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Neutron scattering off spherical nuclei with a global nonlocal dispersive optical model
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We present a global nonlocal and dispersive optical model potential for neutron scattering off spherical nuclei
with incident energies up to 250 MeV. This optical model is an extension of the nondispersive Perey-Buck
potential. The imaginary components are chosen to be energy dependent and the dispersive constraints are taken
into account. The surface imaginary part is nonlocal, whereas the volume imaginary part above 10 MeV is local,
allowing one to reproduce total cross sections and scattering data for high energies. We obtain a good description
of scattering observables for target nuclei ranging from A = 16 up to 209. The inclusion of a nonlocal spin-orbit
term enables a better description of the analyzing power data relative to the local dispersive model.
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I. INTRODUCTION

More than fifteen years ago, two of us introduced a global
local nucleon optical model potential (OMP) [1–3] including
dispersion relations [4] and the local energy approximation of
Perey and Buck [5]. This potential provides a good description
of integral and differential elastic cross sections for neutron
and proton scattering off spherical target nuclei for incident
energy up to 250 MeV. Bound state energies were used as
constraints for the calibration of the potential for neutrons [2]
and protons [3]. The calibration of the parameters was made
using the data set of Koning and Delaroche (KD) in Ref. [6],
i.e., from mostly stable and spherical target nuclei. Based
on the same method, Charity et al. have studied the evolu-
tion of the OMP for target nuclei with large proton-neutron
asymmetry [7–9].

Since then, various attempts have been made to handle
nonlocality explicitly. Tian et al. extended the Perey-Buck
(PB) potential [5] to include both neutron and proton projec-
tiles [10]. More recently, Mahzoon et al. proposed a dispersive
nonlocal potential [11]. This potential has allowed for the first
time the reproduction of the target density and the particle
number of the target nucleus in addition to the usual scatter-
ing observables. First applied to 40Ca for both neutron and
proton projectiles, the approach has been extended to include
48Ca [12] and 208Pb [13]. In parallel, Lovell et al. [14] and
Jaghoub et al. [15] have studied the energy dependence of
nonlocal potentials. Those studies are all based on a PB sepa-
rable potential which includes a Gaussian form factor for the
nonlocality [5]. In a recent review, Hebborn et al. summarize
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efforts toward improvements, within both phenomenological
and microscopic optical models approaches [16].

In this work, we present the first global dispersive and
nonlocal OMP for neutron scattering off spherical target nu-
clei with incident energy up to 250 MeV. We adopt the PB
form factor as the starting point. The imaginary contribution
to the OMP is taken to be energy dependent whereas the real
contribution is energy dependent only through the dispersion
relation. Accounting for nonlocality enables us to get rid of
spurious energy dependence stemming from local approxi-
mations. The calibration of the OMP parameters is done for
22 nuclei with masses ranging from A = 16 up to 209. Both
experimental elastic scattering observables and bound state
energies are considered in the calibration process.

We organize this work as follows. In Sec. II, we re-
call the basics of the Perey-Buck potential model. Then
we contrast the predictive power of the two most common
parametrizations: PB [5] and Tian, Pang, and Ma (TPM) [10].
In Sec. III, we present form factors for the real and imaginary
components of the new nonlocal dispersive OMP. The result-
ing parameters of this OMP are presented and discussed in
Sec. IV. Comparisons are made in Sec. V between calculated
and experimental neutron cross sections, analyzing powers,
and bound single-particle neutron states. Finally, in Sec. VII
we present the main conclusions of this work. The method
used to solve the integrodifferential Schrödinger equation is
given in the Appendix.

II. PEREY-BUCK OPTICAL MODEL

In the early 1960s, Perey and Buck (PB) proposed a nonlo-
cal phenomenological potential to describe neutron scattering
off nuclei with incident energies below 28 MeV [5]. The
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central part of the PB potential reads

V (r, r′) = U

( |r + r′|
2

)
H (|r − r′|), (1)

where H represents the nonlocality form factor, assumed to be
Gaussian, which is given as

H (|r − r′|) = 1

π
3
2 β3

exp

[
− (r − r′)2

β2

]
. (2)

Here β is the range of the nonlocality. The radial form factor
U is given the Woods-Saxon form

U (r̃) = VV f (r̃, R, a) − iWS4a
df (r̃, R, a)

dr̃
, (3)

with f a two-parameter Fermi distribution given by

f (r̃, R, a) = 1

1 + e
r̃ − R

a
. (4)

Here r̃ = 1
2 |r + r′|, a is the diffuseness parameter, and R =

r0A1/3 is the target-nucleus radius, with r0 the reduced radius
and A the nucleus mass. Additionally the real volume strength
VV and the imaginary surface strength WS are energy indepen-
dent. No imaginary volume component was introduced by PB
between 400 keV and 28 MeV. In addition, PB adopted a local
prescription for the spin-orbit potential.

When dealing with nonlocal potentials, the scattering equa-
tions turn to be integrodifferential. One can express then
scattering equations in partial waves,

h̄2

2μ

[
d2

dr2
− l (l + 1)

r2

]
u jl (r) + Eujl (r) − V L

jl (r)u jl (r)

−
∫ ∞

0
νNL

jl (r, r′)u jl (r
′)dr′ = 0, (5)

with u jl (r) the radial wave function and μ the projectile-target
reduced mass [17]. For the sake of completeness, we include
both local and nonlocal contributions in Eq. (5). In the case of
PB, the spin-orbit potential is local, where

V L
jl (r) = −[ j( j + 1) − l (l + 1) − 3/4]Uso(r), (6)

which makes the local contribution ( j, l ) dependent. The form
factors in Eqs. (1) and (2) allow for analytical expressions for
the potential multipoles,

νNL
l (r, r′) = 4rr′

√
πβ3

U

(
r + r′

2

)
e
− (r2+r′2 )

β2 il jl

(
−i

2rr′

β2

)
. (7)

The method used to solve Eq. (5) is described in the
Appendix.

In order to illustrate the predictive power of the PB po-
tential, in Fig. 1 we plot experimental and calculated cross
sections for ten target nuclei (Mg, Si, Ca, Cr, Y, Zr, Nb, Sn,
Pb, Bi). Solid red and dashed blue curves denote results from
PB and TPM parametrizations, respectively. The experimental
total cross section has been averaged on the energy. The effect
of this averaging is twofold. At low incident energies it filters
out the compound nucleus contribution [18]. It also allows
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FIG. 1. Total cross section (in logarithmic scale) for neutron-
nucleus scattering as functions of the beam energy. The data
(symbols) are from Ref. [19]. Red solid curves correspond to the PB
potential [5] and blue dashed curves to that of TPM [10].

one to attenuate discrepancies coming from merging different
data sets. In Fig. 2 we plot the experimental and calculated
differential cross sections as functions of the scattering angle
in the center-of-mass (c.m.) reference frame. For the sake
of conciseness, we show only two angular distributions for
each target nucleus. Here we include results for PB and
TPM parametrizations adopting the same conventions as in
Fig. 1.

While angular distributions are very well reproduced, the
agreement for the total cross section is poor in the 0.4–28
MeV energy range for both parametrizations. It should be
noted, however, that when Perey and Buck developed their
potential in the early 1960s they did not have the current
wealth of measurements. The TPM potential provides a better
agreement for high-energy total cross sections. This is most
likely due to the presence of a volume imaginary term in
their parametrization. Note, however, that the experimental
total cross section is systematically overestimated in the range
50–150 MeV.
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FIG. 2. Differential cross sections (in logarithmic scale) for neu-
tron elastic scattering as functions of the c.m. scattering angle. Red
solid curves correspond to the PB potential [5] while blue dashed
curves denote TPM [10] results. Data are denoted by symbols [19].

III. NONLOCAL AND DISPERSIVE OPTICAL MODEL

Although neither microscopic nor ab initio approaches for
nucleon-nucleus scattering are currently suited for massive
and precise data evaluation, they can provide guidance to
phenomenological models. On the other side, phenomeno-
logical approaches can become very useful mainly due to
their simplicity and flexibility. The optical model potential
is connected to microscopy through its correspondence with
the self-energy [20]. The challenge here is to incorporate
microscopic and ab initio features in the construction of phe-
nomenological optical potentials.

One of these features is the nonlocality, emerging from
the Pauli exclusion principle, in addition to dynamic polariza-
tion [21]. In a recent work it has been demonstrated that the

nonlocality exhibits a bell shape [22]. These findings emerge
from microscopic descriptions of nucleon-nucleus collisions
based on density-dependent g-matrix folding model retaining
nonlocalities at all stages [22,23]. It is found that the nonlo-
cality form factor H [see Eq. (2)] is weakly energy dependent.
The leading energy dependence takes place in the strengths
of the potential. Moreover, the spin-orbit contribution results
nonlocal. In the context of the PB approach [5], this nonlo-
cality is modeled through a Gaussian form factor. We retain
a single Gaussian nonlocality for real and imaginary com-
ponents of the potential. As we will see, this is sufficient to
achieve a reasonable description of experimental data.

Continuing the analogy with many-body physics, the op-
tical potential can be separated into an energy-independent
Hartree-Fock and energy-dependent polarization terms. Then,
causality is ensured through a dispersion relation [24,25]. This
dispersion relation relates scattering and bound-state proper-
ties. Hence, it allows one to determine scattering states and
bound states of the target-nucleus on the same footing us-
ing a single potential. A well-constrained phenomenological
nonlocal dispersive potential contains in practice all the corre-
lations. Thus one can evaluate the quality of the microscopic
description not only of scattering observables but also other
physical properties such as occupation numbers, densities, and
bound state energies.

A. Dispersion relation

The radial form factor U in Eq. (3) is now assumed to be
energy dependent,

U (r̃, E ) = V (r̃, E ) + iW (r̃, E ), (8)

whereas the nonlocal form factor H in Eq. (2) is kept energy
independent. Now, a dispersion relation applies, relating the
energy-dependent real and imaginary contributions in Eq. (8),

V (r̃, E ) = V0(r̃) + �V (r̃, E ),

�V (r̃, E ) = P
π

∫ +∞

−∞

W (r̃, E ′)
E ′ − E

dE ′, (9)

where P denotes the principal value of the integral [4]. V0

is an energy-independent potential often referred to as the
Hartree-Fock potential [4], in analogy to the static self-energy
in many-body physics [26]. When possible, the dispersive
term �V is obtained analytically, otherwise it is calculated
by numerical integration. We assume the energy dependence
affects only the strengths of the potential. The diffuseness,
radius, and nonlocality are assumed to be energy independent.

B. Real potentials

The real potential is assumed to be nonlocal, with a
Gaussian nonlocal form factor H as in Eq. (2), and energy
independent. Its radial form factor reads

V0(r̃) = V NL
V f (r̃, R, a) − V NL

S 4a
df (r̃, R, a)

dr̃

− 2V NL
so

(
h̄

mπc

)2 1

r̃

df (r̃, R, a)

dr̃
l · s. (10)
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We include a real nonlocal surface potential V NL
S that im-

proves the agreement with the elastic angular distribution
data. The spin-orbit potential is nonlocal with the same
nonlocality as the central term. The dispersive component,
�V (r̃, E ), stemming from the energy-dependent imaginary
potentials, is added as described in Eq. (9).

C. Imaginary potentials

As observed in Fig. 1, the addition of a volume imagi-
nary contribution, as proposed by TPM [10], helps to better
reproduce total cross section above 50 MeV. Following this
prescription, we have tested several values of nonlocality
parameters β for the volume imaginary potential. We have
also investigated different energy dependencies. From these
studies we conclude that a local volume imaginary potential
is the best suited. The energy dependency retained for the
volume and the surface terms are described below.

The local imaginary volume contribution reads

W L(r, E ) = W L
V (E ) f (r, R, a), (11)

whereas the nonlocal imaginary surface contribution reads

W NL(r̃, E ) = −W NL
S (E )4a

df (r̃, R, a)

dr̃

− 2W NL
so (E )

(
h̄

mπc

)2 1

r̃

df (r̃, R, a)

dr̃
l · s. (12)

It should be noted that the imaginary spin-orbit is chosen to
be nonlocal.

1. Surface imaginary depth

For the depth of the nonlocal imaginary surface strength,
we use a Brown-Rho shape [27] modified by an exponential
falloff,

W NL
S (E ) = A±

S (E − EF )n exp(−CS|E − EF |)
(E − EF )n + Bn

S

. (13)

Its energy dependence is asymmetric with respect to the
neutron Fermi energy EF = −[Sn(Z, N ) − Sn(Z, N + 1)]/2.
There is a single depth value A+

S for E > EF , and another
one A−

S for E < EF . We have investigated different values
for the parameter n, reaching better fits with n = 2. We also
found that coefficients A−

S , BS , and CS exhibit a very weak
dependence on target-nucleus mass, so that it is reasonable to
assume them constant. In contrast, A+

S decreases linearly with
respect to the mass A.

2. Volume imaginary depth

For energies around the Fermi energy, within the interval
[EF − E−

V , EF + E+
V ], the depth of the local imaginary vol-

ume component is of Brown-Rho type [27] but with different
depths A±

V , depending on whether the projectile energy is
above (A+

V ) or below (A−
V ) the Fermi energy, namely

W L
V (E ) = A±

V (E − EF )2

(E − EF )2 + B2
V

. (14)

TABLE I. Energy and mass dependency of real and imaginary
potential strengths.

Nonlocal real depth

V NL
V (MeV) −69.71 − 1.140 × 10−2A

V NL
S (MeV) −8.600 − 8.000 × 10−3A

V NL
so (MeV) −9.787 − 1.140 × 10−2A

Nonlocal surface imaginary depth

W NL
S (E ) = A±

S (E − EF )2 exp(−CS|E − EF |)
(E − EF )2 + B2

S

A+
S (MeV) −19.62 − 1.500 × 10−2A for EF < E

A−
S (MeV) −16.00 for E < EF

BS (MeV) 11.11
CS (MeV−1) 9.200 × 10−3

Local volume imaginary depth

For E > EF + E+
V :

W L
V (E ) = A+

V (E − EF )2

(E − EF )2 + B2
V

+ α(
√

E + (EF +E+
V )3/2

2E − 3
2

√
EF + E+

V ).

For EF − E−
V < E < EF + E+

V :

W L
V (E ) = A±

V (E − EF )2

(E − EF )2 + B2
V

.

For E < EF − E−
V :

W L
V (E ) = A−

V (E − EF )2

(E − EF )2 + B2
V

(
1 − (E−EF +E−

V )2

(E−EF +E−
V )2+(E−

V )2

)
with
A+

V (MeV) −32.40 − 2.000 × 10−2A for E > EF

A−
V (MeV) −8.400A for E < EF

BV (MeV) 135.0
E+

V (MeV) 40.00 − 9.000 × 10−2A
E−

V (MeV) 25.50
α (MeV1/2) 3.000 × 10−1 + 2.000 × 10−3A

Nonlocal spin-orbit imaginary depth

W NL
so (E ) = Aso(E − EF )2

(E − EF )2 + C2
so

− Bso(E − EF )2

(E − EF )2 + D2
so

Aso (MeV) 4.893
Bso (MeV) 2.447
Cso (MeV) 50.00
Dso (MeV) 3.900

For energies E above EF + E+
V , the form proposed by Mahaux

and Sartor [4] is applied, thus

W L
V (E ) = A+

V (E − EF )2

(E − EF )2 + B2
V

+α

[√
E + (EF + E+

V )3/2

2E
− 3

2

√
EF + E+

V

]
. (15)

In the case of E below EF − E−
V , the strength is given by

W L
V (E ) = A−

V (E − EF )2

(E − EF )2 + B2
V

×
[

1 − (E − EF + E−
V )2

(E − EF + E−
V )2 + (E−

V )2

]
. (16)
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FIG. 3. Depths W (red curve) and dispersive contribution �V
of surface (a), volume (b), and spin-orbit (c) imaginary potentials
as functions of the energy. Dashed, solid, and dotted curves denote
results for 40Ca, 89Y, and 208Pb, respectively.

3. Spin-orbit imaginary depth

For the spin orbit term, the imaginary surface strength is
taken to be symmetrical with respect to the Fermi energy. It
reads

W NL
so (E ) = Aso(E − EF )2

(E − EF )2 + C2
so

− Bso(E − EF )2

(E − EF )2 + D2
so

, (17)

consisting of the difference of two Brown-Rho forms, al-
lowing an analytical expression for the dispersive term
�V NL

so (E ) [28].
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FIG. 4. Reduced radius r0 (a) and diffuseness a (b) as functions
of the target mass A for the nonlocal dispersive model.

IV. PARAMETER CALIBRATION

Once the potential form factors are specified, we look for
the parameters that best reproduce the experimental data. For
each nucleus we carry out an iterative parameter calibration
to minimize the difference between data and the nonlocal
dispersive optical model results. Then one can identify the
dependence of the parameters on the nucleus mass A and
the energy. The variation of the parameters with respect to
the mass and the energy is expected to be smooth, helping
the model to gain predictive power. This parameter search
is highly time consuming, necessitating the use of parallel
computing. For each nucleus, over 2000 processors are used
for twenty-four hours to find the parameters. In addition,
for low neutron energy (below about 15 MeV), compound
neutron emission is described with the Hauser-Feshbach for-
malism [29] using NLD transmission coefficients in TALYS

code [30]. This process is accounted for in the calibration
process.

Our search procedure makes extensive use of the com-
prehensive EXFOR database [19]. In the energy range from
1 keV to 250 MeV, the experimental data of the following 22
elements are used to determine our parameters: C, O, Mg, Al,
Si, S, Ca, Ti, Cr, Fe, Ni, Cu, Y, Zr, Nb, Mo, Sn, Ce, Au, Hg, Pb,
Bi. About 100 energy points are needed to describe accurately
the variations of the total cross section in the energy range
from 1 keV to 250 MeV. As already mentioned, for neutron
energies below a few MeV and especially for light nuclei, the
experimental total cross section must be averaged because of
the presence of compound nucleus resonances. This averaged
total cross section (see Fig. 1) is retained throughout the
calibration. After each step of parameter search, we calculate
bound state energies as well as analyzing powers.
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TABLE II. Nonlocality and mass dependence of depth, radii, and
diffuseness of NLD potential.

Geometrical parameters

r0 (70 < A) (fm) 1.1446 + 2.4200 × 10−4A
r0 (A < 70) (fm) 9.4860 × 10−1 + 8.8000 × 10−3A

−1.3200 × 10−4A2 + 7.1000 × 10−7A3

a (fm) 6.1600 × 10−1 − 1.8200 × 10−4A
β (fm) 0.915

The resulting parameters for strengths of the real and
imaginary potentials are summarized in Table I. In Fig. 3,
we present the strengths of the surface [panel (a)], volume
[panel (b)] and spin-orbit [panel (c)] imaginary contributions
(red curves) together with their respective dispersive contri-
butions (blue curves) for three target-nuclei: 40Ca, 89Y, and
208Pb. In panel (a), W NL

S is nonsymmetrical with respect to
the Fermi energy. This asymmetry results from the fact that
the phase space of particle levels for E � EF is significantly
larger than that of hole levels for E � EF . Therefore the
contributions from two-particle–one-hole states for E � EF

will be larger than that for two-hole–one-particle states at
E � EF [8]. In panel (c), W NL

so is independent of the mass

and symmetrical with respect to the Fermi energy. The real
depths of the volume surface and spin-orbit potential (V NL

V ,
V NL

S , and V NL
so ) are independent of the energy of the projec-

tile. The variations as a function of the mass of the nuclei
are weak for the surface and volume depths, as shown in
Table I.

The optimum nonlocality range β is found to be 0.915 fm,
larger than in previous works [5,10]. The same radius and
diffuseness are used for real and imaginary contributions.
In Fig. 4 we plot the reduced radius r0 [panel (a)] and the
diffuseness a [panel (b)] as functions of the mass A. The
reduced radius increases with mass in contrast to diffuseness,
which is a linear function decreasing as the mass increases.
For the former, the variation is linear for masses greater than
70, while for smaller masses the expression of the radius be-
haves as a polynomial of degree 3. Results are summarized in
Table II.

V. COMPARISON BETWEEN LOCAL AND NONLOCAL
DISPERSIVE MODELS

We examine differences in the calculated scattering observ-
ables for neutron scattering as implied by the local dispersive
(LD) model of Ref. [3] and the nonlocal dispersive (NLD)
model presented in this work.

FIG. 5. Total cross section for neutron-nucleus scattering as function of the energy. The data (symbols) are from Ref. [19]. Red solid curves
correspond to NLD potential (this work) and blue dashed curves to LD potential [3].
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FIG. 6. Differential cross sections (in logarithmic scale) for neu-
tron elastic scattering. Data are denoted by symbols [19]. Red solid
curves correspond to NLD potential (this work) and blue dashed
curves to LD potential [3].

In Fig. 5 we plot the total cross sections for neutron-
nucleus scattering as function of energy. We include ten
targets with masses between 24 and 209. Dashed blue curves
denote results from LD model whereas solid red curves de-
note NLD results (this work). We observe that the models
yield comparable results for σT for neutron energies above
≈10 MeV. Differences are evident at lower energies, although
the models’ agreements with the data are comparable.

In Fig. 6 we show results for the differential cross section as
a function of the scattering angle in the center-of-mass ref-
erence frame (θc.m.). The targets we include in this case are
the same as in Fig. 5, with neutron energies ranging from
6 up to 25.5 MeV. Although the angular descriptions of the
data appear comparable between NLD and LD models, some

FIG. 7. Relative differences experimental vs calculation ex-
pressed as percentages for each nucleus (dashed curves) for total
cross section (a) and differential cross section (b). Results are for
NLD potentials (red circles), LD potential [3] (blue square), and KD
potential [6] (black triangle).

differences are evident in their maxima and minima, with the
NLD approach being in closer agreement with the data.

To compare the agreements with the data of NLD and LD
approaches, we have calculated relative differences with the
data for all the cases considered in the fit procedure. Results
for these differences are shown in Fig. 7, where panel (a)
summarizes results for the total cross section and panel (b)
summarizes those for the differential cross section. Red circles
(blue squares) denote results from NLD (LD) approaches.
Additionally, as a reference, we include in this analysis the
KD non-dispersive model (black triangles). From panel (a)
we observe that all three models yield comparable agreements
in σT , of the order of 3% for medium-mass nuclei. However,
for light nuclei the NLD model yields better agreement (by
roughly ≈1 %) relative to the LD approach. In the case of the
differential cross section, panel (b) of Fig. 7 shows that the
NLD approach is in better agreement with the data relative to
the LD model, particularly for all targets with nuclear masses
below 64. In Fig. 8 we show the analyzing powers (red
curves) obtained from our nonlocal OMP for two incident
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FIG. 8. Analyzing powers (in linear scale) for neutron scattering
at 10 and 17 MeV. Data are denoted by symbols. Red solid curves
are obtained with NLD potential and the blue dashed curves with LD
potential.

neutron energies (10 and 17 MeV) with the following nuclei:
27Al, 40Ca, 54Fe, 58Ni, 65Cu, 89Y, 93Nb, 120Sn, 208Pb, and
209Bi. These results are compared with those calculated with
the LD potential (blue dashed curves). This figure shows that
the nonlocal potential better reproduces the analyzing powers,
particularly their maxima and minima.

In Fig. 9 we show the experimental and calculated neutron
single-particle energies for 208Pb, 90Zr, and 40Ca. We include
results from LD and NLD global potentials. We observe com-
parable agreements of these two models with the data, leaving
room for improvement.

VI. UNCERTAINTIES

To assess the effect of random variations of the parame-
ters of the NLD model on scattering observables, we have
calculated the standard deviation for the calculated cross sec-
tions when geometrical parameters and strengths are varied.
Specifically, in Fig. 10 we show the calculated elastic σE (blue
curves), reaction σR (black curves), and total σT (red curves)
cross sections for n + 208Pb elastic scattering between 1 keV
and 250 MeV. In this case, at each energy we allowed uniform
variations for radius (1%), diffuseness (4%), real volume and
surface depth (2%), and range of nonlocality (2%). Addition-
ally, we allow for 20% variations of the depth of the imaginary
terms. Thus, we performed stratified samplings of parame-
ters over a uniform distribution, resulting in 2000 sets of

parameters (r, a,VS,VV , β,WS,WV ), each of them leading to
values for σE , σR, and σT . In Fig. 10 we plot the mean value
(solid curves) together with its ±1σ variations (shaded areas).
It is interesting to note that, for energies above 0.2 MeV, the
cross sections suffer rather moderate variations under varia-
tions of parameters. Therefore, the limitations of the model
shown in Fig. 5 for σT can be attributed not to the parameters
but to the assumed structure in the separable construction.
This is an indication that a more complete model is needed.

VII. CONCLUSIONS

We have presented the first global, nonlocal, and disper-
sive optical model potential for neutron elastic scattering off
spherical nuclei. The model is suited for beam energies up to
250 MeV and for target masses 16 � A � 209. Both central
and spin-orbit terms include a nonlocal Gaussian form factor
of Perey-Buck type. Additionally, the imaginary volume po-
tential includes a local term. The strengths of the model are
constrained by dispersion relations, allowing a good descrip-
tion of integrated and angular scattering data. The dispersion
relation allows one to determine scattering states and bound
states of the target nucleus with a single potential. We are
fully aware that there remains room for improvement for
the description of bound state properties. We obtain a better
description of the angular scattering data for A � 65 relative
to the LD approach [3]. These improvements appear more
evident in the analyzing power, suggesting the relevance of
nonlocality in the spin-orbit term. This finding is in line with
microscopic studies of nonlocality [22], where both central
and spin-orbit components are nonlocal. As already men-
tioned, an important advantage of global phenomenological
approaches for nucleon scattering lies on their simplicity,
making feasible computations which would require physical
information on processes involving the whole nuclear chart
and over a broad energy range. The challenge in this approach
is to identify strengths and form factors as implied from more
fundamental approaches such as microscopic [31–34] or ab
initio [35–37] ones. Efforts along this line are under way.

ACKNOWLEDGMENTS

This work was performed using HPC resources from
CCRT. H.F.A. thanks the hospitality of colleagues of CEA,
DAM, DIF during his stay at Bruyères-le-Châtel.

APPENDIX: RESOLUTION OF THE
INTEGRODIFFERENTIAL SCHRÖDINGER EQUATION

The search procedure for strengths and geometrical pa-
rameters implies comparisons between data and scattering
observables resulting from the nonlocal optical model we
have discussed. This requires solving the integrodifferential
Schrödinger equation (5) for several targets, energies, and
varying parameters. Thus, we need a fast and accurate method
to obtain the scattering wave functions. Along this line, Eq. (5)
is solved by expanding u jl on the Chebyshev polynomial
basis. Since these polynomials are defined in the interval
[−1,+1] we use the new variable x = 2

RM
r − 1. The quantity

RM represents the maximum value of the variable r (it defines
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FIG. 9. Neutron single-particle energies for 208Pb, 90Zr, and 40Ca determined with LD and NLD potentials and from experiment.

the radius where the potential becomes negligible). Thus the
radial wave function u is written as a linear combination of N

FIG. 10. Uncertainties (±1σ ) in the total (red), reaction (black)
and elastic (blue) cross sections for neutron scattering of 208Pb.

Chebyshev polynomials Tk weighted by the coefficients Ck . It
reads

u

[
RM

2
(x + 1)

]
�

N−1∑
k=0

/
CkTk (x), x ∈ [−1,+1], (A1)

where the symbol / indicates that the first term of the sum is
divided by a factor of 2, following the notation of Masson and
Handscomb [38].

To obtain the radial part of the wave function we need to
find the coefficients Ck with k = 0, . . . , N − 1. That is, we
need N equations. The boundary conditions at r = 0 and r =
RM , yield two equations. Then, considering that Tk (1) = 1 and
Tk (−1) = (−1)k , we get

u(r = 0) =
N−1∑
k=0

/
(−1)kCk = 0, (A2)

u(r = RM ) =
N−1∑
k=0

/
Ck = 1 + i, (A3)

where 1 + i is an arbitrary boundary value with no impact on
the calculated phase shift [17]. It thus remains to find N − 2
equations in order to determine the Ck coefficients. This is
done by evaluating Eq. (5) at each of the N − 2 roots xn of
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the TN−2 Chebyshev polynomial. These roots are

xn = cos
(n − 1/2)π

N − 2
, n = 1, . . . , N − 2. (A4)

In the case of the second derivative of the radial part of the
wave function, we take advantage of the second derivative of
the Chebyshev polynomials,

d2u
(RM

2 (x + 1)
)

dx2

∣∣∣∣∣
x=xn

=
N−1∑
k=2

Ck

k−2∑
m=0

m−r even

/
(k − m)k(k + m)Tm(xn).

(A5)
In the case of a local potential, where we denote

VL(r) = l (l + 1)

r2
+ 2μ

h̄2 V (r), (A6)

the N − 2 equations representing Eq. (5) become

4

R2
M

N−1∑
k=2

Ck

k−2∑
m=0

k−m even

/
(k − m)k(k + m)Tm(xn)

+
N−1∑
k=0

/
CkTk (xn)

[
2μE

h̄2 − VL

(
RM

2
(xn + 1)

)]
= 0. (A7)

When a nonlocal potential is considered, an additional
development taking advantage of the Chebyshev basis is pur-
sued. As for the local potential, the nonlocal potential is also
redefined as

VNL(r, r′) = 2μ

h̄2 V (r, r′), (A8)

and the term

−RM

2

∫ +1

−1
VNL

[
RM

2
(xn + 1),

RM

2
(y + 1)

]
u

[
RM

2
(y + 1)

]
dy,

(A9)

must be added to Eq. (A7) to obtain a Schrödinger equa-
tion with local and nonlocal potentials. In order to perform the
integration, the potential is expressed in terms of Chebyshev
polynomials. This development concerns the variable y of this
potential:

VNL

[
RM

2
(x + 1),

RM

2
(y + 1)

]
�

M∑
m=0

/
vm

[
RM

2
(x + 1)

]
Tm(y).

(A10)

The vm terms are obtained by considering the M + 1 zeros of
the Chebyshev polynomial TM+1,

yp = cos
(p − 1/2)π

M + 1
, p = 1, . . . , M + 1, (A11)

and, using the discrete orthogonality relations [38], one ob-
tains the vm terms

M+1∑
p=1

VNL

[
RM

2
(x + 1),

RM

2
(yp + 1)

]
Tm(yp)

=
M+1∑
p=1

M∑
i=0

/
vi

[
RM

2
(x + 1)

]
Ti(yp)Tm(yp)

= M + 1

2
vm

[
RM

2
(x + 1)

]
. (A12)

The calculation of the integral in Eq. (A9) is thus reduced to a
sum:

∫ +1

−1

M∑
m=0

/
vm

[
RM

2
(x + 1)

]
Tm(y)

N−1∑
k=0

/
CkTk (y)dy

=
M∑

m=0

/
vm

[
RM

2
(x + 1)

] N−1∑
k=0

/
Ck

∫ +1

−1
Tm(y)Tk (y)dy

= −2
N−1∑
k=0

/
Ck

M∑
m=0

/
vm

[
RM

2
(x + 1)

]

× m2 + k2 − 1

(m2 + k2 − 1)2 − 4m2k2

∣∣∣∣
m+k even

. (A13)

The N − 2 equations needed to determine the coefficients
Ck with local and nonlocal potentials are therefore written,
with n = 1, . . . , N − 2,

4

R2
M

N−1∑
k=2

Ck

k−2∑
m=0

k−m even

/
(k − m)k(k + m)Tm(xn)

+ RM

N−1∑
k=0

/
Ck

M∑
m=0

/
vm

(
RM

2
(xn + 1)

)

× m2 + k2 − 1

(m2 + k2 − 1)2 − 4m2k2

∣∣∣∣
m+k even

+
N−1∑
k=0

/
CkTk (xn)

(
2μE

h̄2 − VL

(
RM

2
(xn + 1)

))
= 0.

(A14)

The Ck coefficients with k = 0, . . . , N − 1 are calculated
by solving a system of N linear equations using the lower-
upper (LU) decomposition algorithm [39]. The function has
been modified to allow calculation with complex numbers.
Since the energy-dependent part of the phenomenological po-
tential is separated from the spatial part, the decomposition
of the potential on the Chebyshev polynomials needs to be
performed only once for each nucleus. Up to 100 MeV, 30
Chebyshev polynomials are sufficient to accurately describe
the wave function. Up to 250 MeV, the function must be
developed using over 50 polynomials.
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