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Solving the one-dimensional penetration problem for the fission
channel in the statistical Hauser-Feshbach theory
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We solve the Schrödinger equation for an arbitrary one-dimensional potential energy to calculate the
transmission coefficient in the fission channel of compound nucleus reactions. We incorporate the calculated
transmission coefficients into the statistical Hauser-Feshbach model calculation for neutron-induced reactions
on 235,238U and 239Pu. The one-dimensional model reproduces the evaluated fission cross section data reasonably
well considering the limited number of model parameters involved. A resonance-like structure appears in the
transmission coefficient for a double-humped fission barrier shape that includes an intermediate well, which is
understood to be a quantum mechanical effect in the fission channel. The calculated fission cross sections for the
neutron-induced reactions on 235,238U and 239Pu all exhibit a similar structure.
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I. INTRODUCTION

The statistical compound nucleus theory describes the
probability for a formed compound nucleus to decay into a
channel a by the partial width �a, and the Hauser-Feshbach
theory [1] tells us that the energy-average of width 〈�a〉 can
be replaced by the optical model transmission coefficient
Ta in the time-reverse process. This is intuitive for particle
or photon-induced reactions, as the interpretation is that the
strength to decay into the channel a is proportional to the
compound nucleus formation probability from the same chan-
nel. For the fission channel, however, the reverse process is
not at all trivial. Several approximations and models are then
employed, which significantly complicate the comparison and
interpretation with experimental fission cross-section data.
Studies on the nuclear fission have a long history, and com-
prehensive review articles of the fission calculation are given
by Bjørnholm and Lynn [2], Wagemans [3], and more recently
Talou and Vogt [4].

A traditional approach to calculate the fission penetrabil-
ity (transmission coefficient) in the existing Hauser-Feshbach
codes is to first assume an inverted parabola for a single fission
barrier, and solve a penetrability by adopting the semiclassi-
cal Wentzel-Kramers-Brillouin (WKB) approximation [2,5],
which is often called the Hill-Wheeler penetrability. We often
assume that one-dimensional (1-D) potential energy forms
a double-humped fission barrier shape, which is predicted
by the liquid drop model with the microscopic (shell and
pairing energies) corrections. By decoupling these two fission
barriers, and calculating each Hill-Wheeler penetrability sep-
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arately, an effective (net) transmission coefficient Tf through
the whole potential energy is calculated as

Tf = TATB

TA + TB
, (1)

where TA and TB are the Hill-Wheeler penetrability through
the barriers given in Sec. II. Obviously this treatment over-
simplifies the fission penetration problem, as it ignores the
potential wells between barriers which gives rise to the so-
called class-II and class-III (in the triple-humped case) states.
By introducing the average spacing of the class-II states DII ,
the penetration probabilities through the different barriers are
coupled [6–8] to calculate the net fission probability. Bouland,
Lynn, and Talou [9] implemented the transition states in the
class-II well, through which the penetrability is expressed in
terms of the R-matrix formalism. Bhandari [10] and Sin et al.
[11,12] defined a continuous fission barrier shape and applied
WKB for each segment to calculate the effective transmis-
sion coefficient. Romain, Morillon, and Duarte [13] reported
an antiresonant transmission due to the class-II and class-III
states. Some recent developments in the fission calculations
are summarized in Ref. [4] and references therein.

Segmentation of the potential energy along the nuclear
elongation axis, where the inner barrier, class-II state, outer
barrier, class-III states, etc., are aligned along the deforma-
tion coordinate, is convenient to calculate the penetration
through the entire potential energy surface. Often we cal-
culate the penetration for each of the segments separately,
and combine them. Within such an approximation, however,
the quantum-mechanical tunneling disappears, because the
wave function of the entire system is not considered. Al-
though limited to an analytical expression of potential energy,
Cramer and Nix [14] obtained an exact solution for this wave
function in terms of the parabolic-cylinder functions for the
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double-humped potential shape. Sharma and Leboeuf [15]
extended this technique to the triple-humped potential barrier
case. By solving the Schrödinger equation numerically, an
extension of the Cramer-Nix model to an arbitrary shape of
1-D potential energy is straightforward. This was reported by
Morillon, Duarte, and Romain [16] and by ourselves [17],
where the effective transmission coefficient in Eq. (1) is no
longer involved. The solution of Schrödinger equation for 1-D
potential is, however, just one of all the possible fission paths,
whereas the dynamical fission process takes place through
any excited states on top of the fission barrier. To calculate
the actual fission transmission coefficient that can be used in
the Hauser-Feshbach theory calculations, we have to take into
account the penetration through the barriers corresponding to
the excited states as well.

Eventually we describe the nuclear fission process from
two extreme point of views, namely that the compound nu-
cleus evolves through a fixed albeit large number of fission
paths, or that the configuration is fully mixed in the potential
well so that the penetration through the multiple barriers can
be totally decoupled. In the decoupled limit, we can assume
that another semistable compound nucleus is produced, which
has various excitation energies. This nucleus is formed by
the probability of TA, and decays just like the first compound
nucleus; it may emit a neutron or γ rays, or go beyond the
second fission barrier with the probability TB. This approach
is similar to the traditional models, although it may re-
quire a substantial change in the multistage Hauser-Feshbach
algorithm.

Our approach follows the former case; the fission process
takes place along an eigenstate of the compound nucleus,
which is continuous along the nuclear deformation coordi-
nate. By introducing a probability of forming the semistable
compound nucleus besides the fission penetration, we are able
to consider situations somewhere in between two scenarios.
However, this is beyond the scope of the current study, and
we hold it for future development. In this paper, we revisit the
Cramer-Nix model and its extension to the arbitrary potential
energy shape, and introduce nuclear excitation to calculate
the effective transmission coefficient Tf . The obtained Tf is
used in the Hauser-Feshbach theory to calculate the fission
cross section, which can be compared with available exper-
imental data. We perform the cross-section calculations for
two distinct physical cases corresponding to fertile and fissile
targets: the neutron-induced fission on 238U where the total
excitation energy is still under the fission barrier, and that for
235U and 239Pu where the system energy is higher than the
barrier. In this paper we limit ourselves to the first-chance
fission only, where no neutron emission occurs prior to fission.
However, extension to the multichance fission process is not
complicated at all.

II. THEORY

A. Fission transmission coefficient for
double-humped fission barrier

First we briefly summarize the standard technique to
calculate the fission transmission coefficient Tf for the double-
humped fission barrier. The objective is to emphasize the
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FIG. 1. Schematic picture of double-humped potential energy
along the nuclear deformation direction, showing the double-humped
fission barriers VA and VB, and the class-I and class-II wells between
the barriers. The initial compound nucleus state is at E0 in class I,
which decays through the states at EA and EB on top of each barrier.

distinction between the conventional fission calculation and
our approach. Traditionally The fission barrier is approxi-
mated by an inverted parabola characterized by the barrier
parameters: the heights VA for the inner barrier and VB for the
outer barrier, and their curvatures CA and CB (the curvature
is also denoted by h̄ω), as shown schematically in Fig. 1.
By applying the WKB approximation to the parabolic-shaped
barriers, the transmission coefficient is given by the Hill-
Wheeler expression [5]

Ti(E ) = 1

1 + exp
(
2π Vi+E−E0 )

Ci

) , i = A, B, (2)

where E0 is the initial excitation energy and E are the nuclear
excitation energies measured from the top of each barrier.
For a neutron-induced fission case, E0 = En + Sn, where En is
the incident neutron energy in the center-of-mass system, and
Sn is the neutron separation energy. The fission transmission
coefficient T J� for the compound nucleus spin J and parity
� is the sum of all penetrabilities through the barriers corre-
sponding to the excited states at E = Ek for the discrete levels
and at E = Ex in the continuum with the same spin and parity:

T J�
i =

∑
k

Ti(Ek )δJk ,Jδ�k ,�

+
∫ ∞

Ec,i

Ti(Ex )ρi(Ex, J,�)dEx, i = A, B, (3)

where ρ(Ex, J,�) is the level density on top of each barrier,
Ec is the highest discrete state energy, and the Kronecker
deltas ensure that the spin and parity of the kth discrete state
are the same as J and �. This implies that the barrier asso-
ciated with each excited state is obtained by simply shifting
the ground-state barrier by the excitation energy. Often some
phenomenological models are applied to ρ(Ex, J,�) to take
the nuclear deformation effect into account, which is the so-
called collective enhancement [18]. A standard technique in
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calculating fission cross sections, e.g. as adopted by Iwamoto
[19], assumes typical nuclear deformations at the inner and
outer barriers. Although the collective enhancement is a con-
sequence of change in the nuclear shape and structure, it is
model and assumption-dependent in general, which makes
fission model comparison difficult.

When the fission barriers VA and VB are fully decoupled,
T J�

A represents a probability of going through the inner bar-
rier, and a branching ratio from the intermediate state to the
outer direction is T J�

B /(T J�
A + T J�

B ) for a given J�. The ef-
fective fission transmission coefficient is thus given by Eq. (1).
This expression implies that the dynamical process in the
class-II well is fully adiabatic, and it virtually forms another
compound state. It should be noted that there is no explicit
fission path in this model, since integration over the excited
states in Eq. (3) is performed before connecting T J�

A and T J�
B .

In the following subsections, we define Tf in another way.
To distinguish the standard fission transmission coefficient
defined by Eqs. (1)–(3), which is generally employed by sta-
tistical Hauser-Feshbach nuclear reaction codes, we denote
the conventional Tf in Eq. (1) by T STD

f in our discussions,
unless otherwise specified.

B. Fission transmission coefficient for 1-D shape

1. Concatenated parabolas

The Schrödinger equation for an arbitrary one-dimensional
(1-D) potential energy shape can be solved exactly without
the WKB approximation by applying the numerical integra-
tion technique. Although our purpose is to solve problems
for any fission barrier shape, it is still convenient to em-
ploy the parabolic representation to compare with the two
inverted parabola cases. Similar to the three-quadratic-surface
parametrization of nuclear shape [20,21], the 1-D barrier is
parametrized by smoothly connected parabolas

V (i, x) = Vi + (−1)i 1
2 ci(x − xi )

2, i = 1, 2, . . . , (4)

where i is the region index for the segmented parabola (odd
i for barriers, and even for wells), x is a dimensionless defor-
mation coordinate, ci = μC2

i /h̄2, Vi is the top (bottom) energy
of the barrier (well), xi is the center of each parabola, and μ is
the inertial mass parameter. Note that the region index adopted
here corresponds to the double-humped case if A = 1 and
B = 3. Because the deformation coordinate is dimensionless,
the calculated result is insensitive to μ, and we take

μ

h̄2 = 0.054A5/3 MeV−1 (5)

as suggested by Cramer and Nix [14]. The region index i runs
from 1 to 3 for the double-humped shape, and from 1 to 5 for
the triple-humped shape. The double-humped case is shown
in Fig. 2 by the solid curve.

By providing the barrier parameters Vi and Ci, the junction
point (ξi) and the parabola center (xi) for each adjacent region
are automatically determined through continuity relations.
Since the abscissa is arbitrary in the 1-D model, we first fix

FIG. 2. Schematic picture of 1-D potential energy along the nu-
clear deformation direction. The initial compound nucleus state is at
E0, which decays through 1-D fission paths, e.g., the trajectories 1,
2, etc.

the center of the first barrier at

x1 = xmin +
√

2V1

c1
, (6)

where xmin is an arbitrary small offset. The consecutive central
points are given by

xi = xi−1 +
√

2|Vi−1 − Vi|(ci−1 + ci )

ci−1ci
, (7)

and the junction points are

ξi = cixi + ci+1xi+1

ci + ci+1
. (8)

With the central points of Eq. (7) and the junction points
of Eq. (8), the segmented parabolas in Eq. (4) are smoothly
concatenated.

2. Solution of 1-D Schrödinger equation

The 1-D Schrödinger equation for the fission channel of a
compound nucleus at the system energy E is written as [14]

d2

dx2
φ(x) + 2μ

h̄2 {E − [V (x) + iW (x)]}φ(x) = 0, (9)

where the wave function φ(x) satisfies the following boundary
condition [22]:

φ(x) �
{

u(−)(kx) − Su(+)(kx), x > xmax,

Au(−)(kx), x < xmin.
(10)

[xmin, xmax] is the entire range of fission barrier considered,
k = √

2μE is the wave number, A is the amplitude of the wave
function in the class-I well, and

u(±)(kx) = cos(kx) ± i sin(kx). (11)

044610-3



T. KAWANO, P. TALOU, AND S. HILAIRE PHYSICAL REVIEW C 109, 044610 (2024)

The Schödinger equation in the internal region can be solved
numerically by a standard technique such as the Numerov
method or Fox-Goodwin method [23]. The solution at the
matching point xm in the external region (xm > xmax) is
written as

ψ (xm) = u(−)(kxm) − Su(+)(kxm), (12)

and the internal solution φ(xm) is smoothly connected with the
external solution at xm. Analogously to the scattering matrix
element in the single-channel optical model, the coefficient S
is then given by

S = f u(−)(xm) − g(−)

f u(+)(xm) − g(+)
, (13)

where

f ≡ dφ/dx

φ

∣∣∣∣
xm

and g(±) ≡ du(±)

dx

∣∣∣∣
xm

. (14)

When the potential is real everywhere, the fission transmis-
sion coefficient is given by

T = 1 − |S|2. (15)

It is possible to add a small imaginary potential that ac-
counts for flux absorption [12] in the class-II and/or class-III
well between the barriers. In the case of the complex potential,
the amplitude A in Eq. (10) is given by the normalization
factor of the internal wave function at xm,

A = u(−) − Su(+)

φ

∣∣∣∣
xm

, (16)

and the transmission coefficient through the barrier is Td =
|A|2. Because of the loss of flux due to the imaginary potential,
Td is smaller than T , and Td goes into the statistical Hauser-
Feshbach theory instead of T . Similarly to the optical model,
the lost flux gives a probability of forming another CN, and
this CN initiates further decay chains through the fission and
γ -ray emission channels. The neutron emission channel may
open when its excitation energy is still larger than the neutron
separation energy. Although such calculation is feasible, we
aim at demonstrating the main feature of current modeling in
contrast to the T STD

f calculation in the real potential case. In
the following discussion, the potential is always real.

3. Potential energy for excited states

Since penetration through the potential defined by Eq. (4)
is merely one of all the possible fission paths, we have
to aggregate such possible trajectories (paths) to calculate
the summed transmission coefficient, which is analogous to
Eq. (3). While the fission penetration for the ground state takes
place through the shape of potential energy in Eq. (4), each of
the excited states would be constructed on top of the ground
state trajectory. This is a critical difference between the T STD

f
calculation and 1-D model, as an adiabatic intermediate state
assumed in the conventional model conceals an actual fission
path along the deformation coordinate, while it is explicit in
the 1-D model.

To define the fission trajectories for the excited states, one
of the most naive assumptions, like Eq. (2) being summed in

Eq. (3) by shifting the excitation energy, is that the poten-
tial energy is shifted by the excitation energy Ex as V (x) =
V0(x) + Ex, where V0 is the potential for the ground state.
This, however, ignores distortion of the eigenstate spectrum
in a compound nucleus whose shape changes. At the limit of
adiabatic change in the nuclear shape, the excitation energy of
each of the eigenstates changes slightly due to shell, pairing,
and nuclear deformation effects. It is in particular well known
that the moment of inertia of a nucleus increases with defor-
mation, which reduces the spacing between the levels within
a rotational band. This results in distortion of the trajectories,
as opposed to a simple shift in energy.

We empirically know that calculated fission cross sec-
tions underestimate experimental data if we simply adopt the
level density ρ(Ex ) for the ground state deformation in the
sum of Eq. (3). Therefore we often employ some models to
enhance the level densities on top of each of the barriers,
which account for increasing collective degree-of-freedom
in a strongly deformed nucleus. Instead of introducing the
collective enhancement in our 1-D penetration calculation, we
assume the excitation energies of the states will be lowered
due to the nuclear deformation. In other words, the eigenstates
in a compound nucleus at relatively low excitation energies
are distorted by deformation effects. An illustration of the dis-
tortion effect corresponding to a compression is schematically
shown in Fig. 2 by the dotted curves: trajectories 2 and 3.
These trajectories are defined for all the discrete levels and for
all continuum bins in the compound nucleus, which maintains
the band structure of collective states along the nuclear defor-
mation coordinate. For example, the ground-state rotational
band is seen at any deformation points.

The trajectory compression should be mitigated for the
higher excitation energies, which is also phenomenologically
known as the damping of collectivity. Although the com-
pression might depend on the deformation as it changes the
pairing and shell effects, we model the compression in a rather
simple way to eliminate unphysical overfitting to observed
data. We assume the eigenstates in the compound nucleus are
compressed by a factor that depends on the excitation energy
only. Our ansatz reads

εx = { f0 + (1 − e− f1Ex )(1 − f0)}Ex, (17)

where the parameter f0 is roughly 0.8 and the damping f1

is ≈0.2 MeV−1 as shown later. The corresponding fission
trajectory for the excited states is now

V (x) = V0(x) + εx. (18)

Because the discrete level representation and the level density
for the target nucleus are smoothly connected at Ec, Eqs. (17)
and (18) ensure this smoothness everywhere in the trajectory.
The transmission coefficient for this trajectory is T (εx ), and
the fission transmission coefficient T J�

f is given by

T J�
f =

∑
k

T (εk )δJk ,Jδ�k ,� +
∫ ∞

Ec

T (εx )ρ(εx, J,�)dEx.

(19)

Although the integration range goes to infinity, or some upper-
limit value could be considered [24], this converges quickly
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FIG. 3. Calculated wave functions for the connected parabolas.
The potential energy is shown by the dot-dashed curves. The solid
and dotted curves are the normalized wave function (solid for the
real part, and dotted for the imaginary part). (a) The system energy
lies below both barrier heights, (b) the energy is between the barriers,
and (c) it is above the barriers.

with increasing excitation energy. Generally it is safe to trun-
cate the integration at Ex = E0.

III. RESULTS AND DISCUSSION

A. Wave function and transmission coefficient
for a single fission path

As an example of the 1-D model, the calculated wave
functions for connected parabolas are shown in Fig. 3, which
is for the A = 239 system. The assumed barrier heights are
V1 = 6.5, V2 = 1, and V3 = 5.5 MeV, with the curvatures of
C1 = 0.6, C2 = 0.4, and C3 = 0.5 MeV. We depict the three
cases of system energy E : (a) below both of the barriers, (b)
between V1 and V3, and (c) above both.

Since the 1-D potential penetration problem is invariant
whether numerical integration is performed from the right
or left side, the wave function is normalized to the external
function that has unit amplitude. The penetrability is seen as
the amplitude of the wave function inside the potential region.

Apparently the wave function penetrates through the potential
barrier when the system has enough energy to overcome the
both barriers E > V1 and E > V3, and it is blocked if the
barrier is higher than the system energy. However, although
the wave function damps rapidly, quantum tunneling is still
seen beyond the barrier.

One of the remarkable differences from T STD
f is that the

1-D model sometimes exhibits resonating behavior due to
the penetration through the class-II well. This was already
reported by Cramer and Nix [14] in their parabolic-cylinder
function expression. It should be noted that this is not an ac-
tual compound nucleus resonance, but a sort of the size effect
where the traveling and reflecting waves have accidentally
the same phase. As a result the wave function is amplified
significantly at a resonating energy.

This amplification can be seen easily in the transmission
coefficient in Fig. 4. The top panel is for the same poten-
tial as the one in Fig. 3. The first sharp resonance appears
below the inner barrier of V1 = 5.5 MeV, and the second
broader resonance is just above the barrier. We also depicted
the transmission coefficients, T1, and T2, calculated with the
WKB approximation in Eq. (2) for the inner (V1) and outer
(V3) barriers. When we combine these two fission transmis-
sion coefficients by Eq. (1) in the case for Fig. 4(a), the
effective fission transmission coefficient becomes almost the
same as T1 at low energies, because T1 	 T3 [we do not
show T1T3/(T1 + T3), since it overlaps with T1 except for in
the region T1 � 1]. T1T3/(T1 + T3) � T1 agrees with the 1-D
model in the energy range above 5.8 MeV. However, it devi-
ates notably from the 1-D model when an interference effect
of penetrations through the inner and outer barriers becomes
visible.

This effect becomes more remarkable when the inner and
outer barriers have a similar magnitude, which results in a
special circumstance that the penetration and reflection waves
are in phase. The bottom panel in Fig. 4 is the case where
these barriers have the same height of 6.0 MeV. A broad
resonance appears just below the fission barrier, which en-
hances the fission cross section even if the compound state
is still below the fission barrier. Then the penetration drops
rapidly as the excitation energy decreases. In contrast, the
transmission coefficients T1 and T3 by WKB for the inner
and outer barriers stay higher in the subthreshold region. The
combined transmission coefficient T1T3/(T1 + T3) is slightly
lower than T3 but almost identical below 5.6 MeV. Under these
circumstances, the standard technique of fission calculation
using T STD

f may give unreliable fission cross sections in the
subthreshold region, albeit these cross sections are very small
and experimental data might be uncertain. Nuclear reaction
codes sometimes introduce a phenomenological class-II (and
class-III) resonance effect to compensate for this deficiency
[4,25].

The difference in the WKB curves in Fig. 4(b) is due to
the curvatures, and both curves approach TA = TB = 1 once
the system has more than the barrier energy. However, the
effective transmission coefficient becomes 1/2 when Eq. (1)
is applied. This is also an important difference between Tf and
T STD

f , as the 1-D model always gives T = 1 when the system
energy can overcome all the barriers.
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FIG. 4. Calculated transmission coefficients for the connected
parabolas as a function of the excitation energy. The top panel
(a) is for the potential characterized by V1 = 6.5, V2 = 1.0, and V3 =
5.5 MeV, with the curvatures of C1 = 0.6, C2 = 0.4, and C3 = 0.5
MeV, and the bottom panel (b) is for the V1 = V3 = 6.0 MeV case.
The dashed and dotted curves are the WKB approximations for the
inner and outer barriers.

B. Hauser-Feshbach model calculation

We incorporate the fission transmission coefficient in
Eq. (19) into the statistical Hauser-Feshbach model calcula-
tion to demonstrate applicability of the 1-D model in actual
compound nucleus calculations.

The calculation is performed with the CoH3 statisti-
cal Hauser-Feshbach code [26], which properly combines
the coupled-channels optical model and the statistical
Hauser-Feshbach theory by performing the Engelbrecht-
Weidenmüller transformation [27–29] of the optical model
penetration matrix [30]. This is particularly important for
nuclear reaction modeling in the actinide mass region. We em-
ploy the coupled-channels optical potential by Soukhovitskii
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FIG. 5. Calculated fission cross section for neutron-induced re-
action on 238U. The barrier height parameters are V1 = 6.0, V2 =
0.5, and V3 = 5.0 for the solid curve. The dashed curve is for
V3 = 5.5 MeV.

et al. [31] for producing the neutron penetration matrix and
the generalized transmission coefficients [32].

To look at the fission channel more carefully, we take
some reasonable model inputs for other reaction channels
from literature and do not attempt to fine tune, as the purpose
of this study is not a parameter fitting. Since the curvature
parameters C are relatively insensitive to fitting fission cross
section calculation, we fix them to a typical value of 0.6 MeV,
and roughly estimate the heights of inner and outer barriers as
well as the trajectory compression parameters in Eq. (17) by
comparing with experimental fission cross section data. The
class-II depth has also a moderate impact on the calculation
of transmission coefficients as far as we provide a reasonable
value. We fix it to 0.5 MeV. Other model parameters are set to
default internal values in CoH3. The γ -ray strength function is
taken from Kopecky and Uhl [33] with the M1 scissors mode
[34], the level density is from the Gilbert-Cameron composite
formula [35,36], and the discrete level data are taken from
RIPL-3 [37].

First, we perform the statistical model calculations for
neutron-induced reaction on 238U, where subthreshold fission
may be seen below about 1 MeV of incident neutron energy.
The ground state rotational band members, 0+, 2+, 4+, and
6+, are coupled with the deformation parameters taken from
the finite range droplet model (FRDM) [38]. The calculated
fission cross sections are shown in Fig. 5 by comparing with
the evaluated fission cross sections in ENDF/B-VIII.0 [39]
and JENDL-5 [40]. The reason for showing the evaluations
instead of actual experimental data is that the evaluated data
often include more experimental information than the direct
measurement of 238U fission cross section, e.g., cross sec-
tion ratio measurements. The accuracy of the evaluations is
good enough to test the relevance of this new model. We found
that the case of V1 = 6, V2 = 0.5, and V3 = 5 MeV reasonably
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FIG. 6. Calculated fission cross section for neutron-induced re-
action on 238U. The barrier height parameters are V1 = 6.0, V2 = 0.5,
and V3 = 5.0, the same as in Fig. 5, but a small perturbation ±V is
applied to the 1-D potential energy surface.

reproduces the evaluated fission cross section in the energy
range of our interest. The compression parameters f0 = 0.8
and f1 = 0.2 MeV−1 were needed to reproduce the fission
cross section plateau above 2 MeV. We also calculated the
V3 = 5.5 MeV case, which produces a more resonance-like
structure below 1 MeV, despite the fact that it tends to under-
estimate the evaluations on average.

Since the resonating behavior seen in the subthreshold
region originates from the wave function in between the inner
and outer barriers, their locations and amplitudes strongly de-
pend on the shape of the potential energy surface. Because the
1-D potential energy constructed by smoothly concatenating
segmented parabolas is a crude approximation to describe the
location of resonances, we naturally understand that such a
structure in the experimental data cannot be predicted cor-
rectly by the model unless we modify the potential shape
freely. That being said, the fission cross sections calculated
with the 1-D model in the subthreshold region are not so far
from reality, which is usually not so obvious in the T STD

f case.
Note that, in evaluated files, resonant structures are usually
obtained by adjusting the energy, spin, and parities of class-II
states to fit data.

In order to show a sensitivity of the resonance location
to the potential shape, we calculated the fission cross sec-
tions when the potential energy surface is slightly modified
by ±V (x), where we adopted a Gaussian form for the
perturbation,

V (x) = p1 exp

{
− (x − p2)2

2p2
3

}
. (20)

By setting p1 = 0.1 MeV, p2 = 0.3, and p3 = 0.05, the
parabolic shape near the peak of the inner barrier is perturbed
by ±100 keV. The calculated fission cross sections below
200 keV are shown in Fig. 6. A small increase (decrease) in
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FIG. 7. Calculated fission cross section for neutron-induced re-
action on 235U. The barrier height parameters are V1 = 5.9, V2 = 0.5,
and V3 = 5.7 MeV for the solid curve. The dashed curves are the case
when V1 ± 100 keV.

the inner barrier shifts the resonances to the higher (lower)
side, which is caused by the phase shift of wave functions.

The neutron-induced reaction on 235U does not have a
threshold in the fission channel. The compound nucleus of
236U has the excitation energy of En + Sn = En + 6.55 MeV,
and it already has enough energy to fission even for a
thermal-energy neutron incident. We adopt the same trajectory
compression parameter, V2, and curvature parameters as those
in the 238U calculation, and just look for V1 and V3. We found
that the set of V1 = 5.9 and V3 = 5.7 MeV gives a reasonable
fit to the experimental 235U fission cross section, as compared
with the evaluated values in Fig. 7. The resonance-like struc-
ture, which is seen in the subthreshold fission of 238U, is also
seen near 60 keV. The evaluated data also show a small bump
near 30 keV, which might be attributed to enhancement of the
wave-function amplitude in between the barriers. However, it
is hard to claim that our predicted peak at 60 keV corresponds
to the observed bump, as the potential energy shape is over-
simplified in this study.

To show a sensitivity of the inner barrier (or the higher
one), a range of calculated fission cross sections by chang-
ing V1 by ±100 keV is shown by the dashed curves. A
more resonance-like structure appears when V1 is reduced
to 5.8 MeV, because there is only a 100 keV difference be-
tween V1 and V3. When the difference is larger, V1 + 100 keV,
the structure becomes less pronounced. A similar sensitiv-
ity study was performed by Neudecker el al. [41], where a
100–150 keV change in the fission barrier height changes the
calculated fission cross sections by 10% or so, while the cross-
section shape remains the same in the conventional fission
model.

While V1 has such a large sensitivity, the outer barrier (or
the lower one) does not change the calculated fission cross
section much, as far as V3 is lower than V1 by a few hundred
keV or more. Figure 7 includes the case of V1 = 5.9 and
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FIG. 8. Calculated fission cross section for neutron-induced re-
action on 239Pu. The barrier height parameters are V1 = 5.9, V2 =
0.5, and V3 = 5.7 MeV for the solid curve. The dashed curves are
the case when V1 ± 100 keV.

V3 = 5.4 MeV, where the resonance-like structure is fully
washed out. We do not show the sensitivity of V3 by further
lowering the outer barrier, since these curves are hard to dis-
tinguish anymore. Astonishingly, the calculated fission cross
sections remain almost identical even if V3 = 1 MeV, which
implies that the fission calculation is totally governed by the
single-humped fission barrier shape.

Figure 8 shows the calculated fission cross section of 239Pu.
In this case, it was difficult to obtain a reasonable fit to the
evaluations by employing the same compression parameters,
and a reduction of f0 to 0.55 was needed ( f1 is the same
as before). The barrier height parameters are V1 = 5.9 and
V2 = 5.7 MeV. The resonance-like structure also appears, al-
though it is not as noticeable as in the 238U case. We also show
the cross-section band when V1 ± 100 keV. The sensitivity of
V1 to the fission cross section is similar to 235U. The eval-
uated cross sections are roughly covered by the ±100 keV
band. However, again, we emphasize that the objective of
the present study is not to fit perfectly the model calcula-
tion to the experimental data but to demonstrate the fact that
the simple 1-D model is potentially capable of capturing the
gross features of the fission reaction process by producing
calculated fission cross sections in reasonable agreement with
experimental data, without the need for a large number of
fitting model parameters.

C. Possible refinements

Although we employed the parametrized potential shape,
which is constructed using segmented parabolas, the exper-
imental fission cross sections are reasonably reproduced by
a few model parameters that characterize the shape itself.
This is already a significant improvement of the statisti-
cal Hauser-Feshbach calculations for fission compared to
the traditional fission calculation by employing T STD

f . For

better reproduction of available experimental data, as well
as prediction of unknown fission cross sections, we envi-
sion further improvement by incorporating a few theoretical
ingredients.

First, the potential energy shape could be taken from the
potential energy surface calculated microscopically [42] or
by semimicroscopic approaches [21,43–45]. Because the po-
tential energy surface is often defined in a multidimensional
deformation coordinate space, either we have to project the
surface onto a one-dimensional axis (it is, however, known
that the projection often causes discontinuity problems [46]),
or our 1-D model should be extended to a set of coupled equa-
tions for the multidimensional coordinate. Second, we should
employ a better trajectory compression model rather than the
simple damping of Eq. (17), where the nuclear deformation
effect is ignored, since it is known that the single-particle
spectrum depends on the nuclear deformation. Because our
trajectory compression model is constant along the defor-
mation axis, the potential penetration calculation becomes
invariant for exchange of the inner and outer barriers, while
the calculated potential energy surface often indicates that the
inner barrier tends to be higher than the outer barrier for the
U and Pu isotopes. Such a property might be seen by intro-
ducing the trajectory distortion that is deformation dependent.
The nuclear deformation can be calculated with the full- or
semimicroscopic approaches, where broken symmetries in the
nuclear shape are naturally taken into account. We could also
estimate possible trajectories by calculating the microscopic
level densities based on the single-particle energies in the
deformed one-body potential.

IV. CONCLUSION

We proposed a new model to calculate fission cross sec-
tions in the statistical Hauser-Feshbach framework. Instead
of applying the WKB approximation for uncoupled fission
barriers, as often done in the past, we solved the Schrödinger
equation for a one-dimensional (1-D) potential model to cal-
culate the penetration probabilities (transmission coefficients)
in the fission channel of compound nucleus reactions. Because
we took continuity of the fission path into consideration,
the traditional expression to combine several penetrabilities
for different barriers, like T = TATB/(TA + TB), is no longer
involved in our model. Although the potential shape was pa-
rameterized by smoothly concatenated parabolas for the sake
of convenience, the model can be applied to any arbitrary
shape, as we obtain the wave function by the numerical in-
tegration technique. This was shown by adding a Gaussian
perturbation to the potential shape.

We showed that a resonance structure manifests in the
calculated transmission coefficients for the double-humped
fission barrier that includes a potential well between them,
which is understood to be a quantum mechanical effect in
the fission channel. The resonance structure becomes more
remarkable when these barriers have a similar height, where
the penetration and reflection waves are in phase.

The 1-D potential model was incorporated into the sta-
tistical Hauser-Feshbach model to calculate neutron-induced
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reactions on 235,238U and 239Pu. In order to calculate the poten-
tial penetration for the excited states, we introduced a simple
trajectory compression model to account for change in the
nuclear structure due to the nuclear deformation. By aggre-
gating the fission transmission coefficients for all the possible
fission paths, calculated fission cross sections for 235,238U and
239Pu were compared with the evaluated data that represent
the experimental cross sections. We showed that reasonable
reproduction of the data can be obtained by a limited number
of model parameters. Although the detailed structure seen in
the experimental fission cross section is hardly reproduced by
the 1-D model due to the crude approximation of the adopted
potential, further improvement could be made by more careful

studies of the potential shape, together with more realistic
trajectory compression models.
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