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Minijet clustering algorithm using transverse-momentum seeds in high-energy nuclear collisions
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We propose an algorithm to detect minijet clusters in high-energy nuclear collisions, by selecting a high-
transverse-momentum (pT ) particle as a seed and assigning a clustering radius (R) in the pseudorapidity and
azimuthal-angle space. Our PYTHIA simulations for p + p collisions show that a scheme with a seeding pT of
around 0.5 GeV/c and R of approximately 0.6 satisfactorily identifies minijet clusters. The correlation between
clusters obtained in PYTHIA calculations using the algorithm exhibits the proper behavior of hard-scattering-like
processes, suggesting its usefulness in isolating minijet-like clusters from nonhard-scattering soft processes when
applied to actual nuclear-collision data, thereby allowing a closer examination of both the minijet and the soft
mechanisms.
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I. INTRODUCTION

The hard-scattering process was originally proposed
as the primary mechanism for producing high-transverse-
momentum (pT ) jet clusters, typically in the range of tens
of GeV/c [1–7]. However, the UA1 Collaboration found that
the production of particle clusters with a total pT of a few
GeV/c is an important production process in hadron-hadron
collisions, representing a sizable fraction of the particle pro-
duction cross sections [8]. Jet clusters in such a pT range were
coined “minijet” [9]. The dominance of jet production extends
to even lower-pT domains at higher collision energies (

√
s)

because (i) the fraction of particles produced by such a process
increases rapidly with

√
s, and (ii) the jet-production invariant

cross-section at midrapidities varies inversely with pT [9–12].
In fact, the minijet dominance has been found to extend to the
pT region of a few tenths of a GeV/c in high-energy p + p
and p + p̄ collisions at

√
s = 0.9 to 7 TeV [13,14].

While the pQCD-type hard-scattering process remains a
key source of particle production, soft processes contribute
to the majority of low-pT particles with distinct outcomes
such as rings, pancakes, granular droplets, hydrodynamical
collective motions, quark-gluon plasma, and color-glass con-
densate [15–45]. To better understand the underlying reaction
processes for such production mechanisms, it is necessary
to devise a method to distinguish between the part produced
by minijet clusters and the part produced by soft processes.
Isolating the minijet clusters by such a method will not only
benefit the study of the minijet dynamics but also help to
identify the soft part for further examination.

Previously, as a first step to identify minijets, we studied
the clustering properties of produced particles in high-energy

p + p collisions in the space of pseudorapidity η and az-
imuthal angle φ. We devised an algorithm to find minijet-like
clusters by using the k-means clustering method in conjunc-
tion with a k-number (cluster number) selection principle [46].
To study the clustering algorithm, we examined minimum-
bias events of p + p collisions at

√
s = 200 GeV generated by

PYTHIA8.1 [47]. Our findings indicate that multiple minijet-
like and mini-dijet-like clusters of low-pT hadrons can arise
in high-multiplicity events. However, comparable clustering
behavior is also evident for randomly produced particles con-
fined to a finite η and φ space. Therefore, the ability to discern
azimuthally back-to-back correlated minijet-like clusters as
bona fide minijets and mini-dijets will rely on further corre-
lation requirements.

A minijet, as a cluster of particles originating from a high-
pT jet cascade, is likely to contain some high-pT particles.
Thus, it is reasonable to use a high-pT particle as a seed for
identifying minijets. To fix the minijet cluster number K and
also to eliminate the noise that may contaminate the mini-
jet clusters, we add a supplementary condition that requires
each minijet to contain at least one seed particle with pT

greater than a certain threshold value pT 0. The fixed cluster
number and the knowledge of the minijet size in η and φ

bring us closer to understanding the minijet and their corre-
lations. The remaining particles can be attributed to non-jet
and non-minijet processes, which form the bulk part of the
dynamics. Clearly, the higher pT 0, the more the minijet cluster
will resemble the conventional high-pT jet, and the higher the
chance of detecting its dijet partner. However, we focus on
minijets in the very low-pT domain because they are more
abundant in the underlying events. We analyze the clustering
properties of minijets as a function of the seed pT 0 value.
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To ensure that the reconstructed clusters are minijet clus-
ters, we rely on the intercluster correlations. Analytical
expressions for the hard scattering process summarize its
essential features and dependencies, making it easier to un-
cover dynamical effects wherever they may occur. These
analyses have revealed insights into the dominance of the
hard-scattering process in the high-pT domain and have
helped to locate the boundary between the hard-scattering and
flux-tube fragmentation processes in p + p collisions at high
energies [14].

In Sec. II, we first derive the differential cross-section
EcEκdσ (AB → cκX )/dc dκ for the production of two mas-
sive partons c and κ . This allows us to integrate out pT to
acquire the two-particle correlation function dσ/d�φ d�y in
Sec. III, where �φ = φκ − φc and �y = yκ − yc. This corre-
lation function exhibits the “ridge” structure on the away side
at �φ ≈ ±π in the hard-scattering process. Next, in Sec. IV,
we present the new clustering algorithm and demonstrate its
application to PYTHIA data of p + p collisions. In Sec. V,
we compare the two-cluster correlations obtained from the
algorithm with the two-particle correlations. Additionally, in
Sec. VI, we discuss how the anti-kT algorithm complements
our new clustering algorithm. Finally, we draw brief conclu-
sions in Sec. VII.

II. HARD-SCATTERING INTEGRAL
FOR EcEκdσ(AB → cκX )/dc dκ

In the parton model, the hard-scattering cross section for
AB → cκX , the production of partons c and κ with momenta
c and κ is given by [48,49]

dσ (AB → cκX ) =
∑

ab

∫
KabdxadaT dxbdbT

× Ga/A(xa, aT )Gb/B(xb, bT )dσ (ab → cκ),

(1)

where (xa, aT ) and (xb, bT ) represent the momenta, and Ga/A

and Gb/B, the structure functions of the incident partons a and
b, respectively. Kab is a correction factor that can be obtained
perturbatively [50] or approximated nonperturbatively [51].
The quantity dσ (ab → cκ ) is the cross-section element for
the process ab → cκ ,

dσ (ab → cκ ) = 1

4
[
(a · b)2 − m2

am2
b

]1/2 |Tf i|2

× d3c

(2π )32Ec

d3κ

(2π )32Eκ

(2π )4δ4

× (a + b − c − κ ). (2)

Here, we normalize the Dirac fields by ūu = 2m. The quantity
|Tf i|2 is related to dσ/dt by

|Tf i|2 = 16π [ŝ − (ma + mb)2][ŝ − (ma − mb)2]

× dσ (ab → cκ )

dt
.

We consider the simplified case with ma = mb = 0 and treat
aT and bT as small perturbations. The cross-section element

is then

dσ (ab → cκ ) = sab

2π

dσ (ab → cκ )

dt

d3c

Ec

d3κ

Eκ

δ4

× (a + b − c − κ ), (3)

where ŝ = sab = (a + b)2, which is different from s = sAB =
(A + B)2. We obtain

EcEκdσ (AB → cκX )

d3c d3κ

=
∑

ab

∫
KabdxadaT dxbdbT

× Ga/A(xa, aT )Gb/B(xb, bT )
ŝdσ (ab → cκ )

2πdt

× δ4(a + b − c − κ ). (4)

We consider a factorizable structure function with a Gaussian
intrinsic transverse momentum distribution,

Ga/A(xa, aT ) = Ga/A(xa)
1

2πσ 2
e−a2

T /2σ 2
, (5)

where 2σ 2 ≈ 0.9 (GeV/c)2 [52]. Upon integrating over the
transverse momenta aT and bT , we reach

dσ (AB → cκX )

dyccT dcT dφc dyκκT dκT dφκ

=
∑

ab

∫
KabdxadxbGa/A(xa)Gb/B(xb)

× e− (cT +κT )2

4σ2

2(2πσ 2)

ŝ

2π

dσ (ab → cκ )

dt

× δ(a0 + b0 − (c0 + κ0))δ(az + bz − (cz + κz )). (6)

To perform the integration over xa and xb, we spell out the
momenta in the infinite-momentum frame,

a =
(

xa

√
s

2
+ a2 + a2

T

2xa
√

s
, aT , xa

√
s

2
− a2 + a2

T

2xa
√

s

)
, (7)

b =
(

xb

√
s

2
+ b2 + b2

T

2xb
√

s
, bT ,−xb

√
s

2
+ b2 + b2

T

2xb
√

s

)
, (8)

c =
(

xc

√
s

2
+ c2 + c2

T

2xc
√

s
, cT , xc

√
s

2
− c2 + c2

T

2xc
√

s

)
, (9)

κ =
(

xκ

√
s

2
+ κ2 + κ2

T

2xκ

√
s

, κT ,−xκ

√
s

2
+ κ2 + κ2

T

2xκ

√
s

)
, (10)

where xc and xκ can be represented by yc and yκ , respectively,

xc = mcT eyc

√
s

, xκ = mκT eyκ

√
s

. (11)

The two δ functions in Eq. (6) can be integrated to yield

dσ (AB → cdX )

dyccT dcT dφc dyκκT dκT dφκ

=
∑

ab

KabxaGa/A(xa)xbGb/B(xb)
e− (cT +κT )2

4σ2

2π (4πσ 2)

dσ (ab → cκ )

dt
,

(12)

044903-2



MINIJET CLUSTERING ALGORITHM USING … PHYSICAL REVIEW C 109, 044903 (2024)

where

xa = xc + κ2 + κ2
T

xκs
− b2 + b2

T

xbs

= mcT eyc

√
s

+ mκT e−yκ

√
s

− b2 + b2
T

xbs
,

xb = xκ + c2 + c2
T

xcs
− a2 + a2

T

xas

= mκT eyκ

√
s

+ mcT e−yc

√
s

− a2 + a2
T

xas
. (13)

The above formula renders the cross section for the pro-
duction of c and κ , when the elementary cross section
dσ (ab → cκ )/dt is given explicitly in terms of its dependent
variables.

III. THE ANGULAR CORRELATION
dσ(AB → cκX )/d�φ d�y

To obtain the angular correlations between particles c and
κ , we transform (yc, yκ , φc, φκ ) to (Y,�y,	,�φ),

yc = Y + �y/2, yκ = Y − �y/2,

φc = 	 + �φ/2, 	κ = 	 − �φ/2. (14)

We then have

dyc dyκ dφc dφκ = dY d�y d	�φ. (15)

Equation (12) becomes

dσ (AB → cκX )

d�φd�ydY d	
=

∑
ab

Kab

∫
xaGa/A(xa)xbGb/B(xb)

× cT dcT κT dκT
e− (cT +κT )2

4σ2

2π (4πσ 2)

× dσ (ab → cκ )

dt
. (16)

The cross section should be independent of the average value
of φc and φκ . The integration over 	 gives

dσ (AB → cκX )

d�φd�ydY
=

∑
ab

Kab

∫
cT dcT κT dκT

× xaGa/A(xa)xbGb/B(xb)
e− (cT +κT )2

4σ2

(4πσ 2)

× dσ (ab → cκ )

dt
. (17)

We focus on Y = 0 and consider approximate boost invari-
ance at midrapidities. The correlation function Eq. (12) from
the process ab → cκ at midrapidities becomes

dσ (AB → cκX )

d�φ d�y

∣∣∣∣
Y =0

= KabC(�φ,�y), (18)

where

C(�φ,�y) =
∫ ∞

0
cT dcT

∫ ∞

0
κT dκT xaGa/A(xa)xbGb/B(xb)

× 1

(4πσ 2)
exp

{
−c2

T + 2cT κT cos �φ + κ2
T

4σ 2

}

× dσ (ab → cκ )

dt
. (19)

The basic cross section dσ/dt can be written in terms
of relativistic invariant quantities (s′, t ′, u′) measured in the
intrinsic system of a + b → c + κ . We have Eq. (10.169) in
Ref. [53] for gg → gg,

dσ (gg → gg)

dt
= 9πα2

s

8

(s′4 + t ′4 + u′4)(s′ 2 + t ′ 2 + u′ 2)

s′4t ′ 2u′ 2
.

(20)

From Eq. (2.12) of Ref. [54] for gg → qq̄, and Eq. (A1) of
Ref. [55], with quark mass mc = mκ = m, we have for gg →
qq̄,

dσ

dt
(gg → qq̄) = πα2

16s′ 2

[
12

s2
(m2 − t ′)(m2 − u′) + 8

3

(m2 − t ′)(m2 − u′) − 2m2(m2 + t ′)
(m2 − t ′)2

+ 8

3

(m2 − t ′)(m2 − u′) − 2m2(m2 + u′)
(m2 − u′)2

− 2m2(s′ − 4m2)

3(m2 − t ′)(m2 − u′)

− 6
(m2 − t ′)(m2 − u′) + m2(u′ − t ′)

s′(m2 − t ′)
− 6

(m2 − t ′)(m2 − u′) + m2(t ′ − u′)
s′(m2 − u′)

]
. (21)

From Eq. (2.7) of Ref. [54], we have for qq̄ → cc̄

dσ (qq̄ → cc̄)

dt
= 4

9

πα2

s′ 2

(m2 − t ′)2 + (m2 − u′)2 + 2m2s′

s′ 2
.

(22)

The structure function can be expressed in the form
xaGa/A(xa) ∝ (1 − xa)ga , for which the two-particle

angular-correlation function becomes approximately

dσ (AB → cκX )

d�φ d�y

∣∣∣∣
Y ∼0

∼ A

[
1 − 4mcT√

s
cosh �y

+ O

((
mcT√

s

)2
)]ga

.C(�φ). (23)
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This indicates that as mcT /
√

s′ is much less than unity, the
correlation function is a weak function of �y, and

C(�φ) =
∫ ∞

0
cT dcT

∫ ∞

0
κT dκT

1

(4πσ 2)

× exp

{
−c2

T + 2cT κT cos �φ + κ2
T

4σ 2

}
dσ (ab → cκ)

dt
.

(24)

From Eqs. (19) and (24), we expect that the contribution
to the correlated production of particles c and κ is the greatest
when �φ = ±π , for which particles c and κ are produced po-
sitioned back-to-back. There is no completely rigorous model
to go from pQCD for produced particles in the low-pT region
because the mechanism of the nonperturbative hadronization
is not fully known. One relies on semi-empirical fragmenta-
tion functions to describe the fragmentation of the partons to
hadrons c and κ in the hard-scattering model.

To grasp the gross feature of the correlation function,
we use the simple parton-hadron duality and approximate
dσ (ab → cκ )/dt to be of the form as in gg → gg collisions
in Eq. (20). We have

s′ ∼ 4m2
cT cosh2 Y,

t ′ − m2
c = −2 cosh Ye−Y m2

cT = (1 + e−2Y )m2
cT ,

u′ − m2
c = −2 cosh YeY m2

cT = −(1 + e2Y )m2
cT . (25)

For gg → gg with small mcT , we have dσ (gg → gg)/dt ∼
1/m4

cT , and

dσ (ab → cκ )

dt
∼ 1

t ′ 2
∼ A′[

1 + (
m2

c + c2
T

)
/M2

T 0

]n/2 ,

(26)

where n ≈ 4 in pQCD and MT 0 is the regularizing mass on
the order of 1 GeV/c2 empirically in the hadron-parton du-
ality approximation [14]. The numerical integration over cT

and κT in Eq. (24) gives the correlation function C(�φ) as
shown in Fig. 1. The correlation function for mparton = 0.14
GeV/c2 has maxima at �φ ≈ ±π and a minimum at �φ = 0
because of the elementary back-to-back production process of
a + b → c + κ . It is relatively flat in �y because mcT /

√
s 	

1 in Eq. (16) for high-energy collisions. This gives the feature
of the correlation function in the form of a ridge structure on
the away side at �φ ≈ ±π , with a back-to-back azimuthal
correlation in φ, as expected from momentum conservation.

IV. pT -SEEDED CLUSTERING ALGORITHM

Because the minijet manifests as a concentrated release
of energy with a high-pT value during its parton-cascading
evolution, some products of its on-shell hadronized particles
are likely to retain high pT at the endpoints of the evolution.
For this reason, we assume that every minijet has a high-pT

remnant. The magnitude of the pT value, which allows such a
characterization, will need to be determined semi-empirically.
The minijet is also expected to evolve in a certain direction,
with the cluster of its evolution products likely within a bundle
in the pseudorapidity angles and azimuthal angles. Therefore,

FIG. 1. The correlation function C(�φ).

we develop the pT -seeded clustering algorithm to idealize the
minijet as a cluster of hadrons in (η, φ) space with a radius
previously estimated to be on the order of R = 0.5–0.6 [56].
For a given set of M particles in an event with specified
positions xi = (ηi, φi ) and transverse momenta pTi, where i =
1, 2, . . . , M is the particle index, particles above a threshold
pT 0 are selected as the seed particles. These seed particles
serve as indicators of minijets and determine the initial num-
ber and locations of the clusters, while the low-pT particles are
used for the cluster location refinement in later steps. Particles
outside the minijet cones are regarded as products of nonjet
processes.

Each seed particle is initially treated as the center of a
seeded cluster. To avoid overlapping, we merge clusters that
are sufficiently close to each other to form a single cluster.
The merging process calculates the distance between each
pair of centers, � = [(�η)2 + (�φ)2]1/2 and finds the two
closest centers. If this shortest distance is less than a certain
threshold, 0.816 in this algorithm, we merge the two clusters.
With a minijet modeled as a cone with a given radius R = 0.6,
we envisage that two seed candidates will have an 83.4%
likelihood of belonging to the same minijet if their � is less
than 0.816. The assigned value of merging threshold 0.816
is derived from the hypothetical scenario wherein two points
are randomly sampled from inside a circle with a radius of
R = 0.6, and the distance between them adheres to ρ(�), the
distance distribution in a uniform disk [57]:

ρ(�) = 4�

πR2
arccos

(
�

2R

)
− 2�2

πR4

√
R2 − �2

4
. (27)

After calculating the mean μ and the width σ of the distance
distribution, we obtain μ + σ ≈ 0.816. The range [0, 0.816]
corresponds to approximately 83.4% probability of the dis-
tance distribution. The cumulant probability can be increased
to 90% (95%) with the upper bound of 0.894 (0.974). Various
merging thresholds can be explored by examining the physics
of the jet cascade, for example, in PYTHIA. The new center
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1− 0.5− 0 0.5 1
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1− 0.5− 0 0.5 1
η

1− 0.5− 0 0.5 1 1− 0.5− 0 0.5 1 1− 0.5− 0 0.5 1

FIG. 2. Examples with pT 0 = 0.5 GeV/c. The seed particles are
shown as red points.

of the merged cluster is calculated as the weighted midpoint
of the previous two seed particles, with the weight assigned
based on their pT . This merging process continues until the
distance between any two clusters is greater than 0.816. At
this point, the cluster positions are roughly determined, based
on the seed particles.

To enhance the precision and reliability of the cluster posi-
tions, all particles are used to recalculate the cluster centers as
a refinement. The final cluster centers are calculated using the
formula

ck =
∑

xk
i ∈Sk

( pTi

〈pT 〉
)γ

xk
i∑

xk
i ∈Sk

( pTi

〈pT 〉
)γ , (28)

where the subscript k represents the cluster index, and Sk

denotes the subset of particles located within a radius of
0.6 around the center of the corresponding seeded cluster. A
power index of γ = 2 is used in the algorithm. The resul-
tant clusters are finally settled after the refinement of cluster
positions.

Figure 2 illustrates examples of the pT -seeded clustering
algorithm using a threshold of pT 0 = 0.5 GeV/c. The high-
pT particles, denoted by red points, are initially assigned as
independent cluster centers. Seeds that are close to each other
are merged, as shown in the upper-right corner of the third
panel. The center positions of clusters are then refined by
the surrounding low-pT particles. In cases where no other
particles are present around a seed particle, a cluster is still
formed with the seed particle as the center, as demonstrated in
the second and fourth panels.

V. CORRELATIONS BETWEEN PARTICLES
AND BETWEEN CLUSTERS

A. Two-particle correlations

To assess the viability and performance of our pT -
seeded clustering algorithm, we conducted evaluations using
PYTHIA8.1 simulations for particles produced in p + p col-
lisions at

√
s = 200 GeV, within the range of −1 � η � 1

and −π � φ � π . Figure 3 depicts the η, φ, and pT distri-
butions of the charged particles in the simulation. We have
explored three different values of the threshold pT 0: 0.5, 1,

(a)

(b)

(c)

FIG. 3. Particle distributions in (a) η, (b) φ, and (c) pT for
unbiased PYTHIA events. The upper narrow panels of the η and φ

distributions show an amplified view of the distributions.

and 1.5 GeV/c, and retained events with at least two particles
having pT � pT 0 for correlation analyses. The pT distribu-
tions of all particles in events that passed the pT 0 cut of 0.5
and 1.5 GeV/c are presented in Fig. 4. The discontinuities
observed in the pT distributions at pT 0 are due to the thresh-
old effect, as events comprising solely low-pT particles are
removed. Despite this, low-pT particles from the surviving
events still contribute to the distribution below pT 0. There-
fore, the distribution above the pT 0 thresholds maintains its
similarity to the original uncut distribution, while the distri-
bution below these thresholds experiences a reduction due to
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FIG. 4. Particle pT distributions for PYTHIA events selected with
(a) pT 0 = 0.5 and (b) 1.5 GeV/c.

the removal of low-pT events, thereby causing the observed
discontinuity.

For comparison with the PYTHIA data (same events), we
construct the mixed events by reassigning φ and η values to
particles in each PYTHIA event, while preserving the event’s
particle multiplicity and each particle’s pT value. The φ and
η values are randomly sampled from the original particle’s φ

and η distributions, shown in Fig. 3. This procedure ensures
that the resulting particles naturally have the same pT values
as the original particles, the mixed events have the same
multiplicities as the original events, and the mixed dataset has
the same φ and η distribution as the PYTHIA dataset. In the
following, we study the difference between the same events
and the mixed events in terms of two-particle and two-cluster
correlations.

Figure 5 shows the ratio of the two-particle correlation
(�φ-�η) function for the same events to that for the mixed
events with pT 0 = 0.5 (upper panel) and 1.5 GeV/c (lower
panel). Before taking the ratio, the correlations for both the
same events and the mixed events have been normalized with
the total number of particle pairs. We restrict the analysis
to the �η range of [0, 1.4] due to the limited number of
events that pass the pT 0 cuts. Although the same events and
the mixed events have very similar φ and η distributions,
notable differences can be observed between the two datasets
in the two-particle correlation. In each panel, the correlation
ratio exhibits a near-side peak at �η ≈ 0 and �φ ≈ 0, as
well as an away-side ridge at �φ ≈ π , which is consistent
with momentum conservation and the analysis of Sec. III.

FIG. 5. Ratio of the two-particle correlation (�φ-�η) function
for the same events to that for the mixed events with pT 0 = 0.5
(upper) and 1.5 GeV/c (lower).

The away-side ridge becomes more prominent for higher pT 0,
with a magnitude of approximately 1.04 (1.15) for pT 0 = 0.5
(1.5) GeV/c.

B. Two-cluster correlations

While the two-particle correlation can reveal some inter-
esting properties, the two-cluster correlation is expected to
amplify the correlation features related to minijets due to
the use of the pT -seeded clustering algorithm. Figures 6(a)
and 6(b) show the number of reconstructed clusters, K , as
a function of multiplicity M for pT 0 = 0.5 and 1.5 GeV/c,
respectively. We observe significant differences between the
same events and the mixed events, as well as between
the cases with different pT 0 values. When pT 0 = 0.5 GeV/c,
the difference between the same events and the mixed events
is not prominent at low M, and mixed events show a slightly
larger K at higher M. The ratio Ksame/Kmixed exhibits a slowly
decreasing trend from 0.98 to 0.94. On the other hand, when
pT 0 = 1.5 GeV/c, the mixed events yield significantly more
clusters than the same events, with Ksame/Kmixed being roughly
constant around 0.86. The difference between the same events
and the mixed events can be attributed to the clustering prop-
erty of PYTHIA particles, among which particles belonging to
the same minijet are likely to be captured by our algorithm
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FIG. 6. Number of clusters, K , as a function of multiplicity M for
the same events (red circles) and the mixed events (blue triangles),
and the ratio (black circles) of the same events to the mixed events
for pT 0 = (a) 0.5 GeV/c and (b) 1.5 GeV/c.

to form a cluster. Conversely, particles in the mixed events
are uniformly distributed, and clusters are randomly formed.
Thus, the algorithm is more effective in clustering minijets
when using higher pT 0 values, resulting in a more prominent
difference between the same events and the mixed events.
pT 0 = 0.5 GeV/c may be insufficient to clearly distinguish
the same events and the mixed events, especially at low M.

To investigate the correlation between two clusters, we
classify events based on the value of K obtained from the
algorithm. Specifically, we analyze the cases of K = 2, 3, and
4 to demonstrate the dependence on K and to provide adequate
statistical data for further analysis.

Figures 7 and 8 display the two-cluster correlations
(�φ-�η) for the same events (upper) and the mixed

FIG. 7. Two-cluster correlation (�φ-�η) for the same events
(upper) and the mixed events (lower) with pT 0 = 0.5 GeV/c and
K = 2.

FIG. 8. Two-cluster correlation (�φ-�η) for the same events
(upper) and the mixed events (lower) with pT 0 = 1.5 GeV/c and
K = 2.
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FIG. 9. Ratio of the two-cluster correlation (�φ-�η) function
for the same events to that for the mixed events for events selected
with K = 2 for pT 0 = 0.5 (upper) and 1.5 GeV/c (lower).

events (lower) with K = 2 for pT 0 = 0.5 and 1.5 GeV/c,
respectively. Note that �φ and �η now represent the dis-
tances between two cluster centers instead of two particles.
The two-dimensional (2D) distribution primarily follows the
�η distribution that approximately takes the shape of a tri-
angle and holds a ridge around �η ≈ 0, gradually decreasing
as �η increases. The holes around �φ ≈ 0 and �η ≈ 0 in
these distributions result from the exclusivity of the clusters
since two clusters tend to merge in our clustering algorithm if
their distance is small. The same-event data exhibit an away-
side ridge at �φ ≈ π , which is absent in the mixed-event
data. Specifically, at a fixed value of �η, the number of en-
tries around �φ ≈ π is significantly greater than that around
�φ ≈ π/2 in the same events, whereas it remains nearly
uniform along �φ in the mixed events. The threshold pT 0 also
impacts these distributions. A significantly higher away-side
peak appears in the same events for pT 0 = 1.5 GeV/c (in
Fig. 8) than for pT 0 = 0.5 GeV/c (in Fig. 7).

Figure 9 shows the ratio of the two-cluster correlation for
the same events to that for the mixed events with K = 2 for
pT 0 = 0.5 (upper) and 1.5 GeV/c (lower). Before taking the
ratio, we have normalized the 2D correlations for the same
events and the mixed events with their corresponding total
numbers of cluster pairs, respectively, similar to the approach
used for the ratio in the two-particle correlations in Fig. 5.
Except for the presence of holes at �φ ≈ 0 and �η ≈ 0,
the two-cluster correlations qualitatively resemble the two-
particle correlations in Fig. 5 and reveal more prominent

FIG. 10. Ratio of the two-cluster correlation (�φ-�η) function
for the same events to that for the mixed events with pT 0 = 1 GeV/c,
and K = 2 (upper), 3 (middle), and 4 (lower).

away-side ridges around �φ ≈ π . Remarkably, the away-side
ridge appears consistently and uniformly for the two-cluster
correlations, even for pT 0 = 0.5 GeV/c, and is enhanced for
the higher pT 0 = 1.5 GeV/c. The magnitude of the ratio
within the away-side range is about 1.25 (1.4) for pT 0 = 0.5
(1.5) GeV/c.

Figure 10 illustrates the K dependence of the ratio of the
two-cluster correlation (�φ-�η) function for the same events
to that for the mixed events with pT 0 = 1 GeV/c. The upper,
middle, and lower panels correspond to K values of 2, 3, and 4,
respectively. As K increases, the magnitude of the away-side
ridge in the ratio decreases. The away-side ridge is likely due
to momentum conservation, which is diluted by increasing K .

The effectiveness of the pT -seeded clustering algo-
rithm can be evaluated by comparing the two-particle
and two-cluster correlations, particularly by examining the
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FIG. 11. Ratio of the (a) two-particle or (b) two-cluster correlation (�φ) function for the same events to that for the mixed events with
pT 0 = 0.5 GeV/c for the multiplicity ranges of [5, 8] (left), [9, 12] (middle), and [13, 16] (right).

away-side ridge, and reducing the correlation function to one
dimension (1D), which simplifies the assessment of the corre-
lation strength. To eliminate bias, both types of correlations
are calculated using events with similar multiplicities. Fig-
ures 11 and 12 present the ratio of the �φ distribution for
the same events to that for the mixed events with pT 0 = 0.5
and 1.5 GeV/c, respectively, for the multiplicity ranges of
[5, 8], [9, 12], and [13, 16]. The upper panels display the

two-particle correlations, and the lower ones show the two-
cluster correlations. The two-particle correlation shows a
near-side peak, which is not present in the two-cluster corre-
lation due to the exclusivity of clusters, as shown by the holes
in the 2D correlations in Figs. 7–10. For pT 0 = 0.5 GeV/c,
the away-side peak decreases with increased multiplicity, and
the peaks in the two-cluster correlations are lower than those
in the corresponding two-particle correlations. However, for

FIG. 12. Same as Fig. 11, except for pT 0 = 1.5 GeV/c.
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pT 0 = 1.5 GeV/c, the two-cluster correlations consistently
show higher away-side peaks than the two-particle correla-
tions. Hence, by selecting an appropriate pT 0, the clustering
algorithm is more effective in revealing the minijet properties
compared with the two-particle correlations.

VI. DIFFERENCE WITH THE ANTI-kT ALGORITHM

The anti-kT algorithm [58] is a sequential recombination
approach, based on the distance measure,

di j = min
(
p−2

Ti , p−2
T j

)R2
i j

R2
, (29)

in combination with a boundary condition

diB = p−2
Ti , (30)

where R2
i j = (ηi − η j )2 + (φi − φ j )2. The first component di j

of Eq. (29) serves as a filter that selects particles suitable
for inclusion in a cluster. The use of a power of −2 for pT

prioritizes the clustering of high-pT particles. The second
component of Eq. (30) sets the criterion for either initiating
or halting the recombination process. To satisfy the recombi-
nation condition di j < diB, the value of Ri j must be smaller
than the cluster radius R. If this condition is not satisfied, the
recombination process is terminated. The algorithm iterates
through the recombination process until only a few objects
remain, and these remaining objects are then referred to as
jets.

While not strictly a cone algorithm, the anti-kT algorithm
exploits the existence of high-pT particles to stabilize the
shapes of the resulting clusters, producing outcomes that
resemble a cone-shaped pattern. This is especially evident
under typical circumstances where the high-pT particles ex-
hibit substantial differences from soft particles. Due to the
considerable contrast in the pT values between hard and soft
particles, the clustering process is relatively insensitive to the
inclusion of soft particles in the jet. However, the anti-kT

algorithm may not be ideally suited for the minijet condition,
which features considerable presence of soft particles and the
indistinct demarcation between high- and low-pT particles.
The presence of nonjet soft particles makes it hard to clearly
define minijets when we use the anti-kT algorithm. In contrast,
the pT -seeded clustering method is a cone algorithm that
allows the distinct separation of the minijet with other soft
particles using high-pT seeds, providing advantages in the
low-pT regime.

The pT -seeded clustering method is designed to exclude
the influence of soft particles in the minijet environment. The
effect of this method can be observed in cases with pT 0 values
of 0.5 and 1.5 GeV/c. In particular, clusters with pT 0 = 0.5
GeV/c display minimal discrepancies in the two-cluster cor-
relation between the same events and the mixed events (in
Fig. 9). However, increasing pT 0 to 1.5 GeV/c reveals no-
ticeable differences in the correlation functions, emphasizing
the influence of soft particles in the minijet environment and
demonstrating the enhancement provided by the pT -seeded
clustering algorithm. The pT -seeded clustering method in-
cludes all particles in the vicinity of the seeded cluster

center, effectuating a static clustering approach that accu-
rately captures the original particle configuration. Unlike the
dynamic, continual particle-merging process characteristic of
the anti-kT algorithm, the pT -seeded method clusters particles
based on their actual spatial distribution, and consequently, it
generates intuitive results. Our method allows for an easier
prediction of the jet position, facilitating straightforward vi-
sual identification of the jet’s location. By incorporating the
pT seed, the numerous low-pT particles can be disregarded in
the initial round, leading to a substantial enhancement in the
compilation speed. Eventually, the pT -seed method can com-
plement the anti-kT algorithm in the clustering of minijets,
particularly in the low-pT region where the application of the
anti-kT algorithm might not be suitable.

VII. CONCLUSIONS

We have developed a pT -seeded clustering algorithm,
which utilizes a threshold pT 0 constraint on the seed to ex-
clude low-pT particles during the initial clustering steps so
that jets that are solely composed of low-pT particles are elim-
inated from the output. The high-pT seed particles are merged
based on their η-φ distance, and, subsequently, the cluster-
ing process is refined by incorporating low-pT particles. The
design is aimed at minimizing the effects of random-cluster
noise in the low-pT range. We have evaluated the performance
of our algorithm using a PYTHIA dataset. The clustering re-
sults indicate the expected hard-scattering-type correlations.
Notably, the performance characteristics vary with pT 0, with
a pT 0 range of 1 to 1.5 GeV/c yielding a clear distinction
between the same events and the mixed events.

We are excited about the potential to apply our seeded
clustering algorithm to real data to investigate novel

FIG. 13. An example PYTHIA event with M = 17, K = 6, and
pT 0 = 1 GeV/c.
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phenomena, such as collective flow or other mechanisms
beyond hard scattering. In actual hadron-hadron collisions,
the number of clusters may be significant, as demonstrated
in Fig. 13. This presents an exciting opportunity to explore
exotic reaction mechanisms.

ACKNOWLEDGMENTS

G.W. and H.Z.H. are supported by the U.S. Department
of Energy under Grant No. DE-FG02-88ER40424 and by
the National Natural Science Foundation of China under
Contract No.1835002. C.Y.W. is supported in part by UT-
Battelle, LLC, under Contract No. DE-AC05-00OR22725
with the US Department of Energy (DOE). H.J. is sup-

ported by the U.S. Department of Energy under Grant No.
DE-FG02-86ER40681. N.Y. is supported by the U.S. Depart-
ment of Energy under Grant No. DE-SC0023861.

This manuscript has been authored in part by UT-Battelle,
LLC, under contract DE-AC05-00OR22725 with the US De-
partment of Energy (DOE). The US government retains the
publisher, by accepting the article for publication acknowl-
edges that the US government retains a nonexclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the
published form of this manuscript, or allow others to do so,
for US government purposes. DOE will provide public access
to these results of federally sponsored research in accordance
with the DOE Public Access Plan [59], Oak Ridge, Tennessee
37831, USA.

[1] R. Blankenbecler and S. J. Brodsky, Phys. Rev. D 10, 2973
(1974); R. Blankenbecler, S. J. Brodsky, and J. Gunion, ibid.
12, 3469 (1975); I. A. Schmidt and R. Blankenbecler, ibid. 15,
3321 (1977); R. Blankenbecler, A. Capella, J. Tran, Thanh Van,
C. Pajares, and A. V. Ramallo, Phys. Lett. B 107, 106 (1981).

[2] A. L. S. Angelis et al. (CCOR Collaboration), Phys. Lett. B 79,
505 (1978).

[3] R. P. Feynman, R. D. Field, and G. C. Fox, Phys. Rev. D: Part.
Fields 18, 3320 (1978).

[4] J. F. Owens, E. Reya, and M. Glück, Phys. Rev. D 18, 1501
(1978); D. W. Duke and J. F. Owens, ibid. 30, 49 (1984).

[5] J. Rak and M. J. Tannenbaum, High-pT Physics in the
Heavy Ion Era (Cambridge University Press, Cambridge,
2013).

[6] T. Sjöstrand, Comput. Phys. Commun. 39, 347 (1986); T.
Sjöstrand and M. Bengtsson, ibid. 43, 367 (1987).

[7] T. Sjöstrand and M. van Zijl, Phys. Rev. D: Part. Fields 36, 2019
(1987).

[8] C. Albajar et al. (UA1 Collaboration), Nucl. Phys. B 309, 405
(1988).

[9] K. S. Eskola, K. Kajantie, and J. Lindfors, Nucl. Phys. B 323,
37 (1989).

[10] X. N. Wang and M. Gyulassy, Phys. Rev. D: Part. Fields 44,
3501 (1991).

[11] J. Adams et al. (STAR Collaboration), Phys. Rev. C 73, 064907
(2006).

[12] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys.
05 (2006) 026.

[13] C. Y. Wong and G. Wilk, Phys. Rev. D 87, 114007 (2013).
[14] C. Y. Wong, G. Wilk, L. J. L. Cirto, and C. Tsallis, Phys. Rev.

D 91, 114027 (2015).
[15] J. D. Bjorken, Phys. Rev. D: Part. Fields 27, 140 (1983).
[16] P. Steinberg, Proc. Sci. CPOD2006, 036 (2006).
[17] R. C. Hwa, Phys. Rev. D: Part. Fields 10, 2260 (1974).
[18] L. D. Landau, Izv. Akad. Nauk Ser. Fiz. 17, 51 (1953).
[19] S. Z. Belenkij and L. D. Landau, Usp. Fiz. Nauk 56, 309 (1955);

Nuovo Cimento 3, 15 (1956).
[20] S. Amai, H. Fukuda, C. Iso, and M. Sato, Prog. Theor. Phys. 17,

241 (1957).
[21] P. Carruthers and M. Doung-van, Phys. Rev. D: Part. Fields 8,

859 (1973).
[22] F. Cooper and G. Frye, Phys. Rev. D: Part. Fields 10, 186

(1974).

[23] S. Chadha, C. S. Lam, and Y. C. Leung, Phys. Rev. D: Part.
Fields 10, 2817 (1974).

[24] L. P. Csernai, Sov. Phys. JETP 65, 216 (1987).
[25] D. K. Srivastava, J. Alam, and B. Sinha, Phys. Lett. B 296, 11

(1992); D. K. Srivastava, J. Alam, S. Chakrabarty, B. Sinha, and
S. Raha, Ann. Phys. 228, 104 (1993); D. K. Srivastava, J. Alam,
S. Chakrabarty, S. Raha, and B. Sinha, Phys. Lett. B 278, 225
(1992).

[26] C. E. Aguiar, T. Kodama, T. Osada, and Y. Hama, J. Phys. G
27, 75 (2001); Y. Hama, T. Kodama, O. Socolowski Jr., Braz. J.
Phys. 35, 24 (2005).

[27] L. D. McLerran and R. Venugopalan, Phys. Rev. D: Part. Fields
49, 2233 (1994).

[28] L. D. McLerran and R. Venugopalan, Phys. Rev. D: Part. Fields
49, 3352 (1994).

[29] E. Iancu, A. Leonidov, and L. McLerran, arXiv:hep-
ph/0202270.

[30] E. Iancu and R. Venugopalan, Quark-Gluon Plasma 3, 249
(2004).

[31] F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan,
Annu. Rev. Nucl. Part. Sci. 60, 463 (2010).

[32] B. Mohanty and J. Alam, Phys. Rev. C 68, 064903 (2003).
[33] S. Pratt, Phys. Rev. C 75, 024907 (2007).
[34] A. Bialas, R. A. Janik, and R. Peschanski, Phys. Rev. C 76,

054901 (2007).
[35] T. Osada and G. Wilk, Centr. Eur. J. Phys. 7, 432 (2009).
[36] E. K. G. Sarkisyan and A. S. Sakharov, arXiv:hep-ph/0410324;

E. K. G. Sarkisyan, A. S. Sakharov, AIP Conf. Proc. 828, 35
(2006).

[37] C. Y. Wong and T. A. Welton, Phys. Lett. B 49, 243 (1974).
[38] M. Basile et al., Nuovo Cimento A 65, 400 (1981); M. Basile,

ibid. 67, 244 (1982).
[39] L. P. Csernai and J. I. Kapusta, Phys. Rev. D: Part. Fields 46,

1379 (1992).
[40] V. K. Magas, L. P. Csernai, and D. D. Strottman, Phys. Rev. C

64, 014901 (2001); Nucl. Phys. A 712, 167 (2002).
[41] C. Y. Wong and W. N. Zhang, Phys. Rev. C 70, 064904 (2004).
[42] W. N. Zhang, S. X. Li, C. Y. Wong, and M. J. Efaaf, Phys. Rev.

C 71, 064908 (2005).
[43] T. Csörgö, M. I. Nagy, and M. Csanád, Phys. Lett. B 663, 306

(2008).
[44] G. Beuf, R. Peschanski, and E. N. Saridakis, Phys. Rev. C 78,

064909 (2008).

044903-11

https://doi.org/10.1103/PhysRevD.10.2973
https://doi.org/10.1103/PhysRevD.12.3469
https://doi.org/10.1103/PhysRevD.15.3321
https://doi.org/10.1016/0370-2693(81)91159-X
https://doi.org/10.1016/0370-2693(78)90416-1
https://doi.org/10.1103/PhysRevD.18.3320
https://doi.org/10.1103/PhysRevD.18.1501
https://doi.org/10.1103/PhysRevD.30.49
https://doi.org/10.1016/0010-4655(86)90096-2
https://doi.org/10.1016/0010-4655(87)90054-3
https://doi.org/10.1103/PhysRevD.36.2019
https://doi.org/10.1016/0550-3213(88)90450-6
https://doi.org/10.1016/0550-3213(89)90586-5
https://doi.org/10.1103/PhysRevD.44.3501
https://doi.org/10.1103/PhysRevC.73.064907
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1103/PhysRevD.87.114007
https://doi.org/10.1103/PhysRevD.91.114027
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.22323/1.029.0036
https://doi.org/10.1103/PhysRevD.10.2260
https://doi.org/10.3367/UFNr.0056.195507a.0309
https://doi.org/10.1007/BF02745507
https://doi.org/10.1143/PTP.17.241
https://doi.org/10.1103/PhysRevD.8.859
https://doi.org/10.1103/PhysRevD.10.186
https://doi.org/10.1103/PhysRevD.10.2817
https://doi.org/10.1016/0370-2693(92)90796-7
https://doi.org/10.1006/aphy.1993.1089
https://doi.org/10.1016/0370-2693(92)90185-7
https://doi.org/10.1088/0954-3899/27/1/306
https://doi.org/10.1590/S0103-97332005000100003
https://doi.org/10.1103/PhysRevD.49.2233
https://doi.org/10.1103/PhysRevD.49.3352
https://arxiv.org/abs/hep-ph/0202270
https://doi.org/10.1142/97898127955330005
https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1103/PhysRevC.68.064903
https://doi.org/10.1103/PhysRevC.75.024907
https://doi.org/10.1103/PhysRevC.76.054901
https://doi.org/10.2478/s11534-008-0163-5
https://arxiv.org/abs/hep-ph/0410324
https://doi.org/10.1063/1.2197392
https://doi.org/10.1016/0370-2693(74)90423-7
https://doi.org/10.1007/BF02827443
https://doi.org/10.1007/BF02784744
https://doi.org/10.1103/PhysRevD.46.1379
https://doi.org/10.1103/PhysRevC.64.014901
https://doi.org/10.1016/S0375-9474(02)01073-4
https://doi.org/10.1103/PhysRevC.70.064904
https://doi.org/10.1103/PhysRevC.71.064908
https://doi.org/10.1016/j.physletb.2008.04.038
https://doi.org/10.1103/PhysRevC.78.064909


JIANG, YAO, WONG, WANG, AND HUANG PHYSICAL REVIEW C 109, 044903 (2024)

[45] T. A. Trainor, Phys. Rev. C 90, 024909 (2014).
[46] C. Y. Wong, H. Jiang, N. Yao, L. Wen, G. Wang, and H. Z.

Huang, Phys. Rev. D 102, 054007 (2020).
[47] T. Sjöstrand, S. Mrenna, and P. Skands, Comput. Phys.

Commun. 178, 852 (2008).
[48] J. F. Owens, Rev. Mod. Phys. 59, 465 (1987).
[49] C. Y. Wong, J. Phys.: Conf. Ser. 668, 012097 (2016).
[50] T. Sjöstrand et al., Comput. Phys. Commun. 191, 159 (2015).
[51] L. Chatterjee and C. Y. Wong, Phys. Rev. C 51, 2125 (1995);

C. Y. Wong and L. Chatterjee, Heavy Ion Phys. 4, 201 (1996).
[52] C. Y. Wong and H. Wang, Phys. Rev. C 58, 376 (1998).

[53] R. Gastmans and T.-T. Wu, The Ubiquitous Photon: Helic-
ity Methods for QED and QCD (Oxford University Press,
United Kingdom, 1990).

[54] B. L. Combridge, Nucl. Phys. B 151, 429 (1979).
[55] M. Glück, J. F. Owens, and E. Reya, Phys. Rev. D: Part. Fields

17, 2324 (1978).
[56] C. Y. Wong, Phys. Rev. C 80, 034908 (2009).
[57] R. García-Pelayo, J. Phys. A: Math. Gen. 38, 3475 (2005).
[58] M. Cacciari, G. Salam, and G. Soyez, J. High Energy Phys. 04

(2008) 063.
[59] http://energy.gov/downloads/doe-public-access-plan.

044903-12

https://doi.org/10.1103/PhysRevC.90.024909
https://doi.org/10.1103/PhysRevD.102.054007
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1103/RevModPhys.59.465
https://doi.org/10.1088/1742-6596/668/1/012097
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1103/PhysRevC.51.2125
https://doi.org/10.1007/BF03155615
https://doi.org/10.1103/PhysRevC.58.376
https://doi.org/10.1016/0550-3213(79)90449-8
https://doi.org/10.1103/PhysRevD.17.2324
https://doi.org/10.1103/PhysRevC.80.034908
https://doi.org/10.1088/0305-4470/38/16/001
https://doi.org/10.1088/1126-6708/2008/04/063
http://energy.gov/downloads/doe-public-access-plan

