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The back-shifted Fermi gas model is widely employed for calculating nuclear level density (NLD) as it
can effectively reproduce experimental data by adjusting parameters. However, selecting parameters for nuclei
lacking experimental data poses a challenge. In this study, a feedforward neural network (FNN) was utilized to
learn the level density parameters at neutron separation energy a(Sn) and the energy shift Δ for 289 nuclei.
Simultaneously, parameters for nearly 3000 nuclei are provided through the FNN. Using these parameters,
calculations were performed for neutron resonance spacing in s and p waves, cumulative number of levels,
and NLD. The FNN results were also compared with the calculated outcomes of the parameters from fitting
experimental data (local parameters) and those obtained from systematic studies (global parameters), as well as
the experimental data. The results indicate that parameters from the FNN achieve performance comparable to
local parameters in reproducing experimental data. Moreover, for extrapolated nuclei, parameters from the FNN
still offer a robust description of experimental data.
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I. INTRODUCTION

Nuclear level density (NLD) constitutes a fundamental
input parameter in the calculation of nuclear reaction cross
sections using statistical models, such as the Hauser-Feshbach
formula [1,2]. Specifically, in instances where discrete-level
information is incomplete or unavailable at a given excita-
tion energy, the level density is employed to calculate the
corresponding transmission coefficients. In nuclear reactions
involving compound nuclear processes, including capture
reactions and fission reactions, knowledge of the level den-
sity is of crucial importance [3,4]. It significantly impacts
the calculations of nucleosynthesis in various astrophysical
environments and also has substantial implications for the
assessment of nuclear fission yields.

NLD is a physical quantity whose direct measurement is
challenging. Meanwhile, the most abundant data are from
indirect measurements including the cumulative number of
discrete levels at low excitation energy and neutron resonance
spacing. As an alternative, the Oslo method, progressively
developed in recent years, can extract the γ strength function
and level density from the γ spectra of specific reactions
[5–8]. However, the NLD data from this technique remain
limited.

The earliest theoretical calculations of NLD conducted by
Hans Bethe provided a simple analytical expression for the
level density using the noninteracting Fermi gas model [9,10].
Based on such calculations and considering shell effects and
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pairing effects, a series of phenomenological models have
been developed, including the constant temperature model
(CTM) [11], the back-shifted Fermi gas model (BFM) [12],
and the generalized superfluid model (GSM) [13]. Mean-
while, in the past few decades, various microscopic methods
based on mean-field approximation or shell models have also
been developed to describe NLD. Methods based on mean-
field approximations include combinatorial methods [14–20]
and microscopic statistical methods [21–26]. Calculations
based on the shell model have also been attempted [27,28].
To avoid the substantial computational complexity associated
with diagonalizing a massive Hamiltonian, many methods
such as the Monte Carlo shell model method [29–32], stochas-
tic estimation method [33,34], moments method [35,36], and
the Lanczos method [37] have been developed. Shell model
methods are constrained by the complexity of diagonalizing
the Hamiltonian, making it challenging to conduct large-scale
calculations for the entire nuclide chart. Combinatorial meth-
ods have now achieved a precision level close to that of
phenomenological models. Recently, a new approach based
on the boson expansion of QRPA excitations was proposed
[38]. Despite the availability of numerous microscopic meth-
ods for calculating NLD, phenomenological models, owing to
their simplicity and rapid computational capabilities, continue
to be widely employed in various nuclear reaction calcu-
lations. For nuclei with discrete levels and s-wave neutron
resonance spacings (D0), phenomenological models can effec-
tively reproduce experimental data by adjusting parameters.
According to recent results of fitting parameter, the BFM ex-
hibits slightly better performance in reproducing experimental
data on D0 compared to CTM and GSM [39].
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The BFM primarily utilizes two adjustable parameters,
i.e., level density parameter a and energy shift Δ to obtain
NLD. In earlier fitted results, Δ was found to be negative
for all odd-odd nuclei, corresponding to a downward shift
of the ground-state energy by 1–3 MeV; it is referred to as
the back-shifted Fermi gas model [12,40]. In the subsequent
developments, to account for the damping of shell effects
with increasing excitation energy, the level density parameter
a was modified to be a function of excitation energy [13].
To address the divergence issue of the original BFM at low
energies, an extra term denoted as ρ0—which is related to
the level density parameter a, energy shift Δ, and spin cutoff
parameter σ 2—has been added to the expression for the total
nuclear level density [24,41]. Based on these adjustments,
the level density parameters (local parameters), a(Sn) (a at
the neutron separation energy Sn) and Δ, for 289 nuclei were
determined by fitting experimental data on D0 and discrete
levels [39]. Subsequently, a set of global parameters are de-
rived through systematic investigation to describe NLD of
nuclei lacking experimental data [39]. The determined local
parameters through fitted experimental data exhibit complex
variations, and also implicitly reflect shell effects, pairing ef-
fects, and other effects. Therefore, it is crucial to adopt reliable
methods for describing the trends of these parameters and
offering reasonable extrapolations for isotopes with limited
experimental data [39,42,43].

In recent years, machine learning has been increasingly
applied across the area of nuclear physics, covering vari-
ous topics such as nuclear data, nuclear theory, experimental
methods, and accelerator technology [44–46]. Specifically,
machine learning techniques have been widely used as re-
search tools in areas including nuclear mass [47–52], nuclear
charge distribution [53–56], β-decay half-lives [57,58], giant
dipole resonance [59,60], magnetic moment [61], ground-
state spin [62], low-lying excitation spectra [63,64], reaction
cross-sections [65,66], wave functions of light nuclei [67,68],
neutron star equation of state [69], etc. These results demon-
strate its capabilities in data processing and predictions of
various measurements. In the study of nuclear level density,
a Bayesian neural network has been employed to train the
level density parameter a from RIPL-2 for CTM, BFM, and
GSM [70]. Energy shifts were not involved in this work, and
no extrapolation of the data was conducted. However, this is a
valuable attempt that demonstrates the feasibility of utilizing
machine learning to investigate the variation patterns of level
density parameters. On the other hand, Ref. [43] conducted
a systematic study and proposed a simple expression related
to shell effects to calculate energy shifts. It suggests that
the changes in the parameter Δ follow a pattern that can be
captured by machine learning. Among various machine learn-
ing models, the feedforward neural network (FNN) is widely
utilized by nuclear physicists due to its simple structure,
strong interpretability, and powerful data fitting capabilities
[55,56,71–74]. Therefore, we employ the FNN to learn and
extrapolate the level density parameter and energy shift of the
BFM, to enable the prediction of nuclear level density.

The article is arranged as follows. The details of BFM and
FNN are discussed in Sec. II. Section III evaluates the pa-
rameters a and Δ obtained from the FNN, and employs these

parameters for extensive verification calculations, including
neutron resonance spacings, cumulative number of levels, and
level densities. Section IV provides a summary and offers
some perspectives.

II. THE BACK-SHIFTED FERMI GAS MODEL
AND THE FEEDFORWARD NEURAL NETWORK

A. The back-shifted Fermi gas model

According to BFM [12,39], the total nuclear level density
for a given excitation energy Ex can be expressed as

ρ tot
BFM(Ex ) =

[
1

ρ(Ex )
+ 1

ρ0(Ex )

]−1

, (1)

where ρ(Ex ) is given by

ρ(Ex ) = 1√
2πσ

√
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12

exp[2
√

aU ]

a
1
4 U

5
4

, (2)

and the expression for the second term is

ρ0(Ex ) = exp(1)a

12σ
exp(aU ). (3)

In this context, both the level density parameter a and the spin
cutoff parameter σ 2 are functions of energy, and the effective
excitation energy U is given by U = Ex − Δ.

For the level density parameter a, it can be expressed in the
following form [13]:

a(Ex ) = ã

(
1 + δW

1 − exp[−γU ]

U

)
. (4)

Here, ã is the asymptotic level density value that one would
obtain in the absence of any shell effects, and it can be
parametrized as a function of the mass number A, written as

ã = αA + βA
2
3 . (5)

δW is the shell correction term, defined as the difference
between the experimental nuclear mass and the liquid-drop
model mass. γ is a parameter used to describe the decay of
shell effects with increasing energy, expressed as

γ = γ1

A
1
3

. (6)

For the energy shift Δ, the expression is as follows:

Δ =

⎧⎪⎪⎨
⎪⎪⎩

12√
A

+ δ for even-even,

− 12√
A

+ δ for odd-odd,

δ for odd-A.

(7)

In the calculations of this study, for convenience, the spin-
cutoff parameter σ 2 is expressed in the form of the following
piecewise function:

σ 2 =

⎧⎪⎪⎨
⎪⎪⎩

σ 2
d for Ex � Δ,

σ 2
d + Ex−Δ

Sn−Δ

[
σ 2

F (Ex ) − σ 2
d

]
for Δ < Ex < Sn,

σ 2
F (Ex ) for Ex � Sn,

(8)
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where σ 2
d is represented as

σ 2
d = (0.83A0.26)2, (9)

and σ 2
F (Ex ) is

σ 2
F (Ex ) = 0.01389

A5/3

ã

√
aU . (10)

Finally, taking into account the parity and spin distribu-
tions, the level density is expressed as

ρ(U, J, P) = 1

2

2J + 1

2σ 2
exp

[
−

(
J + 1

2

)2

2σ 2

]
ρ tot

BFM(Ex ). (11)

On this basis, neutron resonance spacings and the cumulative
number of levels can also be calculated.

B. The feedforward neural network

The FNN consist of multiple layers, including the input
layer, hidden layers, and output layer. Each layer contains
multiple neurons. Neurons receive incoming information and
pass it to the next layer through an activation function. The
information ultimately reaches the output layer, completing
the data processing.

In this study, the hyperbolic tangent function (tanh) is cho-
sen as the activation function for the FNN hidden layer, and
the mean square error (MSE) is selected as the loss function
for the network, expressed as

Loss = 1

Nt

Nt∑
i=1

(ytar − ypre )2, (12)

where Nt represents the size of the dataset, ytar represents the
fitted values, and ypre represents the predictions given by the
FNN. During the network training process, the stochastic gra-
dient descent method [75] is applied to continuously update
the network parameters in order to minimize the loss function.

The data utilized in this study comprise level density pa-
rameters at the neutron separation energy a(Sn) and energy
shifts Δ for 289 nuclei. These data are obtained by fitting
the D0 and discrete levels in RIPL-2 [39]. The corresponding
dataset can be found in the data files of TALYS version 1.8 and
above [76]. It is important to note that δ values are provided
for an additional 846 nuclei with only discrete level data.
However, to ensure the consistency of the utilized data, these
values were not used to train the neural network.

In view of the intricate relationship between a(Sn) and
δ, and the overall lack of strong regularity in δ, the dataset
underwent classification. Utilizing Eq. (7) to transform δ back
to Δ, the training of the network was conducted separately
for a(Sn) and Δ. Additionally, the Δ dataset was categorized
into three classes: even-even nuclei, odd-odd nuclei, and odd-
A nuclei, and each was used for training the network. For
a(Sn), it explicitly includes the neutron separation energy Sn in
Eq. (4), and when expressed as a function of the mass number
A it exhibits pronounced shell effects. Therefore, the proton
number Z , neutron number N , the difference between each
of them and the nearest magic numbers (Vz, Vn), as well as
the neutron separation energy Sn are chosen as input variables

TABLE I. The statistical analysis of the MSE for 100 sets of
training outcomes across four neural networks includes assessments
on both the training and validation sets. “SD” denotes the sample
standard deviation.

Target Mean (training set) SD Mean (validation set) SD

a(Sn) 0.55 0.18 0.80 0.17
Δeven-even 0.04 0.02 0.05 0.02
Δodd-odd 0.14 0.13 0.10 0.08
Δodd-A 0.12 0.08 0.12 0.05

for the FNN. After grid search, the final decision is a double-
hidden-layer network, with each layer containing 32 neurons.
As for Δ, the selected input variables for the network are Z , N ,
Vz, and Vn. The FNN models for even-even nuclei and odd-odd
nuclei both have two hidden layers with 35 neurons and 10
neurons per layer, while a single hidden layer with 26 neurons
is employed for odd-A nuclei.

During training, the data are randomly divided into a train-
ing set and a validation set, with the training set accounting
for 80% of the data and the validation set for 20%. FNN
parameters are randomly initialized for each training iteration.
In order to capture all features of the original data while min-
imizing the MSE, each network undergoes 1000 repetitions
of training. The final results for a(Sn) and Δ are obtained
by averaging the 100 sets of data provided by the FNN, with
the smallest MSE. The performances of each neural network
on the training and validation sets are provided in Table I.
These results indicate the rationality of employing the current
hyperparameters for training neural networks.

III. RESULTS AND DISCUSSION

Figure 1 depicts the values of a(Sn) provided by the FNN
for all 289 nuclei. In addition, the results of parameters fitted

FIG. 1. Level density parameters a at the neutron separation en-
ergy Sn. The parameters obtained from the FNN (red circles with
error bars) and global parameters (blue crosses) were compared with
the local parameters (black crosses).
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FIG. 2. The energy shift Δ for even-even nuclei, odd-odd nuclei, and odd-A nuclei. The parameters obtained from the FNN (red spheres
with error bars) were compared with the local values (black spheres).

to experimental data (local parameters) and global parameters
are also presented for comparison. The error bars in the FNN
results are derived from twice the standard deviation of mul-
tiple training outcomes, indicating that approximately 95% of
the data fall within the range of the error bars. It is evident
that the FNN effectively captures the variation patterns in
the local parameters a(Sn), especially for nuclei with mass
number above 150, where global parameters clearly provide
overestimated predictions. Overall, the FNN yields a root-
mean-square deviation of 0.67, significantly outperforming
the global parameters with a deviation of 1.18.

Regarding Δ, the results of FNN training are presented in
Fig. 2. Error bars are also provided at two times the standard
deviation. In the dataset, there are 67 even-even nuclei, 56
odd-odd nuclei, and 166 odd-A nuclei. The FNN yields root-
mean-square deviations of 0.20, 0.33, and 0.36 for the above
categories, respectively. It can be observed that, whether it is
an even-even, odd-odd or odd-A nucleus, the absolute value
of Δ continuously oscillates and tends towards zero with an
increase in the mass number. Meanwhile, variations in the
values of Δ are evident around magic numbers. This under-
scores a clear fact that the Fermi gas model is better suited for
describing systems with a larger number of nucleons. For light
nuclei, however, larger parameter adjustments are necessary
to align with experimental data. In general, for both even-
even and odd-odd nuclei, the FNN effectively reproduces
the changing trends of Δ. The inclusion of magic number
information in the network inputs allows FNN to capture the
associated variations. For instance, in Fig. 2(a), the case of
208Pb clearly deviates from the overall trend, but FNN accu-
rately describes its results. Another notable fact is that FNN’s
description of Δ for medium-heavy nuclei is significantly bet-
ter than for light nuclei. The primary reason is the extremely
pronounced variations of Δ in the light nuclei region, and
these variations do not exhibit a clear connection to magic
number information. Additionally, the amount of data used to
train the network in the light nuclei region is relatively limited.
For example, in Fig. 2(b), the case of 38Cl exhibits local values

that are positive, making it challenging for FNN to capture
such variations. Especially for odd-A nuclei, FNN can roughly
describe the patterns of local values in the region above mass
number 80, but struggles to capture these oscillations below
mass number 80.

D0 values are the most reliable experimental data related to
NLD. Figure 3 depicts the ratio of calculated D0, using param-
eters obtained from FNN, to the corresponding experimental
values from RIPL-2. Meanwhile, the results of calculations
using local parameters and global parameters are also given
separately. Due to the absence of D0 for 251Cf in RIPL-3,
subsequent comparisons did not consider this nucleus. It can
be observed that, for both even-even and odd-odd nuclei, the
calculated results for all three sets of parameters mostly fall
within a range of 0.5 to 2 times the experimental values.
For odd-A nuclei, the calculated results using local parame-
ters mostly cluster around two times the experimental values,
while the results from FNN parameters and global parameters
are scattered above and below the dashed line representing
two times the experimental values.

The differences in the calculated results for the three
types of parameters, i.e., local, global, and FNN are revealed
through the root-mean-square deviation factor, denoted as
frms, between the theoretical and experimental values of D0.
frms is defined as follows [14]:

frms = exp

[
1

Ne

Ne∑
i=1

ln2 Dth
0

Dexp
0

]1/2

, (13)

where Ne is the number of nuclei considered. The correspond-
ing results are provided in Table II. In an overall assessment,
the parameters obtained from FNN yield a value of frms =
1.87, which is bigger than the local parameters (1.76) but
superior to the global parameters (2.22). This result is con-
sistent with its performance in both even-even and odd-odd
nuclei. However, for odd-A nuclei, the parameters from FNN
yield a value of frms = 2.04, even slightly surpassing the local
parameters (2.05) and significantly outperforming the global
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FIG. 3. The ratio of the s-wave neutron resonance spacings D0 predicted by the BFM for even-even, odd-odd, and odd-A nuclei to the
experimental data from RIPL-2 as a function of mass number A. The parameters obtained from the FNN (red circles) and global parameters
(blue triangles) were compared with the local parameters (black squares).

parameters (2.59). From Fig. 3(c), it can be observed that the
results from FNN are more scattered, with a larger proportion
falling below the dashed line representing twice the experi-
mental values.

Given the outstanding performance of FNN on the original
dataset of 289 nuclei mentioned above, the same approach
is employed to extensively extrapolate a(Sn) and Δ, provid-
ing parameters for 2882 nuclei beyond the dataset. Specific
parameters are provided in the Supplemental Material [77],
with the extrapolation range covering Z from 1 to 118 and N
from 1 to 177. In the input of FNN, Z = 126 and N = 184
are set to magic numbers. The ground-state information for
all these nuclei can be found in RIPL-3, and this information
is assumed to be entirely correct. Subsequently, these ground-
state level properties, along with the parameters obtained from
FNN, are used to calculate D0. The corresponding results are
presented in Fig. 4(a). The calculated results show that (1)
within an isotopic chain, D0 generally increases with an in-
crease in neutron numbers, (2) the nuclei near magic numbers
exhibit larger D0 values compared to their surrounding nuclei,
(3) there is a clear odd-even effect in the calculated results,
where even-even nuclei within the isotopic chain typically
possess smaller D0 values compared to nearby odd-A nuclei.

TABLE II. The root-mean-square deviation factor frms for D0

values obtained through BFM calculations using FNN parameters,
local parameters, and global parameters, in comparison to the exper-
imental data in RIPL-2.

Parameter f even-even
rms f odd-odd

rms f odd-A
rms f Entirety

rms

types 67 nuclei 56 nuclei 165 nuclei 288 nuclei

FNN 1.46 1.58 2.04 1.87
Local 1.31 1.18 2.05 1.76
Global 1.62 1.76 2.59 2.22

FIG. 4. The D0 values calculated using parameters from FNN
(a) and their ratios to the results obtained from global parameters
(b) for 3171 nuclei, including 289 nuclei within the dataset (repre-
sented by blue boxes) and 2882 nuclei outside the dataset.
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It is also necessary to compare the present level parameters
of FNN with the available global parameters, their ratios, i.e.,
DFNN

0 /DGlobal
0 , are shown in Fig. 4(b). Figure 4(b) shows the

ratios of D0 calculated from FNN parameters to the results
obtained from global parameters. It can be observed that the
discrepancies between the FNN and global parameters results
are within an order of magnitude within most regions of the
nuclide chart. It is noteworthy that, in the vicinity of 100Sn and
132Sn, the FNN consistently yields smaller predictive results.
By comparing the values of a(Sn) obtained through the two
methods, around 100Sn and 132Sn, the a(Sn) values calculated
using global parameters tend to be smaller than the predictions
from FNN. This difference will lead to larger values of D0.
The reason for this phenomenon could be the stronger shell
correction (δW ) in this region. For nuclei distributed along
the dashed lines representing the magic numbers Z = 82,
N = 82, and 126 (excluding those near 132Sn), the FNN pro-
vides predictive results that are larger than those obtained with
global parameters. One possible reason for such discrepan-
cies could be that FNN, due to the input of magic number
information, predicts stronger shell effects in these regions.
Additionally, for light proton-rich nuclei (especially 14O and
its vicinity), the predictions of the FNN and the global param-
eters reveal significant differences. These variations beyond
the dataset are entirely beyond the grasp of FNN. The true
nature is yet to be revealed through subsequent experimental
observations.

RIPL-3 has incorporated D0 data for more nuclei compared
to RIPL-2, and also provided updates to the D0 values for
some previously included nuclei [40]. The presence of D0

values for 12 nuclei in RIPL-3, not included in the original
dataset, provides an opportunity to evaluate the validity of
the parameters from FNN. The target nuclei corresponding to
these D0 values include 30Si, 86Kr, 96Zr, 100Ru, 122Sn, 134Cs,
135Cs, 133Ba, 153Gd, 231Pa, 233Pa, and 252Cf. The ratios of D0

values calculated using FNN to experimental data are pre-
sented in Fig. 5. The results obtained using global parameters
are also given simultaneously. Overall, the results from FNN
are distributed in the range of 0.5 to 2, with the minimum
value being 0.31 (154Gd) and the maximum value being 2.45
(232Pa). In comparison to global parameters, FNN’s results
are superior for nuclei with mass numbers below 200, while
FNN’s results are slightly inferior for the three nuclei with
mass numbers above 200. In general, the parameters obtained
from FNN yield a value of frms = 1.98, and the global pa-
rameters similarly give 1.98 in this context. Despite the D0

updates in RIPL-3 compared to RIPL-2, the parameters from
FNN consistently yield frms = 1.98 for the remaining 288
nuclei provided in RIPL-3. The obtained result is consistent
with the outcomes for the predicted 12 nuclei. This, to some
extent, indicates that the approach of extrapolating parameters
using FNN is stable, at least for nuclei close to the original
dataset. In contrast, the global parameters yield frms = 2.19
for the remaining 288 nuclei in RIPL-3.

Moreover, the p-wave neutron resonance spacing D1 also
can be used to evaluate the quality of parameters. RIPL-3
provides D1 values for 116 nuclei, including 18 even-even
nuclei, 26 odd-odd nuclei, and 72 odd-A nuclei. The ratio of
the calculated D1 using parameters obtained from FNN to the

FIG. 5. The ratio of the D0 values predicted by BFM for 12
nuclei outside the dataset to the experimental data in RIPL-3. The
results obtained from FNN parameters (red spheres) were compared
with the results from global parameters (blue triangles).

experimental data from RIPL-3 is presented in Fig. 6. The
results from local parameters and global parameters are also
displayed for comparison. It can be observed that, unlike the
case of D0, the results of calculations using local parameters
are no longer widely distributed along lines representing
1 or 2. Instead, similarly to FNN parameters and global
parameters, they are scattered between 0.5 and 2 times the
experimental values. Similarly to Eq. (13), the corresponding
root mean square deviation is provided in Table III. For even-
even and odd-odd nuclei, the calculated results from FNN
parameters yield frms bigger than local parameters but smaller
than global parameters. However, for odd-A nuclei, the
performance of FNN parameters is better than that of local pa-
rameters. In the end, for all 116 nuclei, FNN parameters yield
frms = 1.76, which is slightly better than the 1.79 from local
parameters and superior to the 1.92 from global parameters.

Discrete levels at low excitation energies are the most
abundant experimental data related to NLD. In the process
of fitting BFM parameters, it is observed that the cumulative
number of levels is highly sensitive to variations in energy
shift. Certainly, the cumulative count of discrete levels can
be employed to validate the reasonableness of Δ obtained
from FNN. Three isotopic chains, including Cu, Dy, and Pu,

TABLE III. The root-mean-square deviation factor frms for D1

values calculated using different types of parameters compared to
the experimental data in RIPL-3.

Parameter f even-even
rms f odd-odd

rms f odd-A
rms f Entirety

rms

types 18 nuclei 26 nuclei 72 nuclei 116 nuclei

FNN 1.42 1.58 1.90 1.76
Local 1.40 1.41 2.01 1.79
Global 1.45 1.61 2.13 1.92
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FIG. 6. The ratio of the p-wave neutron resonance spacings D1 predicted by the BFM for even-even, odd-odd, and odd-A nuclei to the
experimental data from RIPL-3 as a function of mass number A. The FNN parameters (red circles) and global parameters (blue triangles) were
compared with the local parameters (black squares).

have been selected to validate the parameters obtained using
FNN. Figure 7 displays the results of the cumulative number
of levels from FNN for nuclei ranging from 58Cu to 66Cu. The
corresponding results of global parameters are also provided.
Additionally, for nuclei within the original dataset, results
obtained using local parameters are presented. For the Cu iso-
topic chain, only 64Cu and 66Cu are within the dataset. From
Fig. 7, it can be observed that the parameters provided by FNN
fit well with the experimental data for 64Cu and 66Cu. For
64Cu, the results even surpass the local parameters. Besides,
for nuclei outside the dataset, FNN yields results superior to
global parameters, particularly for 58–60Cu, which are more

FIG. 7. Cumulative number of levels for 58–66Cu. Comparison
was made between the results calculated from FNN parameters (red
line), global parameters (blue dotted-dashed line), and local parame-
ters (black dashed line), and the experimental data (green dot line).

distant from the dataset, demonstrating a good description
by FNN.

Similarly to Fig. 7, Fig. 8 displays the calculated results
of the cumulative number of levels for 155Dy to 166Dy. For
nuclei within the dataset (157Dy, 159Dy, 161–165Dy), the re-
sults from FNN parameters are very close to those obtained
with local parameters. Regarding the extrapolation results,
FNN demonstrates strong predictive capabilities, effectively

FIG. 8. The cumulative number of levels calculated with FNN
parameters, local parameters, and global parameters are compared
with the experimental data, for 155–166Dy.
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FIG. 9. The cumulative numbers of levels calculated with FNN
parameters, local parameters, and global parameters are compared
with the experimental data, for 236–244Pu.

reproducing the experimental results for 158Dy, 160Dy, and
166Dy. Moreover, for 155Dy and 156Dy, FNN provides results
superior to global parameters. The results for Pu isotopes from
236Pu to 244Pu are presented in Fig. 9. It can be observed that,
for nuclei within the dataset (239–243Pu), the parameters from
FNN provide results that closely overlap with those from local
parameters while effectively reproducing experimental data.
Additionally, for extrapolated nuclei (236–238Pu, 244Pu), FNN
parameters yield excellent agreement with experimental data.
Overall, the parameters from FNN provide a good description
of the cumulative number of levels for nuclei in these three
chains, especially for nuclei outside the dataset where FNN
still provides accurate predictions. This serves as strong evi-
dence for the reliability of the Δ obtained from FNN.

Finally, the comparison between the calculated results of
the NLD using FNN parameters for the 12 nuclei between
51V to 207Pb and Oslo data [78–87] is presented in Fig. 10.
The results obtained using global parameters are also shown,
and the results from local parameters are retained for nuclei
in the dataset. It can be observed that, in the framework of
the BFM, parameters from FNN effectively describe the NLD
for nuclei both within and beyond the dataset. However, due
to the limitations of the Fermi gas model, the parameters
from the FNN were unable to capture the details of the NLD
variations with excitation energy observed in the Oslo data.
For example, in Fig. 10, the experimental NLD data for 51V
exhibit oscillations with increasing excitation energy, a pattern
that is challenging for the BFM to describe.

IV. SUMMARY AND PROSPECTS

The FNN has been employed to predict parameters of the
back-shifted Fermi gas model, including the level density
parameter at neutron separation energy a(Sn) and the energy
shift Δ. Considering the convenience of data extrapolation,
the input for the FNN includes only the proton number Z ,

FIG. 10. Comparison among the total NLDs calculated using
FNN parameters (red line), local parameters (black dashed line),
and global parameters (blue dotted-dashed line) in the BFM with
experimental data (green dots with error bars).

neutron number N , and the corresponding difference to the
nearest magic number (shell information). For a(Sn), the input
is further augmented with the neutron separation energy Sn.
The results demonstrate that the FNN effectively reproduces
the variation trends of a(Sn). For the energy shift Δ, due to
significant differences observed among even-even nuclei, odd-
odd nuclei, and odd-A nuclei, three separate neural networks
are employed to individually train on each category. The re-
sults reveal that the FNN effectively captures the patterns of
Δ variation from intermediate to heavy nuclei. However, for
lighter nuclei, the data on the original dataset are quite limited,
concurrently exhibiting irregular variations, which results in
FNN providing less precise descriptions of Δ. This is partic-
ularly evident for odd-A nuclei, where the Δ values for nuclei
with mass numbers below 80 appear to lack a discernible
pattern. This suggests that, at least for lighter nuclei, the FNN
may benefit from incorporating additional physical informa-
tion in the input variables to apply soft constraints on its
predictions for Δ. Thanks to the simplicity of the FNN input,
extrapolating data becomes straightforward. The FNN pro-
vides a(Sn) and Δ values for nearly 3000 nuclei (the detailed
parameters can be found in the Supplemental Material [77]).
Certainly, for nuclei that are significantly distant from the
dataset, caution must be taken when using these parameters.

The calculations of D0 and D1 using the parameters
obtained from FNN indicate that this set of parameters
can effectively describe the experimental data. For D0 and
D1, FNN obtains values of frms as 1.87 and 1.76, respec-
tively. The results suggest that the parameters from FNN
achieve a performance close to that of local parameters. The

044325-8



INFERENCE OF PARAMETERS FOR THE BACK-SHIFTED … PHYSICAL REVIEW C 109, 044325 (2024)

parameters from FNN also provide a satisfactory description
for the 12 nuclei beyond the dataset in RIPL-3, yielding a
result of frms = 1.98. This suggests that the method of pro-
viding extrapolated parameters is, at the very least, stable
for nuclei close to the dataset. For extrapolated nuclei, in
a broader comparison, FNN’s D0 calculation results exhibit
patterns similar to those obtained with global parameters.
However, there are noticeable differences in certain regions,
such as lighter proton-rich nuclei and in the vicinity of 100Sn
and 132Sn, where FNN consistently yields smaller results. The
calculated results for the cumulative number of levels and
NLDs also provide a reasonable description of the experimen-
tal data, further affirming the reliability of these parameters.

Overall, in this study, FNN has been employed to
discover four sets of function relationships with indeterminate
specific forms, enabling a proficient description of existing
experimental data through the utilization of exceedingly

simple physical information. In the future, improvements
could be achieved by incorporating additional physical
information as inputs to the neural network or by considering
the utilization of experimental data to impose constraints on
the network, aiming for a more accurate description of the
parameters. Furthermore, it is also interesting to investigate
the impact of level density on the neutron capture process
based on the parameters provided by FNN.
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