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Self-consistent single-nucleon potential at positive energy produced by semi-realistic interaction
and its examination via nucleon-nucleus elastic scattering

H. Nakada (���) 1,* and K. Ishida (����)2

1Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage, Chiba 263-8522, Japan
2Department of Physics, Graduate School of Science and Engineering, Chiba University, Yayoi-cho 1-33, Inage, Chiba 263-8522, Japan

(Received 27 June 2023; revised 4 February 2024; accepted 28 March 2024; published 17 April 2024)

Based on the variational principle, we discuss self-consistent single-particle (s.p.) potentials at positive
energies, which correspond to the real part of the optical potential as the single folding potential (SFP). The
nuclear-matter s.p. potential produced by the semi-realistic nucleonic interaction M3Y-P6, which has links to
the bare nucleonic interaction, resembles those extracted from the empirical optical potential. Applying M3Y-P6
both to the self-consistent mean-field calculations for the target nucleus and to the SFP for the scattered nucleon,
we find that the differential cross sections of the nucleon-nucleus elastic scattering are reproduced almost
comparably to the empirical potentials up to 80 MeV incident energy. The results demonstrate that the s.p.
potential compatible with available experimental data can be derived from a single energy-independent effective
interaction in this wide energy range.
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I. INTRODUCTION

Many-body systems composed of nucleons, from atomic
nuclei to objects in the universe, are important ingredients of
Nature. While primarily governed by the strong interaction,
they often behave as quantum Fermi liquid [1], in which con-
stituent nucleons move almost independently under a mean
field (MF). At the ground state (g.s.), the nuclear MF contains
correlation effects as incorporated by the Brueckner theory
[2], and is nowadays discussed in terms of the Kohn-Sham
(KS) method in the density functional theory [3]. In the KS
method, properties of the whole many-fermion system can be
described in terms of a collection of single-particle (s.p.) or-
bitals under the self-consistent MF (SCMF) constructed from
the effective interaction (or energy density functional) [4,5].

The nuclear equation of state (EoS), i.e., the energy of the
nuclear matter as a function of density and temperature (T )
[6], plays a vital role in supernovae and neutron stars. Whereas
the EoS at T = 0 has been investigated relatively well in
connection to the experimental data and the EoS at finite T has
often been developed by extending it [7–9], the finite-T EoS
has not sufficiently been verified by experiments. At finite T ,
the constituent nucleons distribute over a wide energy range.
Therefore, it is desirable to handle the nucleonic states without
discontinuity with respect to energy. The extension of the KS
or the SCMF approaches to finite T [10,11], in which the
energy of the system is described by the s.p. states obeying
the Fermi-Dirac distribution function, is a promising tool to
obtain the EoS in connection to experimental data. However,
as the effective interactions have been examined only via the
nuclear structure data, the reliability of these approaches has
been limited to low T (�10 MeV) so far. In supernovae, T
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may reach as high as Tmax ≈ 30 MeV [12], at which nucleons
distribute over s.p. energies ε up to a few times Tmax. Although
some EoSs have been developed from the bare nucleonic
interaction through sophisticated theoretical methods [13,14]
up to finite-T cases [15,16], they are not easily compared with
a variety of experimental data. Since the energy distribution
of nucleons is determined by the MF, i.e., the s.p. potential
produced by the nucleonic interaction, it is a crucial step to
examine whether the effective interaction produces adequate
s.p. potential at ε > 0, as well as in the nuclear structure.

The nuclear MF at ε > 0 is connected to the nucleon-
nucleus (N-A) elastic scattering. The N-A elastic scattering
is described by the optical potential U = V + iW [17,18],
where V and W are Hermitian one-body operators, often
expressed by real functions of the position. The imaginary
part W carries effects of absorption, i.e., loss of the flux out
of the elastic channel. Most conventionally, both V and W
were adjusted to the data. A local function was assumed, with
the parameters dependent on the incident energy and the mass
number [19,20]. The folding model has been developed to
derive the optical potential from the nucleonic effective in-
teraction [21], which does not need parameters depending on
the mass number. There have been attempts to derive folding
potentials from the bare nucleonic interaction [22–28].

Under thermal equilibrium, there is no absorption because
of the detailed balance between inflow and outflow. Only
the real potential V is relevant, involving correlation effects
like the s.p. potential in the KS theory. In this respect, V
is of particular interest, and could be the s.p. potential at
ε > 0 continuous with the MF potential in nuclear structure.
The Skyrme and the Gogny interactions, which are effective
interactions developed for nuclear SCMF calculations, have
been applied to the N-A elastic scattering [29–37]. However,
the good applicability of these phenomenological interac-
tions could be limited to low energy. Whereas the imaginary
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potential has also been argued within the many-body pertur-
bation theory (MBPT) [30,31,34,36,38], correlation effects
already contained in the effective interaction have yet to be
subtracted. If we can develop a reliable real potential cov-
ering a wide energy range without counting on the MBPT,
it could be a significant step toward a reasonable SCMF
(or KS) approach at finite T . It should be mentioned that a
Brueckner-Hartree-Fock approach to EoS combined with the
N-A scattering was reported in Ref. [39], though not precisely
examined by nuclear structure.

The Michigan-three-range-Yukawa (M3Y) interaction was
developed for N-A inelastic scattering, based on the G matrix
[40,41]. By introducing density-dependent coefficients, the
M3Y interaction was extensively applied to the folding po-
tential [42,43]. One of the authors (H.N.) evolved M3Y-type
effective interactions applicable to nuclear structure [44]. In
particular, the parameter-set M3Y-P6 [45] has been scruti-
nized in the SCMF approach [46], and notable success has
been found in describing the nuclear shell structure [46,47],
establishing reliability for s.p. potential at ε < 0. Moreover,
M3Y-P6 is compatible with the EoS parameters at T = 0
extracted by experiments, and reproduces a microscopic
neutron-matter EoS [45,46]. It has also been pointed out that
the M3Y-type interactions are almost free from unphysical
instabilities in excitations of nuclear matter [48], unlike many
other MF interactions. A SCMF approach with M3Y-P6 has
been extended to finite T to investigate the liquid-gas phase
transition occurring at T ≈ 10 MeV in Ref. [11]. It is interest-
ing to examine this effective interaction for the N-A scattering.

II. SINGLE FOLDING POTENTIAL AND
SELF-CONSISTENT MEAN FIELD

Within the SCMF scheme, the total energy E is represented
by

E =
∑

α

〈α| p2

2M
|α〉 nα + 1

2

∑
αβ

〈αβ|v̂|αβ〉 nα nβ. (1)

The indices α and β denote s.p. states, which will be com-
monly used for labeling nucleons without confusion, nα is the

occupation probability on α, and v̂ is the two-body interaction,
whose strengths may depend on the density. The s.p. Hamil-
tonian h is derived as

h =
∑

α

[(
1

nα

δE

δ〈α|
)∣∣∣∣

n(0)

〈α|
]

= p2

2M
+ U, (2)

from which the s.p. state |α〉 and its energy εα are obtained via
h|α〉 = εα|α〉. We have defined (δ/δ〈α|)〈α′|Ô|β〉 = δαα′ Ô|β〉
for a matrix element of a one-body operator Ô, and anal-
ogously for two-body matrix elements. The expression |n(0)

means substituting appropriate values n(0)
β for nβ . The second

term on the right-hand side (rhs) of Eq. (1) leads to the s.p.
potential U , which is nonlocal in general. For spherical nuclei,
it is appropriate to take α = (νr� jmτ ), where τ (= p, n) is
the particle type, (� jm) are the angular-momentum quan-
tum numbers, and νr distinguishes radial wave functions. For
homogeneous nuclear matter, we take α = (kστ ), with the
momentum k and the z component of the nucleon spin σ .

Suppose that v̂ can be expressed as

v̂ =
∑

i

Ci[ρ] · ŵi, (3)

where ŵi is a two-body operator with strength Ci that may
depend on ρ(r), as the interaction of Eq. (A2) in Appendix A.
Then, the s.p. potential U in Eq. (2) becomes

U |α〉 =
∑

i

∑
β

〈∗β|Ci[ρ
(0)(Rαβ )] · ŵi|αβ〉 n(0)

β

+ 1

2
|α〉
∑

i

∑
α′β

C′
i [ρ

(0)(rα )]

× 〈α′β|δ(rα − Rα′β ) · ŵi|α′β〉 n(0)
α′ n(0)

β . (4)

We have assumed that ρ depends on Rαβ := (rα + rβ )/2
when it acts on two nucleons α and β. The expression
〈∗β| means that it is the result of the variation, 〈∗β| :=
(δ/δ〈α|)〈αβ|, and ρ (0) is the density obtained by n(0).
The second term on the rhs that includes C′

i = dCi/dρ is
the rearrangement potential, for which we have inserted
δρ(r)/δ〈α| = δ(rα − r) |α〉.

In homogeneous nuclear matter, Eq. (4) results in

〈kστ |U |kστ 〉 =
∑

i

Ci[ρ]
�

(2π )3

∑
σ ′τ ′

∫
k′�kFτ ′

d3k′ 〈kστ k′σ ′τ ′|ŵi|kστ k′σ ′τ ′〉

+
∑

i

C′
i [ρ]

�

2(2π )6

∑
σ ′τ ′σ ′′τ ′′

∫
k′�kFτ ′ ,k′′�kFτ ′′

d3k′ d3k′′ 〈k′σ ′τ ′ k′′σ ′′τ ′′|ŵi|k′σ ′τ ′ k′′σ ′′τ ′′〉. (5)

Here � is the volume of the system, and kFτ (τ = p, n)
denotes the Fermi momentum that is related to the density,
ρτ = k3

Fτ /(3π2) and ρ =∑τ ρτ . Analytic formulas for the
integration in Eq. (5) are given in Ref. [44]. The potential
〈kστ |U |kστ 〉 depends on ρ and the asymmetry parameter ηt ,
where ηt :=∑τ ′ τ ′ρ ′

τ /ρ with τ ′ = ±1 in the summation, as
well as on k = |k| and τ .

Let us consider the N-A elastic scattering, to which
the above formulas are applicable. The incident nucleon is

denoted by N with the energy εN (the subscript N will oc-
casionally be replaced by p or n in Sec. IV), and the target
nucleus by its mass number A, whose g.s. energy and density
are expressed as EA and ρ

(0)
A . The occupation probabilities

are n(0)
N = 1, n(0)

α = 1 for α belonging to the occupied states
of A, and n(0)

α = 0 for all the other s.p. states. Whereas the
increment of the density due to the scattered nucleon is in-
finitesimal at each position, its variation with respect to 〈N | is
not negligible [49]. Therefore, the s.p. potential of Eq. (4) for

044614-2



SELF-CONSISTENT SINGLE-NUCLEON POTENTIAL AT … PHYSICAL REVIEW C 109, 044614 (2024)

N is given by

U |N〉 =
∑

i

A∑
β=1

〈∗β|Ci
[
ρ

(0)
A (RNβ )

] · ŵi|Nβ〉 n(0)
β

+ 1

2
|N〉

∑
i

A∑
α,β=1

C′
i

[
ρ

(0)
A (rN )

]

× 〈αβ|δ(rN − Rαβ ) · ŵi|αβ〉 n(0)
α n(0)

β . (6)

This U corresponds to the single folding potential (SFP),
which generally has nonlocality, owing to the exchange term.
The incident energy is εN = E − EA = 〈N |h|N〉/〈N |N〉. In
addition to the first term on the rhs of Eq. (6), which is the
conventional SFP, the rearrangement potential appears in the
second term [49–52]. When three-body interaction acts on
the system, its effects are treated analogously. If correlation
effects are embodied in the effective interaction as in the KS
theory [5], the above U can be identified with the real part
of the optical potential V . Relativistic effects may partly be
incorporated into the effective interaction [23], as well. We
denote V by VSFP when calculated via Eq. (6). The present
derivation elucidates that the SFP is a self-consistent s.p. po-
tential at positive energies, in complete analogy to the SCMF
potential. It deserves noting that U in Eq. (6) does not depend
on εN when the nonlocality is explicitly taken into account, as
will be confirmed from the formulas in Appendix B.

III. SINGLE-PARTICLE POTENTIAL
IN NUCLEAR MATTER

In homogeneous nuclear matter, εN = k2/(2M ) +
〈kστ |U |kστ 〉 with the potential of Eq. (5). The nonlocality
in U can be absorbed in the momentum dependence,
which is further translated into the εN dependence without
approximation, because the momentum k is a good quantum
number. If the nuclear-matter energy is a quadratic function
of ηt to a good approximation [53], the s.p. potential is
represented as

〈kστ |U |kστ 〉 ≈ U0(εN ; ρ) + τ U1(εN ; ρ) ηt , (7)

corresponding to the Lane form [18]. The s.p. potential at
the saturation density ρ0 can be compared to the empirical
local potential Vemp at the center of heavy nuclei, ideally the
A → ∞ limit,

lim
A→∞

Vemp(r = 0) ≈ U emp
0 (εN ; ρ0) − τ U emp

1 (εN ; ρ0)
N − Z

A
,

τ =
{+1 for p,
−1 for n.

(8)

In Fig. 1, U0 and U1 at ρ = 0.16 fm−3 are shown as a function
of εN . Several effective interactions that successfully describe
nuclear structure are applied: Skyrme-SLy4 [54], Gogny-D1S
[55], and M3Y-P6 [45]. U emp

0 and U emp
1 are displayed for

comparison, for which we take those of Refs. [19] (CH89)
and [20] (KD). The CH89 potential was fitted to the data in
10 � εN � 65 MeV. The KD potential, applicable in 0.001 �
εN � 200 MeV, contains linear terms of A to which small
coefficients are attached. Though divergent at the A → ∞

U
0 (

M
eV

)

A=208
A=400

U
1 (

M
eV

)
N (MeV)

FIG. 1. Energy dependence of U0 and U1 for homogeneous nu-
clear matter [see Eq. (7)] at ρ = 0.16 fm−3. The s.p. potentials given
by the SCMF interactions, Skyrme-SLy4 (brown dot-dashed lines),
Gogny-D1S (blue long-dashed lines), and M3Y-P6 (red solid lines),
are compared with the empirical potentials, KD evaluated at A = 208
(green dotted lines) and at A = 400 (green short-dashed lines) and
CH89 (black short-dashed lines).

limit, these terms should correspond to expansion with respect
to A. We plot U emp

0 and U emp
1 at A = 208 and 400 to view the

values at large A.
Although the empirical potentials do not match one another

precisely, suggesting ambiguity in the extrapolation, the qual-
itative trend is similar. We point out that U0 at the saturation
energy εN → ε0 ≈ −16 MeV is constrained by the condition
ε0 = k2

F/(2M ) + U0(ε0; ρ0). It is also noted that the slope of
U0 at ε0 corresponds to the effective mass (to be precise,
the k mass), which is constrained by the nuclear structure.
Nevertheless, Fig. 1 clarifies that U0 significantly depends
on the effective interactions as εN becomes several tens of
MeV. In particular, the Gogny-D1S interaction provides εN

dependence different from the empirical potentials. In con-
trast, U0 with M3Y-P6 resembles U emp

0 of the KD potential
for A = 400. U0 and U1 with the Skyrme interaction are linear
functions of εN , and the k mass determines the slope of U0.
U0 from the Skyrme interaction does not severely deviate
from the empirical potential as long as the k mass has been
adjusted as in SLy4, though it cannot describe a slight bend
of U0.

It is hard to constrain U1 from the nuclear structure. The
εN dependence of U1 is distinctive among the effective in-
teractions. M3Y-P6 provides U1 almost consistent with the
empirical potentials and with a microscopic result reported
in Ref. [56], decreasing almost linearly for growing εN , in

044614-3



H. NAKADA AND K. ISHIDA PHYSICAL REVIEW C 109, 044614 (2024)

10

10-2

100

102

104

106

108

0 30 60 90 120 150 180

(a)  p-16O

εp=17.5 MeV (×104)

εp=30.4 MeV (×102)

εp=49.5 MeV

εp=65.0 MeV (×10-2)

d σ
el

 / 
dΩ

 (
m

b)

1801801800 30 60 90 120 150 180

(b)  p-40Ca

εp=16.0 MeV (×104)

εp=40.0 MeV (×102)

εp=65.0 MeV

εp=80.0 MeV (×10-2)

θc.m. (deg)
0 30 60 90 120 1500 30 60 90 120 1500 30 60 90 120 1500 30 60 90 120 150 180

(c)  p-90Zr

εp=16.0 MeV (×104)

εp=40.0 MeV (×102)

εp=65.0 MeV

εp=80.0 MeV (×10-2)

0 30 60 90 120 150 180

(d)  p-208Pb

εp=16.0 MeV (×104)

εp=30.3 MeV (×102)

εp=65.0 MeV

εp=80.0 MeV (×10-2)

FIG. 2. dσel/d� of p-A scattering: (a) p- 16O, (b) p- 40Ca, (c) p- 90Zr, and (d) p- 208Pb. Results of VSFP with M3Y-P6 plus Wemp are depicted
by red solid lines and compared with experimental data (black circles) taken from the database [61], originally reported in Refs. [19,62–68].
For comparison, results of VSFP with Gogny-D1S (blue long-dashed line), and those of Vemp of Ref. [20] (green short-dashed lines) are also
displayed. Depending on εp, the cross sections are scaled by the coefficients in the parentheses.

contrast to SLy4 and D1S. These properties of M3Y-P6 could
originate from its links to the bare nucleonic interaction.
While the applications of the Skyrme and the Gogny inter-
actions have been limited to εN � 30 MeV, M3Y-P6 merits
testing for N-A elastic scattering even at higher energies.

IV. N-A SCATTERING CROSS SECTIONS

We now turn to finite nuclei. As mentioned above, U (=
VSFP) of Eq. (6) provides a nonlocal potential, in general. Be-
cause the nonlocal SFP needs the s.p. wave-functions beyond
the local density ρ(r) and somewhat complicated computa-
tion, the local approximation has customarily been applied
[57]. However, for consistency with the nuclear structure cal-
culations, we apply the nonlocal SFP up to the noncentral and
Coulomb channels. Formulas deriving the nonlocal SFP from
the effective interaction and the MF wave functions are given
in Appendix B. We emphasize that the present nonlocal SFP
is independent of energy (εN ). The εN dependence of U0 and
U1 in Fig. 1 results merely from converting the nonlocality to
the momentum dependence.

In this work, we investigate the N-A elastic scattering at
incident energies ranging from εN ≈ 10 to 80 MeV. For the
target nuclei, we select 16O, 40Ca, 90Zr, and 208Pb, which
have Jπ = 0+ and whose wave functions can reasonably be
obtained by the spherical Hartree-Fock (HF) calculation. On
top of the self-consistent HF wave function of the target
nucleus with M3Y-P6, the wave function of the scattered
nucleon is calculated under the optical potential, whose real
part is taken from Eq. (6) with the same M3Y-P6 interaction.
For the imaginary part, we employ the empirical potential
Wemp of Ref. [20], which is local and εN dependent. Thus,

the optical potential is U = VSFP + iWemp. We then compute
physical quantities with the SIDES code [58]. Because the
imaginary potential is connected to the inelastic scattering
and the particle emission, its microscopic description should
be consistent with these processes, and is left for future
works. Whereas we have also tried other empirical imaginary
potentials [19,59,60], the results are similar to those with
the potential of Ref. [20]. Influence of the center-of-mass
(c.m.) Hamiltonian on the N-A scattering is discussed in
Appendix C. The [−P2

A/(2AM )] term in Eq. (C4) has been
included in the HF calculations [46]. The c.m. correction of
the first term on the rhs in Eq. (C4) is handled within the SIDES

code [58].
In Fig. 2, the calculated differential cross sections dσel/d�

of the proton-nucleus (p-A) scatterings are compared with the
experimental data [61]. As well as the results of VSFP with
M3Y-P6, we display the results with the Gogny-D1S interac-
tion [55], and those applying the phenomenological potential
of Ref. [20] also to the real part, Vemp. Covering light to
heavy nuclei ranging from εp ≈ 15 to 80 MeV, the SFPs with
M3Y-P6 reproduce dσel/d� well, almost comparably to the
empirical potential but without adjusting V to the scattering
data. In particular, notable agreement with the data is found
at εp = 65 MeV. At εp = 80 MeV, the calculated dσel/d�

is larger than the data at θc.m. � 60◦. Still, the positions of
the peaks and dips are well reproduced. In contrast, the D1S
interaction gives dσel/d� seriously deviating from the data
in εp � 65 MeV, while it reproduces the cross sections at
εp � 30 MeV. This seems connected with the εN dependence
of U0 in Fig. 1.

The optical theorem gives the total cross section σtot

[18], from which the reaction cross section σreac is obtained
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FIG. 3. σreac of p- 40Ca, p- 90Zr, and p- 208Pb scattering. Results
of VSFP with M3Y-P6 (D1S) plus Wemp are plotted by crosses con-
nected with red solid lines (pluses with blue long-dashed lines),
and those of Vemp are displayed by green short-dashed lines. Black
circles, squares, and triangles are experimental data [61,69–71].

as

σreac = σtot −
∫

d�
dσel

d�
. (9)

While both terms on the rhs are divergent in the p-A scatter-
ings, σreac is calculated in the SIDES code by properly treating
the Coulombic contribution as discussed in Ref. [18]. Al-
though σreac is primarily subject to the imaginary potential,
the real potential indirectly influences σreac. We show σreacs
in the p-A scatterings in Fig. 3 to examine the consistency of
Wemp combined with VSFP. As expected, σreacs are insensitive
to V , and the application of Wemp in combination with VSFP

is justified in 10 � εp � 65 MeV. Without available data,
there remains room to improve dσel/d� by readjusting W at
εp ≈ 80 MeV, although an upper limit in εN is anticipated for
the applicability of VSFP, as argued below.

The calculated dσel/d� of the neutron-nucleus (n-A) scat-
terings at εn � 30 MeV are compared with the experimental
data [61] in Fig. 4. Data at higher energies are limited to small
angles. It is confirmed that the calculated σtots are compatible
with the data in this energy range.

Many effective interactions developed for scattering have
explicit energy (ε) dependence in their parameters, con-
nected to the ε dependence of the G matrix. However,
the ε-dependent interaction complicates treating the nuclear
structure and finite-T problems, in which a single sys-
tem includes s.p. states with various energies. Therefore,
ε-independent effective interactions appropriately contain-
ing correlation effects are valuable. Still, it would be too
optimistic to believe that we can remove ε dependence ev-
erywhere. There will be an upper limit of ε where the
ε-independent interaction works. It seems reasonable to con-
sider that, for the present M3Y-P6 interaction, the upper limit
lies around ε = 80 MeV.

In this paper, we have yet to discuss the analyzing power,
on which some experimental data are available. The analyzing
power is primarily relevant to the noncentral channels, which
do not contribute to the energy in homogeneous matter. We
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FIG. 4. dσel/d� of n-A scattering: n- 16O, n- 40Ca, and n- 90Zr.
Results of VSFP with M3Y-P6 and D1S and those of Vemp are pre-
sented, in comparison with experimental data [61,72–74]. See Fig. 2
for conventions.

have confirmed that influence of the noncentral channels,
which are included except in the calculations for Fig. 1, is
insignificant for dσel/d�. The analyzing power will be argued
in a forthcoming paper.

V. SUMMARY AND OUTLOOK

Based on the variational principle, we have discussed the
self-consistent s.p. potential at positive energy. As it corre-
sponds to the SFP and thereby to the real part of the optical
potential, the property and validity of the potential can be
examined via N-A elastic scattering.

For homogeneous nuclear matter, the nonlocality of the
potential is convertible to ε dependence, where ε corresponds
to the energy of the incident nucleon in N-A elastic scattering.
We calculate the nuclear-matter s.p. potential with several
effective interactions that work well for nuclear structure,
and compare them to the empirical optical potentials at large
A. It is found that some of them do not reproduce the ε

dependence of the empirical potential. We have shown that
the semi-realistic nucleonic interaction M3Y-P6, which has
links to the bare nucleonic interaction, provides s.p. potentials
similar to the empirical ones.
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We have calculated the real part of the SFP fully consistent
with the nuclear structure calculations. The differential cross
sections of the N-A elastic scatterings have been computed by
applying M3Y-P6 both to the SCMF calculations for the target
nucleus and to the scattered nucleon’s SFP. The imaginary part
of the optical potential, which carries the absorption effects,
is complemented by the empirical one. It is confirmed that the
SFP with M3Y-P6 describes the cross sections well, almost
comparable to the empirical potentials, in as wide an energy
range as ε � 80 MeV. The reaction cross sections of the
proton scatterings and the total cross sections of the neutron
scatterings do not contradict the elastic scattering results.

United with the already established nuclear structure re-
sults, the present results demonstrate that s.p. potentials
compatible with experimental data can be derived from a

single ε-independent effective interaction in a significantly
extended energy range, indicating that the effective interac-
tion properly takes account of many-body correlations. As
the effective interaction is the only input in the SCMF (or
KS) approach, these results may be a yardstick for extending
the SCMF approach in nuclei to finite T without artificial
discontinuity with respect to energy.
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APPENDIX A: EFFECTIVE HAMILTONIAN

In these appendices, we consider the following Hamiltonian for the system composed of A′ nucleons,

H = K + VN + VC − Hc.m.;

K =
∑

α

p2
α

2M
, VN =

∑
α<β

vαβ, VC = αem

∑
α<β(∈p)

1

rαβ

,

Hc.m. = P2

2A′M
= 1

A′

⎡
⎣∑

α

p2
α

2M
+
∑
α<β

pα · pβ

M

⎤
⎦ (

P =
∑

α

pα

)
, (A1)

where rαβ = rα − rβ , r = |r|, and αem (in VC) is the fine structure constant. The effective nucleonic interaction vαβ consists of
the following terms:

vαβ = v
(C)
αβ + v

(LS)
αβ + v

(TN)
αβ + v

(Cρ)
αβ + v

(LSρ)
αβ ;

v
(C)
αβ =

∑
k

{
t (SE)
k PSE + t (TE)

k PTE + t (SO)
k PSO + t (TO)

k PTO
}

f (C)
k (rαβ ),

v
(LS)
αβ =

∑
k

{
t (LSE)
k PTE + t (LSO)

k PTO
}

f (LS)
k (rαβ ) Lαβ · (sα + sβ ),

v
(TN)
αβ =

∑
k

{
t (TNE)
k PTE + t (TNO)

k PTO
}

f (TN)
k (rαβ ) r2

αβSαβ,

v
(Cρ)
αβ = {CSE[ρ(Rαβ )] PSE + CTE[ρ(Rαβ )] PTE} δ(rαβ ),

v
(LSρ)
αβ = 2i D[ρ(Rαβ )] pαβ × δ(rαβ ) pαβ · (sα + sβ )

= D[ρ(Rαβ )]
{− ∇2

αβ δ(rαβ )
}

Lαβ · (sα + sβ ), (A2)

where sα is the spin operator, Rαβ = (rα + rβ )/2, pαβ = (pα − pβ )/2, Lαβ = rαβ × pαβ , Sαβ = 4 [3(sα · r̂αβ )(sβ · r̂αβ ) − sα ·
sβ] with r̂ = r/r, and ρ(r) is the isoscalar nucleon density. PY (Y = SE, TE, SO, TO) stands for the projection operators on the
singlet-even (SE), triplet-even (TE), singlet-odd (SO), and triplet-odd (TO) two-nucleon states. They are related to the spin- and
isospin-exchange operators Pσ [= (1 + 4sα · sβ )/2] and Pτ as

PSE = 1 − Pσ

2

1 + Pτ

2
, PTE = 1 + Pσ

2

1 − Pτ

2
, PSO = 1 − Pσ

2

1 − Pτ

2
, PTO = 1 + Pσ

2

1 + Pτ

2
. (A3)

Each channel X (= C, LS, TN) is composed of several terms distinguished by k, which corresponds to the function f (X)
k (r)

and contains coupling constants t (Y)
k . In the M3Y-type interaction, the Yukawa function f (X)

k (r) = e−xk /xk with xk = μ
(X)
k r is

used for all of X = C, LS, TN, where μ−1
k is the interaction range. In the conventional Gogny interaction, f (C)

k (r) = e−(μ(C)
k r)2

and f (LS)(r) = ∇2δ(r). The expression (A2) also covers the Skyrme interaction by setting f (C)
1 (r) = δ(r), f (C)

2 (r) = f (LS)(r) =
f (TN)(r) = ∇2δ(r) [75]. The v(Cρ) and v(LSρ) terms have coupling constants CY[ρ] and D[ρ] that depend on ρ, whose functional
forms need not be specified here.
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For later convenience, we rewrite v
(X)
αβ (X = C, LS, TN) as

v
(C)
αβ =

∑
k

[{
t̄ (0i)
k + t̄ (0x)

k Pτ

}+ (4sα · sβ )
{
t̄ (1i)
k + t̄ (1x)

k Pτ

}]
f (C)
k (rαβ );

t̄ (0i)
k = 1

8

(
t (SE)
k + 3t (TE)

k + t (SO)
k + 3t (TO)

k

)
,

t̄ (0x)
k = 1

8

(
t (SE)
k − 3t (TE)

k − t (SO)
k + 3t (TO)

k

)
,

t̄ (1i)
k = 1

8

(−t (SE)
k + t (TE)

k − t (SO)
k + t (TO)

k

)
,

t̄ (1x)
k = 1

8

(−t (SE)
k − t (TE)

k + t (SO)
k + t (TO)

k

)
,

v
(LS)
αβ =

∑
k

{
t̄ (LSi)
k + t̄ (LSx)

k Pτ

}
f (LS)
k (rαβ ) Lαβ · (sα + sβ ) ;

t̄ (LSi)
k = 1

2

(
t (LSE)
k + t (LSO)

k

)
, t̄ (LSx)

k = 1

2

(− t (LSE)
k + t (LSO)

k

)
,

v
(TN)
αβ =

∑
k

{
t̄ (TNi)
k + t̄ (TNx)

k Pτ

}
f (TN)
k (rαβ ) r2

αβSαβ ;

t̄ (TNi)
k = 1

2

(
t (TNE)
k + t (TNO)

k

)
, t̄ (TNx)

k = 1

2

(− t (TNE)
k + t (TNO)

k

)
. (A4)

The LS and tensor operators are expanded, using � = r × p, as

Lαβ · (sα + sβ ) = 1

2
{�α · sα + �α · sβ + �β · sα + �β · sβ + (rα × sα ) · pβ − (pα × sα ) · rβ − rα · (pβ × sβ ) + pα · (rβ × sβ )},

r2
αβSαβ = 16π

∑
λαλβ

δλα+λβ ,2 ζλα
rλα

α rλβ

β [Y (λα )(r̂α )Y (λβ )(r̂β )](2) · [s(1)
α s(1)

β

](2)
; ζ0 = ζ2 =

√
6

5
, ζ1 = −2. (A5)

APPENDIX B: FORMULAS FOR SINGLE FOLDING POTENTIAL

This Appendix provides formulas to obtain the single folding potential (SFP) from the effective interaction in Appendix A.
The wave function (w.f.) of the target nucleus is assumed to be obtained by a Hartree-Fock (HF) calculation.

In deriving the formulas of the SFP, we express the w.f. of the target nucleus via a set of the s.p. basis functions, which are
denoted by ϕα (rστ ), with the spin and isospin coordinates σ and τ (= p, n). Instead of the occupation probability n(0)

α in the
text, we employ the one-body density matrix �αα′ (:= 〈�|a†

α′aα|�〉). The w.f. of the projectile nucleon is represented by ψ (rστ ).
The energy of the whole N-A system is composed of the individual terms of the effective Hamiltonian. The SFP is expressed by
a sum of the terms corresponding to those in Eq. (A2),

U |N〉 =
∑

X

U (X)|N〉 =
∑

X

⎧⎨
⎩
∑

αα′∈A

〈∗α′|v(X)|Nα〉 �αα′ + 1

2
|N〉

∑
αα′ββ ′∈A

〈α′β ′|δv
(X)

δ〈N | |αβ〉 �αα′ �ββ ′

⎫⎬
⎭. (B1)

See the text for the notation. For density-independent channels (X = C, LS, TN), we have no rearrangement term, and Eq. (B1)
yields

U (X) = U (X,dir) + U (X,exc);

[U (X,dir)ψ](rστ ) =
∑

αα′∈A

�αα′
∑
σ ′τ ′

∫
d3r′ ϕ∗

α′ (r′σ ′τ ′) v(X) ϕα (r′σ ′τ ′) ψ (rστ ),

[U (X,exc)ψ](rστ ) = −
∑

αα′∈A

�αα′
∑
σ ′τ ′

∫
d3r′ ϕ∗

α′ (r′σ ′τ ′) v(X) ϕα (rστ ) ψ (r′σ ′τ ′). (B2)
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The Coulomb interaction can be handled analogously. The density-dependent channels of Eq. (B1) (X = Cρ, LSρ) will be dis-
cussed without separating the direct and exchange terms since they are assumed to be zero range, though the density-dependence
leads to the rearrangement term (the second term on the rhs).

In the following, we omit the subscript N for the projectile unless it leads to confusion. Furthermore, we drop the
subscript k that distinguishes the range parameters in Eq. (A2), and the summation over k, though each channel may include
plural terms having different ranges. Spherical basis functions are adopted for ϕα and the partial-wave expansion is applied
to ψ ,

ϕα (rστ ) = δττα
Rνα�α jα (r) [Y (�α )(r̂) χ (1/2)

σ ]( jα )
mα

ξτ ,

ψ (rστ ) = δττN

∑
� jm

c� jmR� j (r) [Y (�)(r̂) χ (1/2)
σ ]( j)

m ξτ , (B3)

where χσ (ξτ ) is the spin (isospin) w.f. and c� jm is an appropriate coefficient. If the target has Jπ = 0+, the density matrix has
the property �αα′ = δτατα′ δ�α�α′ δ jα jα′ δmαmα′ �

(τα�α jα )
νανα′ . The quantum numbers (� jm) do not mix in ψ , with c� jm fixed by the incident

wave. The SFP is obtained for each (� j), which will be denoted by U (X)
� j .

The function f (rαβ ) in Eq. (A2) is expanded as

f (rαβ ) =
∑

λ

gλ(rα, rβ ) Pλ(r̂α · r̂β ) =
∑

λ

4π

2λ + 1
gλ(rα, rβ )Y (λ)(r̂α ) · Y (λ)(r̂β ), (B4)

where Pλ is the Legendre polynomial and

gλ(rα, rβ ) = 2λ + 1

2

∫ 1

−1
d (cos θ ) f

(√
r2
α + r2

β − 2rαrβ cos θ
)

Pλ(cos θ ). (B5)

The form of gλ for several functions will be given later.

1. Terms from central channels

The contribution of v(C) to the SFP for each (� j) partial wave is represented as

U (C,dir)
� j =

∑
γ=0,1

∑
τα

{
t̄ (γ i) + δττα

t̄ (γ x)
}

F (dir,γ )
� j,τα

;

F (dir,γ )
� j,τα

=
∑

�α jαmα

νανα′ (∈A)

�(τα�α jα )
νανα′

∑
σ ′

∫
d3r′ {Rνα′ �α jα (r′)

[
Y (�α )(r̂′) χ

(1/2)
σ ′

]( jα )

mα

}∗

× f (C)(|r − r′|)O(C,γ )
σ

{
Rνα�α jα (r′)

[
Y (�α )(r̂′) χ

(1/2)
σ ′

]( jα )

mα

}
,

U (C,exc)
� j = −

∑
γ=0,1

∑
τα

{
t̄ (γ x) + δττα

t̄ (γ i)
}

F (exc,γ )
� j,τα

;

F (exc,γ )
� j,τα

{R� j (r)
[
Y (�)(r̂) χ (1/2)

σ

]( j)

m

} =
∑

�α jαmα

νανα′ (∈A)

�(τα�α jα )
νανα′

∑
σ ′

∫
d3r′ {Rνα′ �α jα (r′)

[
Y (�α )(r̂′) χ

(1/2)
σ ′

]( jα )

mα

}∗
f (C)(|r − r′|)O(C,γ )

σ

×{Rνα�α jα (r)
[
Y (�α )(r̂) χ (1/2)

σ

]( jα )

mα

} {R� j (r
′) [Y (�)(r̂′) χ

(1/2)
σ ′ ]( j)

m

}
,

(O(C,0)
σ = 1, O(C,1)

σ = 4s · s′). (B6)

While F (dir,γ )
� j,τα

provides a local potential, F (exc,γ )
� j,τα

is an integral operator whose kernel corresponds to a non-local SFP. It acts on

R� j without influencing the angular-spin function. The effect of F (exc,γ )
� j,τα

becomes transparent by integrating out the angular-spin
part,

F (exc,γ )
� j,τα

R� j (r) =
∑

σ

∫
d�
{[

Y (�)(r̂) χ (1/2)
σ

]( j)

m

}∗
F (exc,γ )

� j,τα

{R� j (r)
[
Y (�)(r̂) χ (1/2)

σ

]( j)

m

}
, (B7)
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where
∫

d� is the integration over the solid angle. The Racah algebra to the angular-spin part yields

F (dir,γ )
� j,τα

= δγ 0

∑
�α jα

νανα′ (∈A)

(2 jα + 1) �(τα�α jα )
νανα′

∫
r′ 2dr′ g0(r, r′) R∗

να′ �α jα (r′) Rνα�α jα (r′),

F (exc,γ )
� j,τα

R� j (r) = 2 (2γ + 1)
∑
�α jα

νανα′ (∈A)

(2�α + 1) (2 jα + 1) �(τα�α jα )
νανα′

∑
λκ

(2κ + 1) (�α 0 λ 0 | � 0)2

⎧⎨
⎩

�α 1/2 jα
λ γ κ

� 1/2 j

⎫⎬
⎭

2

×
∫

r′ 2dr′ gλ(r, r′) R∗
να′ �α jα (r′) Rνα lα jα (r)R� j (r

′). (B8)

2. Terms from tensor channels

The contribution of v(TN) to the SFP is

U (TN,dir)
� j = 0,

U (TN,exc)
� j = −

∑
τα

{
t̄ (TNx) + δττα

t̄ (TNi)
}

F (exc,TN)
� j,τα

;

F (exc,TN)
� j,τα

{R� j (r)
[
Y (�)(r̂) χ (1/2)

σ

]( j)

m

} =
∑

�α jαmα

νανα′ (∈A)

�(τα�α jα )
νανα′

∑
σ ′

∫
d3r′ {Rνα′ �α jα (r′)

[
Y (�α )(r̂′) χ

(1/2)
σ ′

]( jα )

mα

}∗
f (TN)(|r − r′|)

×
⎧⎨
⎩16π

∑
λ1λ2

δλ1+λ2,2 ζλ1 rλ1 r′λ2
[
Y (λ1 )(r̂)Y (λ2 )(r̂′)

](2) · [s(1)s′(1)](2)

⎫⎬
⎭

× {Rνα�α jα (r)
[
Y (�α )(r̂) χ (1/2)

σ

]( jα )

mα

} {R� j (r
′)
[
Y (�)(r̂′) χ

(1/2)
σ ′

]( j)

m

}
. (B9)

The direct term vanishes because of the time-reversal symmetry in the target w.f. After dropping the angular-spin part, algebra
similar to Eq. (B7) gives

F (exc,TN)
� j,τα

R� j (r) = 30
∑
λ1λ2

δλ1+λ2,2 (−)λ1+1 ζλ1

√
(2λ1 + 1) (2λ2 + 1)

∑
�α jα

νανα′ (∈A)

(2�α + 1) (2 jα + 1) �(τα�α jα )
νανα′

×
∑

λκκ1κ2

(2κ + 1)
√

(2κ1 + 1) (2κ2 + 1) (λ 0 λ1 0 | κ1 0) (λ 0 λ2 0 | κ2 0)

× (�α 0 κ1 0 | � 0) (�α 0 κ2 0 | � 0)W (2 λ2 κ1 λ ; λ1 κ2)W (2 1 κ1 κ ; 1 κ2)

×
⎧⎨
⎩

�α 1/2 jα
κ1 1 κ

� 1/2 j

⎫⎬
⎭
⎧⎨
⎩

�α 1/2 jα
κ2 1 κ

� 1/2 j

⎫⎬
⎭
∫

r′ 2dr′ rλ1 r′ λ2 gλ(r, r′) R∗
να′ �α jα (r′) Rνα�α jα (r)R� j (r

′). (B10)

3. Terms from LS channels

The contribution of v(LS) to the SFP is, after taking into account the time-reversal symmetry for the direct term,

U (LS,dir)
� j =

∑
τα

{
t̄ (LSi) + δττα

t̄ (LSx)
}

F (dir,LS)
� j,τα

;

F (dir,LS)
� j,τα

{R� j (r)
[
Y (�)(r̂) χ (1/2)

σ

]( j)

m

} =
∑

�α jαmα

νανα′ (∈A)

�(τα�α jα )
νανα′

∑
σ ′

∫
d3r′ {Rνα′ �α jα (r′)

[
Y (�α )(r̂′) χ

(1/2)
σ ′

]( jα )

mα

}∗

× f (LS)(|r − r′|)
[

1

2

{
� · s + �′ · s′ − (p × s) · r′ − r · (p′ × s′)

}]

× {Rνα�α jα (r′)
[
Y (�α )(r̂′) χ

(1/2)
σ ′

]( jα )

mα

} {R� j (r) [Y (�)(r̂) χ (1/2)
σ ]( j)

m

}
,

U (LS,exc)
� j = −

∑
τα

{
t̄ (LSx) + δττα

t̄ (LSi)}F (exc,LS)
� j,τα

;
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F (exc,LS)
� j,τα

{R� j (r)
[
Y (�)(r̂) χ (1/2)

σ

]( j)

m

} =
∑

�α jαmα

νανα′ (∈A)

�(τα�α jα )
νανα′

∑
σ ′

∫
d3r′ {Rνα′ �α jα (r′)

[
Y (�α )(r̂′) χ

(1/2)
σ ′

]( jα )

mα

}∗

× f (LS)(|r − r′|)
[

1

2
{� · s + � · s′ + �′ · s + �′ · s′ + (r × s) · p′ − (p × s) · r′

− r · (p′ × s′) + p · (r′ × s′)}
]

× {Rνα�α jα (r)
[
Y (�α )(r̂) χ (1/2)

σ

]( jα )

mα

} {R� j (r
′)
[
Y (�)(r̂′) χ

(1/2)
σ ′

]( j)

m

}
. (B11)

The contributions of the � · s and �′ · s′ terms are similar to the central channel, because these operators only yield the constants
when acting on the w.f.’s of Eq. (B3),

� · s → 1
2

{
j( j + 1) − �(� + 1) − 3

4

}
. (B12)

Owing to the symmetry in the target w.f., the rest of the nonvanishing direct terms have analogous forms, and the direct SFP is
expressed as

F (dir,LS)
� j,τα

= 1

4

∑
�α jα

νανα′ (∈A)

(2 jα + 1) �(τα�α jα )
νανα′

∫
r′ 2dr′

[{
j( j + 1) − �(� + 1) − 3

4

}{
g0(r, r′) − r′

3r
g1(r, r′)

⎫⎬
⎭

+
{

jα ( jα + 1) − �α (�α + 1) − 3

4

}{
g0(r, r′) − r

3r′ g1(r, r′)
}]

R∗
να′ �α jα (r′) Rνα�α jα (r′). (B13)

Finally, the exchange part of the LS channel is obtained via elaborate algebras on each term appearing in Eq. (B11),

F (exc,LS)
� j,τα

R� j (r) = 1

2

∑
�α jα

νανα′ (∈A)

(2�α + 1) (2 jα + 1) �(τα�α jα )
νανα′

∑
λ

(2λ + 1) (�α 0 λ 0 | � 0)2

⎧⎪⎨
⎪⎩

�α 1/2 jα
λ 0 λ

� 1/2 j

⎫⎪⎬
⎪⎭

2

×
{

j( j + 1) − �(� + 1) − 3

4
+ jα ( jα + 1) − �α (�α + 1) − 3

4

}

×
∫

r′ 2dr′ gλ(r, r′) R∗
να′ �α jα (r′) Rνα lα jα (r)R� j (r

′)

+
∑
�α jα

νανα′ (∈A)

(2�α + 1) (2 jα + 1) �(τα�α jα )
νανα′

×
∑

λλ′λ′′λ′′′κ

(2κ + 1) (�α 0 λ′′ 0 |� 0) (�α 0 λ′′′ 0 |� 0)

⎧⎪⎨
⎪⎩

�α 1/2 jα
κ 0 κ

� 1/2 j

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

�α 1/2 jα
λ′ 1 κ

� 1/2 j

⎫⎪⎬
⎪⎭

×
∫

r′ 2dr′ gλ(r, r′) R∗
να′ �α jα (r′)

[√
3

2

√
� (� + 1) (2� + 1)

(√
2κ + 1 δλλ′δλλ′′δλλ′′′ W (� 1 �α λ ; � κ )

− 6r

r′
√

(2λ′ + 1) (2λ′′ + 1) (λ 0 1 0 | λ′′ 0) (λ 0 1 0 | λ′′′ 0)W (λ 1 κ 1 ; λ′ 1)

× {√2κ + 1 δλ′λ′′′ W (� 1 �α λ′′ ; � κ )W (λ 1 κ 1 ; λ′′ 1)

+ √
2λ′ + 1 δκλ′′′ W (� 1 �α λ′′ ; � λ′)W (λ 1 λ′ 1 ; λ′′ 1)}

)
Rνα�α jα (r)R� j (r

′)

− (−)λ
′+κ

√
3

2

√
lα (lα + 1) (2lα + 1)

(√
2κ + 1 δλλ′δλλ′′δλλ′′′ W (�α 1 � λ ; �α κ )

− 6r′

r

√
(2λ′ + 1) (2λ′′ + 1) (λ 0 1 0 | λ′′ 0) (λ 0 1 0 | λ′′′ 0)W (λ 1 κ 1 ; λ′ 1)
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× {√2κ + 1 δλ′λ′′′ W (�α 1 � λ′′ ; �α κ )W (λ 1 κ 1 ; λ′′ 1)

+ √
2λ′ + 1 δκλ′′′ W (�α 1 � λ′′ ; �α λ′)W (λ 1 λ′ 1 ; λ′′ 1)}

)
Rνα�α jα (r)R� j (r

′)

− 3
√

2 (2λ′ + 1) δκλ′′δλ′λ′′′ (λ 0 1 0 | λ′′ 0) (λ 0 1 0 | λ′′′ 0)W (λ 1 κ 1 ; λ′ 1)

×
{

r Rνα�α jα (r)
dR� j (r′)

dr′ − (−)λ
′+κ r′ dRνα�α jα (r)

dr
R� j (r

′)
}]

. (B14)

The derivative in the term including dR� j/dr′ can be transferred to the derivative of gλ and R∗
να′ �α jα

via integration by parts.

4. Terms from density-dependent channels

Because the v
(Cρ)
αβ and v

(LSρ)
αβ terms in Eq. (A2) contain the delta function δ(rαβ ), their contributions to the SFP are local. They

resemble the forms known in the Skyrme HF potential [76,77],

U (Cρ) = 1

4

[{CSE[ρ(r)] + 3CTE[ρ(r)]} ρ(r) + {CSE[ρ(r)] − 3CTE[ρ(r)]} ρτ (r)
]

+ 1

8

[{
∂CSE[ρ(r)]

∂ρ
+ 3

∂CTE[ρ(r)]

∂ρ

}
{ρ(r)}2 +

{
∂CSE[ρ(r)]

∂ρ
− 3

∂CTE[ρ(r)]

∂ρ

}∑
τα

{
ρτα

(r)
}2
]
,

U (LSρ)
� j = −1

2
D[ρ(r)]

{(
d

dr
+ 2

r

)
J (r) +

(
d

dr
+ 2

r

)
Jτ (r)

}

− 1

4

∂D[ρ(r)]

∂ρ

[
ρ(r)

(
d

dr
+ 2

r

)
J (r) +

∑
τα

ρτα
(r)

(
d

dr
+ 2

r

)
Jτα

(r) + Jτ (r)
d

dr
ρ(r) −

∑
τα

Jτα
(r)

d

dr
ρτα

(r)

]

+ 1

2r

[
D[ρ(r)]

d

dr
{ρ(r) + ρτ (r)} + 1

2

∂D[ρ(r)]

∂ρ
{ρ(r) + ρτ (r)} d

dr
ρ(r)

]{
j( j + 1) − �(� + 1) − 3

4

}
, (B15)

where

ρτ (r) = 1

4π

∑
�α jα

νανα′ (∈A)

(2 jα + 1) �(τ�α jα )
νανα′ R∗

να′ �α jα (r) Rνα�α jα (r), ρ(r) =
∑

τ

ρτ (r),

Jτ (r) = 1

4π

∑
�α jα

νανα′ (∈A)

(2 jα + 1)

{
jα ( jα + 1) − �α (�α + 1) − 3

4

}
�(τ�α jα )

νανα′
1

r
R∗

να′ �α jα (r) Rνα�α jα (r), J (r) =
∑

τ

Jτ (r). (B16)

5. Forms of gλ

We here present the forms of gλ of Eq. (B5) for the Gauss and Yukawa functions. The Fourier transform helps derive gλ.
Because

f (rαβ ) = 1

(2π )3

∫
d3q f̃ (q) eiq·rαβ

= 2

π

∑
λ

∫ ∞

0
q2dq f̃ (q) jλ(qrα ) jλ(qrβ )Y (λ)(r̂α ) · Y (λ)(r̂β ), (B17)

where

f̃ (q) =
∫

d3r f (r) e−iq·r, (B18)

gλ can be calculated as

gλ(rα, rβ ) = 2λ + 1

2π2

∫ ∞

0
q2dq f̃ (q) jλ(qrα ) jλ(qrβ ). (B19)

We obtain, for the Gauss function f (rαβ ) = e−(μrαβ )2
,

gλ(rα, rβ ) =
√

π (2λ + 1)

2μ
√

rαrβ

e−μ2(r2
α+r2

β ) Iλ+1/2(2μ2rαrβ ), (B20)
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and, for the Yukawa function f (rαβ ) = e−μrαβ /μrαβ ,

gλ(rα, rβ ) = 2λ + 1

μ
√

rαrβ

Iλ+1/2(μr<) Kλ+1/2(μr>) ; r< = min(rα, rβ ), r> = max(rα, rβ ). (B21)

Here Iν (z) and Kν (z) are the modified Bessel functions.
For f (rαβ ) = 1/rαβ that appears in the Coulomb interaction, the following well-known result is obtained from Eq. (B19),

gλ(rα, rβ ) = rλ
<

rλ+1
>

. (B22)

APPENDIX C: CENTER-OF-MASS CORRECTION

We here discuss the influence of Hc.m. in Eq. (A1). Let A be the mass number of the target nucleus and A′ = A + 1. We denote
the Hamiltonian and the momentum of the target nucleus by HA and PA. The momentum of the scattered nucleon relative to the
target A is defined by

p̃N := 1

A + 1
(A pN − PA), (C1)

yielding

pN =
(

1 + 1

A

)
p̃N + 1

A
PA, P =

(
1 + 1

A

)
(PA + p̃N ). (C2)

The center-of-mass (c.m.) Hamiltonian in Eq. (A1) is then rewritten as

Hc.m. = A + 1

2A2M

(
PA + p̃N

)
, (C3)

and we obtain

p2
N

2M
− Hc.m. = 1

2M

(
1 + 1

A

)
p̃2

N − P2
A

2AM
. (C4)

By including the second term on the rhs of Eq. (C4) in the nuclear structure calculation with HA, the correction factor (1 + 1/A)
to the first term, which is like the reduced mass but does not involve the binding energy of A, makes the c.m. correction to the
Schrödinger equation for the scattering wave.
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