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Production of superheavy nuclei in hot-fusion reactions
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A model for hot-fusion reactions leading to the synthesis of superheavy nuclei is discussed. The values of the
hot-fusion cross sections obtained in the model agree with the available experimental data. The hot-fusion cross
sections are found for two different models of the fission barrier heights of superheavy nuclei. The calculations
of the cross sections for the various hot-fusion reactions leading to the 119 and 120 elements are presented.
Simple expressions useful for qualitative analysis of the cross section for forming superheavy nuclei are obtained.
It is shown that the superheavy nuclei production cross section is proportional to the transmission coefficient
of the capture barrier, realization probability of the xn-evaporation channel, and exponentially depends on the
quasielastic barrier, fusion reaction Q value, compound nucleus formation barrier, neutron separation energies,
and fission barrier heights.
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I. INTRODUCTION

The synthesis of superheavy nuclei (SHN) is a very
interesting, exciting, and puzzling task, as much for experi-
mentalists as for theoreticians. The elements beyond Nh with
proton numbers Z = 114–118 have been synthesized in the
hot heavy ion fusion reactions [1–26]. The Og, with Z = 118,
is the heaviest element that has been synthesized to date,
discovered by Oganessian et al. [5,21]. Recently, experiments
aimed at the synthesis of isotopes of elements Z = 119 and
120, or the study of properties of related reactions have been
performed [27–35]. Still, no decay chains consistent with the
fusion-evaporation reaction products have been observed.

The synthesis of SHN with proton numbers Z = 108–118
in collisions of a 48Ca projectile nucleus with heavy target
nuclei from Ra to Cf [1–26] is called a hot fusion reaction be-
cause the excitation energies of the compound nucleus formed
in these reactions are relatively high. The excited compound
nucleus synthesized in the hot fusion reaction is cooled by the
emission of two to five neutrons [1–26]. The neutron emission
competes with the fission of the excited compound nucleus.

Recently, many various models dedicated to the description
of the SHN production cross sections in hot fusion reactions
have been presented, see, for example, Refs. [36–55] and
papers cited therein. The calculation of the production cross
section is the product of the capture cross section, the prob-
ability of the compound nucleus formation, and the survival
probability of the evaporation residue.

The survival probability is proportional to the ratio of
the neutron emission width �n to the fission width � f .
In the model of constant temperature level density ρ(E ) ∝
exp (ε/T ), where ε is the excitation energy of the nucleus,
T is the temperature, the ratio of widths [56] is

�n/� f ≈ cT exp [(B f − Sn)/T ]. (1)

Here, B f is the fission barrier height, Sn is the neutron sep-
aration energy from the nucleus, cT = 0.2T A2/3, and A is
the number of nucleons in the SHN. As a result, the SHN
production cross section strongly depends on Sn and B f .

The results of the first systematic calculations of the neu-
tron separation energies and the fission barrier heights for a
wide range of the SHN in the framework of one model are
presented in Refs. [57,58]. The results of similar systematic
calculations performed in another model have been presented
recently in Ref. [59]. Note that the experimental neutron sep-
aration energy can be only extracted for some SHN by using
the recent atomic mass table [60]. The theoretical values of
the neutron separation energy can be found using the atomic
mass table obtained in various nuclear mass models too, for
example, see Refs. [61,62].

The difference between the neutron separation energies
obtained in different models [57,59–62] for most SHN with
110 � Z � 122 are close or smaller than 0.8 MeV, see Fig. 1.
In contrast to this, the difference between the barrier values
calculated in the models [58] and [59] can reach ≈4 MeV for
SHN formed in hot-fusion reactions, see Fig. 2. According to
Eq. (1), the survival probability depends exponentially on the
difference B f − Sn, therefore, the model with higher values of
the fission barrier heights leads to strongly higher values of the
ratio �n/� f , the survival probability, and the SHN production
cross sections in hot fusion reactions. The difference between
the values of the SHN production cross sections obtained for
SHN with Z = 120 using the different fission barriers reach
2 orders [36]. This result agrees with the exponential depen-
dence of the survival probability on the difference B f − Sn,
see Eq. (1). So, the use of different fission barrier values
leads to a strong change in the reaction mechanisms in the
description of the existing experimental data for the SHN
production cross section.
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FIG. 1. Mass A and charge Z dependencies of the difference of
the neutron separation energies SFRDM − SMMWS, where the values
of neutron separation energies SFRDM and SMMWS are taken from
Refs. [58] and [59], correspondingly.

The theory of the capture stage of the SHN production
is well known because there are experimental data for the
capture cross section and capture barrier heights [63,64]. Note
that various models and a huge number of experimental data
are available for heavy-ion fusion reactions leading to the
light, medium, and heavy nuclei [65–68]. The description of
the capture process applied for SHN production models in
Refs. [36–55] are similar to the ones used for lighter heavy ion
systems. Therefore, various approaches to the capture process
presented in Refs. [35–54] give close results.

The calculation of the survival probability of the SHN
is based on the nuclear evaporation model, which is well
backgrounded. The description of the survival probability

FIG. 2. Mass A and charge Z dependencies of the difference of
the fission barriers BFRDM − BMMWS for � = 0, where the values of
barrier heights BFRDM and BMMWS are taken from Refs. [58] and [59],
correspondingly.

considered in the models [36–55] is similar and leads to simi-
lar results.

In contrast to these, the stage of the compound nucleus
formation is less known and the experimental data is insuffi-
cient to fix well the values of the compound nucleus formation
probability. As a result, there are many various approaches to
the description of the SHN formation probability in heavy-ion
reactions, see, for example, Refs. [35–54] and papers cited
therein.

Therefore, it is interesting to consider the SHN production
cross sections calculated for various collisional systems in
the framework of the same model of the synthesis by us-
ing the different values of the fission barriers of SHN from
Refs. [57,58] and [59]. Note that the fission barrier heights
from model [57,58] have been used in most parts of the
models for the SHN production cross sections. The changes
in the model parameters induced by the different values of the
fission barrier height in the case of experimentally known val-
ues of the SHN production cross sections should be discussed
too. These changes can be only coupled to the description of
the probability of the compound nucleus formation because
the other stages of SHN production are well defined. The
predictions of the production cross sections for SHN with
Z > 118 in different fission barrier models are important for
planning future experiments. The study of these items is the
goal of this paper.

The simple expression for the SHN production cross sec-
tions obtained using the model of constant temperature for
the level density is also discussed in the paper. This ex-
pression is applied for the qualitative analysis of the SHN
cross-section dependence on the model parameters.

The models introduced for the SHN production in the cold
fusion reactions [69] and compound nucleus formation in
heavy-ion reactions [70] are extended for the case of the hot
fusion reactions now. Remind that the projectile and target are
spherical in the case of the cold fusion reactions, while the
spherical projectile and deformed target collide in the case of
the hot fusion reactions. The excitation energies of the SHN
formed in the cold fusion reactions are smaller than the ones
in the hot fusion reactions.

The model is described in Sec. II. The results and conclu-
sions are given in Secs. III and IV, respectively.

II. MODEL

The cross section of the SHN synthesis in collisions of
nuclei with the subsequent emission of x neutrons from the
formed compound nucleus in competition with fission, is
given as

σxn(E ) = π h̄2

2μE

∑
�

σxn�(E )

= π h̄2

2μE

∑
�

(2� + 1)T�(E ) × P�(E ) × W xn
� (E ). (2)

Here, σxn�(E ) is the partial cross section, μ is the reduced
mass, and E is the collision energy of the incident nuclei
in the center of the mass system. T�(E ) is the transmission
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coefficient through the fusion (capture) barrier formed by
the Coulomb, centrifugal, and nuclear parts of the nucleus-
nucleus interaction, P�(E ) is the probability of compound
nucleus formation, and W xn

� (E ) is the survival probability of
the compound nucleus related to the evaporation of x neutrons
in competition with fission. In the cases of experimentally
measured hot fusion reactions [1–25], x equals 3 or 4 and
rarely 2 or 5 because the excitation energy of the compound
nucleus is relatively high. In comparison to this, the number of
nucleons evaporated from the compound nucleus in the cold
fusion reactions is 1 or 2, as a rule, [69,71,72].

The collision of the spherical projectile nucleus with the
deformed axial-symmetric actinide target nucleus occurs in
the hot fusion reactions [1–25]. Therefore, the total transmis-
sion coefficient is averaged on all orientations of the deformed
nucleus

T�(E ) = 1

2

∫ π

0
dθ2 sin(θ2)T�(E , θ2), (3)

where θ2 is the orientation angle of the deformed nuclei [73].
The orientation is linked to the space angle between the line
connecting the mass centers of the colliding nuclei and the
axial-symmetry axis of the deformed nucleus. The transmis-
sion coefficient T�(E , θ2) through the capture barrier V (r, θ2)
can be calculated using the Ahmed formula [74]

T�(E , θ2) = 1 − exp (−4πα�(θ2))

1 + exp [2π (β�(θ2) − α�(θ2))]
, (4)

where α�(θ2) = 2(B�(θ2 )E )1/2

h̄ω�(θ2 ) and β�(θ2) = 2B�(θ2 )
h̄ω�(θ2 ) . Here,

B�(θ2) = V t
� (rb(θ2), θ2) is the capture barrier height,

rb(θ2) is the radius of the barrier, and h̄ω�(θ2) =
(− h̄2

μ

d2V t
� (r,θ2 )
dr2 )1/2|r=rb(θ2 ) is the barrier curvature. Ahmed

obtained the exact expression for the transmission coefficient
through the Morse potential barrier [75]. The shape of the
realistic total nucleus-nucleus potential is closer to the shape
of the Morse potential than the parabolic one, see for details
Ref. [76] and papers cited therein. Therefore, Ahmed’s
expression for the transmission coefficient is more suitable
than the corresponding expression for the parabolic barrier
[77,78]. The difference between the Ahmed and parabolic
transmission coefficients is important for sub-barrier energies
[76].

The total interaction potential between the spherical pro-
jectile and the deformed target for the partial wave � is

V t
� (r, θ2) = VC(r, θ2) + Vn(r, θ2) + h2�(� + 1)

2μr2
. (5)

Here, V C(r, θ2) and V n(r, θ2) are, respectively, the Coulomb
and nuclear interactions of the incident nuclei. The last term
in Eq. (5) is the centrifugal potential.

The Coulomb interactions of the incident nuclei at dis-
tances larger than the contact distance is

VC(r, θ2) = Z1Z2e2

r

[
1 + 3R2

20β2�Y20(θ2)

5r2

]
. (6)

Here, R(θ2) = R20(1 + β2�Y20(θ2)) is the radius of deformed
target, β2� is the experimental value of the surface quadrupole
deformation parameter taken from Ref. [79], R20 is the radius

of spherical nucleus, and Y20(θ2) is the spherical harmonic
function [80]. The Coulomb interactions of the incident nu-
clei at distances smaller than the contact distance for given
orientation θ2 is approximated as in Ref. [73]. For the sake
of simplicity, the linear term on the surface quadrupole defor-
mation parameter is taken into account because the collision
energies used for the SHN synthesis are close to higher than
the barrier height as a rule.

According to the proximity theorem [81,82], the nuclear
part of the interaction potential between spherical and de-
formed nuclei at the distance between their mass centers r
and at the orientation angle of deformed nucleus θ2 is given
as [73]

Vn(r, θ2) = Pdef · V0(smin(r, θ2)). (7)

Here,

Pdef =
√√√√ (C‖

10 + C‖
20)(C⊥

10 + C⊥
20)

(C‖
1 + C‖

2 )(C⊥
1 + C⊥

2 )
(8)

is the factor taking into account the changes in the strength
of the nuclear interaction potential due to the deformation of
the interacting nuclei. Here, C‖

i and C⊥
i are the main curva-

tures of the deformed surface of the nucleus i at the point
closest to the surface of another nucleus. V0(smin(r, θ2)) is
the nuclear part of the interaction potential between spherical
nuclei calculated at the distance between their mass cen-
ter R10 + R20 + smin(r, θ2) [69,70,73], where smin(r, θ2) is the
shortest distances between surfaces of interacting deformed
nuclei. The main curvatures of the spherical nucleus are
C‖

i0 = C⊥
i0 = 1/Ri0, therefore, Eq. (8) can be written in the

form Pdef = Csph√
(R−1

10 +C‖
2 )(R−1

10 +C⊥
2 )

, where Csph = ( R10R20
R10+R20

)−1.

The simple expressions for smin(r, θ2) the main curvatures
of the surface C‖

2 and C⊥
2 , which depends on r, θ2, and β2,

obtained in the linear approximation for the deformation pa-
rameter are obtained in Ref. [73].

After penetration of the capture barrier, the stuck-together
nuclei are formed in the capture well [83]. The stuck-together
nuclei populate states in the capture well of the total potential
as a rule [83]. The kinetic energy of the relative motion of
nuclei in the capture well is completely transferred into in-
ner degrees of freedom due to the strong dissipation caused
by overlapping some parts of approaching nuclei during the
collision [84–86]. Consequently, the evolution of the nuclei in
the capture well is associated with the shape of the potential
energy landscape of the system.

The lowest interaction potential energy of the stuck-
together nuclei in the capture well takes place for the
axial-symmetric nuclear system. Therefore, the equilibrium
shape of the stuck-together nuclei is axial symmetric. Due to
this, the nonaxial shapes of the stuck-together nuclei are not
equilibrium and smoothly transform into axial ones. The uni-
form temperature of nuclear matter is quickly set in the system
of the axial-symmetric stuck-together nuclei. As a result, all
subsequent evolution stages of the stuck-together nuclei can
be considered statistically using the Bohr-Wheeler transition
state approximation [87] and they are independent of the ori-
entation angle θ2.
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However, the very accurate consideration of the processes
in the capture well shows, that the capture well stage of
compound nucleus formation passes through axial-symmetric
shapes is an assumption, which greatly simplifies further
consideration. This assumption is supported by the most
statistically probable shape of the stuck-together nuclei is
axial-symmetric because such a shape has the lowest inter-
action potential energy and, therefore, the highest value of the
inner excitation energy and the density of states.

A. The probability of the compound nucleus formation

The probability of the compound nucleus formation in the
partial wave � in the statistical approach is [69,70]

P�(E ) = �cnf
� (E )

�s
�(E )

= 1

1 + G�(E )
. (9)

Here, �cnf
� (E ) is the decay width of the stuck-together nuclei

to the compound nucleus states, �s
�(E ) = �cnf

� (E ) + �d
� (E )

is the total decay width of the stuck-together nuclei, and

G�(E ) = �d
� (E )

�cnf
� (E )

. �d
� (E ) is the decay width of the stuck-

together nuclei into all channels leading to the two separated
nuclei.

The width �cnf
� (E ) can be linked to the compound nucleus

formation barrier Bcnf
� , which takes place at the smooth shape

evolution from the stuck-together nuclei to the spherical or
near-spherical compound nucleus. There are various trajec-
tories, which are different barrier heights, connecting to the
heavy-ion system in the capture well with the compound
nucleus. However, the trajectory with the lowest value of the
compound nucleus formation barrier gives the leading con-
tribution to the width �cnf

� (E ). A similar takes place in the
fission theory when the lowest fission barrier is also used for
the description of the fission of the compound nucleus in the
statistical model.

The barrier Bcnf
� is related to the one-body shape evo-

lution as the ordinary fission barrier [56,58,59,88–92]. The
minimal value of Bcnf may be estimated similar to the
height of the fission barrier using the microscopic [88] or
microscopic-macroscopic models [58,59,89–92]. However,
during heavy-ion fusion and fission, the collective coordinates
describing these processes are changed in opposite directions.
Therefore, the width �cnf

� (E ) can be found similar to the
fission width applying the Bohr-Wheeler approximation of the
transition state [87]. The detailed description of the expres-
sions for the width �cnf

� (E ) is presented in Refs. [69,70]. Due
to this, the expressions for the calculation of the width with
short comments are given below only.

The width for passing the compound nucleus formation
barrier Bcnf

� (ε), which takes place between the stuck-together
incident nuclei and compound nucleus in the equilibrium
shape, can be written as

�cnf
� (E ) = 2

2πρsn(E )

∫ εcn
max

0
dε

ρA(ε)

Ncn
tot

Ncnf (ε). (10)

Here, the barrier height Bcnf
� (ε) depends on the excitation

energy, ρsn(E ) is the level density of the stuck-together nuclei
(the level density of the initial state) and ρA(ε) is the level

density of the compound nucleus with A nucleons formed in
the heavy-ion collision. The ratio ρA(ε)/Ncn

tot is the probability
of finding the nuclear system passing through the barrier with
the intrinsic (thermal) excitation energy ε in the over-barrier
transition states,

Ncn
tot =

∫ εcn
max

0
dερA(ε) (11)

is the total number of states available for barrier passing in
the case of the energy-dependent barrier of compound nucleus
formation Bcnf (ε),

Ncnf (ε) =
∫ E+Q−Bcnf

� (ε)

ε

deρA(e) (12)

is the number of states available for the nuclear system passing
through the barrier at the thermal excitation energy ε, and Q
is the fusion reaction Q value. Note that Bcnf

� (ε) and E + Q
are, respectively, the barrier height and the excitation energy
of the compound nucleus evaluated relatively the ground-state
of the compound nucleus formed in the fusion reaction. εcn

max
is the maximum value of the thermal excitation energy of the
compound nucleus at the saddle point, which is determined as
the solution of the equation

εcn
max + Bcnf

�

(
εcn

max

) = E + Q. (13)

The back-shifted Fermi gas model [93,94] is used for a
description of the level density ρA(ε) of the nucleus with A
nucleons. The level density in this model is given by

ρA(ε) = π1/2 exp [2
√

aA(ε − �) × (ε − �)]

12[aA(ε − �)]1/4(ε − �)5/4
, (14)

where

aA(ε) = a0
A

{
1 + E emp

shell

ε
[1 − exp (−γ ε)]

}
(15)

is the level density parameter [94,95]. Here,

a0
A = 0.0722396A + 0.195267A2/3 MeV−1 (16)

is the asymptotic level density parameter obtained at high
excitation energies, when all shell effects are damped [94,95],
E emp

shell is the empirical shell correction value [94,96], γ =
0.410289/A1/3 MeV−1 is the damping parameter [94,95], and
A is the number of nucleons in the nucleus. According to
the prescription of Ref. [94], the value of empirical shell
correction E emp

shell is calculated as the difference between the
experimental value of nuclear mass and the liquid drop com-
ponent of the mass formula [94,96]. The back shift energy
is described by the following expression � = 12n/A1/2 +
0.173015 MeV [94], where n = −1, 0, and 1 for odd-odd,
odd-A, and even-even nuclei, respectively.

The width �d
� (E ) includes the contributions of the elastic

�e
� (E ), quasielastic �

qe
� (E ), single- and many-particle trans-

fers �t
�(E ), deep-inelastic �di

� (E ), and quasifission �
qf
� (E )

decays of the stuck-together nuclei [69]. As a result,
�d

� (E ) = �e
� (E ) + �

qe
� (E ) + �t

�(E ) + �di
� (E ) + �

qf
� (E ). The

quasielastic barrier Bqe
� , which separates the contacting and

well-separated deformed incident nuclei, has the lowest bar-
rier height among all barriers related to processes accounted to
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�d
� (E ) [69]. Therefore, the width of the quasielastic decay of

the stuck-together nuclei is the leading contribution to �d
� (E ),

i.e., �d
� (E ) ≈ �

qe
� (E ) and G�(E ) ≈ �

qe
�

(E )
�cnf

� (E )
.

The expression for the width �
qe
� (E ) is

�
qe
� (E ) = 1

2πρsn(E )

∫ E−Bqe
�

0
dε

∫ ε

0
dε ρA1 (ε)ρA2 (ε − ε).

(17)

Here, Bqe
� the value of the quasielastic barrier calculated rel-

atively the interaction potential energy of two nuclei on the
infinite distance between them. Ai is the number of nucleons in
incident nucleus i, i = 1, 2, A = A1 + A2 is the number of nu-
cleons in the compound nucleus. The height of the quasielastic
barrier Bqe of the total interaction potential V t

� (r, {β1}, {β2})
separates the sticking and well-separated nuclei. The total
interaction potential energy of two nuclei consists of the
Coulomb VC(r, {β1}, {β2}, nuclear VN(r, {β1}, {β2}), centrifu-
gal V�(r, {β1}, {β2}), and deformation energies of the both
nuclei Ei

def ({βi}) [69,70], i.e.,

V t
� (r, {β1}, {β2}) =VC(r, {β1}, {β2})

+ VN(r, {β1}, {β2}) + V�(r, {β1}, {β2})

+ E1
def ({β1}) + E2

def ({β2}). (18)

Here, {βi} = βi2, βi3 are the surface deformation parame-
ters of nucleus i with the surface radius Ri(θ ) = R0i[1 +∑

L=2,3 βiLYL0(θ )], i = 1, 2, R0i is the radius of the spheri-
cal nucleus, and YL0(θ ) is the spherical harmonic function
[80]. The detail description of the V t

� (r, {β1}, {β2}) is given
in Refs. [69,70,97]. The deformation energy of the nucleus
induced by the surface multipole deformations is

Ei
def ({βiL}) =

3∑
L=2

[
Cld

LAiZi
+ Csh

LAiZi

]β2
iL

2
. (19)

Here, Cld
LAiZi

= (L−1)(L+2)bsurf A2/3
i

4π
− 3(L−1)e2Z2

i
2π (2L+1)R0i

is the surface
stiffness coefficient obtained in the liquid-drop approximation
[98,99], and bsurf is the surface coefficient of the mass formula
[57]. Csc is the shell-correction contribution to the stiffness
coefficient. It is possible to approximate Csc ≈ −0.05 δE Cld

[69,97], where δE is the phenomenological shell-correction
value in MeV. Note that experimental values of the surface
stiffness coefficient for different nuclei are distributed around
the value Cld [98,99]. The approximation for the surface stiff-
ness coefficient used in Eq. (19) is crude, but it is taken into
account by the shell effect. This approximation corresponds to
the experimental tendency of the values of the surface stiffness
coefficient and simplifies further calculations strongly.

So, the widths �cnf
� (E ) and �

qe
� (E ) depend on the heights

of the quasielastic Bcnf and the compound nucleus formation
Bqe

� barriers, correspondingly. The barrier heights Bcnf
� and Bqe

�

determine the probability of the compound nucleus formation
P�(E ). P�(E ) does not depend on ρsn(E ) because it depends
on the ratio of the width, see Eqs. (9), (10), and (17). The
height of the compound nucleus formation barrier Bcnf

� − Q is
much higher than the height of the quasielastic barrier Bqe

� for
reactions leading to superheavy systems [69]. Therefore, the

formation of the compound nucleus for superheavy systems is
strongly suppressed.

In the collision of identical or almost identical falling nu-
clei, the compound nucleus formation barrier Bcnf is close
to the fission barrier because fusion and fission are to some
extent mutually inverse processes [70]. For very asymmetric
collision systems, the height of this barrier is close to the bar-
rier height of the corresponding cluster emission [70] because
the cluster emission barrier is related to strongly asymmetric
fission [100–104]. The height of the cluster barrier is approx-
imately four times higher than the ordinary fission barrier in
actinides as a rule [101–103]. The height of the cluster emis-
sion barrier for SHN decreases with the rise of the number
of protons Z in SHN [103]. The fission and cluster emission
barriers are equal for SHN with the number of protons Z �
112 [103,104]. Therefore, the compound nucleus formation
barrier height can be defined as Bcnf

� = Bf
� + bcnf , where Bf

� is
the fission barrier height and bcnf is the difference between the
compound nucleus formation and the fission barrier heights.
The value of parameter bcnf smoothly decreases with an in-
crease of Z and should be close to zero for Z � 112 according
to Refs. [103,104].

The approach for calculating the quasielastic barrier height
Bqe is described in detail in Refs. [69,70]. Due to this, the
description of this approach is omitted here.

The ratio of widths �cnf
� (E )/�qe

� (E ) can be simplified using
the exponential dependence of the level density on the excita-
tion energy [70]. In the approach of constant temperature T
for the level density and taking into account that Bcnf

� − Q is
sufficiently larger Bqe

� in the case of the hot fusion reactions,
the ratio of the widths �cnf

� (E )/�qe
� (E ) � 1 and the probabil-

ity of compound nucleus formation can be presented in the
simple form

P�(E ) ≈ �cnf
� (E )

�
qe
� (E )

≈ exp
{[

Bqe
� − (

Bcnf
� − Q

)]/
T

}

= exp

{[
Bqe

� −
(

Bcnf
0 + h̄2�(� + 1)

2Jcnf
− Q

)]/
T

}
.

(20)

Here, Jcnf = 2
5 MR2

0A(1 +
√

5
16π

βcnf + 135
84π

β2
cnf ) is the mo-

ment of inertia of the nucleus at the compound nucleus
formation barrier, where R0 = r0A1/3 is the radius of spherical
compound nucleus, βcnf is the quadrupole deformation of the
nucleus at the barrier, and M is the nucleon mass. The value of
βcnf coincides with the value of the quadrupole deformation
parameter in the fission barrier saddle point. The solid-state
expression for the moment of inertia is used because the exci-
tation energy of the nucleus formed in the hot fusion reaction
is sufficiently high.

Note that the moment of inertia of the system in the com-
pound nucleus barrier saddle point Jcnf is smaller than the one
in the quasielastic barrier Jqe ≈ μr2

qe, where rqe is the radius
of the quasielastic barrier. Therefore, the values of Bqe

� +
Q − Bcnf

� = Bqe
0 + Q − Bcnf

0 + h̄2�(�+1)
2 ( 1

Jqe − 1
Jcnf ) and P�(E )

decrease with increasing of �, see also Ref. [70]. Since Bcf
�
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is sufficiently larger than Bqe
� − Q in the case of hot fusion

reactions for any �, then P�(E ) � 1.
The simplified expression for the compound nucleus for-

mation (20) directly shows the dependence of the probability
of compound nucleus formation to the barrier heights Bqe

�

and (Bcnf
� − Q). So, the compound nucleus formation prob-

ability depends on the fusion reaction Q value. In contrast to
this, the dependence on the probability of compound nucleus
formation on Q does not appear in the dinuclear models of
SHN productions [36,41,45,49,51] because the formation of
compound nucleus in this model links to the sequential nu-
cleon transfer from the heavy nuclei to light the ones. The
various phenomenological functions, which are different from
Eq. (20), are used for parametrization of the probability of the
compound nucleus formation in Refs. [37–39,46–48,54].

In the case of fermi gas level density, the simplified
equation for the probability of compound nucleus formation,
which is similar to Eq. (20), is obtained in Ref. [70].

B. The survival probability of the compound nucleus

The survival probability of the compound nucleus formed
in the hot-fusion reaction is related to the competition between
the evaporation of x neutrons and fission. The survival proba-
bility can be approximated as

W xn
� (E ) = Rxn(E �

CN�)
�1n(E �

1 , �)

�1n(E �
1n, �) + �f (E �

1 , �)

× �A−1
2n (E �

2 , �)

�A−1
2n (E �

2 , �) + �A−1
f (E �

2 , �)
× . . .

× �A−x+1
xn (E �

x , �)

�A−x+1
xn (E �

x , �) + �A−x+1
f (E �

x , �)
. (21)

Here, Rxn(E �) is the realization probability of the
xn-evaporation channel [105], E �

CN� = E − Q − h̄2�(� +
1)/(2Jg.s.), and Jgs is the ground-state moment of inertia.
E �

1 = E − Q is the excitation energy of the compound nucleus
formed in the heavy-ion fusion reaction. �

A−y+1
yn (E �

y , �) and

�
A−y+1
f (E �

y , �) are, respectively, the width of neutron emission
and the fission width of the compound nucleus formed after
emission of (y − 1) neutrons. E �

y = E �
y−1 − Sy−1 − 2Ty−1

is the excitation energy before evaporation of the yth
neutron, where Sy−1 is the separation energy of the (y − 1)th
neutron. Ty−1 is the temperature of the compound nucleus
after evaporation of (y − 1) neutrons and is obtained from
E �

y−1 = aAT 2
y−1. Here, aA is the level density ρA(ε) parameter,

see Eq. (15).
The width of neutron emission from a nucleus with A

nucleons is given as [56]

�n(E �, �) = 2gnMR2
n

π h̄2ρA(E �)

∫ E �−S

0
dε ερA−1(E � − S − ε),

(22)

where S is the neutron separation energy from the nucleus,
ρA(E �) and ρA−1(E �) are, correspondingly, the energy level
densities of the compound nuclei before and after neutron

emission, gn is the neutron intrinsic spin degeneracy, and Rn

is the radius of the neutron-nucleus interaction.
The width for passing the fission barrier was introduced

by Bohr and Wheeler in 1939 [87]. Emphasize that the Bohr-
Wheeler fission width is obtained for the fission barrier height
independent of the thermal energy of the fissioning system.

As was shown by Strutinsky in 1966 the fission barrier
height consists of the liquid-drop and shell-correction contri-
butions [89–92]. It was found in 1972 that the shell correction
energy decreases strongly with an increase of the inner energy
ε of the system [106]. Due to this, the height of the fission
barrier depends drastically on the inner energy ε of the system
[69,106–115]. The dependence of the barrier height on the
inner energy ε for � = 0 [69,112] is

Bf
0(ε) = Bld

0 + Bshell
0 exp (−γDε), (23)

where Bld
0 and Bshell

0 are the liquid-drop and shell-correction
contributions to the barrier height, respectively, and γD ≈
1.15/(0.0722396A + 0.195267A2/3) = 1.15/a0

A MeV−1 is
the damping coefficient [70].

For the sake of simplicity, the values of Bf
�(ε) for � > 0 is

Bf
�(ε) = Bf

0(ε) + h̄2�(� + 1)[1/(2Jcnf ) − 1/(2Jgs)]. (24)

Here, Jg.s. = 2
5 MR2

0A(1 +
√

5
16π

βg.s. + 135
84π

β2
g.s.) is the solid-

state moment of inertia of the nucleus at the ground state
and βg.s. is the quadrupole deformation of the nucleus at the
ground state. The excitation energy of the compound nucleus
formed in the hot fusion reaction is sufficiently high. The
nucleon pairing is broken down at a nuclear temperature close
to 0.5 MeV [113]. Due to this the influence of the pairing force
on both the moment of inertia and the fission barrier height is
neglected here.

The values Bld
0 and Bshell

0 can be obtained directly using the
values in tables in Ref. [59]. In contrast to this, the values
Bld

0 and Bshell
0 are not given in the tables in the model [57,58].

However, the values of total barrier Bf
0(ε) and the ground

state shell correction energy E shell
0 are given in Refs. [58]

and [57], correspondingly. In this case, the value of Bshell
0 =

E shell
b − E shell

0 may be approximated as Bshell
0 ≈ −E shell

0 be-
cause the value of the shell correction in the barrier point
E shell

b is small as a rule, see, for example, [59]. Then, the
liquid-drop contribution to the barrier height in this model is
Bld

0 ≈ Bf
0(ε) + E shell

0 .
Note that the values of Bld < 0 for some SHN, see, for

example, Ref. [59]. In such cases due to the reduction of
Bshell at high excitation energies ε the value of Bf (ε) may be
below zero. However, the lowest value of the barrier height
of the SHN is zero because this relates to the instability of the
nucleus with the equilibrium shape concerning fission degrees
of freedom. Therefore, if the values of Bf (ε) < 0 for some ε

according to Eq. (23) then the value Bf (ε) = 0 is used in the
calculations.

The fission width of an excited nucleus with the fis-
sion barrier dependent on the excitation energy is derived in
Ref. [113]. It is given by

�f (E ) = 2

2πρ(E )

∫ εmax

0
dε

ρ(ε)

Ntot
Nsaddle(ε). (25)
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Here, the ratio ρ(ε)/Ntot is the probability of finding the fis-
sioning nucleus with the intrinsic thermal excitation energy ε

in the fission transition state,

Ntot =
∫ εmax

0
dερ(ε) (26)

is the total number of states available for fission in the case of
the energy-dependent fission barrier,

Nsaddle(ε) =
∫ E−Bf (ε)

ε

deρ(e) (27)

is the number of states available for the fission at the thermal
excitation energy ε. εmax is the maximum value of the intrinsic
thermal excitation energy of the compound nucleus at the sad-
dle point, which is determined as the solution of the equation

εmax + Bf (εmax) = E . (28)

This equation is related to the energy conservation law, i.e.,
the sum of thermal εmax and potential Bf (εmax) energies at
the saddle point equals to the total excitation energy E .
At the zero-excitation energy, the fission width (25) coincides
with the Bohr-Wheeler width [87]. The expression obtained
in Ref. [113] leads to a good description of the experimental
values of the ratio �f (E )/�n(E ) and the fission barrier heights
in various nuclei [114,115]. Note that Eqs. (10)–(13) and
(25)–(28) are similar.

III. DISCUSSION

A. Comparison with available experimental data

The comparison of the experimental cross sections of the
SHN synthesis σ xn(E ) [1–26] obtained in the collisions of
48Ca with the 226Ra, 232Th, 238U, 237Np, 238U, 239,240,242,244Pa,
243Am, 245,248Cm, 249Bk, 249Cf targets with the calculated
ones is presented in Figs. 3–9. The calculations of the SHN
production cross section performed using the fission bar-
riers taken from the macroscopic-microscopic finite-range
liquid-drop model [57,58] are marked as FRDM. The same
calculations done applying the fission barriers picked up
from the microscopic–macroscopic method with the deformed
Woods-Saxon single-particle potential and the Yukawa-plus-
exponential macroscopic energy [59] are pointed as MMWS.
So, both these models for the fission barrier are based on the
Strutinsky shell-correction method [89–92], however, differ-
ent prescriptions of both the macroscopic and microscopic
parts are used in them. Due to this, the values of the fis-
sion barriers, neutron separation energies, nuclear binding
energies, ground state quadrupole deformations, and other
quantities calculated in the frameworks of the FRDM and
MMWS models are different. The differences between the
values of the fission barriers and nuclear binding energies are
most important for SHN production and, therefore, will be
discussed below in detail.

The intrinsic excitation energies E � in Figs. 3–9 are ob-
tained using the experimental collisional energies and the
experimental binding energy [60]. If the value of the exper-
imental binding energy of SHN is unknown then the model
binding energy of SHN from Ref. [59] is used.

FIG. 3. The comparison of the experimental and theoretical
cross-sections for the reactions 48Ca + 226Ra → 274−xHs +xn (a), (b)
and 48Ca + 232Th → 280−xDs +xn (c), (d). The experimental data
(dots) for the reaction 48Ca + 226Ra → 274−xHs +xn are taken from
Ref. [14] and for the reaction 48Ca + 232Th → 280−xDs +xn from
Ref. [26]. The theoretical cross sections (lines) are calculated for
the FRDM (a), (c) [57,58] and MMWS (b), (d) [59] fission barrier
models.
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FIG. 4. The same as in Fig. 3 for the reactions 48Ca + 238U →
286−xCn +xn (a), (b) and 48Ca + 237Np → 285−xNh +xn (c), (d).
The experimental data (dots) for the reaction 48Ca + 238U →
286−xCn +xn are taken from Refs. [1] 1, [3] 2, [7] 3, [19] 4, [24] 5, [4]
6, and for the reaction 48Ca + 237Np → 285−xNh +xn from Ref. [6].

FIG. 5. The same as in Fig. 3 for the reactions 48Ca + 239Pu →
287−xFl +xn (a), (b) and 48Ca + 240Pu → 288−xFl +xn (c), (d). The ex-
perimental data (dots) for the reaction 48Ca + 239Pu → 287−xFl +xn
are taken from Ref. [16], and for the reaction 48Ca + 240Pu →
288−xFl +xn from Refs. [16] 1, [20] 2.
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FIG. 6. The same as in Fig. 3 for the reactions 48Ca + 242Pu →
290−xFl +xn (a), (b) and 48Ca + 244Pu → 292−xFl +xn (c), (d). The ex-
perimental data (dots) for the reaction 48Ca + 242Pu → 290−xFl +xn
are taken from Refs. [4] 1, [10] 2, [8] 3, [24] 4, [25] 5, and for the
reaction 48Ca + 244Pu → 292−xFl +xn from Refs. [2] 1, [11] 2, [9] 3.

FIG. 7. The same as in Fig. 3 for the reactions 48Ca + 243Am →
291−xMc +xn (a), (b) and 48Ca + 245Cm → 293−xLv +xn (c), (d).
The experimental data (dots) for the reaction 48Ca + 243Am →
291−xMc +xn are taken from Refs. [13] 1, [17] 2, [23] 3, and for the
reaction 48Ca + 245Cm → 293−xLv +xn from Refs. [2] 1, [5] 2.
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FIG. 8. The same as in Fig. 3 for the reactions 48Ca + 248Cm →
296−xLv +xn (a), (b) and 48Ca + 249Bk → 297−xTs +xn (c), (d).
The experimental data (dots) for the reaction 48Ca + 248Cm →
296−xLv +xn are taken from Refs. [4] 1, [18] 2, [12] 3, and for the
reaction 48Ca + 249Bk → 297−xTs +xn from Refs. [15] 1, [22] 2.

FIG. 9. The comparison of the experimental and theoretical cross
sections for the reaction 48Ca + 249Cf → 297−xOg +xn (a), (b). The
experimental data (dots) are taken from Refs. [5] 1, [21] 2. The theo-
retical cross sections (lines) are calculated for the FRDM (a) [57,58]
and MMWS (b) [59] fission barrier models.

The values of ground state deformation of the compound
nucleus βg.s. are taken from Refs. [57] or [59] in dependence
of the model used for fission barrier. The values of βcnf are
not given in the FRDM, therefore, for the sake of unity of
the calculations in the present model, the value of βcnf =
βg.s. + 0.25. The values of βcnf obtained in such an approach
roughly agree with the values of β2 in the fission saddle point
for various SHN given in the model MMWS [59].

The equilibrium deformation of the deformed target nu-
cleus should be taken into account according to the presented
approach for the capture stage of the reaction [73]. The equi-
librium deformation of the even-even target nuclei is taken
from Ref. [79]. The equilibrium deformation of the odd target
nuclei is averaged using the equilibrium deformations of the
nearest even-even nuclei.

The radius of the nuclei used in the calculation of the
nucleus-nucleus interaction potential [69,70] is enlarged on
7%. Such enlargement of the radii of the potential modulates
the coupling-channel effects in heavy-ion collisions at ener-
gies around the barrier. The other fitting parameter values are
given in Table I. The values of bcnf have two values for the
same reaction because they correspond to the different models
of fission barrier heights. Note that the values of bcnf obtained
in the MMWC model are smaller than the corresponding ones
in the FRDM, see Table I.
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TABLE I. The values of parameters bcnf and δQ for corrections
of the compound nucleus formation barrier and the fusion reaction
Q value, respectively, for calculation with the FRDM [57,58] and
MMWS [59] fission barrier models.

Compound FRDM MMWS

nucleus bcnf (MeV) δQ (MeV) bcnf (MeV) δQ (MeV)

274Hs 8.5 0 6.0 0
280Ds 10. 0 5.0 0
286Cn 5.0 0 1.0 0
285Nh 3.0 0 1.0 0
287Fl 5.5 0 0.0 0
288Fl 4.0 0 0.0 0
290Fl 4.0 0 0.0 0
292Fl 4.0 0 0.0 0
291Mc 3.0 0 0.0 0
293Lv 2.0 0 0.0 0
296Lv 2.0 0 0.0 0
297Ts 2.0 2.0 0.0 2.0
297Og 2.0 3.5 0.0 3.5

The mutual ratio of the cross sections σxn(E ) related to
different channels xn are different for different fission bar-
rier models. For example, in the framework of the FRDM
the maximal values of the channel cross sections satisfy the
nonequality σ max

2n (E ) � σ max
3n (E ) � σ max

4n (E ) for the reaction
48Ca + 242Pu, see Fig. 6. In contrast to this, the result of the
MMWS model for this reaction leads to opposite tendency,
i.e., σ max

2n (E ) > σ max
3n (E ) > σ max

4n (E ). So, the strong depen-
dence of the cross section σxn(E ) on the fission barrier models
is seen.

Due to the strong sensitivities of the channel cross sec-
tion σxn(E ) on the fission barrier values the careful fit of the
cross-section values makes no sense. The fit of the experimen-
tal cross sections is made by eye.

The irregular behavior of the channel cross section σxn(E )
calculated in the MMWS model occurs at small values of exci-
tation energy sometimes. This happens due to the proximity of
the fission barrier B f and neutron separation energy Sn values
in this model and the dependence of B f on ε. The values of the
fission barrier B f obtained in the FRDM are much larger than
the ones in the MMWS model, see Fig. 2, therefore, the energy
dependence of the cross sections σxn(E ) is more regular.

Let us consider the present model of SHN production qual-
itatively. Using Eqs. (1), (2), (20), (22), and (25), the value
of the 1n channel partial cross section can be approximated
as

σ1n�(E ) ≈ (2� + 1)T�(E ) × R1n(E ) × cT0

×
exp

(
Bqe

� +Q−Bcnf
�

T0
+ Bf

1�−S1

T0

)
1 + exp

(
Bf

1�−S1

T0

) . (29)

Here, for the sake of shortening the length of the expres-
sion, the dependence of barriers on the excitation energy of
the compound nucleus is omitted. Then, the value of the xn

channel partial cross section in the same approximation is

σxn�(E ) ≈ (2� + 1)T�(E ) × Rxn(E ) × cT0 × . . . × cTx−1

×
exp

(
Bqe

�
+Q−Bcnf

�

T0
+ ∑x

y=1
Bf

y�−Sy

Ty−1

)
∏x

y=1

[
1 + exp

(
Bf

y�−Sy

Ty−1

)] , (30)

where Bf
y�, Sy, and Ty−1 are, respectively, the fission barrier,

neutron separation energy, and temperature of the initial com-
pound nucleus after evaporation of the y − 1 neutrons. The
temperature of the compound nucleus Ty decreases during
sequential evaporation of neutrons. Note that at high col-
lision energies T�(E ) ≈ 1 at small values of �, therefore,
the SHN production cross section is determined by the re-
alization probability of the xn-evaporation channel Rxn(E ),
quasielastic barrier, reactions Q value, compound nucleus for-
mation barrier, neutron separation energies, and fission barrier
heights.

The expression (30) in the case of fermi-gas level density
is

σxn�(E ) ∝ (2� + 1)T�(E ) × Rxn(E )

× exp
[√

2aA
(
E + Q − Bcnf

�

) −
√

2aA
(
E − Bqe

�

)]
× exp

(∑x
y=1 Dy

)
∏x

y=1

[
1 + exp

(∑x
y=1 Dy

)] . (31)

Here, Dy =
√

2aA−y+1(E �
y−1 − Sy) −

√
2aA−y+1(E �

y−1 − Bf
y�)

and E �
y−1 is the compound nucleus excitation energy after

evaporation of the y − 1 neutrons.
It should be noted that Eqs. (29)–(31) are presented here

for the illustration of the dependencies of the SHN production
cross sections on the parameters of the model. The results
presented in Figs. 3–12 are obtained using Eqs. (1)–(28) and
numerical calculations.

Note that simplified expressions similar to Eqs. (29)–(31)
can be derived in the framework of the dinuclear model
[36,41,45,49,51] too. If the quantity Q − Bcnf

� used in the
present model in Eqs. (29)–(31) is replaced by the Bdns

� , then
these equations are valid in the case of the dinuclear model
also. Here, Bdns

� is the barrier of the compound nucleus for-
mation in the framework of the dinuclear model related to
the nucleon transfer from the light nucleus to the heavy one
[36,41,45,49,51].

The values of fission barrier Bf
i are different in the FRDM

and MMWS models. Therefore, to obtain the values of
σxn(E ), which are close to the experimental data, using differ-
ent fission barrier models, it is necessary to change the value
of bcnf to compensate the corresponding difference of

∑x
i=1 Bf

i
in the FRDM and MMWS models. This compensation is done
by assignment of the different values of bcnf (see Table I)
in the present model when the FRDM and MMWS fission
barrier models are used. Without variation of bcnf the cross-
section values σxn(E ) calculated in the FRDM fission model
with the value of bcnf used in the MMWS model are several
orders higher than the experimental data.

As pointed out in Sec. II A, the cluster emission barrier
height is close to the fission barrier height for SHN. Therefore,
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FIG. 10. The theoretical cross sections of the SHN synthesis
σ xn(E ) for the reaction 45Sc + 249Cf →294−x 119 + xn, which are
calculated for the FRDM (a) [57,58] and MMWS (b) [59] fission
barrier models.

the compound nucleus formation barrier height should be
close to the fission barrier height in SHN. The proximity of
the compound nucleus formation barrier and fission barrier
heights takes place in the present model in the case of using
the MMWS fission barrier model because bcnf = 0 for most
cases, see Table I. In contrast to this, the values bcnf > 0 in the
case of using the FRDM fission model. It takes place even for
very heavy SHN.

Note that the values of the cross section σxn(E ) calculated
in the present model for reactions leading to the Ts and Og are
several orders smaller than the available experimental values.
To describe the cross section for these reactions the Q values
of the reactions are modified in the present model. Note that
the experimental binding energies are absent for these SHN
[60]. Due to this, the model values of the binding energy of
the compound nucleus should be used for the calculation of
the fusion Q value. However, the fusion reaction Q value is not
well defined for such super-heavy systems. For example, the
fusion reaction Q value for reaction 48Ca + 249Cf → 297Og
calculated using the experimental binding energies for pro-
jectile and target nuclei, and the theoretical values of the
binding energy of 297Og from Refs. [57,59,61] and [62] are,
respectively, −174.3, −178.3, −177.4, −177.1 MeV. The dif-
ference between the binding energy values of SHN obtained in
various models is induced by the slightly different description
of the macroscopic energies, proton and neutron mean-field

potentials, and the number of oscillator shells used in the shell
correction method, see, for detail, Refs. [57,59,61,62]. The
difference between the maximal Qmax = −174.3 and mini-
mal Qmin = −178.3 values is 4 MeV. The SHN production
cross section depends on Q exponentially, see Eqs. (29)–(31).
To describe this reaction in the framework of the present
model the Q value Qcalc = QMMWS + δQ = −178.3 + 3.5 =
−174.8 MeV is used in the calculation. Due to this, the cor-
rection value of the fusion reaction Q value δQ = 3.5 MeV
is pointed out for this reaction in Table I. Note that Qcalc ∈
[Qmin, Qmax]. The correction value of the fusion reaction Q
value is also used for the reaction 48Ca + 249Bk → 297Ts.
Then, the important role of the reaction Q value in SHN
synthesis is demonstrated.

B. Cross-section prediction for reactions leading
to SHN with Z = 119 and 120

As has been pointed out in the Introduction the experiments
aimed at the synthesis of isotopes of elements Z = 119 and
120, or the study of properties of related reactions have been
performed [27–35]. However, these experiments have not led
to the synthesis of the elements with Z = 119 and 120. There-
fore, it is very interesting to calculate the SHN production
cross sections for different targets and projectiles, which leads
to the synthesis of the elements with Z = 119 and 120, in the
framework of the present model.

The way to use 48Ca projectile and Es or Fm targets,
which was used for synthesizing Fl, Mc, Lv, Ts, and Og,
is questionable due to difficulties in collecting material for
such targets now. Therefore, the practical way to use the
reactions between Sc or Ti projectiles and 249Bk or 249Cf
targets. Scandium has only one naturally available stable
isotope 45Sc while titanium has five naturally available stable
isotopes 46,47,48,49,50Ti. Therefore, the cross sections for
the reactions 45Sc + 249Cf → 294119, 46,48,50Ti + 249Bk →
295,297,299119, and 46,48,50Ti + 249Cf →295,297,299 120
are presented in Figs. 10–12. The calculations of the
cross sections of SHN for the reactions leading to the
compound nucleus with Z > 118 with 249Bk and 249Cf
targets are done using the parameter values fixed for
reactions 48Ca + 249Bk → 297Ts and 48Ca + 249Cf → 297Og,
respectively. The values of the reaction Q values for reactions
45Sc + 249Cf → 294119, 46,48,50Ti + 249Bk → 295,297,299119,
and 46,48,50Ti + 249Cf →295,297,299 120 are calculated using
the MMWS binding energies [59] of corresponding SHN
formed in these reactions. The corresponding values of
parameters bcnf and δQ are presented in Table I.

The results of the calculations are presented in Figs. 10–12
show that the reactions 45Sc + 249Cf → 294−x119 +xn,
46Ti + 249Bk → 295−x119 +xn, and 46Ti + 249Cf →
295−x120 +xn can be used for the synthesis of the elements
with 119 and 120 protons. The maximal values of cross
sections of these reactions are around the picobarn levels for
various versions of the fission barrier models.

The reactions with 48,50Ti projectiles have lower values of
cross sections than the ones for the 46Ti projectile, see Figs. 11
and 12. This is the effect of the Q value. For example, the
Q value of the fusion reactions 46,48,50Ti + 249Cf →295,297,299
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FIG. 11. The theoretical cross sections of the SHN synthesis σ xn(E ) for the reactions 46Ti + 249Bk → 295−x119 +xn (a), (b),
48Ti + 249Bk → 297−x119 +xn (c), (d), and 46,48,50Ti + 249Bk → 299−x119 +xn (e), (f), which are calculated for the FRDM (a), (c), (e) [57,58]
and MMWS (b), (d), (f) [59] fission barrier models.

120 evaluated using the FRDM [57,58] (MMWS [59]) SHN
binding energy models are, respectively, −183.7 (−187.3),
−189.9 (−193.3), and −194.8 (−198.6) MeV. Due to
Eqs. (30) and (31), the SHN cross section exponentially

decreases with the decrease of Q value if the values of the fis-
sion barrier heights, separation energies, and quasielastic bar-
rier are approximately similar for the reactions with different
isotopes.

FIG. 12. The theoretical cross sections of the SHN synthesis σ xn(E ) for the reactions 46Ti + 249Cf → 295−x120 +xn (a), (b), 48Ti + 249Cf →
297−x120 +xn (c), (d), and 50Ti + 249Cf → 299−x120 +xn (e), (f), which are calculated for the FRDM (a), (c), (e) [57,58] and MMWS (b), (d),
(f) [59] fission barrier models.
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The height of the quasielastic barrier Bqe of the total po-
tential (14), which separates the sticking and well-separated
nuclei, depends on the nucleus-nucleus Coulomb and nuclear
interactions and the deformation energies of both nuclei (15).
The soft interacting nuclei can be stronger deformed at small
distances between their surfaces than the stiff ones. There-
fore, the barrier distance between the mass centers of the
soft nuclei is larger than for the stiff ones. This leads to the
reduction of the Coulomb energy and, as a result, the height
of the quasielastic barrier Bqe [69,70]. The reduction of the
quasielastic barrier height leads to a decrease in the production
cross section, see Eqs. (30) and (31).

The dependence of the SHN production cross sections on
the stiffness of interacting nuclei and other parameters
(Bf , Bcnf , Sn) may be traced in the analysis of the re-
actions 44,48Ca + 208Pb → 252,256−xNo +xn 48Ca + 206Pb →
254−xNo +xn. The nuclei 48Ca and 208Pb are stiffer than 44Ca
and 206Pb because for 48Ca and 208Pb the energies of 2+
and 3− surface oscillations are the largest and the oscilla-
tion amplitudes are smallest [79,116]. Therefore, the reaction
48Ca + 208Pb → 256−xNo +xn should have the highest values
of the Bqe and, due to this, larger of both the probabil-
ity of the compound nucleus formation and the superheavy
production cross section. This agrees with the experimental
values of the cross section for the reactions 44,48Ca + 208Pb →
252,256−xNo +xn 48Ca + 206Pb → 254−xNo +xn [117].

The dependence of nuclear surface stiffness is considered
phenomenologically in the present model, see Eq. (19). The
deviation of the stiffness from the shell correction value is re-
lated to the shell-correction contribution. The shell-correction
energy decreases at high excitation energies. Therefore, the
surface stiffness should be close to the liquid drop value at
high excitation energies. However, it may happen that the
surface stiffness is not close to the liquid drop value. There-
fore, the cross-section calculations are done for the two times
lower stiffness of the projectile nuclei too. This leads to the
reduction of the cross sections presented in Figs. 10–12 on
one order approximately.

So, the SHN production cross-section prediction is linked
to many poorly defined quantities. Due to this, accurate pre-
diction of the SHN production cross section is impossible
now.

IV. CONCLUSION

The new model for the SHN production cross section in the
hot fusion reactions is presented. The available experimental
data for the SHN production cross section are well described
in the model. It is shown, that the projectiles 45Sc and 46Ti can
be used for the synthesis of the elements with 119 and 120
protons.

New qualitative expressions have been obtained for the
probability of the formation of the compound nucleus and the
cross-section of formation in reactions leading to SHN.

It is shown that the superheavy nuclei production cross
section is proportional to the transmission coefficient of the
capture barrier, realization probability of the xn-evaporation
channel, and exponentially depends on the quasielastic
barrier, fusion reaction Q value, compound nucleus forma-
tion barrier, neutron separation energies, and fission barrier
heights. These quantities are important for the reaction choice
for the synthesis of SHN.

The various models for the fission barriers and SHN bind-
ing energy lead to very different values of the SHN production
cross section. This takes place due to dependencies of the
compound-nucleus formation probability on these quantities
and of the survival probability on the fission barriers.
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