �p3

= 〈Nα1 (Nα2 − δα2α1 )(Nα3 − δα3α1 − δα3α2 )〉, (17)

f α1 ··· αn
n ≡

∫
�α1

· · ·
∫

�α3

ρα1···αn
n ( �p1, . . . , �pn)d �p1 · · · d �pn

= 〈Nα1 (Nα2 − δα2α1 ) · · · (Nαn − δαnα1 − δαnα2 − · · ·
− δαnαn−1 )〉, (18)

where 〈Nα〉, 〈Nα1 (Nα2 − δα1α2 )〉, and so on, denote the en-
semble average of the number of mixed tuplets of the
corresponding order. The terms δαβ are unity for identical
species or particle classes, i.e., α = β, and null otherwise.
For instance, for a single species α, the average number
of pairs and triplets would be 〈Nα (Nα − 1)〉 and 〈Nα (Nα −
1)(Nα − 2)〉, respectively. If two distinct species α and β

are considered, then the average number of pairs is 〈NαNβ〉.
For triplets (and higher mixed orders), one must specify
the type of triplets being considered. For triplets consisting
of two particles of type α and one particle of type β, the
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average is 〈Nα (Nα − 1)Nβ〉. Extensions to higher-order fac-
torial moments proceed in a similar manner. A slight
complication arises when categories α and β partially overlap.
This can be the case, for instance, when partially overlapping
momentum or rapidity ranges are used in measurements of
correlation functions. In such cases, the number of particles
Nα and Nβ must be split to explicitly indicate the subset
of particles of both types that are, event by event, in the
overlapping region. Denoting the splits Nα = N ′

α + Ns and
Nβ = N ′

β + Ns where the primed quantities represent multi-
plicities in the non overlapping ranges and Ns represent the
multiplicity in the overlapping range, the number of pairs is
then 〈N ′

α (N ′
α − 1)〉 + 〈N ′

β (N ′
β − 1)〉 + 〈Ns(N ′

α + N ′
β )〉. Exten-

sions to higher-order moments have been discussed in the
context of flow azimuthal harmonics computation [38] and
will be addressed in the context of the observables considered
in this work in a forthcoming paper.

Being integrals of densities, factorial moments do not
discriminate correlated from uncorrelated particles and it is
thus also convenient to consider mixed factorial moment
cumulants, herein denoted Fα1 ··· αn

n . Mixed factorial moment
cumulants, hereafter simply called factorial cumulants, are
the integrals of the mixed cumulants Cα1···αn

n ( �p1, . . . , �pn) over
acceptances �k , k = 1, . . . , n, and are readily expressed in
term of the factorial moments but they can also be computed
based on generating functions, as discussed in Appendix A.
Lowest orders yield

Fα
1 =

∫
Cα

1 ( �p1)d �p1 = 〈Nα〉 = f α
1 , (19)

Fα1α2
2 =

∫
Cα1α2

2 ( �p1, �p2)d �p1d �p2 = f α1α2
2 − f α1

1 f α2
1 ,(20)

Fα1α2α3
3 = f α1α2α3

3 − f α1α2
2 f α3

1 − f α1α3
2 f α2

1 − f α2α3
2 f α1

1

+ 2 f α1
1 f α2

1 f α3
1 , (21)

while formula for higher orders are also listed in Appendix A.
Moments, centered moments, cumulants, factorial mo-

ments, and factorial (moment) cumulants constitute distinct
tools to characterize the particle production encountered in
elementary and nuclear collisions. Moments and centered
moments are used as basic characterizations (e.g., mean, stan-
dard deviation, skewness, etc.) of the underlying n-particle
densities ρα1···αn

n whereas n-factorial moments provide useful
measures of the average number of single, pair, triplet, etc., of
particles produced and detected on an event-by-event basis in
collisions.

Factorial (moment) cumulants (Fn), introduced in its mixed
version in Eqs. (19)–(21) and defined in Eqs. (A6)–(A15),
based on factorial moments ( fn), are of particular interest
because they constitute a true measure of correlation, i.e.,
deviation from statistical independence or Poisson statistics
[25]. They are thus ideal to investigate particle produc-
tion and transport mechanisms. Particular combinations of
mixed factorial moment cumulants, such as νdyn, defined
in Eq. (63), are commonly used to study event-by-event
fluctuations of particle yields measured in a specific ex-
perimental acceptance [24]. Measurements of relative yield
fluctuations have been studied in several contexts, includ-

ing search for the critical point of nuclear matter, proximity
of second-order (or cross over) phase transition ([39] and
references therein). Factorial moment cumulants are also
readily extended to measurements of fluctuations of event by
event transverse momentum and charge deviates discussed
in Sec. III B.

Correlation tools are broadly divided into integral and
differential correlation functions. The former group include
integral cumulants and factorial cumulants whereas the latter
are measured as explicit functions of one or many particle
variables. Integral cumulants (κn), defined in Eq. (A3), are of
particular interest because they are nominally related to charge
(Q), baryon (B), and strangeness (S) susceptibilities, χQ, χB,
and χS, respectively, of the matter formed in the collision
when described in the context of Grand Canonical Ensemble
(GCE) thermal models [40]. Mixed cumulants are likewise
related to mixed, QB, QS, BS, or QBS, etc., susceptibilities
[40]. Their connection to multiparticle balance functions is
discussed in Sec. IV.

A wide variety of differential n-particle observables are
commonly used in studies of elementary and nuclear col-
lisions. Differential observables may be formulated based
on n-particle densities but can also be weighted by vari-
ous functions of kinematic variables such as the particles
transverse momenta, their azimuthal angle of emission,
and so on. Observables based on number densities include
particle pair densities and more generally n-particle den-
sities, n-particle densities normalized by the number of
“trigger” particles, commonly called triggered two-particle
correlations, as well as the n-particle differential cumulants
discussed in this section. Observables weighted by func-
tions of azimuthal angles evidently include all varieties of
flow measurements observables, including flow cumulants
and related functions [25]. In general, measurements of
“true” correlations are best accomplished with differential
correlation functions based on the differential cumulants,
Eqs. (12) and (13), and the higher-order cumulants listed in
Appendix B.

B. Joint moments of observables and their deviates

As we discussed in Secs. II and III A, a wide variety of mul-
tiparticle correlation functions can be formulated in terms of
the expectation value of products of particle observables of the
form 〈〈q1q2 . . . qn〉〉 or their deviates 〈〈�q1�q2 . . . �qn〉〉. In
this section, we first introduce such expectations values based
on moments of the sum

∑N
i=0 qi computed for all selected

particles of an event with all self-correlations removed. We
then consider the expectation value of off-diagonal products
of deviates of the form 〈〈�q1�q2 · · · �qn〉〉. First note that
these expressions are totally general and thus applicable for
any type of particle observables, e.g., transverse momentum,
rapidity, electric charge, or other quantum numbers. Together
with formula introduced in Sec. III C and Appendix C, these
correlators enable the formulation of both integral and differ-
ential measurements of multiple particle correlations of basic
particle observables.

To obtain expressions sought for, first consider a particle
observable of interest q. This observable could be the trans-
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verse momentum of the particle, its rapidity, its charge, some
other quantum numbers, or simply unity (i.e., to count the
particles). We will denote the value of this observable for
a specific particle qi, with the index i spanning all selected
particles (i.e., satisfying specific kinematic and quality selec-
tion criteria) in a given event. We are interested in computing
moments of q and its deviates �qi ≡ qi − 〈〈q〉〉, where 〈〈q〉〉
is the inclusive event ensemble average of q for specific
collision conditions (i.e., events satisfying specific selection
criteria).

Inclusive event ensemble (joint) averages of products of qs
are defined according to

〈〈q〉〉 = 1

〈N〉

〈
N∑

i=1

qi

〉
, (22)

〈〈q1q2〉〉 = 1

〈N (N − 1)〉

〈
N∑

i1 �=i2=1

qi1 qi2

〉
, (23)

〈〈q1q2 · · · qn〉〉 = 1

〈N (N − 1) · · · (N − n + 1)〉

〈
N∑

i1 �=i2 �=···�=in=1

qi1 qi2 · · · qin

〉
, (24)

where the sums run over all N selected particles in a given event. The notation
∑

i1 �=i2
indicates the sums are computed for

distinct particles, i.e., distinct values of i1, i2, etc. As such,
∑N

i=1 qi represents the sum of the qi in a given event, and 〈∑N
i=1 qi〉 is

the event ensemble average of this sum across all events of a selected data sample. Similarly, 〈∑N
i �= j=1 qiq j〉, and higher orders,

represent ensemble averages of products of the qs evaluated for n-tuplets of particles. However, the fact that sums proceed on
i �= j implies auto-correlations are explicitly removed. Herewith, we will use inclusive averages (i.e., averages computed over an
event ensemble) but it is trivial to change the definition to event-by-event averages [21]. See for instance Eqs. (D13) and (D14).
Additionally, note that if it is possible to prescan the dataset of interest to determine the inclusive average 〈〈q〉〉, then one can
readily replace qi by �qi = qi − 〈〈q〉〉 in Eqs. (22)–(24) instead of carrying out the factorization discussed in detail below.

We proceed to compute event ensemble averages of moments of �qi in terms of moments of qi. The inclusive first moment
of �q is calculated according to

〈〈�q〉〉 = 1

〈N〉

〈
N∑

i=1

�qi

〉
= 1

〈N〉
N∑

i=1

qi − 〈N〉
〈N〉 〈〈q〉〉 = 〈〈q〉〉 − 〈〈q〉〉 = 0 (25)

and vanishes by construction. To compute moments of order n = 2 and n = 3, we write

�qi�q j = qiq j − 〈〈q〉〉(qi + q j ) + 〈〈q〉〉2, (26)

�qi�q j�qk = qiq jqk − 〈〈q〉〉(qiq j + qiqk + q jqk ) + 〈〈q〉〉2(qi + q j + qk ) − 〈〈q〉〉3, (27)

whereas higher-order products can be written

�qi1�qi2 · · · �qin = qi1 qi2 · · · qin − 〈〈q〉〉
∑
(n

1)
qi1 qi2 · · · qin−1 + 〈〈q〉〉2

∑
(n

2)
qi1 qi2 · · · qin−2

− 〈〈q〉〉3
∑
(n

3)
qi1 qi2 · · · qin−3 · · · + (−1)n−1〈〈q〉〉n−1

∑
( n

n−1)
qi1 + (−)n〈〈q〉〉n, (28)

where the notation
∑

(n
k) indicates a sum over all

(n
k

)
permutations of the indices i1, i2, ..., in−k . Ensemble averages of products

of order n = 2, 3, 4 yield

〈〈�qi�q j〉〉 = 1

〈N (N − 1)〉

〈
N∑

i �= j=1

(
qiq j − 〈〈q〉〉(qi + q j ) + 〈〈q〉〉2

)〉 = 〈〈qiq j〉〉 − 〈〈q〉〉2, (29)

〈〈�qi�q j�qk〉〉 = 〈〈qiq jqk〉〉 − 3〈〈q〉〉〈〈qiq j〉〉 + 2〈〈q〉〉3, (30)

〈〈�qi�q j�qk�ql〉〉 = 〈〈qiq jqkql〉〉 − 4〈〈q〉〉〈〈qiq jqk〉〉 + 6〈〈q〉〉2〈〈qiq j〉〉 − 3〈〈q〉〉4, (31)

whereas higher orders can be computed according to

〈〈�qi1�qi2 · · · �qin〉〉 = 〈〈qi1 qi2 · · · qin〉〉 −
(

n

n − 1

)
〈〈q〉〉〈〈qi1 qi2 · · · qin−1〉〉 +

(
n

n − 2

)
〈〈q〉〉2〈〈qi1 qi2 · · · qin−2〉〉

+ · · · (−1)n−2

(
n

2

)
〈〈q〉〉n−2〈〈qi1 qi2〉〉 + (−1)n−1

(
n

1

)
〈〈q〉〉n−1〈〈q1〉〉 + (−1)n

(
n

0

)
〈〈q〉〉n (32)

=
n∑

k=0

(−1)n−k

(
n

k

)
〈〈q〉〉n−k〈〈qi1 · · · qik 〉〉, (33)
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where it is assumed that 〈〈qi1 · · · qik 〉〉 = 〈〈q〉〉 for k = 1 and
〈〈qi1 · · · qik 〉〉 = 1 for k = 0.

The computation of moments of order n of qs amounts to
sums of the form

∑N
i �= j=1 qiq j ,

∑N
i �= j �=k=1 qiq jqk , etc., which

nominally require up to n nested loops for each event consid-
ered. Though conceptually trivial, such calculations involve
a computation time proportional to Nn that becomes quickly
prohibitive for large values of the multiplicity N . Fortunately,
the method of moments, which we discuss in the next two sub-
sections, enables the computation of averages of these sums
based on a single loop (per event), i.e., with a computation
time proportional to N .

C. Method of moments

The method of moments is introduced to facilitate
the computation of moments 〈〈q1q2 . . . qn〉〉 and deviates
〈〈�q1�q2 . . . �qn〉〉 based on a single loop over all particles
of an event rather than using nested loops.

1. Method of moments for a single variable

Let Qn represent an event-wise sum of the nth power of the
variable qi of the N selected particles of an event

Qn =
N∑

i=1

qn
i . (34)

The method of moments relies on the evaluation of ensemble
averages of Qn and products of the form QnQm, QnQmQo, etc.
The (inclusive) ensemble average of Qn is

〈〈Qn〉〉 = 1

〈N〉 〈〈q
n〉〉, (35)

and one obviously obtains

〈〈qn〉〉 = 〈N〉〈〈Qn〉〉. (36)

Computation of the ensemble average of products QnQm,
QnQmQo, etc., requires one properly handles the expansions
of the sums. For instance, product of two and three Qs yield

Qn1 Qn2 =
N∑

i1,i2=1

qn1
i1

qn2
i2

=
N∑

i=1

qn1+n2
i +

N∑
i1 �=i2=1

qn1
i1

qn2
i2

, (37)

Qn1 Qn2 Qn3 =
N∑

i=1

qn1+n2+n3
i +

N∑
i1 �=i2=1

qn1+n2
i1

qn3
i2

+
N∑

i1 �=i2=1

qn1+n3
i1

qn2
i2

+
N∑

i1 �=i2=1

qn1
i1

qn2+n3
i2

+
N∑

i1 �=i2 �=i3=1

qn1
i1

qn2
i2

qn3
i3

, (38)

=
N∑

i=1

qn1+n2+n3
i +

∑
(3)

N∑
i1 �=i2=1

qn1+n2
i1

qn3
i2

+
N∑

i1 �=i2 �=i3=1

qn1
i1

qn2
i2

qn3
i3

, (39)

where the notation
∑

(3) represents a sum spanning all three
ordered permutations of n1, n2, and n3.

Clearly, calculation of the ensemble average of Qn1 Qn2

yields

〈〈Qn1 Qn2〉〉 = 〈N〉〈〈qn1+n2〉〉 + 〈N (N − 1)〉〈〈qn1
1 qn2

2 〉〉. (40)

This expression contains a term of the form 〈N〉〈〈qn1+n2
i1

〉〉
that can be readily replaced by 〈〈Qn1+n2〉〉 based on Eq. (35).
Solving for 〈〈qn1

1 qn2
2 〉〉, one then gets

〈N (N − 1)〉〈〈qn1
1 qn2

2 〉〉 = 〈〈Qn1 Qn2〉〉 − 〈〈Qn1+n2〉〉, (41)

which for n1 = n2 = 1 evidently simplifies to

〈N (N − 1)〉〈〈q1q2〉〉 = 〈〈Q2
1〉〉 − 〈〈Q2〉〉. (42)

Proceeding similarly for the ensemble average of Qn1 Qn2 Qn3 ,
one gets

〈〈Qn1 Qn2 Qn3〉〉 = 〈N〉〈〈qn1+n2+n3
i1

〉〉 + 〈N (N − 1)〉〈〈qn1+n2
i1

qn3
i2

〉〉
+ 〈N (N − 1)〉〈〈qn1+n3

i1
qn2

i2
〉〉 + 〈N (N − 1)〉

× 〈〈qn2+n3
i1

qn1
i2

〉〉 + 〈N (N − 1)(N − 2)〉
× 〈〈qn1

i1
qn2

i2
qn3

i3
〉〉. (43)

The first term, 〈N〉〈〈qn1+n2+n3
i1

〉〉, is equal to 〈〈Qn1+n2+n3〉〉, while
the next three terms are of the form of Eq. (41). Substituting
these terms and solving for 〈〈qn1

i1
qn2

i2
qn3

i3
〉〉, one gets

〈N (N − 1)(N − 2)〉〈〈qn1
1 qn2

1 qn3
1 〉〉

= 〈〈Qn1 Qn2 Qn3〉〉 − 〈〈Qn1+n2 Qn3〉〉 − 〈〈Qn1+n3 Qn2〉〉
− 〈〈Qn2+n3 Qn1〉〉 + 2〈〈Qn1+n2+n3〉〉, (44)

which, for n1 = n2 = n3 = 1, reduces to

〈N (N − 1)(N − 2)〉〈〈q1q2q3〉〉 = 〈〈Q3
1〉〉 − 3〈〈Q2Q1〉〉 + 2〈〈Q3〉〉.

(45)

The above calculation can be repeated iteratively for
higher-order products of qs and thus yield expressions for
〈〈q1q2 · · · qn〉〉 at arbitrarily high order n. In practice, such
calculations become rather tedious for n > 4 and are best
computed programmatically, as discussed in Appendix D.

2. Higher-order moments of mixed acceptance variates

In the previous sections, we considered calculations of
higher moments 〈〈q1q2 · · · qn〉〉 computed for a single accep-
tance or particle species (i.e., for a single kinematic bin or
for a specific species or both). To compute differential corre-
lation functions involving several kinematic bins or species,
we now proceed to compute expectation values of the form
〈〈q1q2 · · · qn p1 · · · pmr1 · · · ro〉〉, where q, p, and r represent
distinct kinematic bins or species. The discussion is here
limited to three bins (or species) for simplicity’s sake but
it is trivially extended to an arbitrary number of bins and
species. The particle multiplicities in each bin are denoted
Ni, i = 1, . . . , 3. Deviates are denoted �qi, �p j , and �rk for
particles in bins 1, 2, and 3, respectively. Moments for all
particles detected in a single bin are given by expressions of
the form of Eqs. (41)–(44) already considered in Sec. III C 1.
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We thus need to consider mixed moments only in this section.
Lowest mixed moments are given by expressions of the form

〈〈q1 p1〉〉 = 1

〈N1N2〉

〈
N1∑

i=1

qi

N2∑
j=1

p j

〉
, (46)

〈〈q1q2 p1〉〉 = 1

〈N1(N1 − 1)N2〉

〈
N1∑

i1 �=i2=1

qi1 qi2

N2∑
j=1

p j

〉
, (47)

〈〈q1 p1r1〉〉 = 1

〈N1N2N3〉

〈
N1∑

i=1

qi

N2∑
j=1

p j

N3∑
k=1

rk

〉
. (48)

More generally, considering moments of order m1, m2, and m3

for bins 1, 2, and 3, one gets expressions of the form

〈〈q1 · · · qm1 p1 · · · pm2 r1 · · · rm3〉〉 = 1

Nm1,m2,m3

〈
N1∑

i1 �=···�=im1 =1

qi1 qi2 · · · qim1

N2∑
j1 �=···�= jm2 =1

p j1 p j2 · · · p jm2

N3∑
k1 �=···�=km3 =1

rk1 rk2 · · · rkm3

〉
,

(49)

where the sums
∑N1

i1 �=···�=im1 =1,
∑N2

j1 �=···�= jm2 =1 and
∑N3

k1 �=···�=km3 =1 span tuplets of distinct particles in bins 1, 2, and 3, respectively.
Also note that the normalization corresponds to the average number of such tuplets:

Nm1,m2,m3 ≡〈N1(N1 − 1) · · · (N1 − m1 + 1)N2(N2 − 1) · · · (N2 − m2 + 1)N3(N3 − 1) · · · (N3 − m3 + 1)〉. (50)

Event ensembles of mixed moments of deviates are defined in a similar fashion. At lowest orders, one gets expressions of the
form

〈〈�q1�p1〉〉 = 〈〈q1 p1〉〉 − 〈〈q〉〉〈〈p〉〉, (51)

〈〈�q1�p1�r1〉〉 = 〈〈q1 p1r1〉〉 − 〈〈p〉〉〈〈q1r1〉〉 − 〈〈q〉〉〈〈p1r1〉〉 − 〈〈r〉〉〈〈q1 p1〉〉 + 2〈〈q〉〉〈〈p〉〉〈〈r〉〉, (52)

and higher-order moments are discussed in Appendix C. The
computation of mixed moments and their deviates nominally
requires nested loops over all particles and bins of interest. But
as for the single bin case discussed in the previous section, it
is advantageous to introduce event-wise sums of the variables
qi, pi, and ri according to

Qn =
N∑

i=1

qn
i , Pn =

N∑
i=1

pn
i , Rn =

N∑
i=1

rn
i . (53)

It then becomes possible, as discussed in Ap-
pendix C, to compute the event ensemble averages
〈〈q1 · · · qm1 p1 · · · pm2 r1 · · · rm3〉〉 and their corresponding
deviates 〈〈�q1 · · · �qm1�p1 · · · �pm2�r1 · · · �rm3〉〉 based
on recursive formula of the moments of Qn, Pn, and Rn.

D. Differential measurements of multiple-particle correlations

The multiparticle correlators 〈〈q1q2 · · · qn〉〉 and
〈〈�q1�q2 · · · �qn〉〉 presented in Sec. III A, equipped with the
method of moments discussed in Sec. III C, provide a basis
for the extension of former techniques used for measurements
of transverse momentum correlations, rapidity correlations, as
well as charge correlations (including baryon and strangeness
numbers correlations).

The method of moments, whether used with a single or sev-
eral variables, is nominally very powerful because it enables
joint measurements involving many particles simultaneously.
However, it is also clear that the complexity of such measure-
ments can quickly grow out of hand.

As was described in Sec. II, one can classify analyses
of potential interest based on the number of kinematic bins

being used (i.e., partitions of the 3× momentum space), the
number of observables of interest (e.g., transverse momentum
pT, rapidity y, charge q, anisotropic flow coefficients, etc.)
and the number of particle types or species being considered
(e.g., inclusive charged particles, positively versus negatively
charged particles, specific species such as pions, kaons, etc.).
We thus organize the discussion of this section in terms of
few use cases, beginning with the simplest case involving
a single variable q, with event-wise variable Qn, and next
considering progressively more complex use cases involving
two variables: q, p with event-wise variables Qn and Pn, as
well as more complex analyses based on several variables.

1. One variable (q)

Measurements of pT (alternatively y or q, etc.) correla-
tions 〈〈�pT,1�pT,2 · · · �pT,n〉〉 involving n � 4 particles of a
given type of particle in a specific acceptance can be read-
ily undertaken based on the method of moments discussed
in Sec. III C. If it is possible or practical to carry out the
analysis in two or more passes on the data, than one can
use the first pass to determine 〈〈pT〉〉. In the second pass, one
can then define and compute Qn = ∑N

i (pT − 〈〈pT〉〉) event by
event and then use Eqs. (D3)–(D9) to obtain n-order moments
〈〈�pT,1�pT,2 · · ·�pT,n〉〉. If the determination of 〈〈pT〉〉 in a
first pass is not practical, then one can define and compute
Qn = ∑N

i pT event by event, use Eqs. (D3)–(D9) to obtain
〈〈pT,1 pT,2 · · · pT,n〉〉 and Eqs. (C1)–(C5) or Eq. (C6) to obtain
the n-order deviates 〈〈�pT,1�pT,2 · · ·�pT,n〉〉.

2. Two variables (q and p)

We first discuss examples of pT fluctuation studies. Let
qi and pi represent the transverse momentum of particles
measured in two distinct rapidity acceptance ranges �A and
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�B of equal widths separated by a finite rapidity gap �η,
as schematically illustrated in Fig. 1. One can then measure
correlators of the form 〈〈�q1�p1〉〉, 〈〈�q1�q2�p1�p2〉〉, etc.,
at any order to determine the strength of n = 2, 4, etc., trans-
verse momentum correlations as a function of the width of
the rapidity gap. The method of moments, however, enables
differential measurements involving multiple n � 4 particles.
Let qi, i = 1, . . ., represent the pT of particles in bin A, and
pi, i = 1, . . . represent the pT of particles in bin B. One
then defines event-wise variables Qn = ∑N

i pn
T,i (from bin A)

and Pn = ∑N
i pn

T,i (from bin B). Equations (D3)–(D9) are
then used to obtain 〈〈q1q2 · · · qn p1 p2 · · · pn〉〉 and Eqs. (C1)–
(C5) or Eq. (C6) are used to obtain the n-order deviates
〈〈�q1�q2 · · · �qn�p1�p2 · · ·�pn〉〉 corresponding to pT cor-
relators involving n particles from bin A and n particles from
bin B.

The method described above can readily be adopted also
for measurements of charge correlations and multiparticle bal-
ance functions. In this case, qi and pi represent the charge of
particles in bins A and B. Applications of Eqs. (D3)–(D9) then
yield generic charge correlators 〈〈q1q2 · · · qn p1 p2 · · · pn〉〉 and
Eqs. (C1)–(C5) or Eq. (C6) can be used to compute deviates.

Two additional use cases based on two variables qi and
pi (with the corresponding event-wise variables Qn and Pn)
are worth mentioning. One involves the study of two dis-
tinct physics observables (e.g., charge, pT, rapidity, etc.) in
a single rapidity bin whereas the other involves the mea-
surement of a specific particle observable, e.g., the pT, for
two types of particle species. In the first case, the variable
qi and pi represent the two observables of interest whereas
in the second they tag the species of interest. The determi-
nation of correlators between two observables or two types
of particle species then proceeds in the manner already
described. First get 〈〈q1q2 · · · qn p1 p2 · · · pn〉〉 with Eqs. (D3)–
(D9) and next used Eqs. (C1)–(C5) to compute the deviates
of interest.

3. Three or more variables (q, p, r,...)

The examples discussed in the previous paragraph are
readily extended towards the computation of factorial cu-
mulants or correlation functions involving three or more
kinematic bins and particle types. Of particular interest is
the determination of multiple particle balance functions. Al-
though it may not be practical to conduct analyses involving
explicit computation of more than three or four kinematic
bins or species, it remains possible to consider balance
functions involving large number of particles towards the
study of long-range multiparticle correlations constrained by
charge conservation (or other quantum number conservation
laws).

As mentioned in Sec. II, we consider here the study of
four-particle balance functions using two kinematic bins A
and B separated by a finite rapidity gap, as was illustrated in
Figs. 1(a) and 1(b). The bins A and B could be azimuthally
symmetric (i.e., with full azimuth coverage 0 � ϕ < 2π ), or
feature partial coverage to suppress contributions from back-
to-back jets, as shown in Figs. 1(c) and 1(d) of the same figure.
Figure 1(a) illustrates a measurement involving two positively

charged particles in A and two negatively particles in B. A
measurement of B2+2−

4 shall then be sensitive to the strength
(or probability) of processes featuring four correlated particles
with two +ve and two −ve particles separated by a finite
rapidity gap. By contrast, the analysis illustrated in Fig. 1(b)
would focus on correlated quartets featuring two nearby pairs
of +ve and −ve particles. These could be produced by string-
like fragmentation processes yielding four or more correlated
particles, but it could also result from string fragmentation
producing two neutral objects, each decaying into pairs of
+ve and −ve particles.

It is also worth mentioning prior discussions and exemplars
of multiparticle correlation functions and their cumulants
[30–33].

IV. MULTIPARTICLE BALANCE FUNCTIONS

Yet another application of integral and differential correla-
tion functions of the form of Eqs. (3)–(6), involves the study
of net-charge (and other quantum numbers) fluctuations. We
first show how Eq. (3) can be used to measure net-charge
fluctuations and how it connects to measurements of balance
functions [10,17,18]. We also remind the reader how second
moments of the charge are connected to the νdyn observable
[24] and differential charge balance functions [17,18]. This
then provides a convenient mechanism to introduce higher-
order balance functions.

To express net-charge fluctuations, we rewrite Eq. (3) by
replacing the transverse momentum pT by the charge qi of
particles,

〈〈�q1�q2〉〉 ≡ 1

〈N (N − 1)〉
∫

�

�q1�q2ρ2( �p1, �p2)d �p1d �p2,

(54)

where deviates are defined as �qi ≡ qi − 〈〈q〉〉. The variables
qi are considered implicit functions of the momentum of the
particles and thus cannot be factorized out of the integral. To
build this point, let us consider the expression of the average
charge in the acceptance � of interest

〈〈q〉〉 ≡ 1

〈N〉
∫

�

ρ̃1( �p)d �p, (55)

where ρ̃1( �p) represents a charge density, i.e., not the num-
ber density ρ1( �p1). Equation (55) may be computed based
on number densities if ρ̃1( �p) is replaced (symbolically) by
qαρα

1 ( �p) where qα is the charge of the particle species of
interest, α. A similar development can be done for strangeness
or baryon quantum numbers by considering strangeness and
baryon densities instead of charge densities. Here for the sake
of simplicity, let us restrict the discussion to three types of
charged particles: positively charged, neutral, and negatively
charged hadrons. The single particle density is then ρ1( �p) =
ρ

(+)
1 ( �p) + ρ

(0)
1 ( �p) + ρ

(−)
1 ( �p). Substituting this expression in

Eq. (55) and inserting the values qi = +1, 0,−1 for each of
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the three types, one gets

〈〈q〉〉 ≡ 1

〈N〉

[
(+1) ×

∫
�

ρ
(+)
1 ( �p)d �p + (0) ×

∫
�

ρ
(0)
1 ( �p)d �p

+ (−1) ×
∫

�

ρ
(−)
1 ( �p)d �p

]

= 1

〈N〉 [〈N+〉 − 〈N−〉], (56)

where, in the second line, we applied Eq. (15). In the fol-
lowing, we assume neutral particles are not measured and
consider the total multiplicity N as the sum of the multi-
plicities of positively and negatively charged particles, i.e.,
N = N (+) + N (−).

The calculation of 〈〈�q1�q2〉〉, which corresponds to the
covariance of the charges of two measured particles, proceeds

in the same way. First expand �q1�q2 and compute its en-
semble average

〈〈�q1�q2〉〉 = 〈〈q1q2〉〉 − 〈〈q〉〉2, (57)

which may be expressed according to

〈〈�q1�q2〉〉 = 1

〈N (N − 1)〉
∫∫

�

[q1q2ρ2( �p1, �p2)

−q1ρ1( �p1)q2ρ1( �p2)]d �p1d �p2 (58)

= 1

〈N (N − 1)〉
∫∫

�

q1q2C2( �p1, �p2)d �p1d �p2,

(59)

where in the second line, we used the expression of the second
cumulant C2 given by Eq. (12). Expanding qρ1 as in Eq. (56)
and q1q2ρ2 according to

q1q2ρ2 = ρ
(++)
2 − ρ

(+−)
2 − ρ

(−+)
2 + ρ

(−−)
2 , (60)

the integration yields

〈〈�q1�q2〉〉 = 〈N+(N+ − 1)〉 + 〈N−(N− − 1)〉 − 2〈N+N−〉 − (〈N+〉 − 〈N−〉)2

〈N (N − 1)〉 . (61)

At LHC, A–A collisions produces approximately equal multiplicities (and densities) of positively and negatively charged
particle: 〈N+〉 ≈ 〈N−〉. The above expression for 〈〈�q1�q2〉〉 can thus be written

〈〈�q1�q2〉〉 ≈ 〈N+〉〈N−〉
〈N (N − 1)〉

[
〈N+(N+ − 1)〉

〈N+〉〈N+〉 + 〈N−(N− − 1)〉
〈N−〉〈N−〉 − 2

〈N+N−〉
〈N+〉〈N−〉

]
(62)

within which one recognizes the expression of ν+−
dyn [24]

ν+−
dyn ≡〈N+(N+ − 1)〉

〈N+〉〈N+〉 + 〈N−(N− − 1)〉
〈N−〉〈N−〉 − 2

〈N+N−〉
〈N+〉〈N−〉

= F++
2

F+
1 F+

1

+ F−−
2

F−
1 F−

1

− 2
F+−

2

F+
1 F−

1

= R++
2 + R−−

2 − 2R+−
2 , (63)

where in the second line we used the definition of factorial
cumulants Fα

1 and Fα1α2
2 and in the third line, we used the

normalized cumulant ratios Rα1α2
2 , defined in Eq. (2), with

α1 = + and α2 = −. One then obtains the useful result

〈〈�q1�q2〉〉 ≈ 〈N〉2

4〈N (N − 1)〉ν
+−
dyn . (64)

A similar development can be carried out with a differential
version of 〈〈�q1�q2〉〉 and one finds

〈〈�q1�q2〉〉( �p1, �p2) = − 〈N〉
4〈N (N − 1)〉

× [B+−
2 ( �p1, �p2) + B−+

2 ( �p1, �p2)],
(65)

where B+−
2 ( �p1, �p2) and B−+

2 ( �p1, �p2) are bound unified bal-
ance functions [17] defined according to

B+−
2 ( �p1, �p2) = 1

〈N−〉 [C+−
2 ( �p1, �p2) − C−−

2 ( �p1, �p2)], (66)

B−+
2 ( �p1, �p2) = 1

〈N+〉 [C−+
2 ( �p1, �p2) − C++

2 ( �p1, �p2)]. (67)

The functions B+−
2 ( �p1, �p2) and B−+

2 ( �p1, �p2) are constructed
in such a way that their respective integral each converge
to unity in the full acceptance limit [17].1 The fluctuations
〈〈�q1�q2〉〉( �p1, �p2) thus have an upper bound 〈N〉/〈N (N −
1)〉. And since 〈N (N − 1)〉 → 〈N〉2 in the large N (and Pois-
son) limit, one concludes that 〈〈�q1�q2〉〉( �p1, �p2) should scale
in inverse proportion of the system size and the produced par-
ticle multiplicity. This expectation is verified from a number
of recent measurements of charge fluctuations [41–43].

It is natural to seek to extend Eq. (65) to higher moments by
considering expressions of the form 〈〈�q1�q2 · · · �qn〉〉. We
begin, in this section, with a discussion of four-particle bal-
ance functions based on an expansion of 〈〈�q1�q2�q3�q4〉〉.

1For charge conserving processes.
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Extensions to higher orders n = 6, . . . , 10 are presented in
Appendix E.

To compute 〈〈�q1�q2�q3�q4〉〉, we first expand the devi-
ates, compute the event ensemble of the resulting expression
and find

〈〈�q1�q2�q3�q4〉〉 = 〈〈q1q2q3q4〉〉 − 〈〈q〉〉〈〈q1q2q3

+ q1q2q4 + q1q3q4 + q2q3q4〉〉
+ 〈〈q〉〉2〈〈q1q2 + q1q3 + q1q4

+ q2q3 + q2q4 + q3q4〉〉 − 3〈〈q〉〉4.

(68)

We observe the above expression nearly matches the fourth
cumulant expansion, Eq. (A33), but misses a term of the form
3〈〈�q1�q2〉〉〈〈�q3�q4〉〉. This additional term corresponds
to the square of two-particle contributions and needs to be
subtracted to eliminate such trivial contributions to the four
particle correlator. Subtracting 3〈〈�q1�q2〉〉〈〈�q3�q4〉〉,
the integral of C4, denoted I+−

4 , may then be written

according to

I+−
4 ≡ 〈〈�q1�q2�q3�q4〉〉 − 3〈〈�q1�q2〉〉〈〈�q3�q4〉〉

(69)

= 1

〈N (N − 1)(N − 2)(N − 3)〉
∫∫

�

q1q2q3q4

× C4( �p1, . . . , �p4)d �p1 · · · d �p4. (70)

We thus proceed to use the integral I+−
4 and the differential

cumulant C4( �p1, . . . , �p4) to introduce four-particle balance
functions. To this end, we write the charged-particle
four-tuplet decomposition of C4 as follows:

C4( �p1, . . . , �p4) =C++++
4 ( �p1, . . . , �p4) + C−−−−

4 ( �p1, . . . , �p4)

− 4C+++−
4 ( �p1, . . . , �p4) − 4C−−−+

4

× ( �p1, . . . , �p4) + 6C++−−
4 ( �p1, . . . , �p4),

(71)

where we assumed the densities are symmetric under
permutations of indices, e.g., ρ++−−

4 = ρ−+−+
4 == ρ−−++

4 ,
to compute each of the coefficients. The integral, Eq. (69),
becomes

I+−
4 = 1

N (N − 1)(N − 2)(N − 3))

[∫
�

C++++
4 ( �p1, . . . , �p4)d �p1 · · · d �p4 +

∫
�

C−−−−
4 ( �p1, . . . , �p4)d �p1 · · · d �p4

−4
∫

�

C−+++
4 ( �p1, . . . , �p4)d �p1 · · · d �p4 − 4

∫
�

C+−−−
4 ( �p1, . . . , �p4)d �p1 · · · d �p4

+6
∫

�

C++−−
4 ( �p1, . . . , �p4)d �p1 · · · d �p4

]
(72)

= [F++++ − 4F+++− + 6F++−− − 4F−−−+ + F−−−−]

N (N − 1)(N − 2)(N − 3)
, (73)

where in the last line we used the definition, Eq. (A33), of the four-particle factorial cumulant. By analogy to Eq. (65), one can
then introduce four-particle differential “balance functions” according to

I+−
4 ( �p1, �p2, �p3, �p4) ≡ 4!

2 · 2!

〈N−(N− − 1)〉
〈N (N − 1)(N − 2)(N − 3)〉B+−

4 ( �p1, �p2, �p3, �p4)

+ 4!

2 · 2!

〈N+(N+ − 1)〉
〈N (N − 1)(N − 2)(N − 3)〉B−+

4 ( �p1, �p2, �p3, �p4), (74)

where

B+−
4 ( �p1, �p2, �p3, �p4) = 2

4!/2!

[3C++−−
4 ( �p1, . . . , �p4) − 4C+−−−

4 ( �p1, . . . , �p4) + C−−−−
4 ( �p1, . . . , �p4)]

〈N−(N− − 1)〉 , (75)

B−+
4 ( �p1, �p2, �p3, �p4) = 2

4!/2!

[3C−−++
4 ( �p1, . . . , �p4) − 4C−+++

4 ( �p1, . . . , �p4) + C++++
4 ( �p1, . . . , �p4)]

〈N+(N+ − 1)〉 . (76)

We use the notations B+−
4 and B−+

4 , to denote n particle bal-
ance functions involving, the balancing of negatively and pos-
itively charged particles by positively and negatively charged
particles, respectively. Inclusion of the ratio of factorial coef-
ficients (4!/2!) insures the integral of B±∓

4 converge to unity
in the limit of full acceptance. Similar coefficients are intro-
duced, in Appendix E to achieve proper normalization of the

higher-order balance functions. To indeed verify the integrals
of B+−

4 and B−+
4 integrate to unity over the full acceptance,

let P(n) represent the probability of a process involving the
production of n pairs of positively and negatively charged
particles. Mixed factorial moments are thus trivially given by

f ±
1 = 〈N±〉 =

∞∑
n=0

nP(n) ≡ 〈n〉, (77)
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f ±±
2 = 〈N±(N± − 1)〉 = 〈n2〉 − 〈n〉, (78)

f ±∓
2 = 〈N±N∓〉 = 〈n2〉, (79)

f ±±±±
4 = 〈n4〉 − 6〈n3〉 + 11〈n2〉 − 6〈n〉, (80)

f ±±±∓
4 = 〈n4〉 − 3〈n3〉 + 2〈n2〉, (81)

f ±±∓∓
4 = 〈n4〉 − 2〈n3〉 + 〈n2〉. (82)

Assuming these are in fact fourth-order (or higher)
correlations, the integral of B+−

4 ( �p1, . . . , �p4) over the full
momentum volume thus yields∫

�

B+−
4 ( �p1, . . . , �p4)d �p1 · · · d �p4

= 2

4!/2!

1

〈n(n − 1)〉 [3(〈n4〉 − 2〈n3〉 + 〈n2〉) − 4(〈n4〉

− 3〈n3〉 + 2〈n2〉) + (〈n4〉 − 6〈n3〉 + 11〈n2〉 − 6〈n〉)]

= 1, (83)

which is indeed equal to unity. By symmetry, the integral of
B−+

4 also converges to unity in a full acceptance measurement.
We thus have two equivalent four particle balance functions
to study charge balanced four particle correlations.

As for two-particle balance functions, the above expres-
sions can also be generalized to cross species balance function
and these shall feature simple sum rules similar to those satis-
fied by B2 functions [17].

Given they are based on four-particle cumulants, the
functions B+−

4 ( �p1, �p2, �p3, �p4) and B−+
4 ( �p1, �p2, �p3, �p4) shall

suppress, by construction, contributions from four-tuplets of
uncorrelated particles. Only four-tuplets featuring genuinely
correlated particles would contribute to the strength of the
correlators. Tuplets involving only two or three correlated
particles would have vanishing contributions. As such the
four-cumulant components of B4 should indeed suppress con-
tributions from resonance decays resulting into two or three
correlated particles. Contributions from hadron resonance de-
cays would then be limited to four prong decays. Considering
these typically have small probabilities, one would expect
the magnitude of B4 is then determined by other processes
such as “string fragmentation”, jet fragmentation, and other
multiparticle production processes. Contributions from jet
fragmentation processes can be singled out by using a cone-
shaped acceptance with, e.g., ϕ ≈ 1 and y ≈ 1. Conversely,
jets can be suppressed by using at least two relatively narrow
kinematic bins separated by a sizable rapidity gap. Removal
of two- and three-prong decays, as well as contributions from
jets, enables a direct study of the underlying processes, such
as string fragmentation, that lead to particle production over
extended ranges of rapidity. Long-range correlations have
already been observed in the context of anisotropic flow mea-
surements in pp, pA, and AA collisions. These measurements
show that the long correlations are largely dominated by the
geometry and fluctuations of the geometry of collisions. They
however say little about the underlying nature of the correla-
tions or the correlation length. Measurements of multiparticle
charge (or baryon) balance functions would change the focus
from the transverse geometry to the longitudinal structure of

these correlations and might then shed light on the nature and
origin of these correlations.

By construction, n-cumulants are nonvanishing only if
particle correlations of n-particle are present in the system
considered. Consequently, should observations yield vanish-
ing four-cumulants, it would imply that correlation between
balancing charges are only limited to second-order contri-
butions. If the four-cumulants are nonvanishing, they would
indicate more intricate production mechanisms. Either way,
measurements of B4 would provide new and valuable infor-
mation on the structure of particle production dynamics.

Higher-order balance functions, B±∓
n , with 6 � n � 10 can

be constructed in a similar way as B±∓
4 and are listed in Ap-

pendix E. As for B±∓
4 , higher-order balance functions would

suppress contributions from lower order correlations. A sys-
tematic study of B±∓

n for n = 4, 6, 8, etc., would then provide
sensitivity to increasingly more complicated production pro-
cesses featuring a growing number of correlated particles.
Such measurements should then provide additional and pow-
erful constrains on multiparticle production models.

V. RELATION TO NET-CHARGE CUMULANTS

Cumulants of the net-charge Q (as well as net baryon B
and net strangeness S) of the particles measured in a specific
acceptance � nominally provide a probe of the susceptibilities
of the matter formed in nucleus-nucleus collisions [44–48].
Several measurements of lower order cumulants (as well as
mixed cumulants) have been reported in the recent litera-
ture. Ratios of lower order cumulants have been studied, in
particular, in the context of the beam energy scans recently
performed at the Relativistic Heavy Ion Colliders (RHIC)
to identify signatures of a critical point of nuclear matter
[49,50]. Given the potential significance of such critical point,
considerable theoretical and experimental efforts have been
deployed to obtain relations between the properties of nuclear
matter, net-quantum number cumulants, as well as robust
techniques to measure these observables [47]. In this context,
note that it was recently shown that a simple relation exists
between the second net-charge cumulant, κ

Q
2 and net-charge

balance functions B [16] (also see discussions in Ref. [51]).
This relation is of particular interest because it expresses the
magnitude of the non trivial part (non-Poissonian) of κ

Q
2 in

terms of an integral of the charge balance function B across
a specific experimental acceptance (i.e., a specific kinematic
range). Given this integral converges to unity, by construction,
in the full acceptance limit, it implies the magnitude of κ

Q
2 is

determined by the shape and width of the balance function
relative to the width of the acceptance. This is critical for
the beam energy scan because, although the acceptance can
be kept fixed, the shape of the B is known to evolve with
produced species, system size, nucleus-nucleus collision cen-
trality, and beam energy [1,43,52–56]. As such, the magnitude
of κ

Q
2 thus constitutes a poorly defined reference in the search

of a critical point of nuclear matter. That said, it is also of in-
terest to consider how higher cumulants might be impacted by
charge conservation, the size of the experimental acceptance
of a measurement, and the dynamics of collisions.
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We saw, in Sec. IV, that balance functions natu-
rally arise in the calculation of moments 〈〈�q1�q2〉〉 and
〈〈�q1�q2�q3�q4〉〉 and yield expressions proportional to fac-
torial cumulants of the particle multiplicities. We thus seek to
determine relations between net-charge cumulants, net-charge
factorial cumulants, and factorial cumulants of multiplicities
of positively and negatively charge particles. Details of the
derivations are presented in Appendix A. In this section, we
summarize results of interest which indicate that highest order
contributions of net-charge cumulants are identical to inte-
grals of multiparticle balance functions of same order.

It is well known that moments, cumulants, factorial mo-
ments, and factorial cumulants are readily computed based on
their respective generating functions which, herewith, we de-
note by Gm(θQ), Gc(θQ) ≡ ln Gm(θQ), G f (sQ), and GF (sQ) ≡
ln G f (sQ), where the sub-indices m, c, f , and F indicate
generating functions of moments, cumulants, factorial mo-
ments, and factorial cumulants, respectively. As discussed
in Appendix A 3, moments mQ

n are obtained by computing
nth derivatives of Gm w.r.t. θQ, evaluated at θQ = 0, while
cumulants κQ

n are obtained from nth order derivatives of Gc

w.r.t. θQ also evaluated at θQ = 0. Given Gc = ln Gm, it is
then straightforward to compute κQ

n in terms of moments
mQ

n′ , with n′ � n [see Eqs. (A41)–(A43)]. Similarly, factorial
and factorial cumulants can be also obtained by nth order
derivatives of G f and GF w.r.t. to sQ. It is however more useful
to express the generating functions in terms of multiplicities
of positively and negatively charged particles N+ and N− and
their associated dummy variables θ+ and θ− for moments and
cumulants calculations and dummy variables s+ and s− for
factorial moments and factorial cumulant calculations. It is
then possible to obtain relations between net-charge cumu-
lants and (mixed) cumulants of N+ and N− as well as with
factorial cumulants of these multiplicities. As shown in detail
in Appendix A 3, one finds even order n-cumulants are given
by

κ
Q
2 = F+

1 + F−
1 + F++

2 − 2F+−
2 + F−−

2 , (84)

κ
Q
4 = F+

1 + F−
1 + · · · + F 4+

4 − 4F 3+1−
4 + 6F 2+2−

4

− 4F 1+3−
4 + F 4−

4 , (85)

κ
Q
6 = F+

1 + F−
1 + · · · + F 6+

6 − 6F 5+1−
6 + 15F 4+2−

6

− 20F 3+3−
6 + 15F 2+4−

6 − 6F 1+5−
6 + F 6−

6 , (86)

and so on for higher orders. Intermediate terms of order
1 < n′ < n were omitted for the sake of clarity. Comparing
the above expressions, as well as Eqs. (A61) and (A62), with
Eqs. (E3)–(E7), we observe that the cumulants κQ

n feature a
dependence on the mixed factorial moments F k(+)n−k(−)

n that
exactly matches the expression of the balance functions of
order n � 4. Indeed, as for κ

Q
2 , we find that the nontrivial

component of higher-order κQ
n are exactly proportional to

integrals of balance functions B+−
n , B−+

n introduced in Sec. IV.
Given these balance functions are governed by sum rules,
i.e., their full acceptance integrals are entirely determined by
charge conservation. We conclude that as for second-order
cumulants κ

Q
2 , the nontrivial components of higher cumulants,

κ
Q
2 , n � 4, are determined by integral of functions whose full

acceptance limit is solely driven by charge conservation. As
for basic balance functions, Eqs. (66) and (67), one expects
that these higher-order balance function integrals feature a
strong dependence on the rapidity and transverse momentum
coverage of the measurements, as well as the details of the
particle production processes at play in the collisions being
studied [47]. Additionally, as for basic balance functions, it
stands to reason that these higher balance function might
feature some dependence on collision centrality and beam
energy. Such dependencies might thus be better probed with
differential balance functions. This suggests that rather than
measuring cumulants κQ

n , which only feature information on
the integrals of balance functions, it would be better advised
to measure differential balance functions. Techniques to com-
pute multiparticle balance functions without the drawbacks of
multiple nested loops on particles of an event were discussed
in Sec. III C whereas kinematic configurations of measure-
ments of potential interest were presented in Sec. III D.

VI. SUMMARY

We first advocated, in Sec. II, for measurements of inte-
gral and differential of multiparticle correlation functions as
tools to extract characteristics of heavy ion collisions and
the matter they produce heretofore somewhat neglected and
susceptible of enhancing the understanding of the physics of
these complex systems. We next explicitly presented detailed
formula of such multiparticle correlations as well as tech-
niques to compute them in finite time (i.e., single loop on
all particles of interest) based on the methods of moments.
This set the stage for the development of what we called
multiparticle balance functions. These higher-order balance
functions were introduced based on expectation values of the
form 〈〈�q1�q2 · · · �qn〉〉 but are best computed in terms of
combinations of nth order cumulants (or integral factorial
cumulants). Much like the original balance functions B2 in-
troduced by Pratt et al. [10], these new balance functions
are defined in such a way that they integrate to unity in full
phase space (i.e., all rapidities and pT � 0). As such they too
provide a measure of the fraction of charge (or other quantum
number) balanced when measured in a finite acceptance. This
fraction is expected to be rather sensitive to the details of the
(charge conserving) particle production and transport. Indeed,
given they are constructed based on n-particle cumulants, they
should probe the particle production rapidity and momentum
correlation length scales and the details of the particle produc-
tion mechanisms.

We additionally showed these higher-order balance func-
tions have integrals, formulated in terms of factorial cu-
mulants, that are equal to the higher-order contributions
of net-charge cumulants κQ

n . This is an important result
that pertains to measurements of net-charge (as well as net
strangeness and net baryon number) fluctuations based on
cumulants κQ

n and their evolution with beam energy in the con-
text of the beam energy scan (BES) at the Relativistic Heavy
Ion Collider. The magnitude of these cumulants cannot be
corrected for charge conservation given the balance functions
integrate to unity in full acceptance. Indeed the magnitude
of the integral of the balance functions B±∓

n measured in a
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specific acceptance (in rapidity and transverse momentum)
is determined by the details of the particle production and
transport (e.g., presence of radial flow) and has thus relatively
little to do with the intrinsic properties of the matter they
originate from (i.e., the susceptibilities of the QGP).

The formalism developed in this work for the deployment
of multiple particle correlations is in many ways similar to the
techniques used in the context of measurements of anisotropic
flow. It is thus likely that the correlation functions discussed
in this work might be calculable, with minor or no adap-
tation, to existing generic frameworks of anisotropic flow
measurements. Of particular interest, however, are practical
implementations of �p dependent acceptance and efficiency
corrections at the single particle level. Also of interest are
efficiency losses related to correlated detector effects that
likely manifest themselves differently in the context of the
correlation functions discussed in this work. The authors thus
plan to follow up this work with additional studies of these
practical effects.
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APPENDIX A: MOMENTS, CUMULANTS, FACTORIAL
MOMENTS, AND FACTORIAL CUMULANTS

The calculation of moments, cumulants, factorial mo-
ments, and factorial cumulants based on their respective
generating functions are discussed in Appendix A 1 for single
variable systems, in Appendix A 2 for joint-measurements of
multivariable systems, and in Appendix A 3 for the specific
case of a collision system’s net charge. Generalization of the
notions of moments, cumulants, and their properties were
discussed by Kubo [57]. Properties of cumulants were also
discussed more recently in the context of flow observables
[58]. In the following, we simply state the results needed
elsewhere in this work.

1. Single variable systems

Recall that given a function P(N ) stipulating the probabil-
ity of observing a value N , algebraic moments of N , denoted
mn, are defined as

mn ≡ 〈Nn〉 =
∞∑

N=0

NnP(N ). (A1)

Additionally, defining the moment generating function
Gm(θ ) = 〈eθN 〉, one readily verifies the moments mn can be
computed according to

mn = ∂n
θ Gm(θ )|

θ=0, (A2)

where ∂θ = ∂/∂θ . Cumulants of N of order n, denoted κn,
are similarly defined and computed with the introduction of a
cumulant generating functions Gc(θ ) ≡ ln Gm(θ ) according to

κn = ∂n
θ Gc(θ )|

θ=0 = ∂n
θ ln Gm(θ )|

θ=0. (A3)

Application of the right-hand side (r.h.s.) of the above
expression readily yields the cumulants κn as linear
combinations of the moments mn. In the context of
measurements of particle densities of order n, discussed
in this work, it is also convenient to consider factorial
moments and factorial cumulants. Factorial moments, fn, are
formally defined with the introduction of generating functions
G f (θ ) = 〈sN 〉, where s = eθ and computed according to

fn = ∂n
s G f (s)|s=1, (A4)

where ∂s = ∂/∂s. Likewise, factorial cumulants, Fn, are
formally defined as derivatives of a factorial cumulant
generating functions GF (s) ≡ ln G f (s)

Fn = ∂n
s GF (s)|s=1 = ∂n

s ln G f (s)|s=1. (A5)

Application of the r.h.s. of the above expression yields
factorial cumulants Fn as combinations of the factorial
moments fn. Computation with Mathematica [59] yields the
following expressions for the ten lowest orders

F1 = f1 (A6)

F2 = − f 2
1 + f2 (A7)

F3 = 2 f 3
1 − 3 f1 f2 + f3 (A8)

F4 = −6 f 4
1 − 12 f 2

1 f2 − 3 f 2
2 − 4 f1 f3 + f4 (A9)

F5 = 24 f 5
1 − 60 f 3

1 f2 + 30 f1 f 2
2 + 20 f 2

1 f3 − 10 f2 f3

−5 f1 f4 + f5 (A10)

F6 = −120 f 6
1 + 360 f 4

1 f2 − 270 f 2
1 f 2

2 + 30 f 3
2 − 120 f 3

1 f3

+120 f1 f2 f3 − 10 f 2
3 + 30 f 2

1 f4 − 15 f2 f4 − 6 f1 f5 + f6

(A11)

F7 = 720 f 7
1 − 2520 f 5

1 f2 + 2520 f 3
1 f 2

2 − 630 f1 f 3
2 + 840 f 4

1 f3

+1260 f 2
1 f2 f3 + 210 f 2

2 f3 + 140 f1 f 2
3 − 210 f 3

1 f4

+210 f1 f2 f4 − 35 f3 f4 + 42 f 2
1 f5 − 21 f2 f5

−7 f1 f6 + f7 (A12)

F8 = − 5040 f 8
1 + 20160 f 6

1 f2 − 25200 f 4
1 f2 + 10080 f 2

1 f 3
2

− 630 f 4
2 − 6720 f 5

1 f3 + 13440 f 3
1 f2 f3 − 5040 f1 f 2

2 f3

− 1680 f 2
1 f 2

3 + 560 f2 f 2
3 + 1680 f 4

1 f4 − 2520 f 2
1 f4

+ 420 f 2
2 f4 + 560 f1 f3 f4 − 35 f 2

4 − 336 f 3
1 f5

+ 336 f1 f2 f5−56 f3 f5+56 f 2
1 f6 − 28 f2 f6 − 8 f1 f7 + f8,

(A13)

F9 = 40320 f 9
1 − 181440 f 7

1 f2 + 272160 f 5
1 f2 − 151200 f 3

1 f 3
2

+ 22680 f1 f 4
2 + 60480 f 6

1 f3 − 151200 f1 f2 f 2
3

+ 90720 f 2
1 f 2

2 f3 − 7560 f 3
2 f3 + 20160 f 3

1 f3

− 15120 f1 f2 f 2
3 + 560 f 3

3 − 15120 f 5
1 f4 + 30240 f 3

1 f2 f4
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− 11340 f1 f 2
2 f4 − 7560 f 2

1 f3 f4 + 2520 f2 f3 f4

+ 630 f1 f 2
4 + 3024 f 4

1 f5 − 4536 f 2
1 f2 f5 + 756 f 2

2 f5

+ 1008 f1 f3 f5 − 126 f4 f5 − 504 f 3
1 f6 + 756 f 2

2 f5

+ 1008 f1 f3 f5 − 126 f4 f5 − 504 f 3
1 f6 + 504 f1 f2 f6

− 84 f3 f6 + 72 f 2
1 − 36 f2 f7 − 9 f1 f8 + f9, (A14)

F10 = − 362880 f 10
1 + 1814400 f 8

1 f2 − 3175200 f 6
1 f 2

2

+ 2268000 f 4
1 f 3

2 − 567000 f 2
1 f 4

2 + 22680 f 5
2

− 604800 f 7
1 f3 + 1814400 f 5

1 f2 f3 − 1512000 f 3
1 f 2

2 f3

+ 302400 f1 f 3
2 f3 − 252000 f 4

1 f 2
3 + 302400 f 2

1 f2 f 2
3

− 37800 f 2
2 f 2

3 − 16800 f1 f 3
3 + 151200 f 6

1 f4

− 378000 f 4
1 f2 f4 + 226800 f 2

1 f 2
2 f4 − 18900 f 3

2 f4

+ 100800 f 3
1 f3 f4 − 75600 f1 f2 f3 f4 + 4200 f 2

3 f4

− 9450 f 2
1 f 2

4 + 3150 f2 f 2
4 − 30240 f 5

1 f5

+ 60480 f 3
1 f2 f5 − 22680 f1 f 2

2 f5 − 15120 f 2
1 f3 f5

+ 5040 f2 f3 f5 + 2520 f1 f4 f5 − 126 f 2
5 + 5040 f 4

1 f6

− 7500 f 2
1 f2 f6 + 1260 f 2

2 f6 + 1680 f1 f3 f6

− 210 f4 f6 − 720 f 3
1 f7 + 720 f1 f2 f7 − 120 f3 f7

+ 90 f 2
1 f8 − 45 f2 f8 − 10 f1 f9 + f10 (A15)

Factorial cumulants, Fn, are of particular interest in the context
of measurements of particle production because they identi-
cally vanish in the absence of correlations of order n. Note that
the relations between cumulants and moments are formally
identical to the above given the definitions of cumulants and
factorial cumulants in terms of log of their respective generat-
ing functions.

It is straightforward (and convenient) to express cumulants
as combinations of factorial cumulants if one notices that
Gc(θ ) = GF (s) given s = eθ . Taking n-order derivatives ∂n

θ of
the left-hand side (l.h.s.) yields cumulants κn, while deriva-
tives on the r.h.s. are computed based on ∂θ = (∂s/∂θ )∂s =
s∂s and yield expressions in terms of Fn′ with n′ � n. The ten
lowest orders are

κ1 = ∂θGc|θ=0 = s∂sGF |s=1 = F1, (A16)

κ2 = ∂2
θ Gc

∣∣
θ=0 = s∂s(s∂sGF )|s=1 = F1 + F2, (A17)

κ3 = F1 + 3F2 + F3, (A18)

κ4 = F1 + 7F2 + 6F3 + F4, (A19)

κ5 = F1 + 15F2 + 25F3 + 10F4 + F5, (A20)

κ6 = F1 + 31F2 + 90F3 + 65F4 + 15F5 + F6, (A21)

κ7 = F1 + 63F2 + 301F3 + 350F4 + 140F5 + 21F6 + F7,

(A22)

κ8 = F1 + 127F2 + 966F3 + 1701F4 + 1050F5 + 266F6

+28F7 + F8, (A23)

κ9 = F1 + 255F2 + 3025F3 + 7770F4 + 6951F5

+2646F6 + 462F7 + 36F8 + F9, (A24)

κ10 = F1 + 511F2 + 9330F3 + 34105F4 + 45525F5

+22827F6 + 5880F7 + 750F8 + 45F9 + F10. (A25)

First note that cumulants of a given order k feature a linear
combination of all factorial cumulants of lower order k′ � k.
Second, remember that in the context of particle correlation
measurements, one can conclude there are correlations of k or
more particles only when a factorial cumulant Fk is nonvan-
ishing. Consequently, if a factorial Fk is consistent with zero,
within statistical uncertainties, there is no point in measuring
κk or higher-order cumulants κk′ , with k′ > k since these do
not carry additional experimental information about the sys-
tem under study. Indeed, in such cases, the magnitude of κk

is primarily determined by factorial cumulants of the lowest
orders involving few or, possibly, no particle correlations.

2. Multivariable systems

Given a function P( �N ) stipulating the probability of jointly
observing m variables �N ≡ (N1, N2, . . . , Nm) corresponding
to categories �α = (α1, α2, . . . , αm), which in the context of
this work corresponds to kinematic bins or particle species or
both, mixed algebraic moments of �N , denoted m�α

�n , are defined
as

m�α
�n ≡

∑
�N

m∏
i=1

Nni
i P( �N ), (A26)

and calculable based on a mixed moment generating functions
Gm(�θ ) ≡ 〈e

∑m
i=1 θiNi〉 according to

m�α
n =

(
n∏

i=1

∂θi

)
Gm(�θ )

∣∣∣∣∣�θ=0

, (A27)

where �α represents all the categories for which moments are
evaluated. For instance, a double derivative ∂θ1∂θ1 would yield
a second moment of N1, whereas ∂θ1∂θ2 would yield a mix
moment of N1 and N2. Proceeding as for a single variable, one
defines mixed cumulants according to

κ �α
n =

(
n∏

i=1

∂θi

)
ln Gm(�θ )

∣∣∣∣∣�θ=0

, (A28)

where �θ = 0 specifies derivatives are evaluated with θi = 0,
for i = 1, . . . , m. Similarly, mixed factorial moments, f �α

n ,
are defined based on mixed moment generating functions
G f (�s) ≡ 〈∏m

i=1 sNi〉 according to

f �α
n =

(
n∏

i=1

∂si

)
G f (�s)

∣∣∣∣∣
�s=1

, (A29)

where �s = 1 specifies derivatives are evaluated with si = 1,
for i = 1, . . . , m. Factorial cumulants are defined as deriva-
tives of the factorial cumulant generating functions GF (�s) ≡
ln G f (�s) according to

F �α
n =

(
n∏

i=1

∂si

)
ln G f (�s)

∣∣∣∣∣
�s=1

, (A30)
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Mathematica [59] enables a speedy and reliable computation of F �α
n . The lowest orders are found to be

Fα1α2
2 = f α1α2

2 − f α1
1 f α2

1 , (A31)

Fα1···α3
3 = f α1···α3

3 −
∑
(3)

f α1α2
2 f α3

1 + 2 f α1
1 f α2

1 f α3
1 , (A32)

Fα1···α4
4 = f α1···α4

4 −
∑
(4)

f α1···α3
3 f α4

1 −
∑
(3)

f α1α2
2 f α3α4

2 + 2
∑
(6)

f α1α2
2 f α3

1 f α4
1 − 6 f α1

1 × · · · × f α4
1 , (A33)

Fα1···α5
5 = f α1···α5

5 −
∑
(5)

f α1···α4
4 f α5

1 −
∑
(10)

f α1···α3
3 f α4α5

2 −
∑
(10)

f α1···α3
3 f α4

1 f α5
1 + 2

∑
(15)

f α1α2
2 f α3α4

2 f α5
1

− 6
∑
(10)

f α1α2
2 f α3

1 f α4
1 f α5

1 + 24 f α1
1 × · · · × f α5

1 , (A34)

Fα1···α6
6 = f α1···α6

6 −
∑
(6)

f α1···α5
5 f α6

1 −
∑
(15)

f α1···α4
4 f α5α6

2 −
∑
(15)

f α1···α4
4 f α5

1 f α6
1

−
∑
(10)

f α1α2α3
3 f α4α5α6

3 + 2
∑
(60)

f α1α2α3
3 f α4α5

2 f α6
1 − 6

∑
(20)

f α1α2α3
3 f α4

1 f α5
1 f α6

1

+ 2
∑
(15)

f α1α2
2 f α3α4

2 f α5α6
2 − 6

∑
(45)

f α1α2
2 f α3α4

2 f α5
1 f α6

1 + 24
∑
(15)

f α1α2
2 f α3

1 f α4
1 f α5

1 f α6
1

− 120 f α1
1 × · · · × f α6

1 , (A35)

where the notation
∑

(k) stands for a sum over k (ordered)
permutations of the labels α1, α2, and α3, . . ..

As in the case of a single variable, one can express mixed
cumulants κ �α

n in terms of factorial cumulants F �α
n based on

the equality Gc(�θ ) = GF (�s) by taking derivatives on l.h.s.
relative to θi whereas derivative are taken relative to ∂θi =
(∂si/∂θi )∂si = si∂si on the r.h.s..

3. Net-charge Q

Let Q = N+ − N− and N = N+ + N− define the net-charge
and total charged-particle multiplicity, respectively, detected
in a given event, with N+ and N−, respectively, representing
the number of positively and negatively charged particles in
that event. The number of positively and negatively charged
particles are expected to fluctuate on an event-by-event basis
both owing the stochastic nature of the particle production
and variations in the processes yielding particles. Moments
and cumulants of Q are of interest because they nominally
relate to charge susceptibility of the matter formed in heavy-
ion collisions [44–46,48]. Moments mQ

n of the net charge are
defined, as in Eq. (A1), according to

mQ
n ≡ 〈Qn〉 =

∑
Q

QnP(Q, N ), (A36)

where P(Q, N ) represents the probability of observing a
net-charge Q and total multiplicity N in a particular event.
Moments mQ

n can evidently be computed based on a gener-
ating function of the form Gm(N, Q) = 〈eNθN +QθQ〉 but it is
of greater interest to obtain the moments, the cumulants, and
so on, in terms of moments of the multiplicities N+ and N−.
Clearly, a simple change of variable enables the definition
of P(N+, N−) as the joint probability of observing events
with N+ and N− positively and negatively charged particles.

The moment generating functions of (mixed) moments of the
multiplicities can then be written

Gm(θ+, θ−) = 〈eN+θ++N−θ−〉 (A37)

and successive derivatives of Gm w.r.t. θ+ and θ−, evaluated at
θ+ = θ− = 0 yield moments and mixed moments of N+ and
N−. Introducing the notations ∂+ = ∂/∂θ+ and ∂− = ∂/∂θ−,
one computes lowest-order mixed moments according to

m±
1 = ∂±Gm(θ+, θ−)|θ+=θ−=0 = 〈N±〉, (A38)

m±±
2 = ∂±∂±Gm(θ+, θ−)|θ+=θ−=0 = 〈N2

±〉, (A39)

m+−
2 = ∂−∂+Gm(θ+, θ−)|θ+=θ−=0 = 〈N+N−〉, (A40)

and so on. Cumulants and mixed cumulants of the multi-
plicities N+ and N− are computed based on the cumulant
generating function Gc(θ+, θ−) ≡ ln Gm(θ+, θ−) by taking
successive derivatives w.r.t. θ+ and θ−. One for instance gets

κ±
1 = ∂±Gc(θ+, θ−)|θ+=θ−=0 = G−1

m ∂±Gm|θ+=θ−=0 = 〈N±〉,
(A41)

κ±±
2 = ∂±

(
G−1

m ∂±Gm
)∣∣

θ+=θ−=0 = 〈N2
±〉 − 〈N±〉2, (A42)

κ+−
2 = ∂−

(
G−1

m ∂+Gm
)∣∣

θ+=θ−=0 = 〈N+N−〉 − 〈N+〉〈N−〉,
(A43)

and similarly for higher orders. One recognizes κ±±
2 and κ+−

2
as the variance and covariance of N+ and N− while higher-
order κ3 and κ4 (not shown) are related to skewness and
kurtosis of these multiplicities.

In the context of measurements of net-charge fluctua-
tions, it is of interest to relate cumulants of the net-charge
Q to factorial cumulants of the N+ and N−. First note that
the factorial moments are calculable based on the factorial
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moment generating functions defined as G f (s+, s−) ≡
〈sN+

+ sN−
− 〉, where s+ = eθ+ and s− = eθ− . Introducing the nota-

tions ∂s+ ≡ ∂/∂s+ and ∂s− ≡ ∂/∂s−, mixed factorial moments
of N+ and N− are obtained by repeated evaluations of deriva-
tives ∂s+ and ∂s− evaluated at s+ = s− = 1:

f ±
1 = ∂s±G f (s+, s−)

∣∣
s+=s−=1 = 〈N±sN±−1

± sN∓
∓ 〉|s+=s−=1

= 〈N±〉, (A44)

f ±±
2 = ∂s±〈N±sN±−1

± sN∓
∓ 〉|s+=s−=1 = 〈N±(N± − 1)〉, (A45)

f +−
2 = ∂s−〈N+sN+−1

+ sN−
− 〉|s+=s−=1 = 〈N+N−〉, (A46)

f ±±±
3 = 〈N±(N± − 1)(N± − 2)〉, (A47)

f ±±∓
3 = 〈N±(N± − 1)N∓〉, (A48)

and so on. To compute the relations between κQ
n and factorial

cumulants of the multiplicities N+ and N−, we introduce ∂θQ ,
with θQ = θ+ − θ−, as a linear combination of ∂θ+ and ∂θ−
according to

∂θQ ≡ ∂

∂θQ
= ∂θ+

∂θQ

∂

∂θ+
+ ∂θ−

∂θQ

∂

∂θ−
= ∂θ+ − ∂θ− . (A49)

Cumulants of Q of order n are obtained by computing n
derivatives of Gc(θQ, θN ) w.r.t. θQ according to

κQ
n ≡ ∂n

θQ
Gc(θQ, θN ) = (∂θ+ − ∂θ− )nGc(θ+, θ−)

=
n∑

k=0

(−)n−k

(
n

k

)
∂k
θ+∂n−k

θ− Gc(θ+, θ−)

=
n∑

k=0

(−)n−k

(
n

k

)
κ (k)(n−k)

n , (A50)

where κ (k)(n−k)
n represent mixed cumulants of order k and n −

k in N+ and N−. One gets

κ
Q
1 = κ+

1 − κ−
1 , (A51)

κ
Q
2 = κ2+

2 − 2κ1+1−
2 + κ2−

2 , (A52)

κ
Q
3 = κ3+

3 − 3κ2+1−
3 + 3κ1+2−

3 − κ3−
3 , (A53)

and so on. Experimentally, it is of greater interest to obtain
the cumulants κQ

n in terms of factorial cumulants because
these are easier to correct for (single) particle losses and
vanish in the absence of correlations at order n. Evidently, it
is only meaningful to report cumulants κQ

n if the correspond-
ing factorial cumulant Fn are nonvanishing since only these
provide new information not already included in cumulants of
lower orders. Replacing derivatives ∂θi by si∂si , and noting that
∂si/∂θ j = δi j si∂si , one gets

κQ
n =

n∑
k=0

(−1)n−k

(
n

k

)
(s+∂s+ )k (s−∂s− )n−kGF (s+, s−).

(A54)
Lowest orders of interest for this work are found to be

κ
Q
1 = F+

1 − F−
1 , (A55)

κ
Q
2 = F+

1 + F−
1 + F 2+

2 − 2F+−
2 + F 2−

2 , (A56)

κ
Q
3 = F+

1 − F−
1 − 3F 2+

2 − 3F 2−
2 + F 3−

3 + 3F 1+2−
3

− + 3F 2+1−
3 − F 3+

3 , (A57)

κ
Q
4 = F+

1 + F−
1 + 7F 2+

2 − 2F+−
2 + 7F 2−

2 + 6F 3+
3

−6F 1+2−
3 − 6F 2+1−

3 + 6F 3−
3 + F 4+

4

−4F 3+1−
4 + 6F 2+2−

4 − 4F 1+3−
4 + F 4−

4 , (A58)

κ
Q
5 = F+

1 − F−
1 + 15F 2+

2 − 15F 2−
2 + 25F 3+

3 − 15F 2+1−
3

+15F 1+2−
3 − 25F 3−

3 + 10F 4+
4 − 20F 3+1−

4

+20F 1+3−
4 − 10F 4+0−

4 + F 5+
5 − 5F 4+1−

5

+10F 3+2−
5 − 10F 2+3−

5 + 5F 1+4−
5 − F 5−

5 , (A59)

κ
Q
6 = F+

1 + F−
1 + 31F 2+

2 − 2F 1+1−
2 + 31F 2−

2

+90F 3+
3 − 30F 2+1−

3 − 30F 1+2−
3 + 90F 3−

3

+65F 4+
4 − 80F 3+1−

4 + 30F 2+2−
4 − 80F 1+3−

4

+65F 4−
4 + 15F 5+

5 − 45F 4+1−
5 + 30F 3+2−

5

+30F 2+3−
5 − 45F 1+4−

5 + 15F 5−
5 + F 6+

6 − 6F 5+1−
6

+15F 4+2−
6 − 20F 3+3−

6 + 15F 2+4−
6 − 6F 1+5−

6

+F 6−
6 , (A60)

κ
Q
8 = F+

1 + F−
1 + 127F 2+

2 − 2F 1+1−
2 + 127F 2−

2

+966F 3+
3 − 126F 1+2−

3 − 126F 2+1−
3 + 966F 3−

3

+1701F 4+
4 − 924F 3+1−

4 + 126F 2+2−
4 − 924F 1+3−

4

+1701F 4−
4 + 1050F 5+

5 − 1470F 4+1−
5 + 420F 3+2−

5

+420F 2+3−
5 − 1470F 1+4−

5 + 1050F 5−
5 + 266F 6+

6

+756F 1+5−
6 + 630F 2+4−

6 − 280F 3+3−
6 + 266F 6−

6

+630F 4+2−
6 − 756F 5+1−

6 + 28F 7+
7 − 140F 6+1−

7

+252F 5+2−
7 − 140F 4+3−

7 − 140F 3+4−
7 + 252F 2+5−

7

−140F 1+6−
7 + 28F 7−

7 + F 8+
8 − 8F 7+1−

8

+28F 6+2−
8 − 56F 5+3−

8 + 70F 4+4−
8

−56F 3+5−
8 + 28F 2+6−

8 − 8F 1+7−
8 + F 8−

8 , (A61)

κ
Q
10 = F+

1 + F−
1 + · · · +

+F 10+
10 − 10F 9+1−

10 + 45F 8+2−
10 − 120F 7+3−

10

+210F 6+4−
10 − 252F 5+5−

10 + 210F 4+6−
10

−120F 3+7−
10 + 45F 2+8−

10 + 10F 1+9−
10 + F 10−

10 , (A62)

where, for κ
Q
10, we omitted terms of lesser interest. We first

note that cumulants κQ
n of order n feature a dependence on

factorial cumulants of all orders n′ � n. Also recall, once
again, that factorial cumulants of order n′ are nonvanishing
if and only if n′ or more particles are correlated in the events
of interest. This implies that high order cumulants κQ

n can be
nonvanishing based on single particle or correlated pairs even
in the absence of n particle correlations. Higher-order cumu-
lants, n � 3, are thus nontrivial, i.e., carry new information
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relative to lower orders, only if factorial cumulants of same
order are nonvanishing.

Additionally, note that κ
Q
2 depends on F++

2 − 2F+−
2 +

F−−
2 which amounts to the integral of the two-particle bal-

ance function B+−
2 across the acceptance of the measurement.

Similarly, one observes that κ
Q
4 depends on F 4+

4 − 4F 3+1−
4 +

6F 2+2−
4 − 4F 1+3−

4 + F 4−
4 which corresponds to the average

of the four-particle balance functions, 1
2 (B+−

4 + B+−
4 ) we in-

troduced in Sec. IV. Additional inspection of the expressions
for higher (even) order net-charge cumulants κQ

n reveal these
also contain sums of mixed charged-particle cumulants cor-
responding to the higher-order balance functions defined in
Appendix E. As shown in that Appendix, given the integrals
of multiparticle balance functions are constrained by sum
rules determined by charge conservation, we conclude that
the magnitude of the cumulants κQ

n , for even values of n,
are also entirely determined by effects associated to charge
conservation and the widths of the measurement acceptance.
A comprehensive study of the cumulants κQ with beam energy
and system size thus requires a detailed understanding of the
evolution of the factorial cumulants Fn with beam energy
and system size. Given it is likely that multiparticle balance
functions of produced particles have intricate dependencies on
beam energy, and in particular the growing impact of nuclear
stopping at lower energy, we advocate that differential mea-
surements of balance functions provide better insight in the
impact of effects associated to the collision dynamics that may
otherwise impede the studies of the properties being sought
for.

APPENDIX B: DIFFERENTIAL CORRELATIONS

Differential correlation functions of n particles, herein sim-
ply termed n-cumulants, may be obtained at any order n by
listing all distinct ways to “cluster” n particles into smaller
subsets (i.e., clusters) to obtain n-particle densities in terms of
correlated clusters of particles (and thus cumulants) of lower
order n′ � n. Cumulants of order n � 4 can then be written

Cα
1 ( �p) ≡ ρα

1 ( �p), (B1)

Cα1α2
2 ( �p1, �p2) ≡ ρ

α1α2
2 ( �p1, �p2) − Cα1

1 ( �p1)Cα2
1 ( �p2), (B2)

Cα1···α3
3 ( �p1, . . . , �p3) ≡ ρ

α1···α3
3 ( �p1, . . . , �p3)

−
∑
(3)

Cα1α2
2 ( �p1, �p2)Cα3

1 ( �p3)

−Cα1
1 ( �p1)Cα2

1 ( �p2)Cα3
1 ( �p3), (B3)

Cα1···α4
4 ( �p1, . . . , �p4) ≡ ρ

α1···α4
4 ( �p1, . . . , �p4)

−
∑
(4)

Cα1···α3
3 ( �p1, �p2, �p3)Cα4

1 ( �p4)

−
∑
(3)

Cα1α2
2 ( �p1, �p2)Cα3α4

2 ( �p3, �p4)

−
∑
(6)

Cα1α2
2 ( �p1, �p2)Cα3

1 ( �p3)Cα4
1 ( �p4)

−Cα1
1 ( �p1)Cα2

1 ( �p2)Cα3
1 ( �p3)Cα4

1 ( �p4), (B4)

where the symbols ρn and Cn, respectively, indicate n-particle
densities and cumulants at momenta �p1, . . ., �pn while the
labels α1, . . . , αn are species or kinematic bins identifiers.
Clearly, a formula for Cα1α2

2 ( �p1, �p2) in terms of densities is
readily obtained by substituting expressions for C1 by single
densities ρα

1 ( �p). Similarly, and recursively, cumulants of order
n � 2 can be computed based on lower order cumulants n′ <

n. Alternatively, one can also formulate a generating function
Gρ according to [60]

Gρ[θ1( �pT), . . . , θm( �pT)]

≡
∫

exp

{∫ m∏
i=1

θi( �p)ni( �p)

}
P[n( �pT)]Dn, (B5)

where θ1, . . . , θm identify m species or types of particles,
ni( �p) is the density of particles of type i, and P[n( �pT)] is
the probability of having particles of type i with densities
n( �pT) on an event-by-event basis, and

∫
P[n( �pT)]Dn = 1. The

moments of the densities ni are then obtained in the usual way
by computing derivatives w.r.t. θi( �p) evaluated at θi( �p) = 0:

〈nα1 ( �p1) · · · nαn ( �pn)〉

≡
∫

nα1 ( �p1) · · · nαn ( �pn)P[n( �pT)]Dn

= ∂θ1( �p1 ) · · · ∂θn( �pn )Gρ (θ1( �p1), . . . , θn( �p1)
∣∣
θi=0. (B6)

Of interest also are factorial moments and factorial cumu-
lants corresponding to these moments. These are obtained
by introducing continuous variables si( �pi ) = exp[θi( �pi )] and
expressing Gρ as a function of these variables

Gρ[s1( �pT), . . . , sm( �pT)]

≡
∫

exp

{∫ m∏
i=1

ni( �p) ln si( �p)

}
P[n( �pT)]Dn. (B7)

Factorial cumulants, corresponding to connected parts (i.e.,
correlated) of the densities, are then obtained by taking func-
tional derivatives of ln Gρ[s1( �pT), . . . , sm( �pT)] w.r.t. si( �pi ).
Structurally, expressions of n-cumulants in terms of densities
ρn have the same dependence as cumulants Fn on factorial
moments fn, one can use the relations ((A6)–(A15)) and sub-
stitute densities ρk to moments fk , with k = 0, . . . , n to obtain
the connected correlation functions of interest.

Additionally, note, as already stated in Sec. III A, that inte-
grals of densities ρα1···αn

n ( �p1, . . . , �pn) yield factorial moments

f α1···αn
n ≡

∫
· · ·

∫
�

ρα1···αn
n ( �p1, . . . , �pn)d �p1 · · · d �pn

=〈N (N − 1) · · · (N − n + 1)〉, (B8)

whereas integrals of correlation functions Cα1···αn
n ( �p1, . . . , �pn)

yield factorial cumulants

Fα1···αn
n ≡

∫
· · ·

∫
�

Cα1···αn
n ( �p1, . . . , �pn)d �p1 · · · d �pn. (B9)

There is indeed a one-to-one relation between densities
ρk ( �p1, . . . , �pk ) and factorial moments fk as well as between
functional cumulants (or cumulant densities) Ck ( �p1, . . . , �pk )
and factorial cumulants Fk .
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APPENDIX C: EVENT ENSEMBLE AVERAGE
OF DEVIATES

Expressing event ensemble average of deviates
〈〈�q1 · · · �qn〉〉 in terms of sums averages 〈〈q1 · · · qm〉〉,
m � n, is a trivial but somewhat tedious process. We created
simple scripts to compute these for arbitrary orders n and
show below expressions up to order 6:

〈〈�q1�q2〉〉 = 〈〈q1q2〉〉 − 〈〈q〉〉2, (C1)

〈〈�q1�q2�q3〉〉 = 〈〈q1q2q3〉〉 − 3〈〈q〉〉〈〈q1q2〉〉 + 2〈〈q〉〉3, (C2)

〈〈�q1 · · · �q4〉〉 = 〈〈q1q2q3q4〉〉 − 4〈〈q〉〉〈〈q1q2q3〉〉
+6〈〈q〉〉2〈〈q1q2〉〉 − 3〈〈q〉〉4, (C3)

〈〈�q1 · · · �q5〉〉 = 〈〈q1 · · · q5〉〉 − 5〈〈q〉〉〈〈q1q2q3q4〉〉
+10〈〈q〉〉2〈〈q1q2q3〉〉
−10〈〈q〉〉3〈〈q1q2〉〉 + 4〈〈q〉〉5, (C4)

〈〈�q1 · · · �q6〉〉 = +〈〈q1 · · · q6〉〉 − 6〈〈q〉〉〈〈q1 · · · q5〉〉
+15〈〈q〉〉2〈〈q1q2q3q4〉〉−20〈〈q〉〉3〈〈q1q2q3〉〉
+15〈〈q〉〉4〈〈q1q2〉〉 − 5〈〈q〉〉6. (C5)

Inspection of the above expressions reveal a simple pattern based on binomial coefficients as follows:

〈〈�q1 · · · �qn〉〉 =
n∑

k=0

(−1)n−k

(
n

k

)
〈〈q〉〉n−k〈〈q1 · · · qk〉〉, (C6)

where we define 〈〈q1 · · · qk〉〉 ≡ 〈〈q〉〉 for k = 1 and 〈〈q1 · · · qk〉〉 ≡ 1 for k = 0.
Moments of cross deviates of variable q and p are computed in a similar fashion. One gets at lowest orders

〈〈�q1�p1〉〉 = 〈〈q1 p1〉〉 − 〈〈q〉〉〈〈p〉〉, (C7)

〈〈�q1�q2�p1〉〉 = 〈〈q1q2 p1〉〉 − 〈〈p〉〉〈〈q1q2〉〉 − 2〈〈q〉〉〈〈q1 p1〉〉 + 2〈〈p〉〉〈〈q〉〉2, (C8)

〈〈�q1�q2�q3�p1〉〉 = 〈〈q1q2q3 p1〉〉 − 〈〈p〉〉〈〈q1q2q3〉〉 − 3〈〈q〉〉〈〈q1q2 p1〉〉 + 3〈〈p〉〉〈〈q〉〉〈〈q1q2〉〉 + 3〈〈q〉〉2〈〈q1 p1〉〉 − 3〈〈p〉〉〈〈q〉〉3,

(C9)

〈〈�q1 · · · �q4�p1〉〉 = 〈〈q1 · · · q4 p1〉〉 − 〈〈p〉〉〈〈q1 · · · q4〉〉 − 4〈〈q〉〉〈〈q1q2q3 p1〉〉 + 4〈〈p〉〉〈〈q〉〉〈〈q1q2q3〉〉
+6〈〈q〉〉2〈〈q1q2 p1〉〉 − 6〈〈p〉〉〈〈q〉〉2〈〈q1q2〉〉 − 4〈〈q〉〉3〈〈q1 p1〉〉 + 4〈〈p〉〉〈〈q〉〉4, (C10)

〈〈�q1�q2�p1�p1〉〉 = 〈〈q1q2 p1 p2〉〉 − 2〈〈p〉〉〈〈q1q2 p1〉〉 + 〈〈p〉〉2〈〈q1q2〉〉 − 2〈〈q〉〉〈〈q1 p1 p2〉〉
+4〈〈p〉〉〈〈q〉〉〈〈q1 p1〉〉 − 3〈〈p〉〉2〈〈q〉〉2 + 〈〈q〉〉2〈〈p1 p2〉〉, (C11)

〈〈�q1 · · · �q3�p1�p2〉〉 = 〈〈q1q2q3 p1 p2〉〉 − 2〈〈p〉〉〈〈q1q2q3 p1〉〉 + 〈〈p〉〉2〈〈q1q2q3〉〉 − 3〈〈q〉〉〈〈q1q2 p1 p2〉〉
+6〈〈p〉〉〈〈q〉〉〈〈q1q2 p1〉〉 − 3〈〈p〉〉2〈〈q〉〉〈〈q1q2〉〉 + 3〈〈q〉〉2〈〈q1 p1 p2〉〉
−6〈〈p〉〉〈〈q〉〉2〈〈q1 p1〉〉 + 4〈〈p〉〉2〈〈q〉〉3 − 〈〈q〉〉3〈〈p1 p2〉〉. (C12)

Once again, close inspection of the above expressions reveal straightforward patterns and one obtains a generic formula in terms
of two binomial coefficients as follows:

〈〈�q1 · · · �qn�p1 · · · �pm〉〉 =
n∑

k=0

m∑
l=0

(−1)n−k (−1)m−l

(
n

k

)(
m

l

)
〈〈q〉〉n−k〈〈p〉〉m−l〈〈q1 · · · qk〉〉, 〈〈p1 · · · pl〉〉. (C13)

Similarly, products of �qs, �ps, and �rs yield at lowest orders

〈〈�qi�p j�rk〉〉 = 〈〈qi p jrk〉〉 − 〈〈p〉〉〈〈qir j〉〉 − 〈〈q〉〉〈〈pir j〉〉 − 〈〈r〉〉〈〈qi p j〉〉 + 2〈〈q〉〉〈〈p〉〉〈〈r〉〉, (C14)

〈〈�qi�q j�pk�rl〉〉 = 〈〈qiq j pkrl〉〉 − 2〈〈q〉〉〈〈qi p jrk〉〉 + 〈〈q〉〉2〈〈pir j〉〉 − 〈〈p〉〉〈〈qiq jrk〉〉 + 2〈〈q〉〉〈〈p〉〉〈〈qir j〉〉
−3〈〈q〉〉2〈〈p〉〉〈〈r〉〉 − 〈〈r〉〉〈〈qiq j pk〉〉 + 2〈〈q〉〉〈〈r〉〉〈〈qi p j〉〉 + 〈〈p〉〉〈〈r〉〉〈〈qiq j〉〉, (C15)

〈〈�qi�p j�rk�sl〉〉 = 〈〈qi p jrksl〉〉 − 〈〈p〉〉〈〈qir jsk〉〉 − 〈〈q〉〉〈〈pir jsk〉〉 − 〈〈p〉〉〈〈qiq jrk〉〉
+〈〈q〉〉〈〈p〉〉〈〈ris j〉〉 − 〈〈r〉〉〈〈qi p jsl〉〉 + 〈〈p〉〉〈〈r〉〉〈〈qis j〉〉 + 〈〈s〉〉〈〈qi p jrk〉〉 + 〈〈p〉〉〈〈s〉〉〈〈qir j〉〉
+〈〈q〉〉〈〈s〉〉〈〈pir j〉〉 + 〈〈r〉〉〈〈s〉〉〈〈qi p j〉〉 + 3〈〈q〉〉〈〈p〉〉〈〈r〉〉〈〈s〉〉. (C16)

In this case, inspection of the above expressions reveals a formula involving three binomial coefficients

〈〈�q1 · · · �qn�p1 · · · �pm�r1 · · · �ro〉〉 =
n∑

i=0

m∑
j=0

l∑
k=0

(−1)n−i(−1)m−k (−1)o−k

(
n

i

)(
m

j

)(
o

k

)

× 〈〈q〉〉n−i〈〈p〉〉m− j〈〈p〉〉o−k × 〈〈q1 · · · qi〉〉〈〈p1 · · · p j〉〉〈〈r1 · · · rl〉〉. (C17)

Similar formula are readily obtained for four or more variables.
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APPENDIX D: COMPUTATION OF CORRELATORS 〈〈qn1
1 qn2

2 · · · qnm
m 〉〉

In Sec. III C, we derived expressions for 〈〈qn1
1 qn2

2 〉〉 and 〈〈qn1
1 qn2

2 qn3
3 〉〉 in terms of functions of the event-wise sums Qn defined

by Eq. (35). The same approach can be used to define higher moments of the form 〈〈qn1
1 · · · qnm

m 〉〉, for arbitrary values of m. First
note that the products of more than three Qs can be computed by straightforward expansion of the sums corresponding to each
variable Qn. At order m, one obtains expressions of the form

Qn1 Qn2 · · · Qnm =
N∑

i=1

qn1+n2+···+nm
i +

∑
perms

N∑
i1 �=i2=1

qn1+n2+···+nm−1
i1

qnm
i2

+
∑
perms

N∑
i1 �=i2=1

qn1+n2+···+nm−2
i1

qnm−1+nm
i2

+
∑
perms

N∑
i1 �=i2 �=i3=1

qn1+n2+···+nm−2
i1

qnm−1
i2

qnm
i3

+
∑
perms

N∑
i1 �=i2=1

qn1+n2+···+nm−3
i1

qnm−2+nm−1+nm
i2

+
∑
perms

N∑
i1 �=i2 �=i3=1

qn1+n2+···+nm−3
i1

qnm−2+nm−1
i2

qnm
i3

+
∑
perms

N∑
(i1,··· ,im )=1

qn1+n2+···+nm−3
i1

qnm−2
i2

qnm−1
i3

qnm
i4

+ · · ·

+
∑
perms

N∑
(i1,··· ,im )=1

qn1+n2
i1

qn3
i2

· · · qnm−1
im−2

qnm
im−1

+
N∑

(i1,··· ,im )=1

qn1
i1

qn2
i2

· · · qnm
im

, (D1)

where the notation
∑

perms indicates a sum over all ordered permutations of the exponents ni, i = 1, . . . , m, whereas
∑N

(i1,··· ,im )=1
represents a sum over all distinct m-tuples of values of the indices i1, i2, . . . , im, i.e., i1 �= i2 �= · · · �= im. When an ensemble aver-
age is computed, each term of the above expression yields terms of the form

∑
perms〈N (N − 1) · · · (N − m + 1)〉〈〈qn1

1 · · · qnm
m 〉〉.

Clearly, terms of the form 〈〈qn1
1 · · · qnm

m 〉〉 can be computed iteratively based on sums of 〈〈qn1
1 · · · q

np
p 〉〉, with p � m. It is thus

nominally possible to obtain expressions for 〈〈qn1
1 · · · qnm

m 〉〉 at any order m based on sums of lower order terms. In practice, one
finds that the number of terms to be considered grows very rapidly as m increases. We thus opted to write scripts (in C + +)
based on the TString root class [61]. The computation proceeds in four basic steps. In the first step, at given order m, one finds
all the permutations of exponents n1, n2, etc., that yield terms that are products of two factors qa

1qb
2, three factors qa

1qb
2qc

3, and so
on. Once these permutations are listed, one proceeds to generate these terms by recursively calling functions that generate them
from lower order products. This second step is then followed by an aggregation and simplification step in which identical terms
are regrouped and rearranged to produce a latex output. Low orders were checked against the results of manual calculations
and low order m � 4 expressions published elsewhere for n1 = n2 = · · · = nm = 1 [21,22]. As an example, we show below the
expression for arbitrary integer values n1, · · · , nm obtained for m = 4:

〈N (N − 1) · · · (N − 3)〉〈〈qn1
1 qn2

2 qn3
3 qn4

4 〉〉 = − 6〈〈Qn1+n2+n3+n4〉〉 + 2〈〈Qn1+n2+n3Qn4〉〉 + 2〈〈Qn1+n2+n4Qn3〉〉
+ 2〈〈Qn1+n3+n4Qn2〉〉 + 2〈〈Qn2+n3+n4Qn1〉〉 + 〈〈Qn1+n2Qn3+n4〉〉
+ 〈〈Qn1+n3Qn2+n4〉〉 + 〈〈Qn1+n4Qn2+n3〉〉 − 〈〈Qn1+n2Qn3Qn4〉〉
− 〈〈Qn1+n3Qn2Qn4〉〉 − 〈〈Qn1+n4Qn2Qn3〉〉 − 〈〈Qn2+n3Qn1Qn4〉〉
− 〈〈Qn2+n4Qn1Qn3〉〉 − 〈〈Qn3+n4Qn1Qn2〉〉 + 〈〈Qn1Qn2Qn3Qn4〉〉

= − 6〈〈Qn1+n2+n3+n4〉〉 + 2
∑
(4)

〈〈Qn1+n2+n3 Qn4〉〉

+
∑
(3)

〈〈Qn1+n2 Qn3+n4〉〉 −
∑
(6)

〈〈Qn1+n2 Qn3 Qn4〉〉 + 〈〈Qn1 Qn2 Qn3 Qn4〉〉, (D2)

where the notation
∑

(n) indicate sums over all ordered permutations of the indices n1, n2, n3, and n4.2

The computation of event ensemble averages of deviates, Eqs. (C1)–(C6), require expressions for products of the form
〈〈q1 · · · qm〉〉. These are obtained by setting exponents n1 = n2 = · · · nm = 1 in the generic expressions 〈〈qn1

1 · · · qnm
n 〉〉. Although

somewhat simpler, these remain fastidious to calculate by hand. We have extended our scripts to automatically set exponents ni,
i = 1, . . . , m to unity programmatically. Computation of the first eight orders yields

〈N (N − 1)〉〈〈q1 · · · q2〉〉 = −〈〈Q2〉〉 + 〈〈Q2
1〉〉, (D3)

2The code used to generate these and other expressions reported in this paper is available on Github [62].
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〈N (N − 1)(N − 2)〉〈〈q1 · · · q3〉〉 = 2〈〈Q3〉〉 − 3〈〈Q2Q1〉〉 + 〈〈Q3
1〉〉, (D4)

〈N (N − 1) · · · (N − 3)〉〈〈q1 · · · q4〉〉 = −6〈〈Q4〉〉 + 8〈〈Q3Q1〉〉 + 3〈〈Q2
2〉〉 − 6〈〈Q2Q2

1〉〉 + 〈〈Q4
1〉〉, (D5)

〈N (N − 1) · · · (N − 4)〉〈〈q1 · · · q5〉〉 = 24〈〈Q5〉〉 − 30〈〈Q4Q1〉〉 − 20〈〈Q2Q3〉〉 + 20〈〈Q3Q2
1〉〉 + 15〈〈Q2

2Q1〉〉
−10〈〈Q2Q3

1〉〉 + 〈〈Q5
1〉〉, (D6)

〈N (N − 1) · · · (N − 5)〉〈〈q1 · · · q6〉〉 = −120〈〈Q6〉〉 + 144〈〈Q5Q1〉〉 + 90〈〈Q4Q2〉〉 − 90〈〈Q4Q2
1〉〉 + 40〈〈Q2

3〉〉
−120〈〈Q3Q2Q1〉〉 + 40〈〈Q3Q3

1〉〉 − 15〈〈Q3
2〉〉 + 45〈〈Q2

2Q2
1〉〉 − 15〈〈Q2Q4

1〉〉
+〈〈Q6

1〉〉, (D7)

〈N (N − 1) · · · (N − 6)〉〈〈q1 · · · q7〉〉 = +530〈〈Q7〉〉 − 850〈〈Q6Q1〉〉 − 294〈〈Q5Q2〉〉 + 504〈〈Q5Q2
1〉〉

−335〈〈Q4Q3〉〉 + 630〈〈Q4Q2Q1〉〉 − 210〈〈Q4Q3
1〉〉

+290〈〈Q2
3Q1〉〉 + 105〈〈Q3Q2

2〉〉 − 420〈〈Q3Q2Q2
1〉〉

+70〈〈Q3Q4
1〉〉 − 105〈〈Q3

2Q1〉〉 + 105〈〈Q2
2Q3

1〉〉
−21〈〈Q2Q5

1〉〉 + 〈〈Q7
1〉〉, (D8)

〈N (N − 1) · · · (N − 7)〉〈〈q1 · · · q8〉〉 = −4760〈〈Q8〉〉 + 7720〈〈Q7Q1〉〉 + 2450〈〈Q6Q2〉〉
−3430〈〈Q6Q2

1〉〉 + 3528〈〈Q5Q3〉〉 − 5712〈〈Q5Q2Q1〉〉
+1344〈〈Q5Q3

1〉〉 + 770〈〈Q2
4〉〉 − 4480〈〈Q4Q3Q1〉〉

−630〈〈Q4Q2
2〉〉 + 2520〈〈Q4Q2Q2

1〉〉 − 420〈〈Q4Q4
1〉〉

−1470〈〈Q2
3Q2〉〉 + 1190〈〈Q2

3Q2
1〉〉 + 2520〈〈Q3Q2

2Q1〉〉
−1120〈〈Q3Q2Q3

1〉〉 + 112〈〈Q3Q5
1〉〉 + 105〈〈Q4

2〉〉
−420〈〈Q3

2Q2
1〉〉 + 210〈〈Q2

2Q4
1〉〉 − 28〈〈Q2Q6

1〉〉 + 〈〈Q8
1〉〉. (D9)

Formula for the ensemble average of deviates of the form 〈〈�q1 · · · �qm〉〉, shown in Eqs. (C1)–(C6), are obtained by substitution
of the expressions for 〈〈q1 · · · qm〉〉 listed above. The three lowest orders are

〈〈�q1�q2〉〉 = 〈〈Q2
1〉〉 − 〈〈Q2〉〉

〈N (N − 1)〉 − 〈〈Q1〉〉2

〈N〉2
, (D10)

〈〈�q1�q2�q3〉〉 = 〈〈Q3
1〉〉 − 3〈〈Q2Q1〉〉 + 2〈〈Q3〉〉
〈N (N − 1)(N − 2)〉 − 3

〈〈Q1〉〉
〈N〉

(〈〈Q2
1〉〉 − 〈〈Q2〉〉

)
〈N (N − 1)〉 + 2

〈〈Q1〉〉3

〈N〉3
, (D11)

〈〈�q1�q2�q3�q4〉〉 = 〈〈Q4
1〉〉 + 3〈〈Q2

2〉〉 − 6〈〈Q2Q2
1〉〉 + 8〈〈Q3Q1〉〉 − 6〈〈Q4〉〉

〈N (N − 1)(N − 2)(N − 3)〉

−4
〈〈Q1〉〉
〈N〉

(〈〈Q3
1〉〉 − 3〈〈Q2Q1〉〉 + 2〈〈Q3〉〉

)
〈N (N − 1)(N − 2)〉 + 6

〈〈Q1〉〉2

〈N〉2

(〈〈Q2
1〉〉 − 〈〈Q2〉〉

)
〈N (N − 1)〉 − 3

〈〈Q1〉〉4

〈N〉4
. (D12)

The above expressions of event ensemble averages of products of deviates �qi involve inclusive averaging, i.e., computation of
the average of products and powers of Qs separately. These are then divided by averages of the multiplicity 〈N〉 and average
numbers of n-tuplets 〈N (N − 1) . . . (N − n + 1)〉. One can readily switch to event-wise averaging, corresponding to calculations
of the products and powers on an event-by-event basis by “moving” the double brackets to include the divisions by the number
of n-tuples. For instance, the lowest two orders may be written [21]

〈〈�q1�q2〉〉 =
〈〈

Q2
1 − Q2

N (N − 1)

〉〉
−

〈〈
Q1

N

〉〉2

, (D13)

〈〈�q1�q2�q3〉〉 =
〈〈

Q3
1 − 3Q2Q1 + 2Q3

N (N − 1)(N − 2)

〉〉
− 3

〈〈
Q1

N

〉〉〈〈(
Q2

1 − Q2
)

N (N − 1)

〉〉
+ 2

〈〈
Q1

N

〉〉3

, (D14)

where the notation 〈〈R〉〉 denote ensemble averaging of ratios, R, of functions of Qs, calculating event-by-event, and the number
of n-tuples formed by the N particles of a given event.

The computation of ensemble averages of mixed moment deviates based on event-wise sums of variables qi, pi, ri, si, ti, etc.,
proceeds in a similar fashion. One first defines event-wise sums Qn, Pn, Rn, Sn, Tn according to

Qn =
N∑

i=1

qn
i , Pn =

N∑
i=1

pn
i , Rn =

N∑
i=1

rn
i , Sn =

N∑
i=1

sn
i , Tn =

N∑
i=1

t n
i , etc. (D15)
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One next lists all required mixed products of these sums and finally proceed to evaluate their event ensemble averages.
We limit the discussion to three variables, qi, p j , rk , corresponding to three distinct kinematic bins or species, but the

technique is readily applicable to an arbitrary number of such variables. We thus seek to express cross moments of interest,
〈〈q1 · · · qm1 p1 · · · pm2 r1 · · · rm3〉〉, in terms of ensemble averages of products of Qn, Pn, and Rn, as appropriate. Given the moments
defined in Eqs. ((C7)–(C17)), one expects to need ensemble averages of the form 〈〈Qn〉〉, 〈〈QnQm〉〉, 〈〈QnQmQo〉〉 already computed
in Sec. III C (and in this Appendix) as well as cross moments of the form 〈〈QnPm〉〉, 〈〈QnQmPo〉〉, 〈〈QnQmQoPp〉〉, 〈〈QnQmPoPp〉〉,
etc., that we now proceed to compute. All other cross moments can be obtained by appropriate permutations of variable names
and indices. Let Nq, Np, and Nr represent the number of particles in bins corresponding to q, p, and r, respectively. Proceeding
as in Sec. III C, the lowest order moments are found to be

〈〈QnPm〉〉 = 〈NqNp〉
〈〈
qn

i pm
j

〉〉
, (D16)

〈〈QnQmPo〉〉 = 〈NqNp〉
〈〈
qn+m

i po
j

〉〉 + 〈Nq(Nq − 1)Np〉
〈〈
qn

i qm
j po

k

〉〉
, (D17)

〈〈QnQmQoPp〉〉 = 〈NqNp〉
〈〈
qn+m+o

i pp
j

〉〉 + 〈Nq(Nq − 1)Np〉
〈〈
qn+m

i qo
j pp

k

〉〉 + 〈Nq(Nq − 1)Np〉
〈〈
qn+o

i qm
j pp

k

〉〉
〈Nq(Nq − 1)Np〉

〈〈
qn

i qm+o
j pp

k

〉〉 + 〈Nq(Nq − 1)(Nq − 2)Np〉
〈〈
qn

i qm
j qo

k pp
l

〉〉
, (D18)

〈〈QnQmPoPp〉〉 = 〈NqNp〉
〈〈
qn+m

i po+p
j

〉〉 + 〈NqNp(Np − 1)〉〈〈qn+m
i po

j pp
k

〉〉 + 〈Nq(Nq − 1)Np
〈〈
qn

i qm
j po+p

k

〉〉
+〈Nq(Nq − 1)Np(Np − 1)

〈〈
qn

i qm
j po

k pp
l

〉〉
, (D19)

〈〈QnPmRo〉〉 = 〈NqNpNr〉
〈〈
qn

i pm
j ro

k

〉〉
, (D20)

〈〈QnQmPoRp〉〉 = 〈NqNpNr〉〈〈qn+m
i po

jr
p
l 〉〉 + 〈Nq(Nq − 1)NpNr〉〈〈qn

i qm
j po

krp
l 〉〉. (D21)

Based on the above expressions, one can iteratively obtain expressions for the moments 〈〈qn
i qm

j po
krp

l 〉〉 in terms of moments of
products of Qs, Ps, and Rs. Given the sum over q and p factorize, the moments become simple combinations of Qs and Ps, and
one gets at lowest orders

〈NqNp〉〈〈qn
1 pm

1 〉〉 = 〈〈QnPm〉〉, (D22)

〈Nq(Nq − 1)Np〉〈〈qn1
1 qn2

2 pm
1 〉〉 = 〈〈Qn1 Qn2 Pm〉〉 − 〈〈Qn1+n2 Pm〉〉, (D23)

〈Nq(Nq − 1)(Nq − 2)Np〉〈〈qn1
1 qn2

2 qn3
3 pm

1 〉〉 = 〈〈Qn1 Qn2 Qn3 Pm〉〉 −
∑
(3)

〈〈Qn1+n2 Qn3 Pm〉〉

−2〈〈Qn1+n2+n3 Pm〉〉, (D24)

〈Nq · · · (Nq − 2)Np(Np − 1)〉〈〈qn1
1 qn2

2 qn3
3 pm1

1 pm2
2 〉〉 = −2〈〈Qn1+n2+n3Pm1+m2〉〉 + 2〈〈Qn1+n2+n3Pm1Pm2〉〉

+〈〈Qn1+n2Qn3Pm1+m2〉〉 − 〈〈Qn1+n2Qn3Pm1Pm2〉〉
+〈〈Qn1+n3Qn2Pm1+m2〉〉 − 〈〈Qn1+n3Qn2Pm1Pm2〉〉
+〈〈Qn2+n3Qn1Pm1+m2〉〉 − 〈〈Qn2+n3Qn1Pm1Pm2〉〉
−〈〈Qn1Qn2Qn3Pm1+m2〉〉 + 〈〈Qn1Qn2Qn3Pm1Pm2〉〉. (D25)

Higher orders are increasingly tedious to compute for large values of n, m, and o. Fortunately, the scripts created for the
computation of 〈〈qn1

1 · · · qnm
m 〉〉 are trivially extendable to multiple variables provided one appropriately considers all permutations

of factors in q, p, and r. Finally, setting all exponents to unity one gets expressions of the form

〈NqNp〉〈〈q1 p1〉〉 = 〈〈Q1P1〉〉, (D26)

〈Nq(Nq − 1)Np〉〈〈q1q2 p1〉〉 = −〈〈Q2P1〉〉 + 〈〈Q2
1P1〉〉, (D27)

〈Nq(Nq − 1)(Nq − 2)Np〉
〈〈
qn1

1 qn2
2 qn3

3 pm
1

〉〉 = +2〈〈Q3P1〉〉 − 3〈〈Q2Q1P1〉〉 + 〈〈
Q3

1P1
〉〉
, (D28)

〈Nq · · · (Nq − 2)Np(Np − 1)〉〈〈qn1
1 qn2

2 qn3
3 pm1

1 pm2
2

〉〉 = −2
〈〈
Q3P2

〉〉 + 2
〈〈
Q3P2

1

〉〉
+3

〈〈
Q2Q1P2

〉〉 − 3
〈〈
Q2Q1P2

1

〉〉
−〈〈

Q3
1P2

〉〉 + 〈〈
Q3

1P2
1

〉〉
, (D29)

and so on.

APPENDIX E: COMPUTATION OF MULTIPARTICLE BALANCE FUNCTIONS

Balance function of arbitrary order n can be defined using the procedure introduced in Sec. IV based on differential correlators
of the form 〈�q1 · · ·�qn〉 and corresponding n-order differential cumulant expansions. By construction, in the presence of
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n-particle correlations, the defined balance functions must yield unity when integrated over all particle transverse momenta
(pT > 0), azimuths, and rapidity. As in the case of the second and fourth orders, n-cumulant can be expanded into their n-tuplet
charge combinations. Such decompositions are straightforwardly obtained by considering all ways to cluster n particles into
subgroups of k � n positively and n − k negatively charged particles. Such decompositions are herewith denoted k(+)n − k(−)
in which k and n − k, respectively, represent the number of positively and negatively charged particles in a decomposition of n
particle. Given the order in which the +ve and −ve particles are listed is inconsequential, the number of equivalent permutations
is given by binomial coefficients (

n

k

)
= n!

k!(n − k)!
. (E1)

Additionally, the sign of each term evidently depends on the number of negative particles in a particular decomposition.
Cumulants of order n can thus be written

Cn( �p1, . . . , �pn) =
n∑

k=0

(−1)n−k

(
n

k

)
Ck(+)n−k(−)

n ( �p1, . . . , �p6). (E2)

We split the cumulant decompositions to yield expressions of balance function corresponding to m(+)s given m(−)s and
conversely, m(−)s given m(+), for m = n/2. This requires an additional factor of two in the BF definitions. To avoid unnecessary
repetitions of labels + and − as in Sec. IV, we introduce the notations B+−

n , with n being even integers 2, 4, 6, etc., to indicate
the balance functions of n/2 positively charged particles found at momenta �p1, . . . , �pn/2 given n/2 negatively charged particles
are detected at �pn/2+1, . . . , �pn, and conversely, B−+

n shall indicate the BF of n/2 negatively charged particles found at momenta
�p1, . . . , �pn/2 given n/2 positively charged particles are detected at �pn/2+1, . . . , �pn. The five lowest orders are thus written

B+−
2 ( �p1, �p2) = C+−

2 ( �p1, �p2) − C−−
2 ( �p1, �p2)

〈N−〉 , (E3)

B+−
4 ( �p1, . . . , �p4) = 1

6
× 3C2+2−

4 − 4C1+3−
4 − C4−

4

〈N−(N− − 1)〉 , (E4)

B+−
6 ( �p1, . . . , �p6) = 1

60
× 10C3+3−

6 − 15C2+4−
4 + 6C1+5−

4 + C6−
4

〈N−(N− − 1)(N− − 2)〉 , (E5)

B+−
8 ( �p1, . . . , �p8) = 1

840
× 35C4+4−

8 − 56C3+5−
8 + 25C2+6−

8 − 8C1+7−
8 + C8−

8

〈N−(N− − 1)(N− − 2)(N− − 3)(N− − 3)〉 , (E6)

B+−
10 ( �p1, . . . , �p10) = 1

15120
× 126C5+5−

10 − 210C4+6−
10 + 120C3+7−

10 − 45C2+8−
10 + 10C1+9−

10 − C10−
10

〈N−(N− − 1)(N− − 2)(N− − 3)(N− − 3)(N− − 4)〉 . (E7)

Higher orders, n > 10, are readily obtained based on Eq. (E2) and can be written

B+−
n ( �p1, . . . , �pn) = (−1)n/2

N (n)

n∑
k=0

(−1)n−k

(
1

2

)δn,2k
(

n

k

)
Ck(+)n−k(−)

n , (E8)

where the normalization coefficient N (n) is calculated according to

N (n) = 1

2

n!

(n/2)!
〈N−(N− − 1) · · · (N− − n + 1)〉, (E9)

and δn,2k = 1 for n = 2k but otherwise vanishes.
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