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Nuclear incompressibility and its enduring impact on fusion cross sections
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The fusion mechanism of reactions involving even-even 112–124Sn, doubly magic 132Sn, 208Pb as targets, and
64Ni as the projectile is explored within the relativistic mean field (RMF) formalism. The main aim of choosing
these nuclei is to explore the correlation between the nuclear incompressibility and the fusion cross section.
The nucleus-nucleus interaction potential is calculated by folding the axially deformed nuclear densities and the
relativistic R3Y nucleon-nucleon (NN) potential obtained for the nonlinear NL3∗, hybrid, and NL1 parameter
sets, which yield different values for various characteristics of nuclear matter at saturation. The fusion barrier
characteristics obtained for different RMF parametrizations are further used to calculate the cross section within
the �-summed Wong model. We found a decrease in the barrier height and, consequently, an increase in the cross
section with a decrease in the incompressibility for all sets of parameters considered. Furthermore, comparing the
barrier heights obtained for NL3∗ and the hybrid parameters, it is observed that the barrier height decreases with
decreasing symmetric energy and incompressibility value. Moreover, a lower barrier height and, consequently,
a higher cross section at below-barrier energies is observed for the NL1 parameter set, which gives a soft
equation of state (EoS) having a lower value of nuclear matter incompressibility. The calculated cross section is
satisfactorily consistent with the available experimental data for 64Ni + 208Pb system. In contrast, the nuclear
potentials obtained for NL3∗ and hybrid parameter sets underestimate the cross section at below-barrier energies
for 64Ni + 112–124,132Sn reactions. This discrepancy between the experimental data and the theoretical results for
64Ni + 112–124,132Sn reactions can be correlated with the soft behavior of the Sn isotopes. The compressible nature
of Sn isotopes is inferred to lower the barrier height, which further leads to enhancement of the experimental
fusion and/or capture cross section at below-barrier energies. Thus, the NL1 parameter set with a comparatively
soft EoS is observed to be a better choice to describe the sub-barrier nuclear fusion dynamics of reactions
involving the Sn isotopes.
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I. INTRODUCTION

The study of the equation of state (EoS) of nuclear mat-
ter is imperative to shed light on numerous astrophysical
events ranging from characteristics of neutron stars to core-
collapse supernovae [1–5]. Understanding the EoS is also
crucial to probing the phase transitions in heavy-ion colli-
sions. As a result, a considerable amount of theoretical as
well as experimental efforts are being devoted to exploring
the nuclear matter EoS [1–5]. The modulus of compression
of nuclear matter, which is also known as nuclear incom-
pressibility, is a fundamental quantity in the EoS and plays
an important role in the description of the physics of neu-
tron stars, as well as in the bulk properties of finite nuclei
[6–11]. The incompressibility of nuclear matter is interpreted
as the curvature of the EoS of nuclear matter at the satura-
tion point and is significant in understanding the dynamics
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of the nuclear system under small fluctuations in density
[6,7,11]. There are no direct experimental techniques to
deduce the value of the incompressibility of nuclear matter.
However, the isoscalar giant monopole resonance (ISGMR),
which is often termed the “breathing mode” of finite nuclei,
is related to the behavior of a nucleus under small density
fluctuations and provides an indirect experimental method
to constrain the value of nuclear matter incompressibility
[8,12–14]. Thus, reliable experimental measurements of IS-
GMR energies for finite nuclei are preliminary in evaluating
the incompressibility of infinite nuclear matter. A detailed de-
scription of the method used to determine the value of nuclear
matter incompressibility using the ISGMR data can be found
in Refs. [8,12–14].

The experimental ISGMR data of the heaviest doubly
magic 208Pb nucleus has served as an optimal tool to in-
vestigate the nuclear matter incompressibility within various
relativistic and nonrelativistic approaches [6,8,10–15]. Fur-
thermore, other magic nuclei such as 90Zr and 144Sm have
also been used along with 208Pb. Various theoretical studies
involving relativistic as well as nonrelativistic interactions
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have led to the consensus that the range of nuclear matter in-
compressibility is 230 ± 40 MeV [13,16–21]. In general, the
procedure to extract nuclear matter incompressibility value
from ISGMR data is understood to be independent of the
choice of finite nuclei [8,12–14]. However, recent experimen-
tal measurements for ISGMR data for the tin isotopic chain
(112–124Sn) are found to be inconsistent with the established
theoretical value of nuclear matter incompressibility from the
ISGMR data of the 208Pb nucleus [6,7,11]. Models that ac-
curately predict the ISGMR energies of the 208Pb nucleus are
found to overestimate those of the 112–124Sn isotopes. Thus,
the Sn-isotopes appear to be “compressible” or “soft” com-
pared to the Pb, Sm, and Zr nuclei [6,7,11]. The isotopes of
cadmium (Cd) and molybdenum (Mo) were also observed to
retain a similar compressible nature [11,22]. This anomalous
soft behavior of Sn isotopes has been a central topic of many
theoretical and experimental studies. Consequently, there are
several possible explanations for this incomprehensible soft
behavior of Sn isotopes, such as the effects of mutually en-
hanced magicity (MEM) [9] and superfluid pairing [10,15] on
nuclear incompressibility. However, the MEM effects were
disproved by experimental probes of the ISGMR energies
of 204,206,208Pb isotopes [23], and the effects of pairing on
ISGMR were found to be insufficient to address this soft-
ness [10]. Thus, the question remains an open problem in
nuclear structure physics, since neither the relativistic nor
nonrelativistic models can simultaneously fit the experimental
ISGMR data of the Sn and Pb isotopes [11].

Low-energy heavy-ion reactions serve as an efficient tool
for elucidating the correlation between the nuclear structure
and reaction dynamics. The probability of nuclear fusion at
energies around and below the Coulomb barrier, which is
formed due to the strong interplay between the attractive
nuclear and repulsive Coulomb interactions, is sensitive to
various factors such as the nuclear shapes and orientations,
nuclear shell effects, nuclear matter incompressibility, mass,
charge, and isospin asymmetry [24–35]. Moreover, coupling
to the low-energy surface vibration states and neutron trans-
fer also plays a crucial role in the description of the fusion
dynamics at sub-barrier energies [24,36–43]. Consequently,
considerable effort has been devoted to understanding the role
of these nuclear structure properties on the reaction mecha-
nism. For instance, in Refs. [35,44–46], the effect of nuclear
incompressibility on the heavy-ion fusion cross section at
sub-barrier energies is explored through the inclusion of a
repulsive core in the nuclear potential. The formulation of the
nuclear interaction potential formed between the fusing nuclei
is essential to explore the impact of various factors of the
entrance channel on the fusion process. In our previous stud-
ies, the nuclear potential obtained within the double folding
approach furnished with the self-consistent relativistic mean-
field (RMF) formalism was quite successful in describing
the fusion dynamics of various heavy-ion reactions [47–49].
Recently, the impact of nuclear shape degrees of freedom
and orientations of the target nucleus was also included
in the description of the nuclear potential within the RMF
formalism [50]. Moreover, the RMF formalism is also well
adopted to study the various structural properties of finite

nuclei, as well as the characteristics of infinite nuclear matter,
including nuclear incompressibility [21,51–56]. Following
this, we aim to explore the effects of the above-discussed
softness of Sn isotopes on the nuclear fusion dynamics within
the RMF formalism. For this, we have considered the even-
even isotopes from 112–124Sn chain exhibiting the anomalous
soft behavior along with the doubly magic 132Sn and 208Pb
nuclei as targets with 64Ni as the projectile. The fusion cross
section for all the considered reactions is obtained using the
extended �-summed Wong model [57,58]. The theoretical
results are compared with the available experimental data
[42,43,59,60] to investigate the correlation of the peculiar soft
behavior of the Sn isotopes discussed above with the heavy-
ion fusion cross section.

The rest of the paper is structured as follows: Sec. II con-
sists of a brief description of theoretical formalism adopted
in the present analysis. The detailed discussion of the results
obtained is provided in Sec. III, and Sec. IV contains the
summary and conclusions of the present study.

II. THEORETICAL FORMALISM

The probability of nuclear fusion depends upon various
structural properties of the interacting nuclei. The interac-
tion potential formed between the fusing target and projectile
nuclei is fundamental for exploring the nuclear structure ef-
fects on the fusion dynamics. The total interaction potential
between a spherical projectile and deformed target can be
written as

VT (R, β2, θ2) = VC (R, β2, θ2) + Vn(R, β2, θ2) + h̄2�(� + 1)

2μR2
.

(1)

Here, θ2 denotes the orientation angle between the symmetry
axis of the quadrupole deformed target and the internuclear
separation vector (R). VC (R, β2, θ2) is the deformation and ori-
entation dependent Coulomb potential [58] and μ symbolizes
the reduced mass of the target-projectile system. The values
of quadrupole deformations (β2) for all the target nuclei are
taken from the experimental data given in [61]. The term
Vn(R, β2, θ2) in Eq. (1) denotes the short range and attractive
nuclear potential and is calculated within the well-known dou-
ble folding approach [62] as

Vn( �R, β2, θ2) =
∫

ρp(�rp)ρt (�rt (β2, θ2))

×Veff (|�rp − �rt + �R|≡r)d3rpd3rt . (2)

Here, ρp(�rp) and ρt (�rt (β2, θ2)) are the total densities (sum
of the proton and neutron densities) of the spherical pro-
jectile and quadrupole deformed target nuclei, respectively.
Veff symbolizes the effective nucleon-nucleon (NN) inter-
action potential. The self-consistent relativistic mean-field
(RMF) formalism [21,47,51–56,63,64] is adopted here to
obtain the nuclear density distributions and microscopic ef-
fective NN interaction potential. The phenomenological RMF
Lagrangian density describing the interaction between point-
like nucleons through the exchange of mesons and photons
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[21,47,51–56,63,64] can be written as

L = ψ{iγ μ∂μ − M}ψ + 1

2
∂μσ∂μσ

− 1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4 − gσψψσ

− 1

4

μν
μν + 1

2
m2

ωωμωμ − gwψγ μψωμ

− 1

4
�Bμν. �Bμν + 1

2
m2

ρ �ρμ.�ρμ − gρψγ μ�τψ · �ρμ

− 1

4
FμνFμν − eψγ μ (1 − τ3)

2
ψAμ. (3)

Here, ψ is the Dirac spinor for nucleons of mass M, which
interact through the exchange of σ , ω, and ρ mesons of
masses mσ , mω, and mρ , respectively. The terms gσ , gω,
and gρ signify the nucleon-meson coupling constants for the
respective mesons, and g2, g3 take into account the self-
interaction properties of scalar σ mesons. The terms τ and
τ3 in Eq. (3) denote the isospin and its third component,
respectively, while 
μν , �Bμν , and Fμν are the field tensors for
ω, ρ, and photons, respectively. The mass of σ mesons and the
linear and nonlinear coupling constants of mesons are known
as the parameters of RMF formalism and are fine tuned to fit
the bulk properties of some magic shell nuclei as well as the
properties of infinite nuclear matter. In the present analysis,
we have adopted the nonlinear NL3∗ parameter set, which
successfully reproduces the experimental ISGMR energies of
the doubly magic 208Pb nucleus and gives the nuclear matter
incompressibility value (K = 258.25 MeV), which lies within
its present acceptable range [52]. Moreover, the nuclear den-
sities and R3Y NN potential obtained for NL3∗ parameters
are also observed to provide a satisfactory description of
fusion dynamics of various heavy-ion reactions; see [47,49]
and references therein. We have also considered the hybrid
parameter set [65], which is observed to provide a satisfactory
description of the isoscalar monopole strengths of Sn isotopes
and yields K = 230.01 MeV. It is worth noting here that this
hybrid parameter set was constructed as a “test” model [65]
having the same K value as the FSUGold parameter set [66]
while yielding the other properties of nuclear matter (i.e.,
symmetry energy, saturation density, and energy per particle)
similar to the NL3 parameter set [67]. In addition, calculations
are also performed with the set of NL1 parameters [68], which
gives a relatively soft equation of state (EoS) with K = 211.09
MeV. More details of the RMF parametrizations and field
equations can be found in Refs. [21,47,51–56,63,64] and ref-
erences therein.

The effective nucleon-nucleon interaction potential (Veff )
has been obtained by solving the RMF equations for mesons
within the limit of one-meson exchange [47,63,64]. This rel-
ativistic effective NN potential is known as the R3Y NN
potential [47,63,64] and is written as

V R3Y
eff (r) = g2

ω

4π

e−mωr

r
+ g2

ρ

4π

e−mρr

r
− g2

σ

4π

e−mσ r

r

+ g2
2

4π
re−2mσ r + g2

3

4π

e−3mσ r

r
+ J00(E )δ(r). (4)

Here, the term J00(E )δ(r) is a pseudopotential that accounts
for the long-range one-pion exchange potential (OPEP). Pair-
ing correlations are considered within the BCS approach, and
a blocking procedure is used to treat odd-mass nuclei [69–77].
The spherically symmetric nuclear densities for the projectile
and target nuclei are also obtained from the RMF Lagrangian
density [see Eq. (3)]. The impact of nuclear shape degrees
of freedom and orientation is further included through the
radius vector in the spherical symmetric target densities ob-
tained within the RMF formalism for different parameter sets
discussed above. The nuclear radius of an axially deformed
nucleus can be written in terms of spherical harmonic expan-
sion as [78–80]

rt (β2, θ2) = r0t [1 + (
√

5/4π )β2P2(cos θ2)]. (5)

Here, r0t is a symmetric spherical radial vector. The deformed
densities obtained using Eq. (5) along with the relativistic
R3Y NN potentials are further used to calculate the nuclear
interaction potential using Eq. (2). Characteristics of the total
interaction potential [see Eq. (1)], i.e., barrier height (V �

B ),
barrier position (R�

B) and barrier curvature (h̄ω�) are further
used to evaluate the nuclear fusion probability. In the liter-
ature, many analytical expressions have been developed to
determine the probability of penetration of the barrier to avoid
tedious numerical evaluation [24,31,34,81]. The Hill-Wheeler
formula obtained using the parabolic barrier approximation
[81] is one of the widely adopted approaches that has become
quite successful in determining the probability of heavy-
ion fusion around and above the barrier energies, especially
for reactions involving intermediate and heavy-mass nuclei
[24,34,47–49]. As the present analysis also focuses on reac-
tions involving nuclei from the same mass regions, we have
also used the Hill-Wheeler approximation of the parabolic
barrier to calculate the penetrability (P�) as

P�(Ec.m., θ2) =
[

1 + exp

(
2π

[
V �

B (θ2) − Ec.m.

]
h̄ω�(θ2)

)]−1

. (6)

Here, Ec.m. is the energy of the target-projectile system in the
center-of-mass frame. Finally, the fusion and/or capture cross
section is obtained using the extended version of the Wong
formula denoted the �-summed Wong model [47,57,58]. In
the �-summed Wong model, the actual angular momentum de-
pendence of interaction potential is taken into account, and the
cross section is written in terms of � partial waves [47,57,58]
as

σ (Ec.m., θ2) = π

k2

�max∑
�=0

(2� + 1)P�(Ec.m., θ2). (7)

Here, k =
√

2μEc.m.

h̄2 . The �max values are obtained using the
sharp cutoff model [82] at the above-barrier energies. These
�max values are the same as the critical angular momenta
(which are also symbolized as �c or �cr) for complete fusion
[82]. The sharp cutoff model is only applicable at above-
barrier energies, so an energy-dependent extrapolation is used
to obtain the �max values at below-barrier energies. As the
present work mainly aims to explore the impact of nuclear
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incompressibility and the softness of Sn isotopes on the char-
acteristics of the fusion barrier obtained from different sets of
RMF parameter, the effects of channel coupling are not taken
into account in the cross section calculations. The �-summed
cross section is obtained using Eq. (7) at different target ori-
entation angles (θ2 = 0 to π/2). Moreover, the symmetry axis
of the deformed target nucleus is not frozen at a particular
angle during the nuclear collision, so the integrated cross
section over the target orientation angle (θ2) is obtained. This
method to calculate the total cross section is well adopted,
appearing in various studies of nuclear fusion [57,83–87]. For
the case of spherical projectile and deformed target, the total
integrated cross section can be written as

σint (Ec.m.) =
∫ π/2

0
σ (Ec.m., θ2) sin θ2dθ2. (8)

This theoretical approach to calculate the cross section for
reactions involving axially deformed targets within the �-
summed Wong model supplemented with RMF formalism is
used to describe of fusion dynamics of reactions involving
even-even Sn isotopes, which are observed to exhibit an in-
comprehensible soft nature.

III. RESULTS AND DISCUSSION

This section aims to explore the effects of nuclear matter
incompressibility and the anomalous compressible behavior
of Sn isotopes on the dynamics of nuclear fusion. For this, we
have considered the reaction systems involving the so-called
soft even-even isotopes in the 112–124Sn chain as targets and
64Ni as the projectile. The results of these fusion reactions
are compared with those that contain doubly magic 132Sn
and 208Pb nuclei as targets along with the same projectile,
i.e., 64Ni. As mentioned above, the impact of target quadru-
ple deformations is taken into account in the calculations of
the nuclear interaction potential formed between the fusing
nuclei. The main ingredient of this total interaction poten-
tial is the attractive and short-range nuclear potential, which
is calculated here in terms of nuclear densities and the ef-
fective NN interaction using the double-folding approach.
The well-established relativistic mean-field (RMF) formalism
is adopted to determine the microscopic R3Y effective NN
potential and nuclear density distributions. Here, the nonlin-
ear RMF parameter sets NL3∗ [52], hybrid, [65], and NL1
[68] are used, which are observed to give different values of
incompressibility of isospin symmetric nuclear matter. In our
previous studies [47,49], the NL3∗ (K = 258.25) parameter
set is also observed to give a reasonable fit to the fusion and/or
capture cross section of various heavy-ion reactions. The hy-
brid parameter set, which produces lower values of nuclear
matter incompressibility (K = 230.01 MeV) and symmetry
energy [65] than the NL3∗ [52] parameter set, is observed
to give a satisfactory fit to the experimental giant monopole
resonance (GMR) energies of the Sn isotopes. In addition, the
hybrid parameter set and NL3∗ models are observed to give
almost similar values of other characteristics of nuclear matter
such as saturation density and energy per particle. In addition
to these, we have also considered the NL1 parameter set [68],
which gives a very soft equation of state (EoS), with K =

211.09 MeV, compared to NL3∗ and hybrid models. Figure 1
shows the effective NN potential and spherically symmetric
nuclear density distributions obtained within the RMF ap-
proach for different sets of parameters. Figure 1(a) shows
the R3Y NN potential calculated for NL3∗ (solid black line),
hybrid (dashed blue line), and NL1 (dashed double dotted
orange line) parameter sets. The different RMF parameter sets
are observed to show different depths for the attractive core
of the effective nucleon-nucleon (NN) potential. The NL3∗

parameter set with a comparatively stiffer EoS is observed
to give the most attractive effective NN interaction at the
lower internucleon separation (r), whereas the NL1 parameter
set with soft EoS gives the most attractive NN potential at
the higher inter-nucleon separation (r � 1.2 fm). Figure 1(b)
shows the radial distribution of total density (sum of proton
and neutron densities, ρ = ρP + ρN ) obtained within the dif-
ferent RMF parameter sets for the representative cases of light
mass projectile 64Ni, 112Sn and 132Sn isotopes with lower and
higher N/Z ratio, respectively, and the heavy doubly magic
208Pb nucleus. The density of light mass 64Ni shows a decrease
in density in the core region due to the combined effects of
the shell effects and Coulomb repulsion [88–90]. The density
of the heavy 208Pb nucleus is observed to show a compara-
tively flat curve extended toward the higher radial region. By
comparing the densities of 112,132Sn isotopes at the surface
region, it is observed that the density increases with the
increase in neutron number. As nuclear fusion is a surface
phenomenon, the tail region of the nuclear densities plays
the most crucial role in the description of nuclear fusion
[48,91]. Figure 1(c) shows a magnified view of the total den-
sity distribution in the surface region obtained using different
parameter sets under study. Comparing the densities obtained
for the NL3∗ and hybrid parameter sets, it is observed that the
densities in the surface region increase with a decrease in the
nuclear incompressibility value. Moreover, the NL1 parameter
set with softer EoS is observed to give the highest total density
in the surface region for all nuclei studied. The small differ-
ence in the density at the surface region further influences the
fusion probability. Further, the effects of nuclear deformations
are introduced through the radius vector [see Eq. (5)] in the
RMF densities for the target nuclei. These deformed densities
and relativistic R3Y effective NN potential are further em-
ployed to obtain the nuclear interaction potential for all the
considered reactions.

First, we analyze the nuclear potential calculated by taking
both projectile and target nuclei to be spherically symmet-
ric. Figure 2 shows the nuclear potential Vn (MeV) for the
spherical case (i.e., considering β2 = 0.0) as a function of the
nuclear separation distance R (fm) for the illustrative cases
of (a) 64Ni + 208Pb, (b) 64Ni + 112Sn, and (c) 64Ni + 132Sn
reactions. It is noticed from Fig. 2 that the hybrid parameter
set gives the most attractive nuclear potential at smaller inter-
nuclear separation. However, at larger internuclear separation,
which plays the most crucial role in the nuclear fusion mech-
anism, the NL1 parameter set with a soft EoS (K = 211.09
MeV) gives the most attractive nuclear potential. Moreover,
the nuclear potential at larger R becomes repulsive with the
increase in the nuclear matter compressibility (K) value of
the parameter set used to obtain the nuclear densities and
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FIG. 1. (a) The effective R3Y NN potential, (b) radial distribution of total nuclear densities, and (c) total nuclear densities at the surface
region calculated using NL3∗ (solid black line), hybrid (dashed blue lines), and NL1 (dash double dotted orange lines) parameter sets. See text
for details.

the R3Y effective NN potential. The resultant of the short-
range nuclear and long-range Coulomb potentials give rise
to the fusion barrier. The characteristics of this fusion barrier
such as its height (VB), position (RB), and frequency play the
most important role in determining the heavy-ion fusion cross
section, especially at the sub-barrier energy region. The po-
sitions RB (in fm) and heights VB (in MeV) of the fusion
barriers obtained using NL3∗ (K = 258.25 MeV), hybrid
(K = 230.01 MeV) and NL1 (K = 211.09 MeV) parameter
sets for all the considered reactions are given in Table I. It can
be observed from Table I that the height of the fusion barrier
decreases as we move from the NL3∗ parameter set with a
higher value of nuclear matter incompressibility (K = 258.25
MeV) to the set of hybrid parameters having lower nuclear
matter incompressibility (K = 230.01 MeV) at saturation.
The barrier height is observed to decrease further for the NL1
parameter set that has a soft EoS with K = 211.09 MeV. Fur-
ther, it can be noticed from Table I that the height of the fusion
barrier decreases with increasing neutron number (N) of Sn
isotopes. This is because, with an increase in the number of

neutrons of Sn isotopes, the nuclear potential becomes more
and more attractive, whereas the charge-dependent repulsive
Coulomb potential remains the same. This suggests that a
lower fusion barrier and, consequently, a higher cross sec-
tion will be obtained for the reactions involving neutron-rich
nuclei.

It is worth noting here that barrier characteristics are shown
for the case of spherical projectile and target nuclei in Table I.
It is well known that the shape of interacting partners also
affects the fusion cross section at the sub-barrier energies.
The deformation from the spherical symmetric shape of ei-
ther or both reacting partners changes the interaction radius
and hence the interaction potential. Therefore, we have also
included the effect of target quadrupole deformation (β2) in
calculations of nucleus-nucleus potential. On the inclusion of
nuclear shape degrees of freedom, the orientation (θ2) of the
axially deformed target with respect to the internuclear sep-
aration vector also affects the interaction potential. Thus, the
fusion barrier characteristics for all the considered reactions
are calculated at each orientation angle (θ2 = 0 to π/2). These

FIG. 2. Nuclear interaction potential Vn (MeV) obtained using different RMF parameter sets as a function of internuclear separation R (fm)
for (a) 64Ni + 208Pb and (b) 64Ni + 112Sn and 64Ni + 132Sn reactions.
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TABLE I. The positions RB (in fm) and heights VB (in MeV) of the fusion barriers obtained using NL3∗ (K = 258.25 MeV), hybrid
(K = 230.01 MeV), and NL1 (K = 211.09 MeV) parameter sets for all the reactions under study.

NL3∗ Hybrid NL1

Reaction RB (fm) VB (MeV) RB (fm) VB (MeV) RB (fm) VB (MeV)

64Ni + 208Pb 13.4 233.51 13.5 232.31 13.5 231.54
64Ni + 112Sn 12.1 157.68 12.1 157.16 12.2 156.09
64Ni + 114Sn 12.1 156.89 12.2 156.34 12.2 155.32
64Ni + 116Sn 12.2 155.96 12.2 155.37 12.3 154.44
64Ni + 118Sn 12.3 155.06 12.3 154.49 12.4 153.59
64Ni + 120Sn 12.3 154.04 12.4 153.42 12.4 152.61
64Ni + 122Sn 12.4 153.60 12.4 152.97 12.5 152.18
64Ni + 124Sn 12.4 153.17 12.5 152.52 12.5 151.75
64Ni + 132Sn 12.6 151.47 12.6 150.79 12.7 150.05

deformation and orientation-dependent barrier characteristics
are further utilized to obtain the barrier penetration proba-
bility and θ2-integrated cross section. First, we analyze the
capture cross section for the 64Ni + 208Pb reaction calculated
using the �-summed Wong model supplemented with nuclear
potentials obtained using the three sets of parameters of the
RMF, having different values of incompressibility of nuclear
matter between K = 211.09 and 258.25 MeV. The �max val-
ues are obtained from the sharp cutoff model [82] at the
above-barrier -of-mass energies and are extrapolated for the
below-barrier region. The cross section σint (mb) calculated
without (dashed lines) and with (solid lines) the inclusion
of target deformation for the 64Ni + 208Pb reaction is shown
in Fig. 3 as a function of the center-of-mass energy Ec.m.

(MeV). The experimental data taken from Ref. [59] are also
shown for comparison. It can be observed from Fig. 3 that, at

FIG. 3. The capture cross section σint (mb) calculated using
NL3∗ (black), hybrid (blue), and NL1 (orange) parameter sets within
the �-summed Wong model as a function of center-of-mass energy
Ec.m. (MeV) for the 64Ni + 208Pb reaction. The dashed line signifies
the cross section calculated for the spherical case (β2 = 0) and solid
lines are for the cross sections obtained with the inclusion of target
quadrupole deformations (β2 > 0). The corresponding experimental
data are taken from [59].

below-barrier energies, the NL1 parameter set with the lowest
value of nuclear matter incompressibility, i.e., K = 211.09
MeV, gives the highest cross section. The below barrier
cross section decreases as the incompressibility of the RMF
parameter set increases, with the NL3∗ set giving the lowest
cross section. These results suggest that the capture cross
section at the below-barrier center-of-mass energies increases
with the decrease in nuclear matter incompressibility (K).
Further, on analyzing the cross section obtained with the
inclusion of nuclear shape degrees of freedom, it is noticed
that the sub-barrier cross section increases on the inclusion
of the impact of quadrupole deformation in the calculations
of the interaction potential. Moreover, the theoretical cross
section obtained using different RMF parameter sets overlaps
at the above-barrier energies and also shows a nice agreement
with the experimental data. This is because the effects of
nuclear structure are suppressed at the above-barrier energies
and the angular momentum effects dominate.

As mentioned above, the Sn isotopes appear to be “soft”
or “compressible” in comparison to the doubly magic 208Pb
nucleus. To explore the effect of this peculiar nature of Sn
isotopes on the fusion mechanism, next we calculated the
cross section for the even-even 112–124,132Sn targets with the
same 64Ni projectile. The calculated cross sections for eight
even-even reactions, namely 64Ni + 112–124,132Sn, are plotted
in Fig. 4 for all three considered RMF parameter sets along
with the experimental data [42,43,60]. The notations used in
Fig. 4 are similar to those adopted in Fig. 3. The β2 values for
considered even-even 64Ni + 112–124Sn nuclei are taken from
the experimental data given in [61], whereas β2 for 132Sn is
taken from the NuDat3 database. It is noticed from Fig. 4
that the cross section calculated using the �-summed Wong
model supplemented with the nuclear potentials obtained
from RMF formalism shows a nice agreement with available
experimental data at the above-barrier energies. However, at
the below-barrier energies, the cross section obtained for the
NL3∗ (K = 258.25 MeV) parameter set (black lines) under-
estimates the experimental cross section for all the reactions
involving even-even Sn isotopes. The match between the
experimental data and theoretical cross section obtained for
the NL3∗ parameter set improves a little on the inclusion of
nuclear shape degrees of freedom, but still an underestimation
remains at below barrier energies. It is worth noting here
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FIG. 4. The fusion cross section σint (mb) calculated using NL3∗ (black), hybrid (blue), and NL1 (orange) parameter sets within the
�-summed Wong model as a function of center-of-mass energy Ec.m. (MeV) for the even-even 64Ni + 112–124,132Sn systems. The dashed signifies
the cross section calculated for the spherical case (β2 = 0) and solid lines are for the cross section obtained with the inclusion of target
quadrupole deformations (β2 > 0). The corresponding experimental data are taken from [42,43,60].

that, in our previous studies [47–50] and references therein,
a comparatively better match with the experimental data was
observed for NL3 (K = 271.53 MeV) and for its improved
version, i.e., NL3∗ (K = 258.25 MeV) parameter set.

The discrepancy between the calculated and experimental
cross section for reactions involving Sn isotopes can be con-
nected to the above-discussed softness of Sn isotopes. When
correlating our results with the isoscalar giant monopole
resonance (ISGMR) studies for Sn isotopes within the RMF
formalism for different parameter sets [54,55], NL3∗ is ob-
served to overestimate the experimental ISGMR energies for
Sn isotopes (see Table 2 in [55]). On the other hand, a better
match with the experimental ISGMR data of 208Pb is observed
with NL3∗ parameter set [52,55]. Moreover, the NL1 param-
eter set is observed to underestimate the ISGMR energies for
Sn isotopes as well for 208Pb. In [54], it is concluded that the
parameters having nuclear incompressibility values between
210 and 230 MeV are suitable to reproduce the monopole en-
ergies of Sn isotopes. Moreover, in [65], the nonlinear hybrid
RMF parameter set is proposed as a “test” model to address

the overestimation of ISGMR data of even-even Sn isotopes
within the RMF formalism. This hybrid parameter gives a
value of nuclear matter incompressibility (K = 230.01 MeV)
similar to the FSUGold parameter set [66] and yields other
nuclear matter properties such as symmetry energy, saturation
density, and energy per particle similar to the well-known
NL3 parameter set [67]. Following these observations, we
have also calculated the cross section for reactions involving
Sn isotopes with the hybrid model (K = 230.01 MeV), which
is constructed to describe the ISGMR data of Sn isotopes, and
also with the NL1 parameter set (K = 211.99 MeV) having
comparatively soft EoS. It can be noted from Fig. 4 that the
hybrid (blue lines) and NL1 (orange lines) parameters with
lower nuclear matter incompressibility values give higher
cross section at sub-barrier energies as compared to the NL3∗

parameter set. In other words, the cross section is observed
to increase moderately with the increase in the nuclear matter
incompressibility value at the below-barrier energies for all
the reactions under study. Moreover, the nuclear potential
obtained for the NL1 parameter set (solid orange lines) with
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the inclusion of target quadrupole deformations is observed
to give a comparatively better fit to the cross section of
64Ni + 116–122Sn but still underestimates the experimental
cross section for reactions involving other even-even Sn
isotopes. The discrepancy between the experimental and
theoretical cross sections becomes more prominent as we
move towards far-below-barrier energy regions.

These observations of variation in fusion characteristics
with different RMF parameter sets are in line with the the-
oretical investigations for 16O + 208Pb using different Skyrme
forces associated with different values of nuclear incompress-
ibility [92]. In [92] and in the present study, it is observed
that the height of the fusion barrier increases with increas-
ing incompressibility. Thus, the softness of the nucleus will
decrease the height of the fusion barrier. This can also be
understood in terms of nuclear radius. As per Fig. 1(a), a
more extended nuclear density distribution in the surface re-
gion is observed for the NL1 parameter set, which gives a
soft equation of state. From this, it can be inferred that the
surface density of a soft or compressible nucleus will be more
extended, which will result in a larger nuclear radius. This
small increment in surface density leads to the lower barrier
height and higher cross section for the NL1 parameter set in
comparison to the other two considered parameter sets (hybrid
and NL3∗) with a high value of nuclear matter incompressibil-
ity. Thus, the fusion cross section increases with a decrease
in the nuclear incompressibility value of the RMF parameter
set. Furthermore, the nuclear interaction potential and hence
the cross section depend on various structural aspects of the
fusing nuclei. In the present study, we have only included
the impact of target quadrupole deformation in the calcula-
tions of the microscopic nuclear potential obtained within the
RMF formalism. However, other factors such as couplings to
the low-energy surface vibration states and neutron transfer
channels also affect the sub-barrier fusion cross section. In
order to account for the combined effects of the softness of
Sn isotopes and the other effects of the nuclear structure,
we have done the barrier modification for the 64Ni + 124Sn
reaction, as experimental data at far sub-barrier energies are
available for this reaction [42]. This approach of barrier mod-
ification, although implausible, has been used to account for
various nuclear structural effects [57,93]. Figure 5 shows the
cross section 64Ni + 124Sn reaction with a barrier modification
(solid lines) done in the barrier heights obtained using NL3∗

(black) and NL1 (orange) parameter sets along with nuclear
shape degrees of freedom. It is noted that the NL1 parameter
set with soft EoS having K = 211.09 MeV underestimates
the cross section at sub-barrier energies, and a further barrier
lowering by 1.0 MeV is needed to address the mismatch.
On the other hand, for the NL3∗ parameter set, which gives
a higher value of nuclear matter incompressibility, a barrier
modification of −2.5 MeV is required to give a better match
with the experimental data. All these observations indicate
that the softness of Sn isotopes leads to the lowering of the
fusion barrier and, consequently, to an enhancement in the fu-
sion probability at below-barrier energies. In other words, the
signature of the soft behavior of Sn isotopes is also observed
in their fusion dynamics. The NL3∗ parameter set, which
fails to explain the compressible nature of Sn isotopes, is

FIG. 5. The fusion cross section σint (mb) calculated using NL3∗

(black) and NL1 (orange) parameter sets along with the barrier modi-
fication (solid lines) within the �-summed Wong model as a function
of the center-of-mass energy Ec.m. (MeV) for the 64Ni + 124Sn re-
action. The dashed lines signify the calculations done without the
incorporation of nuclear deformations and dashed double-dotted
lines signify the cross section calculated with the inclusion of target
deformation. The experimental data are taken from [42].

also observed to underestimate the cross section for reactions
involving these Sn isotopes. Barrier modification is required
to address the discrepancy between the experimental and
calculated cross sections caused by the softness of Sn
isotopes. Moreover, the magnitude of the required barrier
modification is significantly less for the RMF parameter set
with soft EoS. On the other hand, no such barrier modifi-
cation is needed to address the experimental data within the
�-summed Wong model furnished with the nuclear potential
from the RMF formalism for the 64Ni + 208Pb reaction con-
sidered in the present analysis.

IV. SUMMARY AND CONCLUSIONS

The effects of nuclear matter incompressibility (K) and
the soft nature of Sn isotopes on heavy-ion fusion dynam-
ics are probed. For this, the cross section for even-even
64Ni + 112–124,132Sn and 64Ni + 208Pb reactions is calculated
within the �-summed Wong model equipped with the nuclear
potential from the relativistic mean-field (RMF) formalism
with the inclusion of target quadrupole deformations for three
nonlinear parameter sets which yield different values for the
isospin symmetric nuclear matter incompressibility (K) at
saturation. First, the results of nonlinear NL3∗ and hybrid
parameter sets, which give almost similar values of nuclear
matter properties except for the incompressibility at saturation
and symmetry energy, are compared. It is observed that the
cross section around the barrier energies increases on moving
from the NL3∗ parameter set with K = 258.25 MeV to the hy-
brid parameter set with K = 230.01 MeV. Further, an increase
in the cross section is observed for the NL1 parameter set hav-
ing a soft EoS with a lower value of nuclear incompressibility
(K = 211.09 MeV) [21].
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The calculated cross sections are also compared with the
available experimental data, and a nice agreement is obtained
for 64Ni + 208Pb reaction for all the considered nonlinear RMF
parameter sets at the above-barrier energies. In contrast, the
cross section obtained using the nuclear potential calculated
within the RMF (NL3∗) approach is observed to underesti-
mate the experimental data at below-barrier energies for all
the considered reactions involving even-even 112–124,132Sn iso-
topes. Further, an increase in the cross section is observed for
the hybrid (K = 230.01 MeV) and NL1 (211.09 MeV) param-
eters with lower values of nuclear matter incompressibility.
A better match to the experimental cross section for
64Ni + 112–124,132Sn reactions is observed for the NL1 pa-
rameter set. In correlating this mismatch between the
theoretical and experimental data observed in the ISGMR

studies of Sn isotopes, it is noticed that the effect of the
softness of Sn isotopes also persists in their fusion dy-
namics. The soft or compressible nature of Sn isotopes
leads to the enhancement in the experimental cross sec-
tion at below-barrier energies, and the RMF parameter set
with comparatively soft EoS becomes a better choice to de-
scribe the fusion dynamics of reactions involving these Sn
isotopes.
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