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Dynamically assisted nuclear fusion in the strong-field regime
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We consider quantum tunneling between fusing nuclei in the presence of a harmonically time-varying field.
The tunneling rate is calculated using Floquet/Volkov (FV) and Kramers-Henneberger (KH) approaches, which
are both compared to a first-principles numerical solution of the Crank-Nicolson (CN) type. Numerical validation
of the FV approach justifies its use in analytical estimates of laser-enhanced reaction rates, while the KH
approach does not reproduce the predictions of the others. For a deuterium-tritium plasma at a temperature
of 1 keV, it is found that significant enhancement of fusion reactivity requires field strengths on the order of
1015–1016 V/m and photon energies below 1 keV, which is within reach of next-generation x-ray free electron
lasers (XFELs).
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I. INTRODUCTION

Can extreme electromagnetic fields enhance the rate of
fusion reactions in a realistic plasma? Access to a new regime
of laser parameters [1–5] has directed attention toward the
theoretical description of a number of processes affected or
effected by the presence of such extreme fields. Examples
include α- and proton-decay of atomic nuclei [6–8], electronic
screening [9], and pair production, other QED processes in
plasmas [10,11], and also nuclear excitations [12–16]. Of
great significance among these types of laser-assisted pro-
cesses is that of nuclear fusion [17–26], in large part due to the
ever-growing need for an abundant source of clean energy. Fu-
sion is the nuclear reaction central to the evolution and power
output of every star in the universe [27]. First conceptualized
just a decade after the famous mass-energy equivalence char-
acterizing its exothermicity, this process eventually gained a
theoretical description in the 1930s [28,29]. Over the sub-
sequent nine decades, the scientific community has made
gradual progress toward the production of a burning plasma
[30–36]. The possible ability to enhance the reactivity in
a plasma using ultraintense lasers could have major impli-
cations for the technological development of fusion power.
Various approaches to modeling the effects of an ultraintense
laser on fusion processes have been explored in recent works.
Those employed can be largely categorized as semiclassical
approaches: the Kramers-Henneberger (KH) approximation,
and the Floquet-Volkoff (FV) method. Predictions are often
restricted to particular cases, being made at isolated points
[17,18] or sets of points [19–24] in the parameter range of
interest. Our first work [25] made a systematic laser-parameter
scan, which largely discredited the applicability of semiclas-
sical methods for laser-enhancement predictions to nuclear
fusion. In our second work [26] we showed that the remaining
two methods display contradictory trends and in some cases,
differ substantially.

Thus, to help resolve this ambiguity between analytical
models, in this work we provide a robust estimate for the
regime of field strengths and frequencies associated with
the onset of substantial laser-enhanced fusion using a first-
principles numerical solution of the Crank-Nicolson (CN)
type. We show that the FV description leads to estimates that
are in excellent agreement with those of the CN calculation
over 10 orders of magnitude of variation. This analytical
expression comes from the simplified picture in which pairs
of fusing particles exchange an integer number of photons,
each having energy h̄ω, with the laser field. On the other
hand, the well-known KH description, in terms of a time-
averaged, rapidly oscillating Coulomb barrier, leads to vastly
different predictions. We conclude from this discrepancy that
such a time-averaging procedure is unjustified. More details
surrounding each employed method are deferred to the Ap-
pendixes. After having verified the FV method, we use it to
estimate the laser-induced fusion enhancement to the overall
reactivity in a thermalized plasma.

As an example case in the calculations to follow, we con-
sider the deuterium-tritium (DT) reaction 2H +3H→ 4He +n,
along with a range of laser parameters consistent with state-
of-the-art x-ray free electron laser (XFEL) capabilities. This
range is taken to include photon energies on the order of
keV and electric field strengths on the order of 1015 V/m
(laser intensities on the order of 1023 W/cm2). The calcula-
tions throughout this work rely on the dipole approximation,
meaning that the external field is always treated as spatially
uniform. Note that this further implies the field has no mag-
netic component. It applies in this case, since both the laser
wavelength and spot size are always much larger than the
size of the two-particle system on which the fusion process
is modeled. Under this approximation, the one-dimensional
(1D) formulation of the original problem can be extended in a
straightforward way to account for the external field [7].
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II. GAMOW MODEL AND BEYOND

In the Gamow model of nuclear reactions, two particles
with respective masses m1 and m2, charge numbers Z1 and
Z2, and initial velocities v1 and v2 are considered in their
center-of-momentum frame [27,37–39]. This model describes
the process by which they fuse in three independent steps:
(i) collision, (ii) tunneling, and (iii) nuclear interaction. Each
step respectively contributes a term to the formula for the
cross section σ of a fusion reaction:

σ (E ) = 1

E︸︷︷︸
(i)

× T (E )︸ ︷︷ ︸
(ii)

×S (E )︸︷︷︸
(iii)

, (1)

having dimensions of area (SI units m2). This physical
quantity loosely corresponds—but is not equivalent—to the
likelihood that a reaction occurs at a given center-of-mass
energy E = μu2/2. Here, μ−1 = m−1

1 + m−1
2 defines the re-

duced mass μ of the particles, and u = |v1 − v2| is their
relative speed. The quantity T is the transparency factor,
and S is the astrophysical S factor, which is often fitted
by a polynomial [40,41]. Applying a strong external field is
theorized to affect the tunneling probability in step (ii) by
modifying the Coulomb potential, akin to tunnel ionization of
atoms [42] or dissociation of molecules [43] in optical laser
fields. While the field strengths of interest are extreme in the
sense of modern laser capabilities, they are assumed to have
a negligible effect on step (iii) directly, due to the nuclear
potential having an energy scale that is many orders of mag-
nitude larger [27,38,39]. Note that the geometric factor from
step (i) is proportional to the square of de Broglie wavelength
λ̄ = h̄/

√
2μE . We emphasize that although the topic of laser-

driven tunneling already enjoys an established place among
scientific literature spanning several decades, it was not di-
rectly considered in the context of nuclear fusion until quite
recently [17].

The transparency factor describes the probability that the
particles tunnel through their mutual Coulomb repulsion to
within reach of the attractive, short-range, strong nuclear
force. This probability is calculated using the solution �(r, t )
to the time-dependent Schrödinger equation (TDSE) describ-
ing their relative motion, where r > 0 is the interparticle
separation. It has the form ih̄ ∂�

∂t = ( p2

2μ
+ V )�, where p

is the momentum and V is the potential. When applying
the Wentzel-Kramers-Brillouin (WKB) approximation to ex-
press � in the presence of a Coulomb potential VC(r) = κ/r
with κ = e2Z1Z2/4πε0 and no external field, one obtains the
eponymous Gamow factor,

T (E ) = exp−G/
√E , (2)

where G = πκ
√

2μ/h̄ is the Gamow constant [19,27]. Above,
ε0 is the vacuum permittivity and e is the elementary
charge. Note that Eq. (2) is obtained by regarding the
nuclear binding potential as a contact force, describing
the formation of a pointlike compound nucleus in step
(iii) by assuming that the particles must tunnel all the
way to r = 0. Additionally, only the 1D radial solution
is considered, meaning p → −ih̄ ∂/∂r r̂, and contributions

from TDSE solutions with nonzero angular momentum are
neglected [27,38,39].

When extending the Gamow model to incorporate a dy-
namic external field Vext(r, t ), the transparency calculation
still requires that the TDSE be solved, but now we must
let V (r, t ) = VC(r) + Vext(r, t ). The added time dependence
makes the WKB approximation unsuitable [25], and the
widely used imaginary time method [6,44,45] diverges in
the frequency range of interest [25]. As a consequence, the
semiclassical approximation must be abandoned altogether;
however, the parameter range of interest still conveniently
admits a nonrelativistic description of tunneling motion taking
place within a classical electromagnetic field. The resulting
TDSE presents an opportunity for the analytical FV and KH
approaches to be compared, and benchmarked, against the
numerical CN approach. In KH and CN, the nuclear binding
region is modeled as having radius R ≈ 1.44(A1/3

1 + A1/3
2 ) in

femtometers [18,27,38,39] rather than being pointlike, where
A1 and A2 are the respective mass numbers of the fusing
particles. Therefore, we apply as in [25] the multiplicative fac-
tor exp{2G[ sin−1√ρ + √

ρ(1 − ρ) ]/π
√
E} to Eq. (2), where

ρ = RE/κ , in order to account for this finite radius. Doing
so also establishes a consistent value of the field-free trans-
parency across all methods, allowing their predictions of the
laser-modification effect to be reliably compared.

We consider a linearly polarized laser field, introducing
the additional parameters A, θ , and ω to the tunneling prob-
lem. They respectively correspond to the vector potential
magnitude, polarization angle (with respect to the interparti-
cle motion), and angular frequency of the applied harmonic
field. Applying the principle of minimal coupling, p → p +
qA cos(ωt ), in the length gauge, and expanding the kinetic
term leads to the external field

Vext(r, t ) = Uq cos(ωt ) + 2Up cos2(ωt ) (3)

to the Hamiltonian in the TDSE, where Uq = qAu cos θ

and Up = q2A2/4μ are respectively quiver and pondermo-
tive terms associated with the laser-driven oscillation. Here,
q/μ = e(Z1/m1 − Z2/m2) defines the effective charge q of the
particles in the 1D description. In the presence of a laser, the
tunneling probability therefore depends on the multiparameter
� = (E, A, θ, ω), and the dynamically modified transparency
is accordingly denoted by T (�). We assume, as in the original
Keldysh [46] calculation of laser-induced tunneling ioniza-
tion rates, that the external field comes in adiabatically at
t → −∞. This allows the additional phase degree of free-
dom to be discarded from the argument of the sinusoidal
functions in Eq. (3).

An expansion of � can be sought in terms of a countably
infinite “ladder” of basis states, each corresponding to the
absorption or emission of an integer number of photons—this
is the Floquet ansatz [47–49] mentioned by Queisser and
Schützhold [17] and Kohlfürst et al. [20]. The coefficients
in this expansion are derived by initially describing � as
a Volkov state [50–52] and then calculating its Fourier
representation, as done by Wang [19] and also by Liu et al.
[21]. Utilizing this FV approach, the resulting value of the
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transparency is a superposition of terms resembling Eq. (2):

TFV(�) =
∞∑

n=−∞

∣∣∣∣Jn

(
Uq

h̄ω
,

Up

2h̄ω

)∣∣∣∣2

T (En) , (4)

where En = E + Up + nh̄ω are referred to as sideband
energies. Here, Jn(x, y) denote generalized Bessel
functions [19,21], which satisfy the normalization property∑

n∈Z |Jn(x, y)|2 = 1 for all (x, y) ∈ C2 [53,54]. To be
precise, this solution is identified with an incident Floquet
state having quasienergy E + Up and a discrete spectrum
of sideband energy shifts ±nh̄ω for n ∈ Z induced by
the surrounding laser field. It is simultaneously identified
with a Volkov state describing an incident plane wave at
energy E which is modulated by the unitary phase factor
ϕ(t ) = exp[− i

h̄

∫ t dt ′ Vext(t ′)] due to the presence of the
surrounding laser field. This factor is sometimes referred to
as the Volkov phase [51].

The complex conjugate of the Volkov phase, ϕ†, is also
known as the KH transformation [18,20,21,24]. It gives rise
to another strategy for solving the laser-modified TDSE: the
tunneling problem is considered within an accelerating frame
of reference in which the forces due to the external field van-
ish. In this case, the transformation is equivalent to performing
the substitution r �→ r − rq on the three-dimensional (3D)
spatial variable, where rq(�) = qA(t )/μω is the laser-driven
displacement characterizing the quiver motion of the KH
frame. The tunneling potential appearing in the transformed
Hamiltonian now oscillates, leading to the KH potential
VKH(r, t ) = κ/|r − rq(t )|, where the explicit dependence on
A, θ , and ω has been suppressed. Assuming the oscillation pe-
riod τ = 2π/ω is very small compared to all other timescales,
a static “effective potential,” Veff(r) = 1

τ

∫ τ

0 dt VKH(r, t ), can
be obtained by taking the corresponding time average. This
effective potential can then be substituted into the WKB
formula [18,21–24] to provide an alternative estimate of the
laser-modified transparency:

TKH(�) = exp

{
−2

√
2μ

h̄
Im

[∫
r∈R

dr
√

Veff(r) − E
]}

, (5)

where R = {r > RKH |Veff(r) > E} is the classically forbid-
den region. As assumed by Lv et al. [18,22,23], the shape
swept out by the short-range spherical nuclear binding poten-
tial is taken to provide the interior classical turning point at
RKH. Further details regarding this inner binding region and
the 1D form of Veff are included in Appendix B. All relevant
derivations are provided in extensive detail in Ref. [55].

Whether or not a time-averaged potential will provide a
sufficiently accurate approximation to model laser-driven nu-
clear fusion holds great similarity to the use of the Keldysh
parameter γK in optical ionization processes [46,56,57]. Just
as how γK signifies the nonadiabaticity of the laser-driven
tunneling of an electron, i.e., the extent to which it cannot
be described in terms of a static potential, we may express
a similar parameter γG, to the same end, defined as

γG = ω
√

2μE/(qE ), (6)

where the electric field strength E = Aω. For relatively low-
frequency oscillations (γG < 1), a quasistatic treatment proves

to be sufficient and is referred to as the adiabatic or strong-
field regime, whereas high-frequency oscillations (γG > 1)
allow for the use of time-averaged quantities and is referred to
as the multiphoton regime. Up to a redefinition of parameters
μ and q, each driven tunneling problem (atomic ionization,
α decay, nuclear fusion) is equivalent from a mathematical
standpoint. However, the physical scales (distances and time
intervals set by incident energy E) associated with each prob-
lem differ vastly, affecting which assumptions can be made,
and subsequently, which models are applicable.

III. NUMERICAL VALIDATION

The CN method [58] is well suited to the 1D TDSE of
interest [7,59]. Our setup involves a Gaussian wave packet ini-
tialized inside of the nuclear binding region where the external
field is set to zero, in accordance with the transparency factor
describing solely the tunneling step of the fusion process. The
wave packet proceeds to scatter against the laser-modified
Coulomb barrier from the inside, encountering the external
field no sooner than it enters the classically forbidden region.
While technically this is a simulation of the tunneling step
in a (fictional) nuclear-decay process, the symmetry between
it and the opposite-direction tunneling process is a standard
[27,38] justification for such an approach to the fusion trans-
parency. The main advantage of this setup is that its initial
conditions are constructed from exact solutions to the poten-
tial within the starting region, which is not the case when a
wave packet is placed initially on the outside of the barrier.
We also verify that when supplied with no external field, the
CN results are consistent with Eq. (2). Further details of the
numerical algorithm can be found in Appendix C. Though the
use of the CN method for Gaussian-wave-packet propagation
and tunneling does not provide a complete description of the
complicated process of nuclear fusion, it does provide a first-
principles calculation for the tunneling transparency against
which the prior analytical methods can be benchmarked, and
is novel in the field of laser-enhanced fusion.

IV. CONTRADICTING THEORETICAL PREDICTIONS

We compare the values of T (�) resulting from each
method for center-of-mass energies between 0.1 and 10 keV
within a range of � space approaching that characteriz-
ing state-of-the-art laser parameters. Figures 1 and 2 show
the laser-modified transparency predicted by each method,
with the former and latter respectively depicting electric field
strengths of E = 1015 V/m and E = 1016 V/m. The upper
subplots compare different external field frequencies, while
the lower subplots compare different polarization angles. It
is clear that the FV and CN approaches are in good agreement.
Both predict that tunneling at higher center-of-mass energies
is unaffected outside of extremely high field strengths, and
that the presence of the laser leads to nonzero transparen-
cies even in the limit E → 0. Such low-E behavior leads,
for example, to increases in over 10 orders of magnitude
below a center-of-mass energy of 0.5 keV in Figs. 1 and 2.
Above a center-of-mass energy of 2–3 keV in these figures,
no enhancement effect can be seen. This trend is conceptually
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FIG. 1. Comparison of modified transparency estimates using
FV (dashed curves), KH (dotted curves), and CN (	 s) for the DT
fusion reaction as a function of center-of-mass energy. The field
strength is fixed at E = 1015 V/m; (a) the polarization angle is fixed
at θ = 0, while the photon energy is chosen to be 1 keV (blue),
3 keV (orange), and 10 keV (green); (b) the photon energy is fixed at
h̄ω = 3 keV, while the polarization angle is chosen to be 0 (orange)
and π/2 (green). The gray solid curve is the field-free transparency.

consistent with a modest amount of energy gain during tunnel-
ing. Indeed, the behavior of the sideband energy En for large
n as E → 0 in Eq. (4) suggests that a sufficiently intense laser
field allows particles that were initially at rest with respect
to one another to fuse by absorbing photon energy. The en-
hancement effect at low E increases significantly with field
strength and also increases with frequency until exhibiting a
saturation phenomenon as h̄ω increases beyond 10 keV. A
comparison between Figs. 1(a) and 2(a) further demonstrates
that the transparency is more sensitive to increases in field
strength at low h̄ω. Symmetry with respect to the θ parameter
causes all transparency curves to lie between two extremes (at
θ = 0 and θ = π/2), as shown in Figs. 1(b) and 2(b); they all
closely approximate the orange (θ = 0) transparency, except
for a narrow range of angles very close to π/2. Notably, the
CN results do not appear to reflect the subtle behavior of
the E = 1016 V/m, h̄ω = 1 keV, θ = 0 dashed curve (blue)
of Fig. 2(a), which actually overtakes its higher-frequency
counterparts (orange and green) in the center-of-mass energy
range 1 � E � 5 keV.

In contrast to the other methods, the KH approach leads
to transparency estimates with major differences. It predicts

FIG. 2. Higher-field-strength version of Fig. 1, where now
E = 1016 V/m, with all other parameters unchanged.

an enhancement effect that is independent of center-of-mass
energy. Moreover, it fails to reproduce the significant increase
in transparency at low E predicted by FV and CN, predicting
instead that the laser-modified transparency vanishes in the
E → 0 limit like in the field-free case. It is also far less
sensitive to changes in h̄ω. The only prediction that KH has in
common with the other methods is that the enhancement effect
is more sensitive to increases in E at lower h̄ω. This markedly
different behavior may be interpreted in terms of the shape of
Veff(r) as a result of time averaging: the peak of the Coulomb
barrier is lowered slightly and is also brought a small distance
out from the origin, which changes the tunneling problem
drastically. The inconsistency between KH and the numerical
result casts doubt on the viability of the simplified expression
Veff within the range of parameters considered here. Conse-
quently, we identify the analytical FV expression in Eq. (4)
as a suitable extension of the Gamow transparency factor in
Eq. (2) to the dynamic-field case, due to its overall consistency
with CN predictions within the parameter range of interest.
This numerical validation of the FV formula enables an ana-
lytical calculation of the laser-enhanced reactivity for a kinetic
distribution of many particles.

V. LASER-ENHANCED REACTIVITY

In a system of particles described by a distribution f (E, θ )
over center-of-mass energies and polarization angles, the
overall number of fusion reactions per unit time is directly
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FIG. 3. Enhancement factor η = 〈σFV(�)u〉/〈σ (E )u〉 associated with the strong-field fusion reactivity in a thermal DT plasma at tempera-
ture kBT = 1 keV, calculated for a range of photon energies and field strengths. Height is also characterized by color, with the transition from
black to violet indicating the η � 2 threshold. The highlighted curves in gray mark the values E = {3×1014, 1×1015, 3×1015, 1×1016} V/m
for reference. At sufficiently high field strengths (E � 5×1016 V/m), enhancement factors of around a factor of two are calculated toward the
lower range of photon energies (h̄ω ≈ 200 eV) marking the beginning of the soft-x-ray band. All axes are log scale.

proportional to the reactivity

〈σu〉 =
∫

dE
∫

dθ f (E, θ )σ (E )

√
2E
μ

, (7)

which has dimensions of volume per unit time (SI units
m3/s). We take f to have the Maxwell-Boltzmann form,
using the factorization f (E, θ ) = f (E ) f (θ ) assuming ther-
mal equilibrium. The standard probability density f (E ) =
2
√
E/π (kBT )−3/2 exp−E/kBT in terms of temperature T with

kB the Boltzmann constant is used for center-of-mass energies
[27], and the probability density f (θ ) = 1

2 sin θ corresponding
to 3D isotropy is used for polarization angles 0 � θ � π .
Assuming the frequency of the external field at XFEL photon
energies is high enough, the incident wave � is well described
by a Volkov state long before arriving within tunneling range.
The sideband expansion can thus be applied to all of σ (E )
rather than just T (E ), now giving a superposition of terms re-
sembling Eq. (1). We substitute this superposition into Eq. (7)
to obtain an analytical estimate for the laser-enhanced fusion
reactivity. It is worth noting that this substitution can be per-
formed irrespective of the form of the velocity distribution f ,
meaning that it is also applicable to beam-beam/beam-target
and nonthermal settings as well. Keep in mind also that A and
ω are the only free parameters that remain after integrating
over E and θ .

Figure 3 depicts a surface plot of the resulting enhance-
ment factor with respect to the field-free reactivity, as a
function of electric field strength and photon energy, for a
DT plasma at a temperature of kBT = 1 keV. It is assumed
this plasma has been prepared before the interaction with
the XFEL pulse. We find no enhancement effect below an

electric field strength of 1015 V/m at any of the frequencies
considered, with an increase of a factor of ≈5 requiring field
strengths closer to 1016 V/m at low photon energies. The
laser-enhanced fusion reactivity decreases with increasing h̄ω,
which is simply a consequence of the trend shown by the
dashed curves in Fig. 2(a). At small h̄ω, the absorption and
emission probabilities are high, so the n > 1 sidebands are
sufficiently populated for a significant fraction of the incident
wave to tunnel at a higher energy, as discussed by Wang
[19]. Conversely, at large h̄ω the sideband spectrum is sharply
peaked at about n = 0, and thus tunneling effectively occurs
at E regardless of the laser input. To significantly increase
the occupancy of higher-order sidebands at large h̄ω (i.e.,
greater than 3 keV), field strengths at or above 1017 V/m
would be required. Note that the largest enhancements are
found in the strong-field regime. The lower limit on the pho-
ton energies in Fig. 3 was imposed, as below this value we
found the FV results start to deviate from the CN results
beyond an order of magnitude at the largest of the electric field
strengths considered. This can be understood by considering
γG [Eq. (6)]. As h̄ω is lowered, keeping all other parameters
fixed, we traverse from the multiphoton regime (γG > 1) into
the strong-field regime (γG < 1). In the intermediate region
γG ≈ 1, the temporal scale of harmonic oscillation of the laser
field ∼ cos(ωt ) becomes comparable to that of the tunnel-
ing. Thus, the phase φ of the laser field, omitted in Eq. (3),
will lead to an effect on the transparency in this regime.
Assuming φ = 0 as we do imposes the largest contribution
from the harmonic laser field to occur at the start of the
tunneling. At a different phase φ ∈ (0, 2π ), this value is di-
minished, thus explaining why the FV method overestimates
the transparency when γG ≈ 1. The lower limit on h̄ω is of
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course smaller for lower values of the electric field strength,
since γG ∼ ω/E .

VI. CONCLUSIONS AND OUTLOOK

After accounting for all collision geometries present in an
equilibrium distribution of particles, our calculations indicate
that the thermal reactivity of a DT plasma at a temperature
of 1 keV can be enhanced by up to a modest factor of ≈5
by the application of a laser, provided sufficiently extreme
electric fields in the range 1015–1016 V/m and photon energies
in the range 0.3–1 keV are used. It is interesting to note
that the threshold field strength predicted here is appreciably
below the Schwinger limit of around 1018 V/m. We conclude
that ultraintense, soft x-ray fields should be most effective
at enhancing the thermal DT reactivity. These predictions of
laser-modified reactivity are justified by first-principles nu-
merical calculations, which we find to be consistent with the
FV description of the fusion tunneling process and inconsis-
tent with the time-averaged KH description.

The laser parameters associated with the greatest enhance-
ment factors in Fig. 3 are just beyond the range of peak
intensities demonstrated by current state-of-the-art XFELs but
may be feasible in the not-too-distant future. The predictions
shown in this work suggest that ultraintense XFELs have the
potential to access parameter regimes consistent with observ-
able enhancements to laser-driven plasma fusion. Additional
effects of, e.g., higher dimensions, electronic screening, and
laser pulse shaping on the tunneling problem were neglected
to arrive at an analytical expression for the laser-enhanced
fusion cross section consistent with first-principles numerical
calculations. This enhancement process is demonstrated to
have a sound theoretical basis and is worthy of investiga-
tion in further detail. In order for it to be a practical avenue
towards fusion power development, the enhancement would
have to exceed the various loss mechanisms (bremsstrahlung,
heat conduction, volume expansion) in a given fusing plasma,
dependent on the manner in which the plasma is created, the
target geometry, plasma properties, its environment, among
many other factors. This sort of technological consideration is
beyond the scope of this work.

ACKNOWLEDGMENTS

We would like to acknowledge support from the DOE
Office of Science, Fusion Energy Science, under Grant No.
FWP 100182. This work was also partially supported by the
National Science Foundation under Grant No. 2308860. This
work is supported in part by the U.S. Department of Energy
(DOE), Office of Science, Fusion Energy Sciences, under
Award No. DE-SC 0024882:IFE-STAR.

APPENDIX A: REQUISITE ASSUMPTIONS
AND APPLICABILITY

As mentioned in the main text, all results presented make
use of the dipole approximation. This assumption places an
upper bound on the values of h̄ω (found to be ≈12 keV)
below which we would expect our predictions to apply, due

to the dispersion relation ω = c/λ. To this end, there are two
length scales we must consider: (I) the typical separation r that
the nuclei “start from” when they undergo mutual scattering,
and (II) the thickness of the potential barrier. Seeking a rough
characterization of experimentally realistic settings, we find
that for a distribution of particles at thermal equilibrium with
number density ≈1023 cm−3 and temperature ≈1 keV, the
laser wavelength λ is much greater than both (I) and (II) within
the parameter range of interest. Analogously to our spatial
scales, there are two timescales we must also consider: (I)
the collision time, i.e., the time taken outside of the barrier
to reach the classical turning point, and (II) the traversal time,
i.e., the “time spent under” the potential barrier during the tun-
neling motion. This latter timescale tends to be much shorter
than the former; note that it is, however, purely imaginary-
valued and stems from a semiclassical interpretation despite
its practical utility [46]. We summarize the conditions for
applicability with respect to these timescales for our methods
below:

(1) For the time-averaging step in the KH approach, the
oscillation period of the laser is shorter than (II).

(2) For the FV approach [and thus the laser-enhanced
reactivity calculation which substitutes Eq. (4) into
Eq. (7) in the main text], the time required to pop-
ulate the Floquet ladder is shorter than (I). Note that
due to the nuclear-decay configuration of the CN sim-
ulations, their agreement with FV suggests that the
timescale to populate the most significant sidebands
is actually much shorter than (I), below even (II) at
the parameters considered. The FV and KH methods
also require lower bounds to be established for ω, since
both of their respective formulas break down in the
static-field limit ω → 0 for A = 0. This lower bound
on h̄ω is found to be around 300 eV for center-of-mass
energies on the keV scale and field strengths between
1014 and 1016 V/m. We emphasize here that in con-
trast, the CN approach possesses no such lower bound,
since no additional assumptions are made about the
incident wave, potential barrier, or external field.

APPENDIX B: THEORETICAL METHODS

1. Floquet/Volkov approach

The FV approach bears resemblance to both the Volkov-
state analyses of Wang [19] and Liu et al. [21], as well as the
Floquet picture discussed by Queisser and Schützhold [17].
We start from the TDSE, which now contains the external
potential from Eq. (3) in the main text, reading

ih̄
∂

∂t
� =

[
− h̄2

2μ

∂2

∂r2
+ VC (r)

+ Uq cos(ωt ) + 2Up cos2(ωt )︸ ︷︷ ︸
Vext

]
�. (B1)

Its solution �(r, t ) can be written in terms of ψ (r), the solu-
tion to the field-free Schrödinger equation at center-of-mass
energy E , which reads [− h̄2

2μ
∂2

∂r2 + VC (r)]ψ = Eψ . This latter

044605-6



DYNAMICALLY ASSISTED NUCLEAR FUSION IN THE … PHYSICAL REVIEW C 109, 044605 (2024)

TDSE corresponds to the original time-independent tunneling
problem solved by the Gamow factor in Eq. (2) from the
main text. The Volkov phase φ(t ) effectively modulates the
harmonic term e−iEt/h̄ associated with the energy eigenvalue
of the field-free TDSE, which leads to

�(r, t ) = ψ (r)e−iEt/h̄ exp

[
− i

h̄

∫ t

dt ′ Vext(t
′)
]

︸ ︷︷ ︸
ϕ(t ′ )

, (B2)

for the solution to Eq. (B1). Assuming a simple harmonic
external field, the Volkov phase evaluates to

ϕ(t ) = exp

[
i
Uq

h̄ω
sin(ωt ) + i

Up

2h̄ω
sin(2ωt )

]
e−iUpt/h̄

=
∑
n∈Z

Jn

(
Uq

h̄ω
,

Up

2h̄ω

)
e−inωt e−iUpt/h̄, (B3)

where Jn(x, y) are the generalized Bessel functions [53,54].
They appear as a result of taking a Fourier transform, or
equivalently, applying the Jacobi-Anger identity eiz sin(ωt ) =∑

n∈Z Jn(z)einωt twice—once to each term in the square brack-
ets in the first line above. Combining Eqs. (B2) and (B3), the
solution to (B1) becomes

�(r, t ) = ψ (r)e−iEt/h̄

⎡
⎣∑

n∈Z

Jn

(
Uq

h̄ω
,

Up

2h̄ω

)
e−i(Up+nh̄ω)t/h̄

⎤
⎦

=
∑
n∈Z

Jn

(
Uq

h̄ω
,

Up

2h̄ω

)
ψ (r)e−i(E+Up+nh̄ω)t/h̄︸ ︷︷ ︸

ψE+Up+nh̄ω

, (B4)

up to a phase factor that is of no importance to our analysis.
Equation (B4) possesses the form of a Floquet expansion at
quasienergy E + Up. Since the field-free solutions ψ (and also
their Bessel function prefactors) are orthonormal, Eq. (B4) is
readily substituted into the expression T = |ψ (∞)|2/|ψ (R)|2
that gave rise to the field-free Gamow factor. Only the di-
agonal terms in the product-sum survive when taking |�|2,
and the aforementioned phase factors are eliminated as well,
justifying their earlier omission. This summation formula
describes the laser-modified solution as a discrete, infinite
“Floquet ladder” of field-free states with spacing h̄ω between
energy levels. The discrete probability mass function on this
ladder is Pn = |Jn( Uq

h̄ω
,

Up

2h̄ω
)|2 for n ∈ Z, which is canonically

interpreted as representing absorption (n > 0) and emission
(n < 0) of integer numbers of photons. In practice, the Floquet
expansion is truncated below at

ν(E, E , ω) = min{n ∈ Z | E + Up + nh̄ω � 0},
due to the restriction that sidebands with negative kinetic
energy do not contribute to the transparency are disallowed
in the expansion. Note that the FV method does not allow
for a consideration of static fields, as the results diverge for
ω → 0. By its inherent design, i.e., the construction of the
Floquet ladder of sidebands, the method is best suited for
the multiphoton regime. This leads to a lower limit on ω,
which depends on the value of the electric field strength, that
was discussed in the main text. Beyond this limit, static-field

extensions to the Gamow model ought to be employed instead
(Refs. [25,26]).

2. Kramers-Henneberger approach

The KH analysis follows the discussion in Lv et al.
[18,22,23] and Liu et al. [21]. We must go back and con-
sider the full 3D two-body problem before reformulating it
in 1D. Applying the KH phase factor to arrive at �KH(r, t ) =
φ(t )�(r, t )φ†(t ) is equivalent to the coordinate transforma-
tion r → r − rq(t ) = rKH(t ), where the displacement vector

rq(t ) = q

μω
A cos(ωt ) (B5)

describes the laser-driven “quiver motion” of the oscillating
reference frame. This oscillation has amplitude rq = |rq| and
is aligned in the same direction as the external field—note that
the angle parameter θ from � has not yet been introduced, as
the problem has yet to be cast into 1D.

The transformed TDSE now reads ih̄ ∂
∂t �KH = [− h̄2

2μ
∇2 +

VC (rKH)]�KH, which closely resembles the time-independent
field-free problem. To obtain the 1D reduction, the Legendre
polynomials P�(z) defined for � ∈ N and z ∈ [−1, 1] may be
employed [18,22,23]. These special functions have the prop-
erty

1

|r − r′| =
⎧⎨
⎩

1
r

∑∞
�=0 P�(cos θ )

(
r′
r

)�
if r > r′

1
r′
∑∞

�=0 P�(cos θ )
(

r
r′
)�

if r < r′,
(B6)

where r′ = |r′|, and θ is defined by r · r′ = rr′ cos θ . When
applying Eq. (B6) to the transformed potential VKH(r, t ) =
VC (rKH(t )), we simply multiply it through by κ and perform
the replacement r′ → rq(t ), as done by Lv et al. [18] to
arrive at a 1D formula VKH(r, t ) for the KH potential. Next,
to eliminate the time dependence, an average is taken over
one oscillation period τ = 2π/ω of the external field, leading
to an effective potential of the form Veff(r) = 1

τ

∫ τ

0 dtVKH(r, t ).
Note that although the initial consideration of the KH potential
keeps the full time dependence as a series expansion around
the zero-mode average [60], in practice only this static av-
eraged component is considered [18,21–23] most suited as a
quasistatic approximation for high values of h̄ω.

The time-averaging procedure also implies that the nuclear
binding region of the effective potential is extended to take
on a “capsulelike” shape [18,22,23]. More precisely, it is the
subset BKH ⊂ R3 swept out by a sphere of radius R whose
center is displaced from the origin by rq(t ) over one oscil-
lation period. This elongated nuclear binding region can be
written

BKH =
⋃

t∈[0,τ ]

{r | rKH(t ) < R}. (B7)

Equation (B7) leads to the following 1D analytical expression
for the KH nuclear radius R → RKH as a function of θ , which
is simply a parametrization of the boundary ∂BKH in polar
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coordinates:

RKH(θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rq cos θ + 1
2

√
4R2 − 2r2

q (1 + cos 2θ ), if θ ∈ �1

R
sin θ

, if θ ∈ �2

1
2

√
4R2 − 2r2

q (1 + cos 2θ ) − rq cos θ, if θ ∈ �3

, (B8)

where �1 = [0, arctan R
rq

), �2 = [arctan R
rq

, π − arctan R
rq

), and �3 = [π − arctan R
rq

, π ]. No explicit form of the potential is
required here for r < RKH, since that is where the WKB transparency integral stops. With the value of R(θ ) specified, we
proceed with the 1D reduction. The time-averaged potential has an analytical solution outside of the nuclear binding region,
which Lv et al. [18] also describe:

Veff(r) = κ

rq

∑
�∈2N

P�(cos θ )

⎧⎪⎨
⎪⎩

1
π

[∑�/2
j=1 γ�ζ

√
1 − �2(��−2 j − �2 j−�−2) + 2γ�√

π

(
�−�−1ξ − �� log tan ξ

2

)]
, if � < 1

γ�√
π
�−�−1, if � > 1,

(B9)

for all r > RKH (or equivalently, r ∈ R3 BKH), where the di-
mensionless quantities

γ� = �
(

�+1
2

)
�
(

�+2
2

) , ζ = �(i)

�
(
i + 1

2

) ,

� = r

rq
, ξ = arcsin �,

are introduced here to streamline the formula slightly. Note
that the full dependence on the multiparameter � in Eqs. (B7),
(B8), and (B9) has been suppressed. The KH transparency
factor is finally obtained by evaluating TKH using Veff defined
in Eq. (B9) above, as well as the interval

R = [
RKH,V −1

KH (E )
] ⊂ R+ (B10)

for the classically forbidden region. The inner turning point
RKH is given by Eq. (B8), and the outer turning point is given
by V −1

KH (E ), which solves the equation Veff(r) = E .
As a final remark, the formula for RKH(θ ) provided in

Eq. (B8) differs from that in [26], which amounts to RKH =
min{ R

sin θ
, R + rq}. While the above definition characterizes

a subset of R3 of similar size and dimension to BKH, it is
actually a close approximation, with the advantage of having a
simpler expression. Notably, the above definition and Eq. (B8)
coincide exactly at θ = π/2 and also at θ = 0, which are
consistent with all data shown in Figs. 1 and 2 in the main
text, as well as all results shown in Ref. [26].

APPENDIX C: NUMERICAL METHOD

1. Crank-Nicolson approach

A discrete representation of the wave function in
space is required for numerical computation: �(r, t ) →
{�( j�x, t )} j∈[M] = �t ∈ CM at each point in time t , where
M is the number of grid points, spaced apart by a distance �x,
in the spatial domain. The expression [M] = {1, 2, . . . , M}
is set-container notation. For sufficiently small �t , �t can
be numerically time evolved as �t+�t ≈ exp(− i

h̄ H�t )�t by
using an approximation to the time-evolution operator. The
Hamiltonian H ∈ CM×M takes on a matrix representation,
which means that the time-evolution operator is, in turn, a

matrix exponential. The original CN scheme makes use of the
first diagonal Padé approximant,

exp

(
− i

h̄
H�t

)
≈

(
1 − i�t

2h̄
H

)−1(
1 + i�t

2h̄
H

)
, (C1)

to this matrix exponential, where 1 is the M × M identity
matrix. Including the time derivative of the Hamiltonian [7,59]
yields the linear system(
1 − i

�t

2h̄
H − i

�t2

4h̄2 Ḣ

)
�t+�t =

(
1 + i

�t

2h̄
H + i

�t2

4h̄2 Ḣ

)
�t

(C2)

to solve at each time step, where the dot denotes the time
derivative. When using the standard second-difference for-
mula for the Laplacian in the kinetic energy operator, the
Hamiltonian matrix appearing in Eq. (C2) has special tridiag-
onal structure, which is particularly convenient for numerical
solution. This structure can be expressed as[

− h̄2

2μ

∂2

∂r2
+ V (r, t )

]

→ H = h̄2

2μ�x2

⎛
⎜⎜⎜⎜⎝

. . . 1
1 −2 1

1 −2 1

1 . . .

⎞
⎟⎟⎟⎟⎠ + V,

where V = diag(Vt ) ∈ RM×M is a diagonal matrix containing
the spatial discretization of the instantaneous potential as its
entries: V (r, t ) → {V ( j�x, t )} j∈[M] = Vt ∈ RM at each point
in time t . For a modest accuracy boost, we employ the further
approximation H (t + 1

2�t ) ≈ H (t ) + �t
2 Ḣ (t ) of Mišicu and

Rizea [7,8], exploiting the fact that an explicit formula for
the time derivative of the Hamiltonian is known for all t ∈ R.
Since this Taylor expansion only introduces another diagonal
term, its impact on computational performance is negligible.
Letting N denote the total number of time steps, this algo-
rithm has a scaling of O(MN ). Note that this scaling would
be O(M3N ) if naive matrix inversion were used rather than
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FIG. 4. Comparison between analytic and numerical results for a
rectangular barrier of height and width V = L = e in arbitrary units.
The CN calculations successfully capture the sharp increase near
E = e and the oscillatory behavior at higher energies. The first peak,
which is sharpest, is slightly underestimated due to the Gaussian blur
effect, as further elaborated on in the text.

making efficient use of its tridiagonality. The initial condition
is a Gaussian wave packet, having continuous representation

�(r, 0) = e−ikr

(πσ 2
0 )1/4

exp

[
− (r − x0)2

2σ 2
0

]
, (C3)

with de Broglie wave number k = √
2μE/h̄, and the Gaussian

distribution N (x0, σ
2
0 ) defining its probability density on the

r axis. This t = 0 solution is discretized into a vector and
supplied as the input to the first linear system in the iteration.

2. Rectangular barrier for benchmarking

It is well established [58,61,62] that the CN method ex-
hibits oscillatory numerical artifacts. These oscillations can be
viewed as a consequence of the discrete spatial grid only being
able to represent certain wavelengths. Since the oscillations
become significant when discontinuities appear in the initial
or boundary conditions, a “big-box” setup is used in this work,
wherein the spatial grid (i.e., the parameter M) is large enough
that the amplitude of the wave packet goes to zero before
reaching the boundary, mitigating these oscillations.

To benchmark the CN method, we use it to calculate the
transparency through a rectangular barrier of height V and
width L, which can be compared to its analytical expression:

T (E ) =
{

1 + V 2 sinh2
[

L
h̄

√
2μ(V − E )

]
4E (V − E )

}−1

. (C4)

For numerical convenience, arbitrary units are used in which
h̄ = 1 and energies and lengths are scaled accordingly.
The values V = e and L = e are chosen along with an
energy range of 0.1 � E � 10, in arbitrary units, in order to
reproduce the characteristic above-barrier oscillation in the
transparency curve. A comparison between the numerical
and analytic transparency curves for the rectangular barrier is
shown in Fig. 4. It demonstrates excellent agreement between

FIG. 5. Gaussian blur of the numerical transparency curve result-
ing from the spectral width of the incident wavepacket. Barrier 2
(orange) refers to a short, wide rectangular barrier like in Fig. 4, and
barrier 1 (blue) is a tall, thin rectangular barrier that exhibits similar
properties to the Coulomb barrier. The value of σ0 in Eq. (C3) is
lowered to demonstrate the extent of the blurring effect. Note that
the ‘nodes’ in the above-barrier oscillation are least affected, while
the peaks and troughs are most affected.

the two methods, supporting the use of CN for other potential
barriers.

The underestimation of the sharpest peak in Fig. 4 stems
from an artifact known as Gaussian blurring. It is a subtlety
that stems from the use of Gaussian wave packets to model
the behavior of pure plane-wave states. As the value of the
transparency is calculated in terms of pure plane waves, and a
wave packet is an infinite (continuous) superposition of plane-
wave states, it follows that the resulting value of T contains
contributions from each component k of the wave packet. This
can be recovered exactly as an expectation over the probability
density in k space that defines the Gaussian envelope. In
momentum space, the representation of a wave packet is given
by Pk ∝ e−(k−k0 )2/ς2

, where k0 = √
2μE/h̄ is the peak of the k-

space distribution, which corresponds to the incident energy E
of the idealized plane wave in the Gamow model. The value of
ς is the reciprocal of the spatial width σ0 from Eq. (C3) for the
x-space representation, which is related through its associated
Fourier transform. The wave-packet transparency thus has
the form

Twave packet ∝
∫

dk T (k)e−(k−k0 )2/ς2
, (C5)

i.e., that of a convolution with a Gaussian kernel. Gaussian
kernels blur the data with which they are convolved, which
in this case produces a blurry transparency curve compared
to the plane-wave estimate. More precisely, it brings every
point on the curve closer to its local (i.e., binned) average.
This is most apparent in the case of the oscillating rectan-
gular barrier transparency discussed previously, as depicted
in Fig. 5 below. Note that wave packets that are highly lo-
calized in x space have very broad distributions in k space.
Consequently, convergence to the plane-wave estimate is
achieved in the limit σ0 → ∞. Fortunately, the monotonicity
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of the field-free (as well as modified) Gamow transparency
curves makes them less sensitive to Gaussian blur, as the

contributions from k < k0 effectively “cancel out” those com-
ing from k > k0.
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