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Predictions for the (n, 2n) reaction cross section based on a Bayesian neural network approach
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Nuclear (n, 2n) reaction cross sections are studied based on the Bayesian neural network (BNN) approach.
Three physical quantities besides the proton and neutron numbers are proposed to improve the performance of
the BNN approach. These three physical quantities are the incident neutron energy with respect to the reaction
threshold, the physical quantity related to the odd-even effect, and the theoretical (n, 2n) reaction cross section,
and they are included as the inputs to the neural network. The BNN approach has better performance in the
description of the (n, 2n) reaction cross sections than the theoretical library TENDL-2021 calculated by the
TALYS code based on the Hauser-Feshbach statistical model, especially for heavy nuclei. The root-mean-square
deviation of the BNN approach with respect to the evaluation data is reduced to 0.10 barns compared to
0.25 barns of TENDL-2021. The extrapolation ability of the BNN approach is verified with the (n, 2n) cross
section data that are not used to train the neural network. Furthermore, it is found that the BNN approach still
well describes the trend of the (n, 2n) cross sections with the incident neutron energy predicted by TENDL-2021
even when extrapolated to the unknown region.
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I. INTRODUCTION

Nuclear data, especially neutron nuclear data, serve as
an important bridge between the basic research of nuclear
physics and the application of nuclear engineering and nuclear
technology [1–3]. Neutron nuclear reactions play an essential
role in reactor physics, and are among the most important
tools for studying nuclear structure and nuclear reaction me-
chanics.

The (n, 2n) reaction is one of the common reaction chan-
nels for neutron nuclear reactions, an important form of
neutron multiplication when the incident neutron energies are
typically less than about 15 MeV. It plays important roles
in neutron sources, neutron scattering experiments, and neu-
tron irradiation studies [4,5]. In recent decades, the cross
sections of (n, 2n) reactions have been measured by the acti-
vation method [6–9], offline γ -ray spectroscopy [10–13], the
recoil method [14], etc. The most comprehensive international
database of nuclear reaction experiments is the computerized
interactive identifiable database EXFOR (EXchange FOR-
mat), established through the formal international cooperation
under the leadership of the International Atomic Energy
Agency, which collects the experimental data on different
types of nuclear reactions by different groups [15,16]. How-
ever, there are sometimes remarkable discrepancies among
experimental data of nuclear reaction cross sections from
different groups, making these data difficult to use directly.

*zmniu@ahu.edu.cn

Nuclear data evaluation is an important part of the process
from the generation of nuclear data to the point where it can be
practically applied, in which nuclear data are evaluated as rec-
ommended values [17]. Currently widely used databases, such
as ENDF/B-VIII.0 (Evaluated Nuclear Data File) [18], JEFF-
3.3 (Joint Evaluated Fission and Fusion File) [19], JENDL-5
(Japanese Evaluated Nuclear Data Library) [20], CENDL-3.2
(Chinese Evaluated Nuclear Data Library) [21], and BROND-
3.1 (Russian Evaluated Nuclear Data Library) [22], provide a
large amount of evaluation data for nuclear reactions.

It is impossible to measure all energy regions and reac-
tion channels experimentally, so theoretical predictions are
inevitable for the study of nuclear reactions and the applica-
tion of nuclear data. Several code packages based on nuclear
reaction theory have been developed, such as the famous
TALYS [23], EMPIRE [24], CCONE [25], and UNF [26], which
play very important roles in nuclear data evaluation. Experi-
mentally, high-quality cross section data have been collected
by the Nuclear Data Organization [27]; however, there are
still remarkable deviations between the theoretical results and
the experimental data. With the rapid development of mod-
ern science and technology, various applications in nuclear
engineering and nuclear technology require more and more
accurate cross sections of neutron nuclear reactions. There-
fore, it is important to develop a new method to provide more
accurate excitation functions of neutron nuclear reactions.

In recent years, machine learning has made impressive
achievements in many areas and is currently one of the hottest
and fastest-growing fields in science and technology [28]. It
provides a powerful tool for physics research, is powerful in
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extracting relevant features of complex nonlinear systems, and
can be used to solve some complex physics problems that are
difficult or temporarily intractable by traditional methods. The
combination of machine learning and physics is an emerging
interdisciplinary frontier that has attracted much attention in
recent years. It has been applied in areas such as particle
physics [29–31], condensed matter physics [32,33], and astro-
physics [34,35]. In nuclear physics, machine learning methods
are also widely used to study various nuclear properties [36],
such as nuclear masses [37–42], charge radii [43,44], α and
β decays [45–47], low-lying excitation spectra [48,49], and
neutron-induced nuclear reactions [50–53].

Compared to traditional machine learning methods, the
Bayesian neural network (BNN) approach can automatically
avoid overfitting by introducing a prior and quantify the un-
certainties in model predictions, making it one of the most
important approaches for studying nuclear physics. The BNN
approach has been widely used in studying various nuclear
properties [54–64]. These neural network approaches can gen-
erally achieve much better accuracy than nuclear theoretical
models and even provide reliable extrapolation predictions by
carefully designing their architectures to incorporate more and
more physical information. However, nuclear models used in
TALYS etc. are based on physical background and are some-
times more realistic. Therefore, the physics behind nuclear
models is important for studying the (n, 2n) reaction. In this
work, we improve the model predictions of the (n, 2n) reac-
tion by introducing the theoretical results predicted by TALYS

into the input layer of the neural network, thus introducing
the corresponding physical effects. Furthermore, the TALYS

predictions are also used to test the extrapolation ability of
the neural network. Special attention is paid to the design of
the neural network architecture, in order to achieve a good
description of the (n, 2n) reaction excitation function as well
as reliable extrapolation predictions. The BNN approach is
briefly introduced in Sec. II. The corresponding results are
presented in Sec. III. Finally, a summary and perspectives are
given in Sec. IV.

II. THEORETICAL FRAMEWORK

Similarly to Ref. [54], the probability distribution p(ω)
of model parameter ω in the BNN approach is in-
troduced based on our background knowledge, which
is called the prior distribution. Given a data set D =
{(x1, o1), (x2, o2), . . . , (xN , oN )}, the prior distribution p(ω)
is updated by Bayes’ theorem:

p(ω|D) = p(D|ω)p(ω)

p(D)
∝ p(D|ω)p(ω), (1)

where xk and ok (k = 1, 2, . . . , N ) are the input and output
data, respectively, and N is the number of data. p(D|ω) is the
conditional probability that describes the impact of the data D
on the prior distribution p(ω). p(ω|D) is the probability dis-
tribution of the parameters ω after the data D is given, which
is called the posterior distribution. p(D) is a normalization
constant to ensure that the integral of posterior distribution
p(ω|D) over the whole space of model parameters ω is 1.

The conditional probability p(D|ω) is usually taken to
be a Gaussian distribution, which is defined as p(D|ω) =
exp(−χ2/2), where χ2 is denoted by

χ2 =
N∑

k=1

(
ok − y(x,ω)

�ok

)2

. (2)

Here, �ok is the noise error associated with the kth data, and
the reciprocal of its square is set to be the gamma distribution.
In the BNN approach, the function y(x,ω) is described in
terms of a neural network, which, for a single hidden layer
neural network, is represented as

y(x,ω) = a +
H∑
j

b j tanh

(
c j +

I∑
i=1

d jixi

)
, (3)

where x = {xi}, ω = {a, bj, c j, d ji}, H is the number of neu-
rons in the hidden layer, and I is the number of input values.

In this work, the neural network is employed to study the
(n, 2n) reaction excitation function. By carefully designing
the input layer of the neural network to include physical
information, one can make the neural network easier and
more effective for describing the (n, 2n) reaction excitation
functions. Through a number of trials, we found that �E , δ,
and σ th are essential for improving the prediction accuracy
of the neural network besides the proton number Z and the
neutron number N . The incident neutron energy E is another
necessary input to determine the (n, 2n) reaction excitation
function, and it is usually taken as an the input of the neural
network. Our studies found that there are very similar trends
for the (n, 2n) cross sections as a function of the difference
�E = E − Ethresh between the incident neutron energy and
the reaction threshold, which makes the predictions of the
neural network much easier. There are remarkable differences
among the (n, 2n) reaction excitation functions for nuclei
with different parity of (Z, N ) due to the pairing effect, so
a quantity related to the pairing effect δ (δ = 1, 0, and −1
for even-even, odd-A, and odd-odd nuclei, respectively) is
effective to uniformly describe the (n, 2n) reaction excitation
functions of all nuclei. It has been found that the predictive
ability of the neural network can be significantly improved
by introducing theoretical predictions into the input layer [65]
or the output layer [54,58,61] to incorporate known physics.
In this work, theoretical predictions of (n, 2n) reaction cross
sections σ th taken from TENDL-2021 [66] are introduced into
the input layer of the neural network. For simplicity, we will
use BNN-I3, BNN-I4δ, BNN-I4σ , and BNN-I5 to denote the
BNN approaches with x = (Z, N,�E ), x = (Z, N,�E , δ),
x = (Z, N,�E , σ th ), and x = (Z, N,�E , δ, σ th ) as inputs, re-
spectively. The outputs of BNN-I3, BNN-I4δ, BNN-I4σ , and
BNN-I5 are the (n, 2n) reaction cross sections. The numbers
of neurons in the hidden layer of the four neural networks
are 210, 175, 175, and 150, respectively, which ensures that
the parameters of these four neural networks are the same.
As in Ref. [54], the mathematical expectation and standard
deviation of the neural network output over the posterior dis-
tribution are used as the final (n, 2n) cross section predictions
and their uncertainties. It should be pointed out that the BNN
predictions might be very small negative values when E is
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FIG. 1. The (n, 2n) reaction cross sections of Te isotopes from ENDF/B-VIII.0 [18] as a function of (a) E and (b) �E .

very close to the threshold energy; we will take them as zero
since the cross sections cannot be negative.

The (n, 2n) reaction cross section evaluation data used to
train the neural networks are taken from the ENDF/B-VIII.0
library for nuclei with Z = 8–100 [18], where only those
data with the incident neutron energy below 20 MeV are
considered. To check the reliability of the BNN predictions,
the cross section data of four nuclei, 115Ag, 139Ba, 178Hf, and
248Cm, in the different nuclear mass regions are selected as
the testing set, and the data for the remaining 515 nuclei are
used as the learning and validation sets. There are remarkable
deviations between the cross sections in TENDL-2021 and
ENDF/B-VIII.0 for these four nuclei, which may indicate
that the description of these (n, 2n) reaction cross sections is
relatively challenging for theoretical models. Therefore, the
data of these nuclei are crucial to test the predictive ability of
the neural network. If all the cross section data are used to
train the neural networks, the nuclei with too much data will
be heavily weighted, resulting in poor generalization of the
neural network. To solve this problem, no more than 20 cross
section data are taken as the learning set for each nucleus,
and the remaining data are used as the validation set. The
selection rule is that the cross section data at the minimum and
maximum incident neutron energies are first selected, and then
18 cross sections are randomly selected from the remaining
data. There are 8666, 2598, and 85 cross section data in the
learning, validation, and testing sets, respectively.

The root-mean-square (rms) deviation of model predictions
with respective to experimental data is usually used to evalu-
ate the model accuracy. For the (n, 2n) reaction cross section,
the rms deviation is defined to be

σrms(Cross Section) =
√√√√ N∑

i=1

(
σ

exp
i − σ th

i

)2/
N, (4)

where σ
exp
i and σ th

i are the cross sections from the evaluation
data and theoretical predictions for nucleus i, and N is the
number of data to be evaluated. The loss functions of neural

networks in this work are taken to be σrms(Cross Section) as
well.

III. RESULTS AND DISCUSSION

There are remarkable differences in the (n, 2n) reaction
cross sections of nuclei with different (Z, N ) parity due to the
pairing effects, which means the cross sections of the neigh-
boring isotopes of odd-Z and even-Z nuclei are remarkably
different. Taking the 123Te, 124Te, 125Te, and 126Te isotopes
as examples, Fig. 1(a) shows their (n, 2n) reaction cross sec-
tions from ENDF/B-VIII.0 [18] as a function of E . It is clear
that the energy thresholds of the (n, 2n) reactions for even-N
or odd-N isotopes generally decrease with increasing neutron
number. If the (n, 2n) reaction cross sections are described as
a function of �E , which are shown in Fig. 1(b), the nuclear
excitation function with an odd or even number of neutrons
is more similar. We find that this helps the neural network
to grasp the features of the (n, 2n) excitation functions more
efficiently. Therefore, we use �E as one of the input variables
of the neural network instead of E .

From Fig. 1(a), the energy thresholds for even-N iso-
topes are remarkably larger than those for the neighboring
odd-N isotopes, while their trends of cross sections with E
are similar around the maxima of the excitation functions.
This certainly induces an odd-even staggering of the integral
Sσ = ∫ 20 MeV

Ethresh
σ (E )dE , which is shown in Fig. 2, taking Ag

and Sn isotopes as examples. It can be clearly seen that the
(n, 2n) reaction cross sections for both Ag and Sn isotopes
have a clear odd-even staggering, i.e., regardless of whether
the proton number is odd or even. Therefore, introducing the δ

input helps to improve the performance of the neural network.
Figure 3 shows the rms deviations σrms(Cross Section) of

different BNN predictions with respect to the evaluation data
[18] of (n, 2n) reaction cross sections for the total set, learning
set, validation set, and testing set. It can be seen that four
BNN approaches all describe the (n, 2n) reaction cross sec-
tion better than the TENDL-2021 [66]. The BNN-I5 approach
achieves the best accuracy for the learning set, validation
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FIG. 2. The integral Sσ of the cross sections with respect to E for
Ag and Sn isotopes.

set, and testing set, which indicates that adding the relevant
physical quantities to the input of the neural network can
improve the performance of the BNN approaches. Therefore,
only BNN-I5 predictions are given hereafter.

The scatter distribution of the (n, 2n) reaction cross sec-
tions predicted by the BNN-I5 approach and TENDL-2021
as a function of their evaluation data is shown in Fig. 4.
It can be seen that the (n, 2n) reaction cross sections are
generally within 2.5 barns. The TENDL-2021 describes the
(n, 2n) reaction cross sections well, while its description is
relatively poor for small cross sections. For cross section data
smaller than 0.5 barns, approximately 15% of the TENDL-
2021 predictions deviate from the evaluation data by larger

FIG. 3. The rms deviations σrms(Cross Section) of different BNN
predictions with respect to the evaluation data [18] of (n, 2n) reaction
cross sections for the total set, learning set, validation set, and testing
set. The corresponding σrms(Cross Section) of TENDL-2021 [66] are
shown for comparison.

FIG. 4. Scatter distribution of the (n, 2n) reaction cross sec-
tions predicted by the BNN-I5 approach and TENDL-2021 [66] as
a function of the evaluation data.

than 0.2 barns, with some predictions even deviating by over
2 barns. In comparison, the BNN-I5 approach is better than
the TENDL-2021 in describing the reaction cross sections not
only for the large cross sections but also for the small cross
sections. Only 8% of the BNN-I5 predictions deviate from
the evaluation data by larger than 0.2 barns. In order to study
the predictive ability of the BNN-I5 approach for the (n, 2n)
reaction cross sections in different nuclear mass regions, its
rms deviations σrms(Cross Section) with respect to the eval-
uation data in different nuclear regions are shown in Fig. 5
and compared with TENDL-2021 [66]. It is clear that the
prediction accuracies of BNN-I5 are much better than those
of TENDL-2021 in all nuclear mass regions. Furthermore,
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FIG. 5. The rms deviations σrms(Cross Section) of cross sec-
tion predictions by BNN-I5 and TENDL-2021 [66] with respect
to the evaluation data in different nuclear regions. The dashed line
shows the corresponding rms deviations of the total set.

the σrms(Cross Section) of TENDL-2021 becomes larger and
larger for the heavier nuclei. However, the BNN-I5 approach
has a similar prediction accuracy in the whole nuclear re-
gion. This indicates that the BNN-I5 approach can describe
the (n, 2n) reaction cross sections better than TENDL-2021,
especially for the heavy nuclei.

Taking 61Ni, 88Sr, 100Mo, 135I, 145Pm, and 184Os as ex-
amples, the (n, 2n) reaction cross sections predicted by the
BNN-I5 approach are shown in Fig. 6. The evaluation data
and TENDL-2021 results [66] are also given for comparison.
It is clear that the BNN-I5 approach describes well the trend
of first increasing and then decreasing for the (n, 2n) reaction
excitation functions. Furthermore, BNN-I5 reproduces well
the (n, 2n) reaction cross sections for both the learning and
validation sets. For 61Ni and 145Pm, the BNN-I5 predictions
are similar to those of TENDL-2021. For 88Sr, 135I, and 184Os,
TENDL-2021 underestimates the cross sections when E is
larger than about 15, 16, and 12 MeV, respectively. For 135I
and 100Mo, the TENDL-2021 overestimates the cross sec-
tions when E is smaller than about 15 MeV and larger than
about 18 MeV, respectively. However, the BNN-I5 approach
removes well these deviations of TENDL-2021 with respect

FIG. 6. The (n, 2n) reaction cross sections predicted by the BNN-I5 approach for 61Ni, 88Sr, 100Mo, 135I, 145Pm, and 184Os. The evaluation
data in the learning and validation sets are indicated by the filled squares and open squares, respectively. The BNN-I5 predictions and their
uncertainties are shown as the solid lines and green hatched regions. The theoretical results from TENDL-2021 [66] are shown by the dotted
lines for comparison.
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FIG. 7. Same as Fig. 6, but for 115Ag, 139Ba, 178Hf, and 248Cm.

to the evaluation data, and hence remarkably improves the
(n, 2n) reaction excitation functions for 88Sr, 100Mo, 135I, and
184Os.

The cross section data in the testing set, i.e., those of
115Ag, 139Ba, 178Hf, and 248Cm, can be used to verify the
predictive ability of the BNN-I5 approach, since these data are
not used in the learning and validation sets. Figure 7 shows the
(n, 2n) reaction cross sections predicted by the BNN-I5 and
TENDL-2021 for these nuclei. It can be seen that the BNN-I5
approach describes the (n, 2n) reaction excitation functions
for 115Ag, 178Hf, and 248Cm better than TENDL-2021.
For 139Ba, the BNN-I5 predictions are similar to TENDL-
2021, which both overestimates the cross sections when
E � 12 MeV and underestimates the cross sections when
E � 12 MeV. To further test the extrapolation ability of the
BNN-I5 approach in the unknown neutron-rich region, the
BNN-I5 predictions are extrapolated from the known region in
two steps. Taking Na, Ca, Ge, Sb, Tb, Hf, Pb, and U isotopes
ranging from the light, medium nuclei to the heavy nuclei
as examples, the corresponding results are shown in Fig. 8.
For these nuclei without evaluation data, the uncertainties of
the BNN-I5 predictions gradually increase, while the BNN-I5
approach still well describes the trend of first increasing and
then decreasing for the (n, 2n) reaction excitation functions.
The BNN-I5 predictions are generally larger than TENDL-
2021 for light nuclei, e.g., Na isotopes. In the heavy nuclear
region, there are large deviations between the BNN-I5 and
the TENDL-2021 predictions, e.g., in U isotopes. As shown
in Fig. 5, BNN-I5 is powerful in the learning set, while the
BNN approach generally becomes less reliable for the extrap-
olation. It also should be pointed out that the TENDL-2021
results predicted by TALYS based on the physical background
would be more realistic for the extrapolation.

Taking 66Zn, 144Sm, and 192Pt as examples, Fig. 9 shows
the comparison between the (n, 2n) reaction cross sec-
tions predicted by the BNN-I5 approach and the original
experimental data, which are obtained directly from mea-
surements and have not been evaluated [67–91]. Clearly, the
experimental data from different groups can have significant
deviations and may even not agree within the uncertainties.
Since the BNN-I5 is trained with the evaluated data, its pre-

dictions generally agree well with the experimental data that
match within the errors, while falling between the experimen-
tal data when they do not agree within the errors. There is
generally a large number of experimental cross sections near
E = 14.5 MeV; it is found that the BNN-I5 predictions are
close to the average value of the experimental data from dif-
ferent groups. In the future, we will try to directly learn those
experimental data that match within the errors and then make
predictions of cross sections where the data do not match
within errors. It would be valuable to further explore which
measurements the neural network predictions favored, thus
providing reference values for the evaluation of experimental
data.

Figure 10 shows the rms deviations of the BNN-I5 cross
section predictions from the evaluation data for various nuclei.
It is clear that the rms deviations of the BNN-I5 predictions
are generally smaller than 0.1 barns for the light nuclei with
Z � 40 and the heavy nuclei with Z � 80. For nuclei with
40 � Z � 80, the rms deviations of BNN-I5 are relatively
larger, which are only within about 0.15 barns. However,
the prediction accuracy of BNN-I5 is still better than that
of TENDL-2021 in this region, as shown in Fig. 5. These
medium mass nuclei have very complex nuclear structure
phenomena, e.g., complex evolutions of nuclear shapes, spins,
and parities, which could affect the (n, 2n) reaction cross
sections. These microscopic effects are very challenging for
various machine learning methods, and therefore the BNN-I5
approach gives a relatively poor description of the (n, 2n)
cross section in this region. Including more physics into
machine learning methods effectively improves their perfor-
mance.

IV. SUMMARY AND PERSPECTIVES

In summary, the nuclear (n, 2n) reaction cross sections and
their uncertainties are predicted by the BNN approach. Three
physical quantities besides Z and N , that is �E , δ, and σ th,
are identified as the best neural network inputs to describe
the (n, 2n) reaction excitation function. The BNN approach
describes the (n, 2n) reaction cross sections better than the
TENDL-2021, not only for the small cross sections but also
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FIG. 8. Comparison of the (n, 2n) reaction cross sections from BNN-I5 predictions and TENDL-2021 [66] for various nuclei.

FIG. 9. Comparison of the (n, 2n) reaction cross sections from BNN-I5 predictions with the original experimental data in Refs. [67–91]
for 66Zn, 144Sm, and 192Pt.
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FIG. 10. The rms deviations between the (n, 2n) reaction cross
sections predicted by the BNN-I5 approach and evaluation data for
various nuclei.

for the large cross sections. The rms deviation of the BNN
approach with respect to the evaluation data is reduced to
0.10 barns compared to 0.25 barns of the TENDL-2021. The
extrapolation ability of the BNN approach is verified with
the (n, 2n) cross section data that are not used to train the
neural network. When extrapolated to the unknown region,
the BNN approach can still well describe the trend of first
increasing and then decreasing for the (n, 2n) reaction exci-

tation functions with the incident neutron energy predicted by
TENDL-2021. It is worth mentioning that in the heavy nuclear
region the BNN approach may describe the (n, 2n) reaction
cross sections better than TENDL-2021, since the deviations
between the TENDL-2021 predictions and the evaluation data
become larger and larger for heavier nuclei, while the BNN
approach has a similar prediction accuracy in the whole nu-
clear region. In addition, the BNN approach is consistent with
the original experimental data of the (n, 2n) reaction, espe-
cially the experimental cross sections near E = 14.5 MeV.
The constructed neural network acquires the intrinsic patterns
of the (n, 2n) reaction cross sections by learning large-scale
evaluation data and has some extrapolation ability, which can
be used as an aid for nuclear data evaluation. In the future,
various machine learning methods including the BNN will be
extended to more reaction channels to find the features asso-
ciated with the cross sections, thus providing a more reliable
basis for large-scale nuclear data evaluation studies.
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