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ROSE: A reduced-order scattering emulator for optical models
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A new generation of phenomenological optical potentials requires robust calibration and uncertainty quantifi-
cation, motivating the use of Bayesian statistical methods. These Bayesian methods usually require calculating
observables for thousands or even millions of parameter sets, making fast and accurate emulators highly desirable
or even essential. Emulating scattering across different energies or with interactions such as optical potentials
is challenging because of the nonaffine parameter dependence, meaning the parameters do not all factorize
from individual operators. Here we introduce and demonstrate the reduced-order scattering emulator (ROSE)
framework, a reduced basis emulator that can handle nonaffine problems. ROSE is fully extensible and works
within the publicly available BAND framework software suite for calibration, model mixing, and experimental
design. As a demonstration problem, we use ROSE to calibrate a realistic nucleon-target scattering model through
the calculation of elastic cross sections. This problem shows the practical value of the ROSE framework for
Bayesian uncertainty quantification with controlled trade-offs between emulator speed and accuracy as compared
to high-fidelity solvers. Planned extensions of ROSE are discussed.

DOI: 10.1103/PhysRevC.109.044612

I. INTRODUCTION

From nuclear reactions we can learn basic information
about nuclei, such as energy levels, the distribution of matter
inside the nucleus, and electromagnetic properties. To unfold
the desired information from reaction experiments we must
use a validated reaction model. Current ab initio methods
for reactions, starting from a many-body Hamiltonian with
a nuclear force derived from chiral effective field theory, are
capable of quantitatively describing reactions with light ions
(see, as an example, Ref. [1]). However, these methods cannot
be applied to most reactions of interest involving heavier
systems. In those cases, the typical approach is to reduce
the many-body method to a few-body problem, for which
the dynamics can be solved exactly (e.g., Refs. [2,3]). A key
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ingredient in few-body reaction theory is the optical potential.
Whether we are interested in transfer reactions to study exotic
nuclei [4], knockout reactions to understand quenching effects
[5], or breakup reactions for astrophysics [6], this ingredient
is ubiquitous.

While optical potentials are pervasive in the field of nuclear
reactions, they are one of the greatest sources of uncertainty
in reaction analyses. A recent overview [7] stresses the im-
portance of optical potentials for reactions and calls for a
new global potential valid across the whole nuclear chart,
including for nuclei away from stability, and with quanti-
fied uncertainties. Several studies have been performed on
quantifying uncertainties for the nucleon optical potentials
[8–13] within a Bayesian framework [14]. Such studies have
shown that uncertainties associated with the optical potential
are substantial and Bayesian analyses can help in designing
experiments to reduce those uncertainties.

Although the two-body scattering problem can be solved
rapidly using traditional methods, when performing Bayesian
studies, which require hundreds of thousands or millions of
evaluations, computations become time consuming. In such
cases, it is advantageous or even essential to use emulators
as alternative computation methods. There have been several
new developments of emulators for scattering [15–19] based
on reduced-order methods. All of these emulators work best
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if the dependence on the model parameters is affine; they
become less efficient when nonlinear parameters are involved,
as is the case for optical potentials.

In this paper, we demonstrate a new emulator for two-
body scattering based on the Galerkin formulation through
the reduced basis method (see Refs. [20–23] and references
therein). The reduced basis method, equipped with the empir-
ical interpolation method [24,25], dramatically improves the
speed of the calculations even when the problem is nonaffine.
Typical nonaffine parameters are the radius and diffuseness
of the Woods-Saxon (and related) form factors, which are
employed in modeling individual terms in many optical po-
tentials, as well as the energy dependence of the scattering
solutions in general. We introduce the associated Reduced-
Order Scattering Emulator (ROSE) software [26], that is an
integrated part of the publicly available Bayesian Analysis
of Nuclear Dynamics (BAND) software suite for calibration,
model mixing, and experimental design [27]. The perfor-
mance of the emulator is explored and assessed by calibrating
a realistic optical potential by constraining elastic cross sec-
tions.

We organize the rest of the paper as follows. In Sec. II
we review the formalism and high-fidelity solvers used for
nuclear scattering with a phenomenological (local) optical po-
tential, and summarize the procedure for Bayesian calibration
using an emulator. We detail the reduced basis method as
applied to this scattering problem, including the construction
of the reduced basis, the Galerkin projection for creating the
reduced equations, and the method used to handled nonaffine
parameter dependence. In Sec. III we illustrate the speed
and accuracy trade-offs of ROSE compared to high-fidelity
solvers, we detail the Bayesian calibration setup for the
demonstration problem, and we present the results and their
interpretation. Our conclusions and outlook are summarized
in Sec. IV. The Appendixes contain additional details about
the nucleon-target scattering equations, the posterior sampling
procedure and results, and the search for emulator anomalies
(see Ref. [16]).

II. FORMALISM

A. Nuclear scattering with an optical potential

In this section we briefly outline the formalism relevant for
two-body scattering of a projectile nucleon (A = 1) with spin
1/2 with a target nucleus with total spin zero. For more details
see Appendix A and Refs. [28,29].

The radial part of the Schrodinger scattering equation with
a local potential is(

− d2

dr2
+�(� + 1)

r2
+ 2ηk

r
+ 2μ

h̄2 V (r; ω) − k2

)
φ(r) = 0,

(1)

where the system has a reduced mass μ, � represents the
angular momentum quantum number, and h̄k is the asymp-
totic linear momentum related to the energy through E =
h̄2k2/2μ. For a charged system, the Coulomb interaction po-
tential is characterized by the Sommerfeld parameter η =
Z1Z2e2μ/h̄2k, with charges Z1 and Z2 for the projectile and

target, respectively. The nuclear short-range potential V (r; ω),
with parameters ω, characterizes the effective nuclear interac-
tion. The potential V could also depend on the orbital angular
momentum � and total spin j of the system through spin-orbit-
coupling terms.

For the optical potential we focus on in this work, ω is a
list of ten parameters,

ω = {Vv,Wv, Rv, av,Wd , Rd , ad ,Vso, Rso, aso}, (2)

that characterize the strength, radius, and diffuseness of real
and imaginary volume, imaginary surface, and real spin-orbit
Woods-Saxon (WS) terms:

V (r; ω, �, j) = −(Vv + iWv ) fWS(r, Rv, av )

− i4adWd
d

dr
fWS(r, Rd , ad )

+ 2� · sVso

(
h̄

mπc

)2 1

r

d

dr
fWS(Rso, aso). (3)

The Woods-Saxon function is defined as

fWS(r, R, a) =
[

1 + exp

(
r − R

a

)]−1

. (4)

For the spin-orbit part, since we are only considering spin-
zero targets with spin-1/2 projectiles, the coupling can only
take the following values:

2� · s =
{

� if j = � + 1
2

−(� + 1) if j = � − 1
2 .

(5)

The arbitrary scale factor for the spin-orbit term uses the mass

of the pion, mπ , such that ( h̄
mπ c )

2
≈ 2 fm2.

It is convenient to rescale Eq. (1) by the change of variables
s ≡ kr. With this rescaling we define an operator Fα using the
same notation as in Ref. [20]:

Fα[φ(s)] =
(

− d2

ds2
+ �(� + 1)

s2
+ 2η

s

+ U (s; α) − 1

)
φ(s; α) = 0, (6)

where the rescaled nuclear potential

U (s; α) = V (s/k,ω)2μ/h̄2k2 (7)

now effectively depends on the energy, and the subscript α

is used to compactly represent the quantities that we wish to
emulate across. For neutrons we emulate across energies and
the potential parameters,

α ≡ {ω, E}, (8)

while for protons, emulation is more complicated due to the
scaling of η with the energy. Therefore, in this work we only
emulate the solution for protons across the potential param-
eters. For the rest of the paper we will refer to the rescaled
solution φ(s; α) when writing φ(s), and to the rescaled poten-
tial U (s; α) when writing U (s).

Once the numerical solutions φ(s) are obtained, phase
shifts and elastic cross section angular distributions dσ/d�

are obtained as described in Appendix A. These computations

044612-2



ROSE: A REDUCED-ORDER SCATTERING EMULATOR FOR … PHYSICAL REVIEW C 109, 044612 (2024)

represent the observables that can be directly compared with
experimental data, and will be the fundamental pillar of the
Bayesian calibration defined in Sec. II B.

The solutions to Eq. (6) can be numerically computed
by various methods. We refer to the conventional ways of
computing the solution as “high-fidelity solvers” throughout
the rest of the paper. These include the following:

(i) Methods that integrate d2φ/ds2 in a discretized co-
ordinate basis (r or s), imposing initial conditions at
s → 0; these include the Numerov [30] and Runge-
Kutta [31,32] methods.

(ii) Calculable R-matrix methods, which expand Fα in
a convenient preselected basis of functions and im-
pose asymptotic boundary conditions at the channel
matching radius s = smatch (see Appendix A) [33,34].
For scattering problems, a basis of Lagrange-Legendre
functions is typically employed due to their compact
support [35].

We use the implementation of Runge-Kutta in
scipy.integrate.solve_ivp to generate results in
Sec. III [36,37].

High-fidelity solvers will usually have control parameters
that can be used to tune the precision of the solution obtained,
providing a trade-off between accuracy and speed; in the case
of the adaptive-step Runge-Kutta implementation in SciPy,
these are the relative and absolute error tolerances in φ(s)
used to determine the step �s. The solver propagates an initial
condition of the function and its derivative {φ(s0), φ′(s0)} up
to a maximum value smax = krmax, such that the short-range
potential vanishes, U (s) ≈ 0, for s � smax. The starting value
s0 > 0 is chosen such that φ(s) is well approximated by its
power behavior [see Eq. (A3)] for s � s0. Unless otherwise
specified, we use an absolute and relative tolerance of 10−9 in
solve_ivp.

B. Bayesian calibration with an emulator

The calibration of the optical potential in Eq. (3), in the
Bayesian setting, refers to the use of physical observations
to obtain probability distributions for the input parameters ω.
Denoting the observations as y, the statistical model relating
the observations and the optical potential (OP) is of the form

y = OP(ω) + ε, (9)

where OP(ω) represents any observable that could be cal-
culated from the optical model (such as differential cross
sections), and ε ∼ N(0,�) is the residual error that we as-
sume follows a multivariate Gaussian distribution with mean
0 and covariance matrix �.

Let p(·) generically denote a probability density and let
p(x|y) represent the conditional probability density of x given
y. The process of Bayesian calibration then refers to identi-
fying the conditional probability density p(ω|y), the posterior
of ω. Given p(ω), the prior of ω, the posterior is found via
applying Bayes’s theorem, i.e.,

p(ω|y) = p(y|ω)p(ω)

p(y)
∝ p(y|ω)p(ω), (10)

where ∝ denotes equality up to a multiplicative constant. The
conditional density p(y|ω) is the likelihood function that pro-
vides a measure of compatibility between OP(ω), the output
corresponding to parameters ω, and the observations y, the
measured angular distributions. For our study we construct the
likelihood as

p(y|ω) ∝ |�|− 1
2 exp

{
−1

2
(y − OP(ω))T�−1(y − OP(ω))

}
,

(11)

where |�| is the determinant of the matrix �.
Following the statistical framework detailed in Sec. 4 of

Ref. [38], once the posterior is specified we can build the
predictive posterior distribution of new unobserved data, ypred,
given the already observed data, by marginalizing over the
model parameters ω:

p(ypred|y) =
∫

p(ypred|ω)p(ω|y)dω. (12)

This predictive posterior folds together the uncertainty on
our model parameters coming from the posterior p(ω|y)
[Eq. (10)], with the expected intrinsic error of new gathered
data for a given model parameter p(ypred|ω), which we model
as following a similar structure as our likelihood formulation
[Eq. (11)].

To estimate any of the distributions we described, Markov
chain Monte Carlo (MCMC) algorithms [39], e.g., the
Metropolis-Hastings algorithm, are commonly used for pos-
terior sampling from Eq. (10). In each iteration of such an
algorithm, the likelihood function in Eq. (11) is evaluated at
a different value of ω. The computational burden becomes
significant when hundreds of thousands of posterior samples
of ω are required, motivating the use of emulators (also known
as surrogate models). The goal is then to build an emulator
that can provide accurate predictions for all these samples
as an efficient alternative to repeatedly solving the scattering
equations (6). For our specific case in this work, our target
will be to build an emulator able to perform more than one
million evaluations per hour on commodity hardware, while
maintaining an accuracy of less than 10% error. This error
target is motivated by typical error sizes in the experimental
data, though in practice we can achieve sub-1% errors on the
emulation as discussed in Secs. III A and III B.

Once the emulator is built, we can modify the poste-
rior in Eq. (10) to take into account that we are obtaining
approximate calculations. For any parameter sample ω, we
summarize the trained emulator by its prediction mean μ(ω)
and covariance �emu(ω). This covariance matrix characterizes
the (correlated or uncorrelated) error that the emulator is mak-
ing, resulting in the approximate posterior

p(ω|y) ∝ |� + �emu(ω)|− 1
2

× exp
{ − 1

2 (y − μ(ω))T(� + �emu(ω))−1

× (y − μ(ω))
}

p(ω), (13)

where the emulator error and the observation error are as-
sumed to be independent, leading to the additive covariance
� + �emu(ω). Since quantifying the uncertainty of emulators
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such as ROSE is nontrivial, in this study we limit �emu in
Eq. (13) to be independent of ω, and estimate it empirically
across a set of test parameters, as described later in Sec. III B.

C. The reduced basis method emulator

Various emulator options are available for overcoming the
computational burdens of Bayesian analysis, and each comes
with different strategies and performances. Some emulators
are less intrusive and require little knowledge of the under-
lying structure of the system of interest such as scattering
equation (6), for example. These emulators usually interpo-
late between inputs and outputs, for example, the optical
potential parameters in Eq. (2) and the observables such as
the differential cross section in Eq. (A9). Among such less
intrusive emulators, the use of Gaussian processes has been
commonly adopted since Kennedy and O’Hagan [40] (see, for
example, Refs. [41–46]), because of both its straightforward
implementation and its natural quantification of uncertainty.
In particular, Sürer et al. [44] have considered the emulation
of cross sections in nuclear breakup reactions using Gaussian
processes and provided uncertainty quantification (UQ) for
four parameters.

However, more intrusive emulators can leverage physical
information, e.g., the set of scattering equations, in their con-
struction and thus retain structural knowledge of the system.
Several such emulators have been developed within the field
of model order reduction for wide applications in science and
engineering in general [47–50], as well as in nuclear physics
[15–20,38,51–62] (see Refs. [21,63–65] for pedagogical re-
sources tailored to a nuclear physics audience). The reduced
basis method [22,23] has been a particularly successful frame-
work, and ROSE, as we describe next, belongs to this category.

If we restrict the scaled scattering equation (6) to a max-
imum value smax ≡ krmax, the formal exact solution φ exists
in an infinite-dimensional Hilbert space1 H, and the opera-
tor Fα maps functions from H to itself. More precisely, φ

exists within a manifold of H parametrized by all the vari-
ables α. When φ is represented as a list of values on a grid
{φ(s1), φ(s2), . . . , φ(sN )}, it is still a vector within a possibly
high-dimensional space of size N . Dimensionality reduction
techniques like reduced-order models usually work by first
identifying and describing the system with a much smaller
set of reduced coordinates nφ 	 N , and then constructing
governing equations for the new coordinates. The reduced
basis method in particular does this by exploiting two linear
subspaces of H, one to restrict the input of Fα (where φ re-
sides) and the other to restrict its output [20], usually through
a Galerkin projection [66].2 By working on these subspaces
of smaller dimension nφ , a high computational efficiency can
be obtained. We now proceed to describe how both steps,

1If we consider the entire interval s ∈ [0, ∞) then the scattering
solutions φ(s) do not have compact support and exist in a rigged
Hilbert space instead.

2Alternatively, in formal mathematics this can be seen as a restric-
tion of the weak formulation of the equations to a subspace of the
Hilbert space [19].

identifying reduced coordinates and constructing the reduced
equations, are carried out within the ROSE framework. Chap-
ters 2 and 3 of Ref. [63], as well as the ROSE documentation
[26], provide guided examples with interactive codes on these
procedures for the specific case of Eq. (6).

1. Training space: The reduced coordinates

We find the first subspace by constructing an approxima-
tion to φ(s) through a reduced basis expansion:

φ(s; α) ≈ φ̂(s; α) = φ0(s) +
nφ∑

k=1

ak (α)φk (s), (14)

where now the spatial dependence in s is only carried out by
the basis φk (s), while the coefficients a(α) = {ak} can change
to accommodate variations in the variables α. Each channel
(�, j) will have a different reduced basis, built using the same
procedure.

The term φ0(s) is an optional basis element without an
assigned coefficient that helps enforce the initial conditions.
As we discuss in Sec. II C 2, such a term is crucial to create
a nonhomogeneous system of equations for the coefficients a
and avoid obtaining the trivial solution φ̂ = 0. We select φ0(s)
as the Coulomb function F�(η, s) (see Appendix A), which is
the solution to Eq. (6) in the absence of a nuclear potential
U (s,α). We choose the rest of the basis φk (s) by performing
a principal component analysis (PCA), which is related to the
singular value decomposition algorithm [50] and known in the
reduced basis literature as proper orthogonal decomposition
[22]. We extract the principal components of the difference
between the solution in the absence of the nuclear potential
and Nφ “snapshots” φ(s; ωm), which are high-fidelity solu-
tions to Eq. (6) for Nφ different values of the parameters ω

and possibly the energy:

{φk}nφ

k=1 = PCA
[{φ(s,αm) − φ0(s)}Nφ

m=1

]
. (15)

The proper orthogonal decomposition captures the nφ most
relevant directions of variability in the snapshots, and in this
case it has the convenient interpretation of selecting the prin-
cipal modes of variation—caused by the potential—around
the “free” solution φ0(s). Figure 1(a) gives a visual display
of the approximation’s [Eq. (15)] effectiveness in reproducing
the high-fidelity solutions. Figure 1(b) contains the first three
PCA bases, as well as the φ0 term, upon which the accurate
reproduction of the high-fidelity solutions are built. From
Fig. 1(b), it is apparent that the variability is greatest at short
distances, or small s, where the nuclear interaction contributes
to the solution of the Schrödinger equation.

2. Projecting space: The reduced equations

Once the reduced basis has been constructed, we need to
create a system of equations to find the coefficients a as the
parameters α change. We achieve this by selecting the second
subspace of H expanded by “projecting” (or “test”) functions
ψ j with j ∈ [1, nφ]. The output of the operator Fα is restricted
to this subspace, and satisfying Eq. (6) (in this subspace) is
done by requiring that the projection of the residual Fα[φ̂] onto
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FIG. 1. (a) High-fidelity, S-wave solutions (solid, colored lines)
alongside emulated solutions (dashed, black lines) at Ec.m. = 14
MeV 40Ca(n, n) and four different test parameter points. (b) Basis
states for the expansion of φ̂ as defined in Eq. (14). The φ0 term (in
black) represents the solution in the absence of an interaction U (s; α),
and it is used to enforce the boundary conditions at s ∼ 0. The other
three functions φk with k = [1, 2, 3] (colored solid lines) are the first
three principal components of the differences of snapshots with φ0 as
defined in Eq. (15). Only the real components are displayed.

each of the ψ j , for j ∈ [1, nφ], is zero:

〈ψ j |Fα[φ̂]〉 = 〈ψ j |Fα|φ0〉 +
nφ∑

k=1

ak〈ψ j |Fα|φk〉

= 0. (16)

Here we have used that the operator in Eq. (6) is linear:
Fα[φ̂] = Fαφ̂. We use Dirac’s notation for inner products:
〈ψ |Fα|φ〉 = ∫

ψ∗(s)Fαφ(s)ds, where ψ∗ denotes the complex
conjugate of ψ . We select

ψ j (s) = φ∗
j (s) (17)

for the projecting functions, a choice that connects the
Galerkin-method approach with scattering emulators based on
the Kohn variational principle [15,16], as proven in Ref. [20].
Note that, with this choice, a double complex conjugate will
cancel when plugging ψ j (s) = φ∗

j (s) into Eq. (16).
The nφ equations (16) for the array of coefficients a can be

written in matrix form,

M(α)a = c(α), (18)

where the nφ×nφ matrix M(α) is formed by the inner products
between the projectors 〈ψ j | and the operator Fα acting on each
one of the bases |φk〉, and c(α) is the nonhomogenous array of

size nφ obtained from the projection of Fα[φ0] onto the ψ j :

Mj,k = 〈ψ j |Fα|φk〉 =
∫

ψ∗
j (s)Fαφk (s)ds,

c j = −〈ψ j |Fα|φ0〉 = −
∫

ψ∗
j (s)Fαφ0(s)ds. (19)

The reduced basis φk and the system of equations for a
involving M and c are usually computed only once in what
is called the offline, or training, stage of the emulator. The
online stage consists of then using the trained emulator to
swiftly give an approximate solution for a new value of the
parameters by solving the nφ-dimensional linear system in
Eq. (18) [22,23]. The rationale behind the offline-online di-
vision hinges on the fact that both φ(s) and Fα reside in
high-dimensional spaces of sizes N and N 2, respectively,
while the approximation φ̂(s) lives in a much smaller space
of size nφ 	 N . Computing each element of both M and c
involves operations that scale with the grid size N , but if they
can be done only once, then the solution a = M−1c involves
only operations that scale with the reduced system size nφ for
every new values of the parameters. We describe how this is
achieved for the nonaffine parameters of the optical potential
in the following discussion.

3. The empirical interpolation method

Computing the integrals in Eqs. (19) for a general unspec-
ified value of the parameters can be done if the operator Fα

is affine on those quantities. This is the case for the multi-
plicative strength parameter Vv in Eq. (3), since it factorizes
from a function that depends on r (or s), but it is not the
case for the radius Rv or the energy for the scaled potential
U (s; α) in Eq. (6). To maintain a swift emulator that avoids
operations that scale with N , we can recover an affine depen-
dence on U (s; α) through the empirical interpolation method
(EIM) [22–25].

When Eq. (6) is projected on a grid, φ(s) is represented as
a vector of size N while the potential U (s; α) is represented
as a matrix of size N 2 (diagonal, in the case of local optical
potentials). In the same spirit as Eq. (14), we seek a reduced
dimensional representation of U (s; α) by constructing an ap-
proximation through the sum of nU 	 N 2 terms:

U (s,α) ≈ Û (s,α) =
nU∑
i=1

bi(α)ui(s). (20)

In the same way as the separation we did in Eq. (14), the
spatial dependence on s is only carried out by the potential
basis ui(s), while the coefficients b ≡ {bi(α)} can change to
accommodate variations in the variables α.

The basis expansion ui(s) is computed once, following the
same approach we did for constructing the reduced basis for
φ. We explicitly calculate NU � nU potentials U (s; α) for NU

values of the parameters α, perform a principal component
analysis, and retain the nU most important components:

{ui(s)}nU
i=1 = PCA

[{U (s,αm)}NU
m=1

]
. (21)

The reduced basis in Eq. (21) is computed only once, while
the coefficients b(α) need to be determined for every new
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value of the parameters. This determination should be done in-
volving operations that only scale with nU 	 N 2, to preserve
efficiency. Within the EIM this can be done by selecting nU

locations s j on which the approximation in Eq. (20) is made
exact:

U (s j,α) −
nU∑
i=1

bi(α)ui(s j ) = 0, for j ∈ [1, nU ]. (22)

We can interpret that Û (s,α) is interpolating U (s,α) through
s j for all the other values of s. These equations for the co-
efficients b can also be interpreted as a Galerkin projection
(16) of the residual U (s,α) − Û (s,α) on Dirac delta functions
ψ j (s) = δ(s − s j ) [67,68].

To select the locations s j on which to do the interpolation,
we follow the MaxVol algorithm [69],

{s j}nU
j=1 = MaxVol

[{ui(s)}nU
i=1

]
, (23)

or the DETMAX algorithm and its variants in experimental
design [70–72], to obtain a “D-optimal” design. Finding a D-
optimal design is equivalent to minimizing the volume of the
confidence ellipsoid for estimators of b [71]. Finding the set
of global optimum locations is NP-hard [73], yet a local op-
timum can be efficiently identified using the aforementioned
algorithms. In practice, a local optimum is sufficient to recover
a desirable interpolation accuracy. We construct a matrix of
size N × nU in which the columns are the nU basis u(s)
and the rows are the N grid points—and possible candidates
s j—in the s variable. The algorithm seeks to choose the nU

locations s j that maximize the determinant of the following
reduced nU × nU matrix:

UEIM =

⎡⎢⎢⎢⎣
u1(s1) u2(s1) · · · unU (s1)
u1(s2) u2(s2) · · · unU (s2)

...
...

...
...

u1(snU ) u2(snU ) · · · unU (snU )

⎤⎥⎥⎥⎦
nU ×nU

. (24)

The algorithm is started by first selecting nU locations s j

at random over the grid and then iteratively swapping them
for other locations in a greedy fashion by comparing their
expansion coefficients [69].

The results of the EIM are shown in Fig. 2. Figure 2(a)
displays four examples of the exact and approximated poten-
tial curves where the visual overlap indicates that the method
is accurate. The interpolation points, s j , are given as pink
crosses. Figure 2(b) shows the first four reduced bases ui(s)
formed from the principal component analysis. Note the hor-
izontal scale extends only to s = 8, since the interpolating
points selected by MaxVol focus on areas where the value of
the potential is most sensitive to changes in the parameter set.

Once the locations s j have been chosen, for a given α

the nU × nU linear system in Eq. (22) can be solved for the
coefficients b(α). In practice, the inverse of the nU × nU ma-
trix formed by UEIM

ji ≡ ui(s j ) is precomputed in the offline
stage since it is independent of α. In the online stage the
exact potential can be evaluated at the interpolation points
cEIM

j (α) = U (s j,α), and the coefficients determined by a sim-
ple matrix-vector multiplication:

b(α) = (UEIM)−1cEIM(α). (25)

FIG. 2. (a) High-fidelity potentials (solid, colored lines) along-
side EIM-emulated potential (dashed, black lines) at four different
test parameter points. Pink crosses indicate the points s j at which
agreement is enforced. (b) PCA basis components of the emulated
potential in Eq. (21). Only the real parts of the potential are shown.

This determines a realization of the approximate affine
decomposition in Eq. (20) for a given α. An approximate
operator F̂α can then be constructed by substituting the ap-
proximation in Eq. (20) in Eq. (6):

Fα ≈ F̂α = F (0) +
nU∑
i=1

bi(α)F (i), (26)

where F (0) represents the part of the original operator that is
independent of the parameters, and F (i) = ui(s) are the nU

identified principal components of variations in the part of
the operator that depends on the parameters in Eq. (21). An
approximate version of Eq. (18) can then be constructed by
the projections 〈ψ j |F̂α[φ̂]〉:

M̂(b)a = ĉ(b), (27)

where now the approximate matrix M̂ and approximate vector
ĉ consist of the sum of the projections of the nU + 1 operators
in Eq. (26) with the test functions ψ j on the reduced basis φk ,
and with the φ0 term, respectively:

M̂(b) = M̂
(0) +

nU∑
i=1

bi(α)M̂
(i)

,

ĉ(b) = ĉ(0) +
nU∑
i=1

bi(α)̂c(i). (28)
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FIG. 3. Flowchart illustrating the offline-online separation in ROSE. In the offline stage, for a fixed channel (�, j), we create reduced bases
by using principal component analysis over the wave functions and potentials associated with sets of training parameters α. These reduced

bases are used to create the building blocks of the approximate equations: the reduced operators ̂M
(i)

, the reduced boundary terms ĉ(i), a set
of interpolation points s j , and the inverse of the empirical interpolation matrix, UEIM. In the online stage, the emulator avoids performing
operations that scale with the high-fidelity dimension N : the query parameters α are used to interpolate the potential at the selected locations
s j to assemble the approximate reduced equations M̂a = ĉ. Solving this linear system for each channel (�, j) provides the coefficients a(α) to
be used for calculating observables for different query parameters.

Both quantities are now affine in the coefficients b, and are
constructed as

M̂
(i)
j,k = 〈ψ j |F (i)|φk〉 =

∫
ψ∗

j (s)F (i)φk (s)ds,

ĉ(i)
j = −〈ψ j |F (i)|φ0〉 = −

∫
ψ∗

j (s)F (i)φ0(s)ds, (29)

for i ∈ [0, nu]. All such projections are calculated in the offline
stage of the emulator.

In the online stage, when the emulator is deployed and
evaluated for new parameters α, the coefficients in Eq. (25) are
computed and the approximate matrix and vector are built by
summing the precomputed matrix terms in Eqs. (28). Finally,
the approximate system of equations (27) is solved for the co-
efficients a of the reduced basis expansion in Eq. (14) and then
used for computing observables. None of these operations on
the online stage scales with the original high dimension size
N . Figure 3 presents the ROSE flowchart for the offline-online
separation and summarizes the steps described throughout this
section for building and deploying the emulator.

III. RESULTS

A. ROSE performance

We present two tests of the performance of ROSE in repro-
ducing the calculations of the traditional high-fidelity solver,
both for the individual phase shifts and for the overall differ-
ential cross section [see Eqs. (A5) and (A9)]. The first test
over phase shifts was done to search for possible anoma-

lies [74], which are singularities when solutions to Eq. (1)
are calculated using variational principles such as Kohn’s
[75] or Newton’s [76]. These anomalies are most apparent
when continuously sweeping the parameters or the energy in
Eq. (1), and have been discussed in several of the recent efforts
for constructing reduced-order models for nuclear scattering
[15–17,21] (see, for example, Fig. 1 of Ref. [16]).

We performed the anomaly search by looking at two differ-
ent elastic scattering reactions: 40Ca(n, n) and 208Pb(n, n), for
� ∈ [0, 10] in both cases. We chose an emulator configuration
of (nφ, nU ) = (14, 14) wave function and interaction basis.
For each case we defined a high-density energy grid from 5
to 25 MeV—a range that overlaps with anomalies found in
previous studies [16] and that contains the calibration energy
of 14 MeV we focus on later. Two sets of 50 optical potential
parameters [defined in Eq. (2)] were created, a training set and
a test set, both obtained by using a Latin hypercube sampling
routine [77] centered on the appropriate Koning-Delaroche
global parametrization value [78]. The width of the sampling
boundary was set to 40% of the central value to increase
the covered ground during the exploration. The training set
was used to build the emulator at each step of the energy
grid and the test set was used to obtain the phase shifts at
each energy. These phase shifts were then compared to those
obtained by the high-fidelity solver. No evidence of anomalies
was found in the search, with the emulator’s error in the phase
shifts of less than 10−3 radians. In Appendix E we provide an
argument for the absence of observed anomalies in our search
based on the condition number of the reduced equation’s
matrices built using a principal component basis [Eq. (15)],
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TABLE I. The prior means ωpr and the true values ωt for the
optical potential parameters used to create the data for 40Ca(n, n) at
14 MeV center-of-mass energy. The exact values were taken from
Ref. [83].

Parameter Prior mean ωpr True value ωt

Vv0 (MeV) 45 48.9
Wv0 (MeV) 2 1.2
Wd0 (MeV) 5 7.7
Vso (MeV) 5 5.5
Rv0 (fm) 4 4.07
Rd0 (fm) 4 4.41
Rso (fm) 4 3.42
av0 (fm) 0.5 0.67
ad0 (fm) 0.5 0.67
aso (fm) 0.5 0.59

in contrast to a basis made of direct snapshots. Figure 9 in the
same Appendix shows the results for the anomaly search for
40Ca(n, n).

The second test focuses on the performance of ROSE in
reproducing the high-fidelity calculation of the differential
cross section—for which all partial waves contribute—for
either neutrons or protons impinging on 40Ca at 14 MeV
center-of-mass energy. We chose a maximum partial wave of
� = 10 in our calculations, sufficient for convergence. The
results of this test guided our selection of the emulator con-
figuration (nφ, nU ) for the Bayesian calibration we discuss
in the next section. We used two parameter sets, a training
and a testing set, each of 200 and 100 parameters, respec-
tively, drawn using the same Latin hypercube sampling in
a box of 30% variations around the prior mean values (see
Table I for neutrons, and Table II in Appendix D for protons).
Figure 4 shows the differential cross sections calculated us-
ing the high-fidelity solver (solid colored lines) and ROSE

with (nφ, nU ) = (15, 15) (dashed black lines) for three optical
potential parametrizations belonging to the respective test
sets. Even though the cross sections for both neutrons and
protons vary appreciably, the emulator is able to reproduce
the high-fidelity calculations very well.

Figure 5 compares side-by-side the performance of ROSE

and the high-fidelity solver running on the same system (com-
modity hardware). The computational accuracy vs time plot
presents the trade-off between precision and speed of both
methods when compared against a calculation with the default
version of the high-fidelity solver (tolerance of 10−9). We
characterize the accuracy of each method by the maximum
relative error over the calculations across every angle between
1◦ and 179◦:

Accuracy = Max{θ∈[1,179]}

∣∣∣∣dσ/d�HF(θ ) − dσ/d�method(θ )

dσ/d�HF(θ )

∣∣∣∣,
(30)

where dσ/d�HF(θ ) refers to the differential cross section cal-
culated with the high-fidelity solver at the default tolerance
(10−9), while dσ/d�method(θ ) refers to the same calcu-

FIG. 4. Calculated differential cross section for (a) 40Ca(n, n)
and (b) 40Ca(p, p) at 14 MeV for three parameter configurations from
the respective test set selected to reflect the range of outcomes. The
high-fidelity calculations obtained through the Runge-Kutta method
(colored solid lines) are well reproduced by the emulator with con-
figuration (nφ, nU ) = (15, 15) (black dashed lines).

lation with either ROSE or a lower-tolerance high-fidelity
solver.

As the number of wave-function bases, nφ and the num-
ber of interaction bases, nU , increase, the ROSE calculations
become exponentially more accurate, diving into the dashed
target box of a maximum relative error of 10% (see Sec. III B
below), while maintaining a calculation speed of more than
1 million samples per hour, around 1–3 ms per calculation,
fast enough for the desired Bayesian calibration. In contrast,
as we lower the tolerance of the PYTHON high-fidelity solver
(Runge-Kutta), this method does not get near the target box.
For comparison, FRESCO [79], the off-the-shelf traditional
solver implemented in FORTRAN and widely used by reaction
practitioners, takes around 30 ms per calculation using stan-
dard settings.

The optical potential parameters have energy depen-
dence as a consequence of simplifications in the reaction
model. Thus, energy-dependent total and reaction cross
sections provide important constraints on these phenomeno-
logical potentials, and the ability to train an emulator capable
of capturing the resulting energy-dependent behavior of the
scattering wave functions is desirable for their calibration.
The ROSE configuration (15,15) - [En] (red crosses in Fig. 5)
represents the performance of an emulator that was trained
on the same parameter set as the other cases, but where the
energy was varied between 10 and 30 MeV in the training
samples. This emulator was then used to calculate the cross
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FIG. 5. Computational accuracy vs time plot showing the trade-off between accuracy and speed of both ROSE and the high-fidelity solver
when calculating the differential cross section of 40Ca(n, n) at 14 MeV for 100 test parameter values. The x axis represents the time taken
for each evaluation, while the y axis represents the accuracy defined in Eq. (30) as the maximum relative error in the entire differential cross
section when compared to a high-fidelity solver set to very high precision. For ROSE, we varied the number of bases of the wave functions,
nφ [Eq. (14)], and the number of bases in the potential, nU [Eq. (20)], between 7 and 15. The red crosses, “(15,15) - [En],” represent an
emulator trained across the energy window [10–30] MeV, while the other three configurations were trained at the same 14 MeV energy. For the
high-fidelity solver, which uses the Runge-Kutta method, we varied the relative and absolute tolerance between 10−2 and 10−5, numbers that
are shown next to the blue hexagons representing their performance. The very high precision high-fidelity configuration was 10−9. The box
delimited by dashed lines represents the target zone consisting of, as explained in the text, more than one million samples per hour with less
than 10% relative error in the differential cross section. ROSE’s performance enters the box and is clearly superior to the traditional high-fidelity
method, surpassing its speed by more than two orders of magnitude for a comparable accuracy.

section of 40Ca(n, n) at 14 MeV of the test set, resulting in an
accuracy comparable to the single-energy (nφ, nU ) = (10, 10)
version, while maintaining an average calculation speed of
around 2–5 ms. These results showcase the ability of ROSE to
effectively emulate across energies, an important feature for
future energy-dependence calibrations of the optical model.

B. Bayesian calibration

Having tested ROSE’s performance, we set up the following
calibration task as a demonstration. Using the high-fidelity
solution at a parameter referred to as the true parameter ωt ,
we collect the true observations as y0 = OP(ωt ). We generate
synthetic data y = y0 + ε, where the errors ε are independent
Gaussian noises with mean 0 and standard deviation at ≈10%
of the observation’s value. Following the previous section,
the observations in this case are the differential cross sec-
tion [see Eq. (A9)] for 40Ca(n, n) and 40Ca(p, p) (separately)
at 14 MeV center-of-mass energy. The 10% error scale for the
elastic differential cross section is a typical magnitude for the
experimental error associated with this observable. The final
data consist of the differential cross section calculated with
the high-fidelity solver at 28 angles between 20◦ and 155◦ in
spacings of 5◦, enough to capture the diffraction pattern.

Based on the performance shown in Fig. 5, we select the
emulator built with (nφ, nU ) = (15, 15), since it offers in the
worst case an error of 1%—almost an order of magnitude less

than the “observation” error of 10%—while still being com-
putationally efficient. To be conservative we set the overall
emulator error to 1% across all angles, independent of the
value of the parameters. The covariance matrix �emu is there-
fore a constant diagonal matrix of size 28 × 28 with elements
0.01y. We note that careful quantification of this error can be
essential—especially if it can increase to a size comparable
to the observation error as the parameter exploration diffuses
away from the emulator’s training region. Nevertheless, for
the purpose of this study, we proceed with the conservative
constant estimate we described.

We choose an independent Gaussian prior distribution for
each parameter with mean ω

pr
k and standard deviation 0.25ω

pr
k ,

which leads to an overall prior

p(ω) =
10∏

k=1

p(ωk ), p(ωk ) ∝ exp

{
−1

2

(
ωk − ω

pr
k

)2(
0.25ω

pr
k

)2

}
. (31)

The prior means, as well as the true parameters used for
generating the data, are shown in Table I for neutrons, and
in Table II for protons.

The calibration of the optical potential parameters was
carried out with surmise, a PYTHON package—part of the
BAND framework [27]—that interfaces Bayesian emulation
and calibration [80]. The design of surmise facilitates the
seamless integration of ROSE as an emulator. We employ the
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FIG. 6. Corner plot [82] for the calibration of the optical model through the 40Ca(n, n) reaction at 14 MeV. This plot shows all the one- and
two-dimensional projections of the approximated posterior probability distributions [Eq. (13)]. The black histograms represent the posterior
[Eq. (10)], approximated by 1 million samples visited by 20 MCMC walkers, while the blue solid contours represent the Gaussian prior
[Eq. (31)]. The red lines show the values of the true parameters ωt obtained from Ref. [83] and used to generate the data while the blue lines
show the prior means ωpr. Both sets of parameters are defined in Table I.

Metropolis-Hastings (MH) algorithm available in surmise to
sample from the posterior distribution [39]. Details of the inte-
gration between ROSE and surmise are given in Appendix B,
and a summary of the MH algorithm is given in Appendix C.

A total of 20 chains, of 50000 MCMC samples each,
were obtained within an hour on the same commodity com-
puter used to produce Fig. 5. Each walker had a burn-in
period of nburn = 3000 samples, and started randomly within
a small region around the prior center to avoid known
multimodal posteriors of the optical potential [81]. Figure 6
shows the results of the posterior sampling for neutrons,
while the equivalent results for protons is shown in Ap-
pendix D. As has been identified in previous studies (e.g.,
Ref. [84]), some parameters are strongly correlated—such
as the real volume Vv and real radius Rv—and they dis-
play posteriors that are sharply peaked in comparison to the
original prior distribution. Meanwhile, the posterior of other
parameters, such as the imaginary volume strength Wv , re-
mains close to their prior distribution, not learning much
from these specific cross-section data at the selected energy.
Most of the parameters’ true values (red lines) are covered
by posterior distribution, with Wd , Rd , and aso being cov-
ered just barely by the tails of the distributions. Further
Bayesian studies, powered by emulators such as ROSE, on
how much the optical parameters can be constrained by data

could be particularly relevant for the new rare isotope beams
era [7].

The posterior distribution for some of the parameters
moved appreciably away from the prior center, the region in
which the emulator was originally trained. To verify that our
estimate for the emulator error remained applicable we drew
100 parameter values ω from the visited posterior samples and
compared the accuracy of the used emulator against the high-
fidelity solver. The root mean squared error across the 100
parameters, defined as the square root of the average of the
squared residuals between the emulator and the high-fidelity
solver, was around 1% for all the angles θ for both 40Ca(n, n)
and 40Ca(p, p). This is consistent with the original values we
assigned �emu, yet it is higher than the typical error displayed
in Fig. 5, in which 1% represented a worst-case scenario.
This highlights the importance of quantifying the emula-
tor’s error to give credibility to the conclusions of Bayesian
studies, especially after the posterior samples have been
obtained.

Finally, in Fig. 7 we show the predictive posterior dis-
tribution, calculated through Eq. (12), for 40Ca(n, n) and
40Ca(p, p). These cross sections were calculated through
50000 random samples from the visited parameters on the
respective posteriors for both nucleons and a 10% uncorre-
lated Gaussian noise was added to each value, following the
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FIG. 7. Predictive posterior distribution for the differential cross
section in (a) 40Ca(n, n) and (b) 40Ca(p, p) at 14 MeV. The differen-
tial cross sections were calculated using 50000 random parameters
obtained during the MCMC sampling in Figs. 6 and 8. The 95%
credible interval is calculated from Eq. (12) by taking into account
the error structure of the data. The synthetic data with a 95% error
bar (in red) was created from Eq. (9) by using the true parameters
(black curve) defined in Tables I and II.

error structure in the likelihood [Eq. (11)]. The 95% credible
interval covers very well the data, with all red data points cov-
ered and a couple of them almost outside the band, indicating
a not overly conservative credibility estimate. Furthermore,
the median prediction (solid blue line) overlaps well with
the true generating cross section in each case (solid black
line).

IV. CONCLUSIONS AND OUTLOOK

In this paper we presented and showcased a reduced
basis emulator workflow for two-body scattering that is ap-
plicable to potentials with nonaffine parameter dependence,
including variations in the beam energy for neutral projectiles.
Such nonaffine structures, typical in optical reaction models,
precludes an immediate offline-online decomposition on emu-
lators based on Galerkin projections or variational principles,
potentially limiting their performance. The emulator we pre-
sented, equipped with the empirical interpolation method to
recover an affine structure in the potential parameters, is able
to calculate more than a million differential cross sections per
hour with a subpercent relative error using commodity hard-
ware. This performance makes the emulator suitable for
Bayesian calibration of the involved reaction models, a very
relevant task for the current landscape of direct nuclear
reactions [7,13].

A new extensible, user-focused software, ROSE, was de-
veloped to construct and implement the emulator. ROSE

works together with the Bayesian inference software surmise
within the publicly available BAND cyberinfrastructure frame-

work [27]. This framework is designed for principled UQ,
including calibration, model mixing, and experimental design,
all of which generally require such emulators.

In the future, near-term extensions to ROSE for two-body
scattering will include allowing for general spin and mass
configuration for the projectile and target, the inclusion of
nonlocal potentials and coupled channels, extending the en-
ergy emulation for electrically charged projectiles, and a
user-friendly functionality for Bayesian calibration of global
potentials across energies and isotopes. Developing a frame-
work for better quantification of the emulator error in the
online stage, both through statistical studies of the residuals
(for example as done in Ref. [43]) and through a posteriori
error estimation [23], will also become fundamental as the use
of ROSE increases. Further exploration of the appearance (or
absence) of Kohn anomalies will also be performed, including
their possible characterization before the emulator is deployed
in terms of the condition number of Eqs. (27).

Two-body scattering is the simplest model to describe a re-
action when two nuclei collide. With more advanced methods
for solving few-body dynamics, each solution becomes much
more computationally intensive (e.g., Refs. [85–88]) and gen-
erating a large number of high-fidelity samples becomes
prohibitive. A recent application of data-driven emulation
(using Gaussian processes) for three-body breakup reac-
tions demonstrates the usefulness of three-body emulators for
Bayesian UQ [44]. Full three-body emulation is planned for a
future release of ROSE.

Finally, we intend to leverage cloud-enabled deployments
of ROSE to facilitate engagement across a broad spectrum of
interested users and permit online continuous calibration of
reaction models in concert with the other tools in the BAND

framework. By deploying trained emulators in cloud envi-
ronments, one lowers the total computational cost required
to evaluate optical models with quantified uncertainties. This
makes for a useful paradigm in educational contexts like
training workshops and traditional coursework, but also in
lowering the total technological barrier to contribute mean-
ingfully to research in nuclear reactions. By pairing this with
user-focused nuclear science gateways like the Bayesian Mass
Explorer web application [89], both the accessibility of the
numerical simulations and the physical results can be en-
hanced. A cloud-native implementation of emulation modules
also allows for robust interoperability with modern continuous
integration pipelines which we intend to integrate with a pos-
terior learning and distribution model enabled by normalizing
flows [90] to improve the transparency and reproducibility
of Bayesian UQ studies. Given the continued investment in
and expansion of experimental facilities worldwide, this full
integration of advanced cyberinfrastructure methodology into
theory workflows is a necessity to effectively capitalize on
new data in a timely manner.
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APPENDIX A: SCATTERING DETAILS

Once the numerical solutions φ(s) of Eq. (6) are obtained,
the respective phase shifts δ

j
� are computed by matching the

calculated φ(s) outside of the nuclear potential range to the
asymptotic expression in terms of Coulomb functions:

φ(s)s→∞ ∝ eiδ j
�

(
cos δ

j
� F�(η, s) + sin δ

j
� G�(η, s)

)
. (A1)

It is important to note that the phase shifts depend on all the
variables α in Eq. (8), not only the orbital angular momen-
tum � and the total angular momentum j. Nevertheless, we
explicitly highlight those two quantities in the notation since
they play an important role in the calculation of the scattering
amplitudes [see Eq. (A7) below].

Both the regular F�(η, s) and irregular G�(η, s) Coulomb
functions are analytic free solutions to Eq. (6) when U (s) = 0.
The asymptotic behavior is

F�(η, s)s→∞ = sin(s − �π/2 + σ�(η) − η ln(2s)), (A2)

with σ�(η) = arg (1 + � + iη), and  being a gamma func-
tion. G�(η, s) has the same behavior, but with a cosine instead
of a sine. Near the origin, the asymptotic behavior is [28]

F�(η, s)s→0 = C�(η)s�+1, (A3)

with the irregular Coulomb function behaving as G�(η, s) ≈
s−�. The constants C�(η) are calculated recursively:

C0(η) =
√

2πη

e2πη − 1
and C�(η) =

√
�2 + η2

�(2� + 1)
C�−1(η).

(A4)

FIG. 8. Corner plot [82] for the calibration of the optical model through the 40Ca(p, p) reaction at 14 MeV. This plot shows all the one- and
two-dimensional projections of the approximated posterior probability distributions [Eq. (13)]. The black histograms represent the posterior
[Eq. (10)], approximated by 1 million samples visited by 20 MCMC walkers, while the blue solid contours represent the Gaussian prior
[Eq. (31)]. The red lines show the values of the true parameters ωt obtained from Ref. [83] and used to generate the data while the blue lines
show the prior means ωpr. Both sets of parameters are defined in Table II.
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The matching equation3 that can be used to obtain δ
j
� is

[28]

S j
� ≡ e2iδ� = H−

� (η, smatch) − aR�H ′−
� (η, smatch)

H+
� (η, smatch) − aR�H ′+

� (η, smatch)
, (A5)

where S j
� is the associated S matrix, a notation we will

use for compactness; H±(η, s) ≡ G�(η, s) ± iF�(η, s) are the
Coulomb-Hankel functions, smatch is the value of s at which
the numerical solution is matched to the asymptotic ones
(smatch � smax), and R� is related to the logarithmic deriva-
tive of the numerical solution for the given � at the location
s = smatch:

R� ≡ 1

smatch

φ(smatch)

φ′(smatch)
. (A6)

The solutions φ and the respective phase shifts are calculated
for several values of the angular momentum � up to a selected
Lmax, after which higher � contributions are neglected. For our
case of study of spin-1/2 particles on a spin-0 target the only
possible values of j are � + 1

2 and � − 1
2 . We then can write

the two nuclear scattering amplitudes as [28,29]

A(θ ) = fC (θ ) + 1

2ik

Lmax∑
�=0

P�(cos θ )e2iσ�(η)

× [
(� + 1)

(
S

�+ 1
2

� − 1
) + �

(
S

�− 1
2

� − 1
)]

,

B(θ ) = 1

2ik

Lmax∑
�=0

P1
� (cos θ )e2iσ�(η)

[
S

�+ 1
2

� − S
�− 1

2
�

]
, (A7)

where P�(cos θ ) and P1
� (cos θ ) in A(θ ) and B(θ ) are Legen-

dre and associated Legendre polynomials, respectively. The
Coulomb amplitude is

fC (θ ) = − η

2k sin2(θ/2)
exp[−iη ln(sin2(θ/2)) + 2iσ0].

(A8)

The differential cross section for unpolarized beams of the
target particle is calculated as

dσ

d�
(θ ) = |A(θ )|2 + |B(θ )|2. (A9)

If the projectile is a neutron, the Coulomb amplitude (A8)
vanishes and Eq. (A9) can be used directly to compare to
experimental data. When the projectile is a proton, it is cus-
tomary to compare the ratio of the nuclear differential cross
section in Eq. (A9) to the Rutherford cross section (scattering
of charged particles):

σRuth = | fc(θ )|2 = η2

4k2 sin4(θ/2)
. (A10)

3It is advantageous to use an explicit numerical representation of
F�(η, s) and G�(η, s) for the matching equation for the phase shift,
instead of using the asymptotic forms. Doing so avoids having to
identify a value of smatch far enough that Eq. (A2) holds.

APPENDIX B: ROSE-SURMISE INTEGRATION

ROSE is introduced as a new emulator in surmise, callable
by the keyword nuclear-rose. Due to surmise’s modular
design, users may introduce new emulators or new sampling
strategies and utilize other available tools in surmise for
calibration, by conforming to a simple code framework. We
note that it is also possible to utilize other available sampling
strategies from surmise to perform parameter calibration, by
a simple change of keyword.

The code details for the use of surmise and the calibration
setup can be found in the documentation of ROSE, which in-
cludes several tutorials on how to conduct a similar Bayesian
study [26].

APPENDIX C: METROPOLIS-HASTINGS ALGORITHM

We detail the Metropolis-Hastings (MH) algorithm in this
section. The MH algorithm begins by drawing ω(0) from a
shrunken version of the prior distribution [Eq. (31)] with the
same mean but a standard deviation of 5% instead of 25%.
The optical potential parametrization is multimodal [81], a
feature that has to be taken into consideration for uncertainty
quantification efforts [7]. For this study we focus on a single
mode by starting the walkers from a small region around the
prior.

From the current iterate ω(l ), the algorithm proposes an
iterate, ω′, from a multivariate Gaussian proposal distribution
that is centered at ω(l ). We choose the proposal distribution to
be uncorrelated among the parameters; therefore, each param-
eter in the proposed iterate ω′

k ∼ N(ω(l )
k , ξk ), k = 1, . . . , 10.

The algorithm then decides to accept the proposed param-
eter as the next iterate, which means that ω(l+1) = ω′, with
probability dictated by comparing the posteriors [Eq. (10)]:
min{p(ω′|y)/p(ω(l )|y), 1}, otherwise ω(l+1) = ω(l ). The val-
ues of ξ are tuned to achieve an overall acceptance rate around
the range 0.25–0.35 [91]. For our study, ξk = 0.007ω

pr
k . The

MH algorithm generally seeks a higher posterior region and
stays around the region via a random walk. The first nburn sam-
ples of every walker are discarded to ensure that the obtained

TABLE II. The prior means ωpr and the true values ωt for the
optical potential parameters used to create the data for 40Ca(p, p) at
14 MeV center-of-mass energy. The exact values were taken from
Ref. [83].

Parameter Prior mean ωpr True value ωt

Vv0 (MeV) 50 55.50
Wv0 (MeV) 2 1.10
Wd0 (MeV) 5 7.80
Vso (MeV) 5 5.50
Rv0 (fm) 4 4.07
Rd0 (fm) 4 4.41
Rso (fm) 4 3.42
av0 (fm) 0.6 0.67
ad0 (fm) 0.6 0.54
aso (fm) 0.6 0.59
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FIG. 9. Residuals in the phase shift δ� when comparing ROSE emulation vs the high-fidelity solver across energies for 40Ca(n, n) for
� ∈ [0, 10]. No evidence of Kohn anomalies (see Ref. [16]) was found.

parameter chains have converged and are representative of the
posterior distribution. The discarding of burn-in samples also
reduces the impact of the starting positions on the conclusions
of the analysis.

APPENDIX D: CALIBRATION RESULTS FOR PROTONS

In Table II we present the calibration results for 40Ca(p, p)
at 14 MeV center-of-mass energy. These results are analogous

044612-14
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to those presented for 40Ca(n, n) in Table I. Figure 8 shows the
posterior sampling for protons.

APPENDIX E: DETAILS ON THE ANOMALIES STUDY

Figure 9 shows the scan in energies for the anomalies
search detailed in Sec. III A in the main text. One possible
reason for the absence of anomalies in our search could be
from the observation that reduced equations obtained by using
the orthonormal PCA basis expansion from Eq. (15) mitigate
ill-conditioned matrices when compared to a basis of snap-
shots (known as a Lagrange basis [22]). One way to argue this
is to consider the L2 condition number κ (M) of the matrix M
from the reduced equation (18):

κ (M) = λmax(M)

λmin(M)
, (E1)

where λmax and λmin correspond to the maximum and mini-
mum singular values of the matrix M. The condition number
κ (M) encodes information about how many orders of magni-

tude must be represented to get an accurate solution to the
linear system, and it is a metric for the stability of matrix
equations [92].

We can gain intuition on the condition number of M by
writing Eq. (19) in matrix notation. Let � be the matrix with
columns equal to the reduced basis elements {φk}nφ

k=1, and let
Fα be the N × N representation of the operator Fα; then the
matrix is given by

M[nφ×nφ ] = ��Fα�. (E2)

As shown in Ref. [20], many of the recent variational emu-
lators for scattering are equivalent to constructing M as in
Eq. (E2), but using a Lagrange basis for �. In practice, the
multicollinearity of the functions used for � leads to an ex-
ponential decrease in its smallest singular value (compared to
a value of 1 when � is constructed with a PCA basis). This
ultimately decreases the lowest singular value of M through
the projection equation (E2) and therefore yield a worse con-
dition number for the system, as we have observed through
numerical experiments.
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